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Introduction

Let H be a separable, infinite-dimensional complex Hilbert space. We denote by L(H) the algebra of all bounded linear operators acting on H. Let C 1 (H) be the Banach space of trace class operators on H equipped with the trace norm. If A is a dual algebra on H, that is, a weak*-closed unital subalgebra of L(H), then it is well-known (cf. for example [START_REF] Bercovici | Dual algebras with applications to invariant subspaces and dilation theory[END_REF]) that A can be identified with the dual space of Q A := C 1 (H)/ ⊥ A where ⊥ A is the preannihilator of A in C 1 (H), under the pairing:

< T, [L] A >= trace(T L), T ∈ A, [L]

A ∈ Q A .
The Banach space Q A is called the predual of A. We write [L] for [L] A whenever there is no possibility of confusion. For x and y in H, we define x ⊗ y by x ⊗ y(u) = (u, y)x for all u in H. The cosets [x ⊗ y] A have been essential in dual algebra theory. Suppose m and n are cardinal numbers such that 1 ≤ m, n ≤ ℵ 0 . A dual algebra A will be said to have property (A m,n ) if every m × n system of simultaneous equations of the form:

[x i ⊗ y j ] = [L i,j ], 0 ≤ i < m, 0 ≤ j < n,
where {[L i,j ], 0 ≤ i < m, 0 ≤ j < n} is an arbitrary array from Q A , has a solution {x i , 0 ≤ i < m}, {y j , 0 ≤ j < n} consisting of a pair of sequences of vectors from H. We write D for the open unit disc in the complex plane C, and T for the boundary of D. The spaces L p = L p (T ), 1 ≤ p ≤ ∞ are the usual Lebesgue function spaces relative to normalized Lebesgue measure m on T . The spaces H p = H p (T ), 1 ≤ p ≤ ∞ are the usual Hardy spaces. It is well-known (cf. [START_REF] Duren | Theory of H p spaces[END_REF]) that the space H ∞ is the dual space of L 1 /H 1 0 2 where H 1 0 = {f ∈ L 1 : 2π 0 f (e it )e int dt = 0, n = 0, 1, . . .} and the duality is given by the pairing:

< f, [g] >= T f gdm, f ∈ H ∞ , [g] ∈ L 1 /H 1 0 .
We denote by A T the dual algebra generated by T ∈ L(H) and by Q T the predual space Q A T of A T . A contraction T ∈ L(H) is absolutely continuous if in the canonical decomposition T = T 1 ⊕ T 2 , where T 1 is a unitary operator and T 2 is a completely non unitary contraction, T 1 is either absolutely continuous or acts on the space (0). The following is essentially Theorem 4.1 in [START_REF] Bercovici | Dual algebras with applications to invariant subspaces and dilation theory[END_REF]:

Theorem 1.1 Let T be an absolutely continuous contraction in L(H). Then there exists a functional calculus Φ T : H ∞ → A T defined by Φ T (f ) = f (T ) for every f ∈ H ∞ . The mapping Φ T is a norm-decreasing weak*-continuous algebra homomorphism, and the range of Φ T is weak* dense in A T . Furthermore there exists a bounded, linear, one-to-one map

ϕ T of Q T into L 1 /H 1 0 such that Φ T = ϕ * T .
In particular the coset [x⊗y] is mapped to an element of L 1 /H 1 0 which we denote x2y. Very often we will use the sesquilinear map "2" for different absolutely continuous contractions (a.c.c.). If necessary we will write T 2 to avoid ambiguity. Thus we write x2y either when there is only one a.c.c. for which x2y is defined or when for all a.c.c. for which x2y is defined the same value is assigned. We denote by A = A(H) the class of all absolutely continuous contractions T ∈ L(H) for which the Nagy-Foias functional calculus Φ T : H ∞ → A T is an isometry. Furthermore, if m and n are any cardinal numbers such that 1 ≤ m, n ≤ ℵ 0 , we set A m,n = A m,n (H) to be the set of all T in A(H) such that the singly generated dual algebra A T has property (A m,n ). We write A n for A n,n .

In this paper, we continue the study of sufficient conditions for membership in the class A n,m , using improvements of techniques introduced in [CP88, [START_REF] Chevreau | Sur les contractions à calcul fonctionnel isométrique II[END_REF][START_REF] Chevreau | On the structure of contraction operators III[END_REF][START_REF] Bercovici | Factorization theorems and the structure of operators on Hilbert space[END_REF][START_REF] Ouannasser | Sur les contractions dans la classe A n[END_REF]. A lot of work has been done in this direction. For example, in [EJJ], the authors discuss contraction operators T in the class C .0 ∩ A with defect indice d T < ∞ (d T = dim{(Id -T * T ) 1/2 H} -). They show that these are particularly nice representatives of the class A n,ℵ 0 . Indeed their membership is completely determined by the multiplicity of either the shift piece of their Jordan model or the unitary piece of their minimal coisometric extension.

Our results are based upon the interplay between boundary sets, multiplicity theory and approximation techniques. In particular, we generalize the results obtained by [START_REF] Ouannasser | Sur les contractions dans la classe A n[END_REF] for membership in the class A n by localizing the multiplicity conditions. Though this localization will not surprise the specialist it is largely responsible for a lot of new technicalities.

In section 2 we introduce the notation and terminology employed herein. Then, in section 3, we shall develop some functional lemmas which lead to approximation results involving multiplicity (established in section 4). Along the way we give some new results for some triangulation of absolutely continuous contraction (section 4). As a sequel to this study we shall deduce some sufficient conditions for membership in the class A 1,n , A k,1 and A k,n where k and n are some positive integers.

Preliminaries

The notation and terminology employed herein agree with those in [START_REF] Chevreau | Boundary sets for a contraction[END_REF][START_REF] Sz-Nagy | Harmonic analysis of operators on Hilbert space[END_REF]. If we suppose that T is an absolutely continuous contraction in L(H), then its minimal unitary dilation U ∈ L(U) (H ⊂ U) is also absolutely continuous.

The minimal isometric dilation U + of T is the restriction of U to the subspace U + = Span{U n H, n ≥ 0}, which is invariant for U. The operator U + has a Wold decomposition U + = S * ⊕ R corresponding to a decomposition of U + as S * ⊕ R, where S * is a unilateral shift of some multiplicity in L(S * ) if S * = (0), S * is the zero operator if S * = (0), R is an absolutely continuous unitary operator in L(R) if R = (0) and R is the zero operator if R = (0).

The minimal coisometric extension B of T is the compression of U to the subspace

B = Span{U n H, n ≤ 0} = Span{U * n H, n ≥ 0}, invariant for U * (hence semi-invariant for U). The operator B has a Wold decomposition B = S * ⊕ R * corresponding to a decomposition of B as S ⊕ R * , where S is a unilateral shift of some multiplicity in L(S) if S = (0), S is the zero operator if S = (0), R * is an absolutely continuous unitary operator in L(R * ) if R * = (0) and R * is the zero operator if R * = (0).
Throughout the paper, expressions such as maximality, uniqueness, and equality of Borel subsets of T are to be interpreted as satisfied up to Borel subsets of Lebesgue measure zero.

We write Σ = Σ T (resp. Σ * = Σ * ,T ) for the Borel subset of T such that m |Σ (resp. m |Σ * ) is a spectral measure for R (resp. R * ). By Proposition 3.1 in [CEP], there exists a unique maximal Borel subset X T of T such that, for any f ∈ L 1 (X T ), f 1 ≤ 1, there exist two sequences (x n ) n and (y n ) n in the unit ball of H such that:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ lim n→∞ [f ] L 1 /H 1 0 -x n 2y n = 0 lim n→∞ x n 2w = 0 w ∈ H lim n→∞ w2y n = 0 w ∈ H.
In fact, T belongs to the class A ℵ 0 if and only if X T = T (cf. [START_REF] Bercovici | Dual algebras with applications to invariant subspaces and dilation theory[END_REF], with a different formulation). We denote by E r T (resp.

E l T ) the Borel subset of T equal to X T ∪ Σ * ,T (resp. X T ∪ Σ T ). It follows from Proposition 4.8 in [CEP] that E r T (resp. E l T ) is the maximal Borel subset of T such that for any f ∈ L 1 (E r T ) (resp. f ∈ L 1 (E l T )), f 1 ≤ 1, there exist two sequences (x n ) n and (y n ) n in the unit ball of H such that: ⎧ ⎨ ⎩ lim n→∞ [f ] L 1 /H 1 0 -x n 2y n = 0 lim n→∞ x n 2w = 0 (resp. lim n→∞ w2y n = 0) w ∈ H.

The operator T belongs to the class

A 1,ℵ 0 (resp. A ℵ 0 ,1 ) if and only if E r T = T (resp. E l T = T ) (cf. [CEP89]).
By Theorem 4.3 in [CEP], an absolutely continuous contraction T ∈ L(H) belongs to the class A if and only if T = X T ∪ Σ * ,T ∪ Σ T . We write Σ for Σ T and Σ * for Σ * ,T when there is no ambiguity.

If M is a semi-invariant subspace for T , we denote by R M (resp. R M * ) the unitary part of the minimal isometric dilation (resp. minimal coisometric extension) of the compression T M .

We denote by Q, Q * , A, A * the orthogonal projections of U onto S, S * , R, R * and we denote by Q M , Q M * , A M , A M * the orthogonal projections of U M , the space of the minimal unitary dilation of T M , onto S M , S M * , R M , R M * the spaces associated in an obvious way to the minimal isometric dilation and the minimal coisometric extension of T M .

If Γ is any Borel subset of T (satisfying 0 ≤ m(Γ) ≤ 1), we denote by M Γ the absolutely continuous unitary operator on L 2 (Γ) defined by:

(M Γ x)(e it ) = e it x(e it ), x ∈ L 2 (Γ), e it ∈ Γ.
As to the multiplicity of an absolutely continuous unitary operator on a Borel subset of T , the following (standard) formulation will be convenient for our purposes: Definition 2.1 Let R ∈ L(R) be an absolutely continuous unitary operator and let σ be a Borel subset of T . We say that the multiplicity of R is greater than or equal to n, n ≥ 1 on σ if there exists a reducing subspace

R 0 for R such that R 0 := R |R 0 is unitarily equivalent to (M σ ) (n) on (L 2 (σ)) (n) , the n-fold ampliation.
We recall that if T is an arbitrary absolutely continuous contraction in L(H) and if σ is a Borel subset of T , then we σ is said to be essential for T and we write σ ⊂ ess(T ) (cf. Definition 3.1 in [START_REF] Chevreau | Sur les contractions à calcul fonctionnel isométrique II[END_REF]) if:

f (T ) ≥ f |σ ∞ , f ∈ H ∞ (T ).
We also recall that a C 0• (resp. C •0 ) contraction is a contraction such that lim n→∞

T n h = 0 (resp. lim n→∞ T * n h = 0) h ∈ H. This is equivalent to Σ * ,T = ∅ (resp. Σ T = ∅). On the other hand a C 1• (resp. C •1 ) contraction is a contraction such that lim n→∞ T n h = 0 ⇒ h = 0 (resp. lim n→∞ T * n h = 0 ⇒ h = 0
). We will use the very useful decomposition of a contraction T ∈ L(H) introduced in [SNF70] (p73), namely:

T = T 0 * 0 T 1 relative to the orthogonal decomposition H = H 0 ⊕ H 1 where H 0 is defined by H 0 := {x ∈ H such that lim n→∞ T n x = 0}
. By construction we have T 0 ∈ C 0• and T 1 ∈ C 1• . We denote by E 0 the maximal essential Borel set for T 0 (unique up to Borel sets of Lebesgue measure equal zero). Since T 0 ∈ C 0• we get that E 0 = E l T 0 (cf. Proposition 4.5 in [CEP]) and if we define E 1 by E 1 = T \E 0 we have E 1 ⊂ ess(T 1 ) ⊂ E r T 1 whenever T ∈ A (cf. Proposition 1.3 in [Che] and Proposition 4.5. in [CEP]).

We now state some elementary observations important in the sequel.

• If M is an invariant subspace for T and T = T |M then x T 2 y = x T 2 y for all x ∈ M and y ∈ H with y = P M y.

• If J is a semi-invariant subspace for T and Y denotes the compression of T to J , then x T 2 y = x Y 2 y for all x, y ∈ J .

• With the above notations, for all x ∈ H and all v ∈ B, we have the following equalities:

x U 2 v = x B 2 v = x B 2 P H v = x T 2 P H v.
• For all u ∈ U + and all y ∈ H, u U 2 y = u

U + 2 y = P H u U + 2 y = P H u T 2 y. • For all x, v ∈ B, x B 2 v = Qx S * 2 Qv + A * x R * 2 A * v. • For all u, y ∈ U + , u U 2 y = Q * u S * 2 Q * y + Au R 2 Ay.
The following technical lemmas are very useful. 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ f (S * )Qx = Q(f (T )x) f (R * )A * x = A * (f (T )x) f (S * )Q * x = Q * (f (T * )x) f (R)Ax = A(f (T * )x).
Besides the sesquilinear map (x, y) ∈ H × H → x2y ∈ L 1 /H 1 0 there is also a fundamental functional sesquilinear map associated to an a.c.c. T . It is convenient to define it first for its minimal unitary dilation, U. Since U is absolutely continuous, the family {μ x,y , x, y ∈ U} of elementary spectral measures attached to U (defined by T f dμ x,y = (f (U)x, y) for f continuous on T ) provides a sesquilinear map (x, y) → x 

U • y = dμ x,y dm from U × U into L 1 (T ). If U is M α (the

Preliminary results

First, we give lemmas which are important steps in the proof of the next propositions.

Lemma 3.1 Suppose T ∈ L(H) is an absolutely continuous contraction acting on H.

Then for any h ∈ H we have:

lim n→∞ T n h2w = 0 and lim n→∞ w2T * n h = 0, w ∈ H.
Proof We will just give the proof of the first assertion. The second one can be deduced from similar arguments. Indeed we have:

A * T n h2w = (g n (R * )A * T n h, w), w ∈ H for some g n of norm 1 in H ∞ (T ); thus (recall that A * T n h = R n * A * h) A * T n h2w = (g n (R * )R n * A * h, w) =< g n α n , A * h2w >, w ∈ H.
Since the sequence (g n α n ) n converges weak* to 0 in H ∞ (T ), we obtain:

lim n→∞ A * T n h2w = 0, w ∈ H.
This combined with the fact that lim n→∞ QT n h = 0 (see Lemma 2.3) easily leads to the above lemma. Now we present two lemmas of factorization which will be important steps in the proof of the lemmas of approximation. Lemma 3.2 Let σ be a Borel subset of T , let l be in L 1 (σ) and f, g be some elements of

L 2 (σ), 0 < ρ ≤ 1 2 . Then there exist u ∈ H 2 , (c n ) n∈N in L 2 (σ) such that: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ l + f.g = (f + α n u).c n n ∈ N c n 2 ≤ 1 1 -ρ ( l 1/2 1 + g 2 ) n ∈ N u 2 ≤ 2 l 1/2 1 .
Similarly there exist also v ∈ H 2 , (d n ) n∈N in L 2 (σ) such that:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ l + f.g = d n .(g + α n v) n ∈ N d n 2 ≤ 1 1 -ρ ( l 1/2 1 + f 2 ) n ∈ N v 2 ≤ 2 l 1/2 1 .
Proof We will just give the proof of the first assertion. The second one can be deduced from similar arguments. Let 0 < ρ ≤ 1 2 , ε > 0 such that ε ≤ ρ 2-ρ . Since |l| + ν is log-integrable for any ν > 0, there exists a function l in H 2 such that |l| + ν = |l | 2 (cf. [START_REF] Hoffman | Banach spaces of analytic functions[END_REF], p53). Moreover, we can choose ν > 0 in order to have

l 2 ≤ (1 + ε) l 1/2 1 . If we set l := l l , it is clear that l ∈ L 2 (σ) and that we have l = l .l .
We set Ω := {e it ; |f |(e it ) < |l |(e it )} and let θ be a function in H ∞ such that:

|θ| = 2 -ρ on Ω ρ otherwise.
The existence of such a function is granted by [START_REF] Hoffman | Banach spaces of analytic functions[END_REF] (p 53). We obtain that:

|f + θα n l | ≥ (1 -ρ) max{|f |, |l |}. We set Z := {e it ∈ σ; f (e it ) = -(θα n l )(e it
)} and we define the function c n by:

c n (e it ) = ⎧ ⎪ ⎨ ⎪ ⎩ l + f.g f + θα n l (e it ) if e it ∈ σ\Z 0 otherwise.
We easily get:

|c n | ≤ 1 1 -ρ (|l | + |g|), which proves that c n ∈ L 2 (σ) and moreover c n 2 ≤ 1 1 -ρ ( l 1/2 1 + g 2 ).
We obtain that:

l + f.g = (f + α n u).c n where u ∈ H 2 , u = θl . So we get u 2 ≤ θ ∞ l 2 ≤ 2 l 1/2
1 and the proof is complete.

The proof of the next lemma of factorization is left to the reader since it uses similar arguments. The starting point is the fact that any function l ∈ L 1 (σ) can be written l = l .l where l and l are some elements of L 2 (σ).

Lemma 3.3 Let σ be a Borel subset of T , let l be in L 1 (σ) and let f, g be some elements of L 2 (σ).

Then there exist u ∈ L 2 (σ) and

(c n ) n∈N in L 2 (σ) such that: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ l + f.g = (f + α n u).c n n ∈ N c n 2 ≤ l 1/2 1 + g 2 n ∈ N u 2 ≤ 2 l 1/2 1 . There exist also v ∈ L 2 (σ), (d n ) n∈N in L 2 (σ) such that: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ l + f.g = d n .(g + α n v) n ∈ N d n 2 ≤ l 1/2 1 + f 2 n ∈ N v 2 ≤ 2 l 1/2
1 .

Notations:

From now on, if (resp. ) is a reducing subspace for (resp. R), we shall denote by A * 1 (resp. A 1 ) the orthogonal projection onto (resp. ) and A * 2 (resp. A 2 ) the orthogonal projection onto (resp. R ).

If a unitary operator U ∈ L(U) is of multiplicity greater than or equal to n on a Borel set σ, we write: mult(U) ≥ n on σ. Now we give the first lemma of approximation, which can be seen as a localization (in terms of the Borel set) and generalization (in terms of the form of the vectors obtained) of Theorem 3.11 in [START_REF] Chevreau | On the structure of contractions operators[END_REF].

Lemma 3.4 Let T be an absolutely continuous contraction, B its minimal coisometric extension, B = S * ⊕ R * . Let σ be a Borel subset of T . We suppose that there exists a reducing subspace R * for such that:

mult(R * ) ≥ 1 on σ where R * := R * |R * Span{R * n (R * ∩ (A * H) -), n ∈ Z} = R * . Let a ∈ H, b ∈, F ∈ L 1 (σ), ε > 0, 0 < ρ ≤ 1 2 . Then there exist h ∈ H, c n ∈ R 1 * ( is a reducing subspace for R * included in R * such that R * | is unitarily equivalent to M σ ) such
that, for any n ≥ 0, we have:

⎧ ⎪ ⎨ ⎪ ⎩ F + A * a.b -A * (a + T n h).(c n + b 2 ) < ε where b 2 = b -A * 1 b c n ≤ 1 1 -ρ ( A * 1 b + F 1/2 1 )
.

Moreover, we may assume

T n h ≤ 2 F 1/2 1 for all n ≥ 1.
Proof We consider the isometry W defined by

W := R * |(A * H) -. If W |(A * H) -∩ is unitary, we get = ∩(A * H) -, which implies that ⊂ (A * H) -. Since mult(R * ) ≥ 1 on σ, there exists a reducing subspace for R * such that ⊂ (A * H) -and such that R * | is unitarily equivalent to M σ . If W |(A * H) -∩
is not unitary, using the Wold decomposition, we know there exists a reducing subspace for W such that W | (= R * | ) is unitarily equivalent to S, the standard unilateral shift acting on H 2 . Moreover we have ⊂ (A * H) -. We recall that in this case there also exists a reducing subspace for R * such that R * | is unitarily equivalent to M σ . We write:

F + A * a.b = F + A * 1 a.A * 1 b + A * 2 a.A * 2 b. First we modify F + A * 1 a.A * 1 b.
In the particular case where ⊂ (A * H) -, using Lemma 3.3 and the vector-function identification

= L 2 (σ), there exist u ∈, (c n ) n in such that: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ F + A * 1 a.A * 1 b = (A * 1 a + R n * u).c n c n ≤ F 1/2 1 + A * 1 b u ≤ 2 F 1/2 1 .
If ⊂ (A * H) -, using Lemma 3.2 and the natural vector-function identifications

= L 2 (σ), W 1 * = H 2 , there exist u ∈ W 1 * ⊂ (A * H) -, (c n ) n in such that: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ F + A * 1 a.A * 1 b = (A * 1 a + R n * u ).c n c n ≤ 1 1 -ρ ( F 1/2 1 + A * 1 b ) u ≤ 2 F 1/2
1 . Since is a reducing subspace for R * , we get:

F + A * a.A * b = (A * a + R n * u).(c n + A * 2 b) c n , u ∈⊂ (A * H) -or F + A * a.A * b = (A * a + R n * u ).(c n + A * 2 b) c n ∈, u ∈ W 1 * ⊂ (A * H) -.
We assume

c n + A * 2 b = 0 and c n + A * 2 b = 0 otherwise the proof is immediate taking h = 0, c n = A * 1 b. Now according to the inclusion ⊂ (A * H) -or W 1 * ⊂ (A * H) -, we are able to find h ∈ H, h ∈ H so that: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ u -A * h < ε 2 c n + A * 2 b A * 2 h < ε 2 c n + A * 2 b A * h < u and ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ u -A * h < ε 2 c n + A * 2 b A * 2 h < ε 2 c n + A * 2 b A * h < u .
Since R * is an isometry and considering the equality

R n * A * 1 h = A * 1 T n h, we get: R n * u -A * 1 T n h < ε c n + A * 2 b and R n * u -A * 1 T n h < ε c n + A * 2 b ,
which easily leads to the desired inequality. Since

lim n→∞ T n h = A * h and since A * h < u , if n large enough, we can get T n h ≤ 2 F 1/2 1 .
Thus, replacing h by T n 0 h where n 0 is a sufficiently large integer, we may assume

T n h ≤ 2 F 1/2 1 for all n ≥ 1.
Now we state the dual version of the previous lemma whose proof is left to the reader since it can be deduced from similar arguments. Lemma 3.5 Let T be an absolutely continuous contraction, U + its minimal isometric dilation, U + = S * ⊕ R. Let σ be a Borel subset of T . We suppose that there exists a reducing subspace R for R such that:

mult(R ) ≥ 1 on σ where R := R |R Span{R n (R ∩ (AH) -), n ∈ Z} = R . Let a ∈ R, b ∈ H, F ∈ L 1 (σ), ε > 0, 0 < ρ ≤ 1 2 . Then there exist h ∈ H, d n ∈ R 1 ( R 1 is a reducing subspace for R included in R such that R |R 1 is unitarily equivalent to M σ ) such
that, for any n ≥ 0, we have:

⎧ ⎪ ⎨ ⎪ ⎩ F + a.Ab -(d n + a 2 ).A(b + T * n h) < ε where a 2 = a -A 1 a d n ≤ 1 1 -ρ ( A 1 a + F 1/2 1 ).
Moreover, we may asume

T * n h ≤ 2 F 1/2 1 for all n ≥ 1.
For a A 1,ℵ 0 version of Lemma 3.4 and a A ℵ 0 ,1 version of Lemma 3.5, we need the following lemma.

Lemma 3.6 Let σ be a Borel subset of T . Let (F k ) k≥1 be a norm summable sequence of functions in L 1 (σ), let f, (g k ) k≥1 be in L 1 (σ), 0 < ρ ≤ 1 2 . Then for every k ≥ 1, there exist u in H 2 , (c k,n ) n in L 2 (σ) such that: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ F k + f.g k = (f + α n u).c k,n u 2 ≤ 2( k≥1 F k 1 ) 1/2 c k,n 2 ≤ 1 1 -ρ ( F k 1/2 1 + g k 2 ) for any n ∈ N . There also exist v in H 2 , (d k,n ) n in L 2 (σ) such that: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ F k + f k .g = d k,n .(g + α n v) v 2 ≤ 2( k≥1 F k 1 ) 1/2 d k,n 2 ≤ 1 1 -ρ ( F k 1/2 1 + f k 2 ) for any n ∈ N .
Proof We just give the proof of the first assertion. The second one can be deduced from similar arguments. Let

F = k≥1 |F k | and let 0 < ρ ≤ 1 2 , ε > 0 be some positive reals such that ε ≤ ρ 2-ρ . Since F + ν is log-integrable for any ν > 0, there exists a function h ∈ H 2 such that F +ν = |h| 2 . Moreover we can choose ν > 0 in order to have h 2 ≤ (1+ε) F 1/2 1 . We consider the Borel set Ω = {e it ; |f |(e it ) < |h|(e it )} and we define a function θ ∈ H ∞ such that: |θ| = 2 -ρ on Ω ρ otherwise.
The existence of the functions h and θ are granted by [START_REF] Hoffman | Banach spaces of analytic functions[END_REF], p53. Then, for a given n, define the measurable function c k,n by:

c k,n = ⎧ ⎪ ⎨ ⎪ ⎩ F k + f.g k f + θα n h on σ\{f + θα n h = 0} 0 elsewhere . As in Lemma 3.2, we easily get c k,n ∈ L 2 (σ) and c k,n 2 ≤ 1 1-ρ ( F k 1/2 1 + g k 2 ). Now we set u = θh ∈ L 2 (σ). So we get u 2 ≤ 2( k≥1 F k 1 ) 1/2 and F k + f.g k = (f + α n u).c k,n ,
which ends the proof of the lemma.

Using the previous lemma, we can state the following propositions: Proposition 3.1 Let T be an absolutely continuous contraction, B = S * ⊕R * , its minimal coisometric extension. Let σ be a Borel subset of T . We suppose that there exists a reducing subspace R * for such that:

mult(R * ) ≥ 1 on σ where R * := R * |R * Span{R * n (R * ∩ (A * H) -), n ∈ Z} = R * . Let a ∈ H, (b k ) k ∈, (F k ) k ∈ L 1 (σ), ε > 0, 0 < ρ ≤ 1 2 . Then there exist h ∈ H, (c n,k ) n ∈ R 1 * ( is some reducing subspace for R * included in R * such that R * | is unitarily equivalent to M σ
) such that, for any n, k ≥ 0, we have:

⎧ ⎪ ⎨ ⎪ ⎩ F k + A * a.b k -A * (a + T n h).(c n,k + b 2,k ) < ε where b 2,k = b k -A * 1 b k c n,k ≤ 1 1 -ρ ( A * 1 b k + F k 1/2 1 )
.

Moreover, we may assume

T n h ≤ 2( k≥1 F k 1 ) 1/2 .
As usual this lemma has a dual version whose statement is left to the reader.

Proposition 3.2 Let T be an absolutely continuous contraction, U + its minimal isometric dilation, U + = S * ⊕R. Let σ be a Borel subset of T . We suppose that there exists a reducing subspace R for R such that:

mult(R ) ≥ 1 on σ where R := R |R Span{R n (R ∩ (AH) -), n ∈ Z} = R . Let (a k ) k ∈ R, b ∈ H, (F k ) k a norm summable sequence of functions in L 1 (σ), ε > 0, 0 < ρ ≤ 1 2 . Then there exist h ∈ H, (d n,k ) n ∈ R 1 ( R 1 is some reducing subspace for R included in R such that R |R 1 is unitarily equivalent to M σ ) such that, for any n ≥ 0, we have: ⎧ ⎪ ⎨ ⎪ ⎩ F k + a k .Ab -(d n,k + a 2,k ).A(b + T * n h) < ε where a 2,k = a k -A 1 a k d n,k ≤ 1 1 -ρ ( A 1 a k + F k 1/2 1 ).
Moreover, we may assume

T * n h ≤ 2( k≥1 F k 1 ) 1/2 .
Using matricial tools (see for example part I, section 1.4 in [Che]) which are helpful in making certain arguments more transparent, we easily state the following proposition:

Proposition 3.3 Let T ∈ L(H) be an absolutely continuous contraction and let {f

i,j , 1 ≤ i ≤ k, 1 ≤ j ≤ n} (
where k and n are some positive integers) be a collection of functions in the unit ball of L 1 (X T ). Then there exist sequences of H, (x i m ) m and (y j m ) m such that:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ lim m→∞ [f i,j ] -x i m 2y j m = 0 lim m→∞ w2y j m = 0 w ∈ H, 1 ≤ j ≤ n lim m→∞ x i m 2w = 0 w ∈ H, 1 ≤ i ≤ k x i m ≤ n m ≥ 1, 1 ≤ i ≤ k y j m ≤ k m ≥ 1, 1 ≤ j ≤ n.
The next propositions (Proposition 3.4, 3.5, and 3.6) are very important tools in the proof of the main results. They show we can get some results of approximation where we can choose the sequences of approximation in the space H 1 or H 0 (it depends on the choice of the elements of the predual of H ∞ ) with a "vanishing condition" extended to the whole space (recall that the subspaces H 1 and H 0 are those involved in the canonical C 0• -C 1• triangulation introduced in section 2). The following proposition slightly generalizes Proposition 2.2, part V in [Che]. The main improvement is the fact we achieve the approximation for a collection of functions.

Proposition 3.4 Suppose T is an absolutely continuous contraction. Let (f j ) 1≤j≤n be a finite sequence of elements of L 1 (Σ * ,1 ) such that f j 1 ≤ 1 (the integer n is arbitrarily large) and let a, b j be some elements in H 1 , 1 ≤ j ≤ n. Let ρ be a positive real such that ρ < 1 2 . Then there exist sequences (x m ) m and (y j m ) m in H 1 (1 ≤ j ≤ n) such that:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ lim m→∞ [f j ] + a2b j -x m 2y j m = 0 1 ≤ j ≤ n lim m→∞ (x m -a)2w = 0 w ∈ H a -x m ≤ 2( n j=1 f j 1 ) 1 2 m ≥ 1 y j m ≤ 1 1-ρ ( b j + f j 1 1 2 ) 1≤ j ≤ n, m ≥ 1.
The following proposition is the dual version of Proposition 3.4.

Proposition 3.5 Suppose T is an absolutely continuous contraction and let (f i ) 1≤j≤k be a finite sequence of elements of L 1 (Σ 1 ) (the integer k is arbitrarily large) and a i , b,

1 ≤ i ≤ k in H 1 . Then there exist sequences (x j n ) n and (y n ) n in H 1 (1 ≤ i ≤ k) such that: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ lim n→∞ [f i ] + a i 2b -x i n 2y n = 0 1 ≤ i ≤ k lim n→∞ w2(y n -b) = 0 w ∈ H y n -b ≤ 2( k i=1 f i 1 ) 1 2 n ≥ 1 x i n ≤ 1 1-ρ ( a i + f i 1 1 2 ) 1≤ i ≤ k, n ≥ 1.
The next proposition states precisely the approximation for a collection of functions in L 1 (E 0 ) .

Proposition 3.6 Suppose T is an absolutely continuous contraction and let (f i ) 1≤i≤k be a finite sequence of elements of L 1 (E 0 ) (the integer k is arbitrarily large) and a i , b,

1 ≤ i ≤ k in H 0 . Then there exist sequences (x i n ) n and (y n ) n in H 0 (1 ≤ i ≤ k) such that: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ lim n→∞ [f i ] + a i 2b -x i n 2y n = 0 1 ≤ i ≤ k lim n→∞ w2(y n -b) = 0 w ∈ H y n -b ≤ 2( k i=1 f i 1 ) 1 2 n ≥ 1 x i n ≤ 1 1-ρ ( a i + f i 1 1 2 ) 1≤ i ≤ k, n ≥ 1.

Techniques of approximation involving multiplicity

Let W ∈ L(W) be an absolutely continuous isometry and let W ∈ L( W) be its minimal unitary extension. We define the multiplicity of the isometry W as the multiplicity of W . Proof First we give the proof of (i). By definition we have M ⊂ Mr where Mr is a reducing subspace for W . Hence we get M ⊂ Mr . If we suppose that the inclusion is a strict one we get a contradiction by minimality of the unitary extension W . Now we give the proof of (ii). For any y ∈ W M r we get:

( W k y, W n M) = (W k y, W n M) for any k, n ≥ 0.
Thus we have W n (W M r ) ⊥ M, n ∈ N , which implies that the minimal unitary extension of W |W Mr lives on M⊥ . In fact we have:

W = W |Mr ⊕ W |W Mr and W = W| M ⊕ W| M⊥
where W| M is the minimal unitary extension of W |Mr from (i). By minimality of W and since the minimal unitary extension of W |W Mr is defined on M⊥ , we get that the minimal unitary extension of W |W Mr is W| M⊥ , which ends the proof of the lemma.

Notation: If U ∈ L(U) is a unitary operator and if a 1 , . . . , a k are some elements of U, we denote by Red U (a 1 , . . . , a k ) the reducing subspace for U generated by a 1 , . . . , a k . Now, we are able to prove the following lemma which is essential to our understanding of multiplicity. Lemma 4.2 Let σ be a Borel subset of T and let T ∈ L(H) be an absolutely continuous contraction. Suppose that mult(R) ≥ n (resp. mult(R * ) ≥ n) on σ and let x 1 , . . . , x n-1 be some elements of H. Then there exists a reducing subspace R (resp. ) for R (resp. R * ) such that:

(i) R ⊥ Red R (Ax 1 , . . . , Ax n-1 )(resp. ⊥ Red R * (A * x 1 , . . . , A * x n-1 )) (ii) mult(R |R ) ≥ 1(resp. mult(R * | ) ≥ 1) on σ (iii) Span{R n (R ∩ (AH) -), n ∈ Z} = R (resp. Span{R n * (∩(A * H) -), n ∈ Z} =).
In particular we have R ∩ (AH) -= (0) (resp. ∩(A * H) -= (0)).

Proof We establish this lemma in the case mult(R) ≥ n on σ. The assertion of this lemma in the case mult(R * ) ≥ n on σ can be proved in the same way. We set In particular we have mult(R |R ) ≥ 1 on σ and since W ⊂ R ∩(AH) -, we get Span{R n (R ∩ (AH) -), n ∈ Z} = R . Now we can state the following propositions which are essential steps in the proof of the main results, that is to say, sufficient conditions for being in the class A n,m .

R := Red R (Ax 1 , . . . , Ax n-1 ). Remark that mult(R |R ) ≤ n -1 on σ. If R
Proposition 4.1 Suppose T ∈ L(H) is an absolutely continuous contraction and let σ be a Borel set of Σ * . We also suppose that mult(R * ) ≥ k on σ and let ρ be a real number satisfying 0 < ρ ≤ 1 2 . Let {f i,j , 1 ≤ i ≤ k, j ≥ 1} be a collection of fuctions in L 1 (σ) be such that:

j≥1 f i,j 1 < ∞ for any i ∈ {1, . . . , k} and let a i ∈ H, b j ∈, 1 ≤ i ≤ k, j ≥ 1. Then there exist sequences (a i n ) n in H, (b j n ) n in such that: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ lim n→∞ f i,j + A * a i .b j -A * a i n .b j n = 0 1 ≤ i ≤ k, j ≥ 1 lim n→∞ Q(a i n -a i ) = 0 1 ≤ i ≤ k lim n→∞ (a i n -a i )2w = 0 w ∈ H, 1 ≤ i ≤ k.
Proof First we show how to construct a i 1 , b j 1 for 1 ≤ i ≤ k and j ≥ 1. Let t 1 , . . . , t q a finite sequence of elements of H, ε 1 > 0, ν 1 > 0 be given. We will proceed via k steps in order to construct those elements. If (i) is a reducing subspace for R * , i ∈ N , we shall denote by A (i) * 1 the orthogonal projection onto (i) and by A (i) * 2 the orthogonal projection onto (i) . First, we approximate (f 1,j ) j≥1 using Proposition 3.1 and Lemma 4.2. Let (1) be a reducing subspace for R * orthogonal to the reducing subspace generated by

{A * a i , 2 ≤ i ≤ k}, such that mult(R * | (1) ) ≥ 1 on σ and such that Span{R n * ( (1) ∩ (A * H) -), n ∈ Z} = (1)
. By Proposition 3.1, there exist (c

(1) n,j ) n≥1 in (1) , h 1 in H such that: ⎧ ⎪ ⎨ ⎪ ⎩ f 1,j + A * a 1 .A * b j -A * (a 1 + T n h 1 ).(c 1 n,j + A (1) * 2 b j ) < ε 1 n ≥ 1 c 1 n,j ≤ 1 1 -ρ ( A (1) * 1 b j + f 1,j 1/2 1 ) n ≥ 1.
By Lemma 2.2 and Lemma 3.1, there exists n 1 ∈ N such that, for any n ≥ n 1 we have:

QT n h 1 < ν 1 T n h 1 2t p < ν 1 1 ≤ p ≤ q. Now we set a 1 = a 1 + T n 1 h 1 , b j 1 = c 1 n 1 ,j + A
(1) * 2 b j . For any i ∈ {2, . . . , k}, by the choice of (1) , we get:

A * a i .A * b j = A * a i .b j 1 , j ≥ 1. Next, we approximate (f 2,j ) j≥1 . Let (2) be a reducing subspace for R * orthogonal to the reducing subspace generated by

{A * a 1 , A * a i , 3 ≤ i ≤ k} such that mult(R * | (2) ) ≥ 1 on σ and such that Span{R n * ( (2) ∩ (A * H) -), n ∈ Z} = (2)
. By Proposition 3.1, there exist (c 2 n,j ) n≥1 in (2) , h 2 in H such that:

⎧ ⎪ ⎨ ⎪ ⎩ f 2,j + A * a 2 .b j 1 -A * (a 2 + T n h 2 ).(c 2 n,j + A (2) * 2 b j 1 ) < ε 1 n ≥ 1 c 1 n,j ≤ 1 1 -ρ ( A (2) * 1 b j 1 ) + f 2,j 1/2 1 ) n ≥ 1.
By Lemma 2.2 and Lemma 3.1, there exists n 2 ∈ N such that, for any n ≥ n 2 we have:

QT n h 2 < ν 1 T n h 2 2t p < ν 1 1 ≤ p ≤ q. Now we set a 2 = a 2 + T n 2 h 2 , b j 2 = c 2 n 2 ,j + A (2) * 2 b j 1 .
By the choice of (2) , we get:

A * a i .A * b j 1 = A * a i .b j 2 j ≥ 1, 3 ≤ i ≤ k A * a 1 .A * b j 1 = A * a 1 .A * b j 2 j ≥ 1.
The last step consists in the approximation of (f k,j ) j≥1 .

We suppose that a 1 , . . . , a k-1 and b j 1 , . . . , b j k-1 are constructed. Let (k) be a reducing subspace for R * orthogonal to the reducing subspace generated by k) . By Proposition 3.1, there exist (c k n,j ) n≥1 in (k) , h k in H such that:

{A * a i , 1 ≤ i ≤ k -1}, such that mult(R * | (k) ) ≥ 1 on σ and such that we have Span{R n * ( (k) ∩ (A * H) -), n ∈ Z} = (
⎧ ⎪ ⎨ ⎪ ⎩ f k,j + A * a k .b j k-1 -A * (a k + T n h k ).(c k n,j + A (k) * 2 b j k-1 ) < ε 1 n ≥ 1 c k n,j ≤ 1 1 -ρ ( A (k) * 1 b j k-1 + f k,j 1/2 1 ) n ≥ 1.
By Lemma 2.2 and Lemma 3.1, there exists n k ∈ N such that, for any n ≥ n k we have:

QT n h k < ν 1 T n h k 2t p < ν 1 1 ≤ p ≤ q.
We set

a k = a k + T n k h k and b j k = c k n k ,j + A k * 2 b j k-1 , j ≥ 1.
By the choice of (k) we get:

A * a i .A * b j k-1 = A * a i .A * b j k , 1 ≤ i ≤ k -1.

Then we can easily verify that, setting

a i 1 := a i , 1 ≤ i ≤ k and b j 1 := b j k , j ≥ 1 we obtain: f i,j + A * a i .b j -A * a i 1 .b j 1 = f i,j + A * a i .b j i-1 -A * a i .b j i , which implies that: f i,j + A * a i .b j -A * a i 1 .b j 1 ≤ ε 1 .
Moreover, by construction, we have:

Q(a i 1 -a i ) < ν 1 , (a i 1 -a i )2t p < ν 1 , 1 ≤ p ≤ q.
The proof of this proposition results from iterations of the previous process, taking (t i ) i a sequence dense in H and (ε n ) n , (ν n ) n some sequences of positive reals decreasing to 0. Remark: By construction, and by Proposition 3.1, we have:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ a i n -a i ≤ 2( j≥1 f i,j 1 ) 1/2 1 ≤ i ≤ k b j n ≤ 1 1 -ρ ( b j + k i=1 f i,j 1/2 1 ) j ≥ 1.
Proposition 4.2 Let T be an absolutely continuous contraction , σ ⊂ Σ * ,T . Suppose that mult() ≥ k on σ.

If {f i,j , 1 ≤ i ≤ k, j ≥ 1} is a collection of functions in L 1 (σ) such that j≥1 f i,j 1 < ∞ (1 ≤ i ≤ k), and a 1 , . . . , a k , (b j n ) n are in H, then there exist sequences (a i m ) m , (b j m ) m (1 ≤ i ≤ k, j ≥ 1) such that: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ lim m→∞ [f i,j ] + a i 2b j -a i m 2b j m = 0 1 ≤ i ≤ k, j ≥ 1 lim m→∞ (a i m -a i )2w = 0 w ∈ H, 1 ≤ i ≤ k a i m -a i ≤ 2( j≥1 f i,j 1 ) 1/2 1 ≤ i ≤ k b j m ≤ 3( b j + k i=1 f i,j 1/2 1 ) j ≥ 1 a i m -a i 0 1 ≤ i ≤ k.
Proof We can write:

[f i,j ] + a i 2b j = [f i,j ] + A * a i 2A * b j + Qa i 2Qb j .
Using multiplicity on σ and Proposition 4.1, we can find sequences

(a i m ) m (1 ≤ i ≤ k) and (b j m ) m (j ≥ 1) in H such that: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (1) lim m→∞ [f i,j ] + A * a i 2A * b j -(A * a i m 2A * b j m ) = 0 1 ≤ i ≤ k, j ≥ 1 (2) lim m→∞ (a i m -a i )2w = 0 w ∈ H, 1 ≤ i ≤ k (3) lim m→∞ Q(a i m -a i ) = 0 1 ≤ i ≤ k (4) a i m -a i ≤ 2( j≥1 f i,j ) 1/2 1 ≤ i ≤ k (5) A * b j m ≤ 2( b j + k i=1 f i,j 1/2 1 ) j ≥ 1.
Moreover, for 1 ≤ i ≤ k, j ≥ 1, we have:

lim m→∞ (A * a i m 2A * b j m ) + Qa i 2Qb j = lim m→∞ a i m 2(Qb j + A * b j m ) -Qa i m 2Qb j + Qa i 2Qb j .
But, we can work on the two last items as follows (1 ≤ i ≤ k, j ≥ 1):

Qa i 2Qb j -Qa i m 2Qb j = Q(a i -a i m )2Qb j = (a i -a i m )2Qb j
which tends to 0 when m becomes large by (2). Finally the approximation is established with b j m = Qb j + A * b j m , which gives, via ( 5),

b j m ≤ 2 A * b j + Qb j + 2 k i=1 f i,j 1/2 1 ,
that is:

b j m ≤ 3( b j + k i=1 f i,j 1/2 1 ), j ≥ 1, m ≥ 1.
Now we give (without proof) a dual version of the Proposition 4.1.

Proposition 4.3 Suppose T ∈ L(H) is an absolutely continuous contraction and let σ be a Borel set of Σ. We also suppose that mult(R) ≥ k on σ and let ρ be a real satisfying 0 < ρ ≤ 1 2 . Let {f i,j , i ≥ 1, 1 ≤ j ≤ n} be a collection of functions in L 1 (σ) be such that:

i≥1 f i,j 1 < ∞ for any j ∈ {1, . . . , n} and let a i ∈ R, b j ∈ H, 1 ≤ j ≤ n, i ≥ 1. Then there exist sequences (a i m ) m in R, (b j m ) m in H such that: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ lim m→∞ f i,j + a i .Ab j -a i m .Ab j m = 0 1 ≤ j ≤ n, i ≥ 1 lim m→∞ Q * (b j m -b j ) = 0 1 ≤ j ≤ n lim m→∞ w2(b j m -b j ) = 0 w ∈ H, 1 ≤ j ≤ n
Remark: Moreover we have:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ b j m -b j ≤ 2( i≥1 f i,j 1 ) 1/2 1 ≤ j ≤ n a i m ≤ 1 1 -ρ ( a i + n j=1 f i,j 1/2 1 ) i ≥ 1
We now give a dual version of the Proposition 4.2 :

Proposition 4.4 Let T be an absolutely continuous contraction, σ ⊂ Σ T ; Suppose that mult(R) ≥ n on σ.

If {f i,j , 1 ≤ j ≤ n, i ≥ 1} is a collection of functions in L 1 (σ) such that i≥1 f i,j 1 < ∞, and b 1 , . . . , b n , a i , i ≥ 1 are in H, then there exist sequences (b j m ) m (1 ≤ j ≤ n), (a i m ) m (j ≥ 1) such that: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ lim m→∞ [f i,j ] + a i 2b j -a i m 2b j m i ≥ 1, 1 ≤ j ≤ n lim m→∞ w2(b j m -b j ) = 0 w ∈ H, 1 ≤ j ≤ n (b j m -b j ) ≤ 2( i≥1 f i,j 1 ) 1/2 1 ≤ j ≤ n a i m ≤ 3( a i + n j=1 f i,j 1/2 1 ) i ≥ 1 b j m -b j 0 1 ≤ j ≤ n.
Now we give a new result for some triangulation of absolutely continuous contraction.

Theorem 4.1 Let T ∈ L(H) be an absolutely continuous contraction such that: T = T 1 * 0 T 2 relative to some orthogonal decomposition H = H 1 ⊕ H 2 . Then we have:

E r T = E r T 1 ∪ E r T 2 and E l T = E l T 1 ∪ E l T 2 .
Proof What we have to do is to show that for any

F ∈ L 1 (T \E r T 2 ), F 1 ≤ 1, the class [F ] is such that there exist two sequences (u n ) n , (v n ) n in H 1 such that ⎧ ⎨ ⎩ lim n→∞ [F ] -u n 2v n = 0 lim n→∞ u n 2w = 0 w ∈ H 1 .
For this, it is sufficient to prove that given ε > 0, w 1 , . . . , w p ∈ H 1 , there exist u, v ∈ H 1 such that:

[F ] -u2v < ε u2w q < ε q = 1, . . . , p.
Suppose T = E r T up to a Borel set of Lebesgue measure 0. For any λ ∈ D, there exists a sequence (x n,λ ) n in H such that:

⎧ ⎨ ⎩ lim n→∞ E λ -x n,λ 2x n,λ = 0 lim n→∞ x n,λ 2w = 0 w ∈ H.
We set x 1 n,λ = P H 1 x n,λ and x 2 n,λ = P H 2 x n,λ . Since E λ = 1, without loss of generality we may assume that x n,λ = 1 (all n, all λ) and also (removing for each λ a suitable subsequence) that the sequence

( x 2 n,λ ) n is convergent. Let γ λ = lim n→∞ x 2 n,λ .
Relative to the choice of the sequences (x n,λ ) n we define, for 0 < γ < 1, the sets:

D γ := {λ ∈ D ; γ λ < γ}.
Observe that if λ ∈ D γ then:

lim sup n→∞ E λ -x 2 n,λ 2x 2 n,λ ≤ lim sup n→∞ x n,λ 2x 1 n,λ ≤ (1 -γ) 1/2 .
Moreover we have:

lim n→∞ x 2 n,λ 2w = lim n→∞ x n,λ 2w , w ∈ H 2 . Thus we get NT L(D\D γ ) ⊂ E r T 2 , that is, T \E r T 2 ⊂ NT L(D γ ) for any γ ∈]0, 1[. Let γ be a positive real satisfying γ < min ε 10 , ε 4 max{ w q , 1 ≤ q ≤ p} . Since D γ is dominating for T \E r T 2 , there exist λ 1 , . . . λ n in D such that γ λ j < γ, j = 1 . . . n, and α 1 , . . . , α n ∈ D such that n j=1 |α j | < 1 satisfying [F ] - n j=1 α j E λ j < ε 10
. For each j = 1, . . . , n we may assume (throwing away if necessary a finite number of terms in each of the n sequences (x i,λ j ) i ) that x 2 i,λ j < γ (where γ has been chosen such that γ j < γ < γ, 1 ≤ j ≤ n) and

E λ j -x i,λ j 2x i,λ j < ε 10 i ≥ 1, 1 ≤ j ≤ n x i,λ j 2w q < ε 4n 1 ≤ q ≤ p, 1 ≤ j ≤ n, i ≥ 1.
We set x ν j := x ν j ,λ j , x 1 ν j := P H 1 x ν j , x 2 ν j := P H 2 x ν j , and if ν := (ν 1 , . . . , ν n ), we set

x ν := n j=1 √ α j x ν j , x ν = n j=1 √ α j x ν j , x 1 ν = P H 1 x ν , x 2 ν = P H 2 x ν , x 1 ν = P H 1 x ν , x 2 ν = P H 2 x ν . We get: ⎧ ⎪ ⎨ ⎪ ⎩ [F ] - n j=1 α j x ν j 2x ν j < 3ε 10 x ν 2w q < ε 4 q = 1, . . . , p.

Since x 1

ν < γ by construction, we get:

x 1 ν 2w q < ε 4 + γ max{ w q , q = 1, . . . , p} < ε 2 , q = 1, . . . , p. Since A H 1 * h = A * h for any h ∈ H 1 , and since x ν j -x 1 ν j = x 2 ν j < γ < ε 10 we can easily conclude that: n j=1 α j A * x ν j 2A * x ν j - n j=1 α j A H 1 * x 1 ν j 2A H 1 * x 1 ν j < ε 5 .
Using the vanishing condition satisfied by the sequence (x i,λ j ) i we can find ν such that:

n j=1 α j Qx ν j 2Qx ν j -Qx ν 2Qx ν < ε 10
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(see for example Proposition 1.3, part III in [Che]). For such a ν, we transform n j=1

α j A H 1 * x 1 ν j 2A H 1 * x 1 ν j in A H 1 (x 1 ν + τ ).b where τ ∈ H 1 , b ∈ R H 1 * , with the following inequalities: τ 2w q < ε 2 , 1 ≤ q ≤ p and Q H 1 τ 2x 1 ν < ε 10 .
In fact we get:

[F ] -(x 1 ν + τ )2P H 1 (Q H 1 x 1 ν + b) < ε (x 1 ν + τ )2w q < ε 1 ≤ q ≤ p.
If T = E r T (up to a Borel set of Lebesgue measure 0) we set T = M σ ⊕ T , where σ = T \E r T . Relative to the decomposition H = L 2 (σ) ⊕ H 1 ⊕ H 2 , we have the following representation of the operator T :

⎛ ⎜ ⎝ M σ 0 0 0 T 1 * 0 0 T 2 ⎞ ⎟ ⎠ By construction E r T = T since we have E r T = E r Mσ ∪ E T r = σ ∪ E T r . If we set T1 = M σ ⊕ T 1
, by what precedes, we get:

E r T = E r T1 ∪ E r T 2 = σ ∪ E r T 1 ∪ E r T 2 = σ ∪ E r T . Thus we get E r T = E r T 1 ∪ E r T 2 .
Using the equality X T * = X T and Σ * ,T * = Σ T , (see Proposition 3.5 in [CEP]) and the equality

E r T * = E r T 1 * ∪ E r
T 2 * , we easily get:

E l T = E l T 1 ∪ E l T 2 for any triangulation of T.
We can add that for any triangulation of an absolutely continuous contraction T such that

T = T 1 * 0 T 2 relative to some orthogonal decomposition H = H 1 ⊕ H 2 , we have: Σ * ,T = Σ * ,T 1 ∪ Σ * ,T 2 and Σ T = Σ T 1 ∪ Σ T 2 .
The above equalities are trivial consequences of Lemma 1.4 in [START_REF] Bercovici | Quasisimilarity and properties of the commutant of C 11 contractions[END_REF]. The flavour of these results is that the boundary sets E r T and E l T behave well with respect to (arbitrary) triangulations. With regard to the sets X T , this behaviour is not completely settled. The inclusion X T 1 ∪X T 2 ⊂ X T is always valid, with equality if T 1 or T 2 is C 0• (cf. Proposition 3.5 and Corollary 6.4 in [CEP]), but the question wether the equality holds in general is still open.

Main results

Recall that T is in the class A 1,ℵ 0 if and only if T = E r T (see Theorem 4.6 in [CEP]). The following result shows how much the multiplicity of R H 0 on T \E r T "pushes" the operator into the class A 1,n .

Theorem 5.1 Let T ∈ L(H) be in the class A such that mult(R H 0 ) ≥ n on T \E r T . Then T belongs to the class A 1,n .

Proof Of course if T = E r

T the conclusion holds since T is in the class A 1,ℵ 0 . So we consider the case where the Borel set T \E r T has positive Lebesgue measure. We first show how to, approximately and simultaneously, transform elements of the type [f j ] + a2b j in the form ã2 bj . Let f 1 , . . . , f n be in L 1 (T ), ε > 0, and b 1 , . . . , b n , a in H. We split the f j , 1 ≤ j ≤ n into pieces: f j = f j σ + f j X T + f j σ where σ = T \E r T , and σ = E r T \(X T ) (⊂ Σ * ,T 1 ). Then we get for 1 ≤ j ≤ n:

[f j ] + a2b j = ([f j σ ] + a 0 2b j 0 ) + ([f j σ ] + a 1 2b j 1 ) + [f j X T ] + a 1 2b j 0
where we refer to notations in preliminaries. We first deal with [f j σ ] + a 0 2b j 0 = [f j σ ] + 0a 0 20b j 0 + 0a 0 20b j 0 . Using multiplicity on σ and Proposition 4.4, we can find two sequences (a 0,m ) m and (b j 0,m ) m in H 0 such that:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (1) lim m→∞ [f j σ ] + a 0 2b j 0 -a 0,m 2b j 0,m = 0 1 ≤ j ≤ n (2) lim m→∞ w2(b j 0,m -b j 0 ) = 0 w ∈ H, 1 ≤ j ≤ n (3) b j 0,m -b j 0 ≤ 2 f j σ 1/2 1 m ≥ 1, 1 ≤ j ≤ n (4) a 0,m ≤ 3( a 0 + n j=1 f j σ 1/2 1 ) m ≥ 1.
In fact, using Proposition 4.4, we get that the vanishing condition ( 2) is obtained for any w ∈ H 0 , but since w2(b j 0,m -b j 0 ) = Qw2Q(b j 0,m -b j 0 ) where (b j 0,m -b j 0 ) j tends weakly to 0 and using Lemma 2.1, we get the vanishing condition (2) for any w ∈ H. Next we use the fact that σ ⊂ Σ * ,T 1 and Proposition 3.4 to find sequences (a 1,p ) p and (b j 1,p ) p in H 1 , (1 ≤ j ≤ n) such that:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (5) lim p→∞ [f j σ ] + a 1 2b j 1 -(a 1,p 2b j 1,p ) = 0 1 ≤ j ≤ n (6) lim p→∞ (a 1,p -a 1 )2w = 0 w ∈ H (7) b j 1,p ≤ 2( b j 1 + f j σ 1/2 1 ) 1≤ j ≤ n (8) a 1 -a 1,p ≤ 3 n j=1 f j σ 1/2 1 p ≥ 1.
Finally, we use the property of the set X T . Using Proposition 3.3, we can find sequences (x q ) q and (y j q ) q in H, 1 ≤ j ≤ n, such that:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (9) lim q→∞ [f j X T ] -x q 2y j q = 0 1 ≤ j ≤ n (10) lim q→∞ x q 2w = 0 w ∈ H (11) lim q→∞ w2y j q = 0 w ∈ H, 1 ≤ j ≤ n (12) y j q | ≤ f j X T 1/2 1 q ≥ 1, 1 ≤ j ≤ n (13) x q ≤ n j=1 f j X T 1/2 1 q ≥ 1.
We now put the pieces together; from (1),( 5),( 9) and the initial decomposition of the elements [f j ] + a2b j (1 ≤ j ≤ n) we easily deduce the existence of integers M, P, Q such that for any m > M, p > P, q > Q we have:

[f j ] + a2b j -(a 0,m 2b j 0,m + a 1,p 2b j 1,p + x q 2y j q + a 1 2b j 0 ) ≤ ε 4 1 ≤ j ≤ n.
We can write, for any 1 ≤ j ≤ n: a 0,m 2b j 0,m + a 1,p 2b j 1,p + x q 2y j q + a 1 2b j 0 = (a 0,m + a 1,p + x q )2(b j 0,m + b j 1,p + y j q ) +(-a 1,p 2b j 0,m + a 1 2b j 0 ) -(a 0,m + a 1,p )2y j qx q 2(b j 0,m + b j 1,p ).

Moreover we have:

a 1 2b j 0 -a 1,p 2b j 0,m = (a 1 -a 1,p )2b j 0 + a 1,p 2(b j 0 -b j 0,m ).
Now we use relations (2), ( 6), ( 10), ( 11), and we choose successively,

p > P so that (a 1 -a 1,p )2b j 0 < ε 4 1 ≤ j ≤ n, m > M so that (a 0,p 2(b j 0 -b j 0,m ) ≤ ε 4 1 ≤ j ≤ n and q > Q so that (a 0,m + a 1,p )2y j q + x q 2(b j 0,m + b j 1,p ) < ε 4 1 ≤ j ≤ n.
Thus, upon setting ỹj = y j q , x = x q in H, bj

1 = b j 1,p , ã1 = a 1,p in H 1 , bj 0 = b j 0,m , ã0 = a 0,m in H 0 (1 ≤ j ≤ n) we have: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ [f j ] + a2b j -(ã 0 + ã1 + x)2( bj 0 + bj 1 + ỹj ) < ε 1 ≤ j ≤ n b j 0 -bj 0 ≤ 2 f j 1/2 1 1 ≤ j ≤ n ã1 -a 1 ≤ 3 n j=1 f j 1/2 1 ã0 ≤ 3( a 0 + n j=1 f j 1/2 1 ) bj 1 ≤ 2( b j 1 + f j 1/2 1 ) 1 ≤ j ≤ n ỹj ≤ f j 1/2 1 1 ≤ j ≤ n x ≤ n j=1 f j 1/2
1 .

Now we use this result to start the standard self improving process, which leads to property

A 1,n . Let us take (ε m ) m a sequence of positive reals decreasing to 0 such that ε m < 1 2 m , m ≥ 1. Suppose we have found vectors ã0,m , ã1,m , xm , bj 0,m , bj 1,m , ỹj m such that:

[f j ] -(ã 1,m + ã0,m + xm )2( bj 1,m + bj 0,m + ỹj m ) < ε m , 1 ≤ j ≤ n;
then by the above, we can find vectors ã0,m+1 , ã1,m+1 , xm+1 , bj 0,m+1 , bj 1,m+1 , ỹj m+1 such that:

[f j ] -(ã 1,m + ã0,m + xm )2( bj 1,m + bj 0,m + ỹj m ) +(ã 1,m + ã0,m + xm )2( bj 1,m + bj 0,m + ỹj m ) -(ã 1,m+1 + ã0,m+1 + xm+1 )2( bj 1,m+1 + bj 0,m+1 + ỹj m+1 ) < ε m+1
with the folowing control of the norms:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ bj 0,m+1 -bj 0,m < 2ε 1/2 m 1 ≤ j ≤ n ã1,m+1 -ã1,m < 3nε 1/2 m ã0,m+1 < 3( ã0,m + nε 1/2 m ) bj 1,m+1 < 2( bj 1,m + nε 1/2 m ) 1 ≤ j ≤ n xm+1 < nε 1/2 m ỹj m+1 < ε 1/2 m 1 ≤ j ≤ n.
We then get Cauchy sequences ( bj 0,m ) m , (x m ) m , (ỹ j m ) m and (ã 1,m ) m (1 ≤ j ≤ n), which converge to b j 0 , x, y j and a 1 respectively. Moreover ( bj 1,m ) m , (ã 0,m ) m (1 ≤ j ≤ n), have weak cluster point b j , a 0 respectively. Using mixed continuity of (x, y) → x2y we can write:

[f j ] = (a 0 + a 1 + x)2(b j 0 + b j 1 + y j ), 1 ≤ j ≤ n which ends the proof. Since T ∈ A 1,n is equivalent to T * ∈ A n,1
, the following theorem is easily deduced:

Theorem 5.2 Let T ∈ L(H) be in the class A. If mult(R H * 0 ) ≥ n on T \E r T * , then T belongs to the class A n,1 , where R H * 0 is the unitary part of the minimal isometric dilation of the C 0• part ot T * .
Remark that the condition T does not belong to the class A ℵ 0 ,1 means that the Borel set T \E r T * has a positive Lebesgue measure. Indeed T in the class A belongs to the A ℵ 0 ,1 if and only if T = E l T and E l T = {ζ, ζ ∈ E r T * }. Now we give another sufficient condition for an operator T in the class A to be in the class A k,1 . Recall that if T is C 0• then T ∈ A ℵ 0 ,1 (see Proposition 4.5 in [CEP]).

Theorem 5.3 Let T ∈ L(H) be an absolutely continuous contraction in the class

A. If mult(R H 1 * ) ≥ k on E 1 \X T , then T ∈ A k,1 . Proof Of course, if E 1 \X T = ∅ then T ∈ A ℵ 0 ,
1 and the conclusion holds. So we consider the case where E 1 \X T has positive Lebesgue measure. Let f 1 , . . . , f k be in L 1 (T ), ε > 0, and a 1 , . . . , a k , b in H. We split the functions f

i (1 ≤ i ≤ k) into pieces: f i = f i σ +f i X T +f i σ where σ = E 1 \X T , and σ = T \(σ ∪ X T ). Then we get for 1 ≤ i ≤ k, [f i ] + a i 2b = ([f i σ ] + a i 1 2b 1 ) + ([f i σ ] + a i 0 2b 0 ) + [f i X T ] + a i 1 2b 
0 , where we refer to notations from the preliminaries. By Proposition 4.2, we know there exist sequences

(a i 1,n ) n and (b 1,n ) n in H 1 , (1 ≤ i ≤ k) such that: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (1) lim n→∞ [f i σ ] + a i 1 2b 1 -a i 1,n 2b 1,n = 0 1 ≤ i ≤ k (2) lim n→∞ (a i 1,n -a i 1 )2w = 0 w ∈ H, 1 ≤ i ≤ k (3) a i 1,n -a i 1 ≤ 2 f i σ 1/2 1 1 ≤ i ≤ k, n ≥ 1 (4) b 1,n ≤ 3( b 1 + k i=1 f i σ 1/2 1 ) n ≥ 1.
Next we use the fact that σ ⊂ Σ T 0 and Proposition 3.6 to find sequences (a i 0,p ) p and (b 0,p ) p in H 0 (1 ≤ i ≤ k) such that:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (5) lim p→∞ [f i σ ] + a i 0 2b 0 -a i 0,p 2b 0,p = 0 1 ≤ i ≤ k (6) lim p→∞ w2(b 0,p -b 0 ) = 0 w ∈ H (7) a i 0,p ≤ 2( a 0 + f i σ 1/2 1 ) 1≤ i ≤ k, p ≥ 1 (8) b 0 -b 0,p ≤ 3 k i=1 f i σ 1/2 1 .
Finally, we use the property of the set X T and Proposition 3.3 to find sequences (x i m ) m and (y m ) m in H such that:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (9) lim m→∞ [f i X T ] -x i m 2y m = 0 1 ≤ i ≤ k (10) lim m→∞ x i m 2w = 0 1 ≤ i ≤ k, w ∈ H (11) lim m→∞ w2y m = 0 w ∈ H (12) x i m ≤ f i X T 1/2 1 m ≥ 1, 1 ≤ i ≤ k (13) y m ≤ k i=1 f i X T 1/2 1 m ≥ 1.
We now put the pieces together; Let us take N, M, P such that, for any n > N, m > M, p > P, we get:

[f i ] + a i 2b -(a i 1,n 2b 1,n + a i 0,p 2b 0,p + x i m 2y m + a i 1 2b 1 ) < ε 4 .
We can write for any 1 ≤ i ≤ k that a i 1,n 2b 1,n + a i 0,p 2b 0,p + x i m 2y m + a i 1 2b 0 is equal to the following expression:

(-a i 1,n 2b 0,p + a i 1 2b 0 ) -(a i 1,n + a i 0,p )2y m -x i m 2(b 1,n + b 0,p ) +(a i 1,n + a i 0,p + x i m )2(b 1,n + b 0,p + y m ).
Moreover we have:

a i 1 2b 0 -a i 1,n 2b 0,p = (a i 1 -a i 1,n )2b 0 + a i 1,n 2(b 0 -b 0,p ).
Now we use relations (2), ( 6), (10), (11), and we choose successively,

n > N so that (a i 1 -a i 1,n )2b 0 < ε 4 , p > P so that (a i 1,n 2(b 0 -b 0,p ) < ε 4 and m > M so that (a i 1,n + a i 0,p )2y m + x i m 2(b 1,n + b 0,p ) < ε 4 .
Thus we have found vectors (1

≤ i ≤ k) ãi 1 , b1 in H 1 , b0 , ãi 0 in H 0 , xi , ỹ in H such that: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ [f i ] + a i 2b -(ã i 0 + ãi 1 + xi )2( b0 + b1 + ỹ) < ε 1 ≤ i ≤ k ãi 1 -a i 1 ≤ 2 f i 1/2 1 1 ≤ i ≤ k b 0 -b0 ≤ 3 k i=1 f i 1/2 1 ãi 0 ≤ 2( a i 0 + f i 1/2 1 ) 1 ≤ i ≤ k b1 ≤ 3( b 1 + k i=1 f i 1/2 1 ) xi ≤ f i 1/2 1 1 ≤ i ≤ k ỹ ≤ k i=1 f i 1/2 1 .
By a standard self improving process, the proof can now be completed as in the proof of Theorem 5.1.

The following result generalizes Theorem 5.1 and Theorem 5.3. We give sufficient conditions for an operator T in the class A for being in the class A k,n .

Theorem 5.4 Suppose T is in the class A\(A ℵ 0 ,1 ∪ A 1,ℵ 0 ). If mult(R H 0 ) ≥ n on σ 0 ⊂ Σ 0 \X T and if mult(R H 1 * ) ≥ k on σ 1 ⊂ Σ * 1 \X T where σ 0 and σ 1 are some Borel subsets of T such that: σ 0 ∪ σ 1 ∪ X T = T , then T belongs to the class A k,n .

Remark:

• If mult(R H 0 ) ≥ n on T \E r T and if mult(R H 1 * ) ≥ k on Σ * 1 \X T , then T ∈ A k,n .

• If mult(R H 0 ) ≥ n on E 0 \X T and if mult(R H 1 * ) ≥ k on E 1 \X T , then T ∈ A k,n .

Proof Let us consider {f i,j , 1 ≤ i ≤ k, 1 ≤ j ≤ n} a finite sequence of functions in L 1 (T ), ε > 0, and a 1 , . . . , a k , b 1 , . . . , b n in H. We write f i,j = f i,j σ 0 + f i,j σ 1 + f i,j X T . Once again we have to deal with terms such as [f i,j ] + a i 2b j = ([f i,j σ 0 ] + a i

0 2b j 0 ) + ([f i,j σ 1 ] + a i 1 2b j 1 ) + [f i,j X T ] + a i 1 2b j 0 , 1 ≤ i ≤ k, 1 ≤ j ≤ n.
Using Proposition 4.4, we can find sequences (a i 0,m ) m and (b j 0,m ) m in H 0 such that, if 1 ≤ i ≤ k and if 1 ≤ j ≤ n we have:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (1) lim m→∞ [f i,j σ 0 ] + a i 0 2b j 0 -(a i 0,m 2b j 0,m ) = 0 1 ≤ i ≤ k, 1 ≤ j ≤ n (2) lim m→∞ w2(b j 0,m -b j 0 ) = 0 w ∈ H, 1 ≤ j ≤ n (3) b j 0,m -b j 0 ≤ 2( k i=1 f i,j σ 0 1 ) 1/2 m ≥ 1, 1 ≤ j ≤ n (4) a i 0,m ≤ 3( a i 0 + n j=1 f i,j σ 0 1/2 1 ) m ≥ 1, 1 ≤ i ≤ k.
Using Proposition 4.2, we can find sequences (a i 1,p ) p and (b j 1,p ) p in H 1 such that:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (5) lim p→∞ [f i,j σ 1 ] + a i 1 2b j 1 -a i 1,p 2b j 1,p = 0 1 ≤ i ≤ k, 1 ≤ j ≤ n (6) lim p→∞ (a i 1,p -a i 1 )2w = 0 w ∈ H, 1 ≤ i ≤ k (7) a i 1,p -a i 1 ≤ 2 n j=1 f i,j σ 1 1/2 1 1 ≤ i ≤ k, p ≥ 1 (8) b j 1,p ≤ 3( b j 1 + k i=1 f i,j σ 1 1/2 1 ) 1≤ j ≤ n, p ≥ 1.
We now use Proposition 3.3 to find two sequences (x i q ) q and (y j q ) q in H such that:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (9) lim q→∞ [f i,j X T ] -x i q 2y j q = 0 1 ≤ i ≤ k, 1 ≤ j ≤ n (10) lim q→∞ x i q 2w = 0 w ∈ H, 1 ≤ i ≤ k (11) lim q→∞ w2y j q = 0 w ∈ H, 1 ≤ j ≤ n (12) x i q ≤ n j=1 f i,j X T 1/2 1 1 ≤ i ≤ k, q ≥ 1 (13) y j q ≤ k i=1 f i,j X T 1/2 1 1 ≤ j ≤ n, q ≥ 1.
We now put the pieces together; Let us take M, P, Q such that if m > M, p > P, q > Q, for any 1 ≤ i ≤ k and any 1 ≤ j ≤ n we have: We can write, 1 ≤ i ≤ k, 1 ≤ j ≤ n: a i 1,p 2b j 1,p + a i 0,m 2b j 0,m + x i q 2y j q + a i 1 2b j 0 = (a i 1,p + a i 0,m + x i q )2(b j 1,p + b j 0,m + y j q ) +(-a i 1,p 2b j 0,m + a i 1 2b j 0 ) -(a i 1,p + a 0 0,m )2y j qx i m 2(b j 1,p + b j 0,m ). q > Q so that (a i 1,p + a i 0,m )2y j q + x i q 2(b j 1,p + b j 0,m ) < ε 4 .

[f i,j ] + a i 2b j -(a i

Moreover we have:

a i 1 2b j 0 -a i 1,p 2b j 0,m = (a i 1 -a i 1,p )2b j 0 + a i
Finally we have found vectors ãi 0 , bj 0 in H 0 , ãi 1 , bj 1 in H 1 and xi , ỹj in H, such that:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ [f i,j ] + a i 2b j -(ã i 0 + ãi 1 + xi )2( bj 0 + bj 1 + ỹj ) < ε 1 ≤ i ≤ k ãi 1 -a i 1 ≤ 2 n j=1 f i,j 1/2 1 1 ≤ i ≤ k b j 0 -bj 0 ≤ 2 k i=1 f i 1/2 1 1 ≤ j ≤ n ãi 0 ≤ 3( a i 0 + n j=1 f i,j 1/2 1 ) 1 ≤ i ≤ k bj 1 ≤ 3( b j 1 + k i=1 f i,j 1/2 1 ) 1 ≤ j ≤ n xi ≤ n j=1 f i,j 1/2 1 1 ≤ i ≤ k ỹj ≤ k i=1 f i,j 1/2 1 1 ≤ j ≤ n.
This result is the core of the standard self improving process, which leads to property A k,n in the same way as in the proofs of the previous theorems.

In view of the above results, the following conjecture seems a reasonable first step towards the obtention of necessary conditions for membership in the classes A k,n . Conjecture : If T ∈ L(H) belongs to the class A, then T ∈ A 1,n if and only if mult(R H 0 ) ≥ n on T \E r T . If we were able to prove this conjecture, we could easily prove that: n≥1 A 1,n,= A 1,ℵ 0 ,.

Lemma 4. 1

 1 Let W ∈ L(W) be an absolutely continuous isometry. Let M be an invariant subspace for W and let M r be the reducing subspace for W generated by M and M the reducing subspace for W generated by M. Then we have: (i) Mr = M, that is to say, the reducing subspace for W generated by M r is equal to M and (ii) W n (W M r ) ⊥ M and consequently, the minimal unitary extension of W |W Mr is W| M⊥ .

  is the reducing subspace for the isometry W := R |(AH) -generated by {Ax 1 , . . . , Ax n-1 }, since R is the minimal unitary extension of W and using Lemma 4.1, the subspace R is equal to the reducing subspace for R generated by R . Hence the equality (AH) -= R implies that R |R = R, which contradicts the hypothesis mult(R) ≥ n on σ. Hence we consider the non-trivial invariant subspace R defined by W := (AH) -R . Using Lemma 4.1, if we set R := Span{R n W , n ∈ Z}, we get: R ⊥ R and R = R |R ⊕ = R |R .

  Now we use relations (2), (6), (10), (11), and we choose (1≤ i ≤ k, 1 ≤ j ≤ n):

Lemma 2.4 For any x in H and any function f in H ∞ , we have:

  

	Lemma 2.1 Let T be an absolutely continuous contraction on L(H). Then for any w ∈ H
	and any sequence (u k ) k (resp. (v k ) k ) in H such that lim k→∞	u k 2w = 0 (resp. lim k→∞	w2v k =
	0) we have:		
	lim k→∞	Qu k 2w = 0 and lim k→∞	A * u k 2w = 0
	(resp. lim k→∞	w2Q * v k = 0 and lim k→∞	w2Av k = 0).
	Lemma 2.2 Let T be an absolutely continuous contraction on L(H). Then for any w ∈ H
	and any sequence (u k ) k in H which tends weakly to 0, we have:
	lim k→∞	w2Qu k = 0 and lim k→∞	Q * u k 2w = 0.
	Lemma 2.3 Let T be an absolutely continuous contraction on H. Then for any h ∈ H,
	we have:		
	lim n→∞ QT n h = 0 and lim n→∞ Q * T * n h = 0.

  operator of multiplication by the position function) acting on some vector-valued Lebesgue Hilbert space L 2 (T , E) then x • y(ξ) = < x(ξ), y(ξ) > E , ξ ∈ T . In particular if E = C then x • y = xy. Note also an immediate consequence of the definitions: [x • y] = x2y for all x, y ∈ H.

	If T is an arbitrary a.c.c. on H we define x	T • y for x, y ∈ H by x	T • y = x

U

• y.
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