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On the contractions in the classes A, ,,

[. Chalendar and F. Jaeck
October 29, 1996

Abstract

Let T be a contraction in the class A acting on a Hilbert
space. Sufficient conditions in terms of the multiplicity of cer-
tain natural unitary operators associated with the Cjy., Cq, C.
or C.; part of T are given to ensure that T belongs to the class

Apmynym € N*.

1 Introduction

Let H be a separable, infinite-dimensional complex Hilbert space. We denote by L(H) the
algebra of all bounded linear operators acting on H. Let C'(H) be the Banach space of
trace class operators on H equipped with the trace norm. If A is a dual algebra on H,
that is, a weak*-closed unital subalgebra of L£(H), then it is well-known (cf. for example
[BFPS5]) that A can be identified with the dual space of Q4 := C'(H)/*A where + A is
the preannihilator of A in C!(H), under the pairing:

< T,[L|g >=trace(TL), T € A, [L]4 € Qa.

The Banach space Q4 is called the predual of A. We write [L] for [L] 4 whenever there is
no possibility of confusion. For z and y in ‘H, we define z ® y by z ® y(u) = (u,y)x for
all u in H. The cosets [z @ y] 4 have been essential in dual algebra theory. Suppose m and
n are cardinal numbers such that 1 < m,n < Xy. A dual algebra A will be said to have
property (A,.,) if every m x n system of simultaneous equations of the form:

J )

where {[L;;],0 < i < m,0 < j < n} is an arbitrary array from Q4, has a solution
{z;,0 < i <m},{y;,0 < j < n} consisting of a pair of sequences of vectors from H. We
write D for the open unit disc in the complex plane C, and 7 for the boundary of D.
The spaces LP = LP(T), 1 < p < oo are the usual Lebesgue function spaces relative to
normalized Lebesgue measure m on 7. The spaces H? = HP(T), 1 < p < oo are the usual
Hardy spaces. It is well-known (cf. [Dur70]) that the space H> is the dual space of L'/H]
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where H} = {f € L': / feMe™dt =0, n=0,1,...} and the duality is given by the
0

pairing:

< 1.9 >= [ fodm, J e B, [g) € L'/H}.

We denote by Az the dual algebra generated by T' € L(H) and by Qr the predual space
Qu, of Ar. A contraction T' € L(H) is absolutely continuous if in the canonical decom-
position T' = T & T,, where T is a unitary operator and 75 is a completely non unitary

contraction, T} is either absolutely continuous or acts on the space (0). The following is
essentially Theorem 4.1 in [BFP85]:

Theorem 1.1 Let T' be an absolutely continuous contraction in L(H). Then there exists
a functional calculus & : H*® — Ar defined by @7 (f) = f(T) for every f € H®. The
mapping 7 is a norm-decreasing weak*-continuous algebra homomorphism, and the range
of ®r is weak™ dense in Ar. Furthermore there exists a bounded, linear, one-to-one map
or of Or into L' /H} such that o = @

In particular the coset [z ®y] is mapped to an element of L' /H} which we denote zoy. Very
often we will use the sesquilinear map “o” for different absolutely continuous contractions
(a.c.c.). If necessary we will write L to avoid ambiguity. Thus we write zoy either when
there is only one a.c.c. for which xoy is defined or when for all a.c.c. for which zoy is defined
the same value is assigned. We denote by A = A(H) the class of all absolutely continuous
contractions T € L(H) for which the Nagy-Foias functional calculus &7 : H*® — A7 is an
isometry. Furthermore, if m and n are any cardinal numbers such that 1 < m,n < X, we
set Ay = Amn(H) to be the set of all T in A(H) such that the singly generated dual
algebra Az has property (A, ). We write A, for A, ,.

In this paper, we continue the study of sufficient conditions for membership in the
class A, ,,, using improvements of techniques introduced in [CP88, Che88, CEP89, Ber88,
Oua92]. A lot of work has been done in this direction. For example, in [EJJ], the authors
discuss contraction operators 7' in the class Cy N A with defect indice dy < oo (dr =
dim{(Id — T*T)*?*H}~). They show that these are particularly nice representatives of
the class A, x,. Indeed their membership is completely determined by the multiplicity of
either the shift piece of their Jordan model or the unitary piece of their minimal coisometric
extension.

Our results are based upon the interplay between boundary sets, multiplicity theory
and approximation techniques. In particular, we generalize the results obtained by [Oua92]
for membership in the class A,, by localizing the multiplicity conditions. Though this local-
ization will not surprise the specialist it is largely responsible for a lot of new technicalities.

In section 2 we introduce the notation and terminology employed herein. Then, in
section 3, we shall develop some functional lemmas which lead to approximation results
involving multiplicity (established in section 4). Along the way we give some new results
for some triangulation of absolutely continuous contraction (section 4). As a sequel to this
study we shall deduce some sufficient conditions for membership in the class A; ,,, Ax1 and
Aj, where k and n are some positive integers.



2 Preliminaries

The notation and terminology employed herein agree with those in [CEP, SNEF70]. If we
suppose that T is an absolutely continuous contraction in £(H), then its minimal unitary
dilation U € L(U) (H C U) is also absolutely continuous.

The minimal isometric dilation U, of T is the restriction of U to the subspace U, =
Span{U™H,n > 0}, which is invariant for U. The operator U, has a Wold decomposition
U, =S, & R corresponding to a decomposition of U, as S, & R, where S, is a unilateral
shift of some multiplicity in £(S.) if S. # (0), S, is the zero operator if S, = (0), R is an
absolutely continuous unitary operator in £(R) if R # (0) and R is the zero operator if
R = (0).

The minimal coisometric extension B of T' is the compression of U to the subspace
B = Span{U"H,n < 0} = Span{U*"H,n > 0}, invariant for U* (hence semi-invariant for
U). The operator B has a Wold decomposition
B = S* & R, corresponding to a decomposition of B as § @& R, where S is a unilateral
shift of some multiplicity in £(S) if S # (0), S is the zero operator if S = (0), R, is an
absolutely continuous unitary operator in £(R,) if R. # (0) and R, is the zero operator
if R, = (0).

Throughout the paper, expressions such as maximality, uniqueness, and equality of
Borel subsets of 7 are to be interpreted as satisfied up to Borel subsets of Lebesgue
measure Zero.

We write ¥ = X7 (resp. ¥, = X, r) for the Borel subset of 7 such that ms (resp.
myx,) is a spectral measure for R (resp. R.). By Proposition 3.1 in [CEP], there exists
a unique maximal Borel subset X7 of 7 such that, for any f € L*(X7), | f|1 < 1, there
exist two sequences (), and (y,), in the unit ball of H such that:

lim H[f]Ll/Hg — Tn0Ynl| =0

n—oo
lim ||z,ow| =0 weH
n—oo
lim ||woy,|| =0 w € H.
n—oo

In fact, T" belongs to the class Ay, if and only if X7 = 7 (cf. [BFP85], with a different
formulation).

We denote by EF (resp. EL.) the Borel subset of 7 equal to X7 U, 7 (resp. XrUXr).
It follows from Proposition 4.8 in [CEP] that ET. (resp. EL) is the maximal Borel subset of
T such that for any f € L*(Er) (vesp. f € L*(EL)), ||f|li <1, there exist two sequences
(xn)n and (y,), in the unit ball of H such that:

Jm ([[f]21/my — 2oyl =0
lim ||z,o0w| =0 (resp.nli_{go |lwoy,| =0) weH.

n—oo

The operator T' belongs to the class Ay, (resp. Axy1) if and only if £ = T (resp.
EL =T) (cf. [CEP89]).



By Theorem 4.3 in [CEP], an absolutely continuous contraction 7" € L(H) belongs to
the class A if and only if 7 = Xp U X, U Xp. We write ¥ for ¢ and X, for X, r when
there is no ambiguity.

If M is a semi-invariant subspace for T', we denote by R™ (resp. RM) the unitary part
of the minimal isometric dilation (resp. minimal coisometric extension) of the compression
T
We denote by @, Q., A, A, the orthogonal projections of U onto §,S,, R, R, and we
denote by QM, QM AM, AM the orthogonal projections of U™, the space of the minimal
unitary dilation of Ty, onto SM,SM RM, RM the spaces associated in an obvious way
to the minimal isometric dilation and the minimal coisometric extension of T),.

If I is any Borel subset of 7 (satisfying 0 < m(I") < 1), we denote by M the absolutely
continuous unitary operator on L?*(T") defined by:

(Mrax)(e") = e'z(e™), x € L*(T), e € T.

As to the multiplicity of an absolutely continuous unitary operator on a Borel subset of 7,
the following (standard) formulation will be convenient for our purposes:

Definition 2.1 Let R € L(R) be an absolutely continuous unitary operator and let o be a
Borel subset of T. We say that the multiplicity of R is greater than or equal to n,n > 1 on
o if there exists a reducing subspace Ry for R such that Ry := R, is unitarily equivalent
to (M,)™ on (L?*(c))™, the n-fold ampliation.

We recall that if 7" is an arbitrary absolutely continuous contraction in £(H) and if o is
a Borel subset of 7', then we o is said to be essential for 7" and we write o C ess(T') (cf.
Definition 3.1 in [Che88)) if:

LA = N fiollo fe HX(T).

We also recall that a Cy. (resp. Cly) contraction is a contraction such that Jim. |T"h|| =0
(resp. lim |[T"h|| = 0) h € H. This is equivalent to X, 1 = (0 (resp. X7 = 0). On the other
hand a Cy. (resp. C'1) contraction is a contraction such that dim |T"h|| = 0= h =0 (resp.
lim | T""h|| = 0 = h = 0). We will use the very useful decomposition of a contraction

n—o0

T € L(H) introduced in [SNF70] (p73), namely:

. T() *
T_<O T1>

relative to the orthogonal decomposition H = Ho @ H; where H is defined by Hy := {x €
H such that lim |T"z|| = 0}. By construction we have T; € Cy. and T} € C}.. We denote
by Ey the maximal essential Borel set for Ty (unique up to Borel sets of Lebesgue measure
equal zero). Since Ty € Cy. we get that Fy = Ef, (cf. Proposition 4.5 in [CEP]) and if we
define Ey by Ey = T\Ey we have ) C ess(Ty) C Ef, whenever T' € A (cf. Proposition 1.3
in [Che| and Proposition 4.5. in [CEP]).

We now state some elementary observations important in the sequel.
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e If M is an invariant subspace for T"and 7" = Tjr then x Ly=uz (- y' for all x € M
and y € H with ¢ = Pyy.

e If 7 is a semi-invariant subspace for T" and Y denotes the compression of T" to 7,
thenzby=zbyforala,yeJ.

e With the above notations, for all x € H and all v € B, we have the following
i U B B T
equalities: v =z 0v =20 Pyv=1x0 Pyv.

e Forall u e U, andally e H,uby=ul y=Pu't y=Puby.
e For allx,vGB,xév:QxSE Qu+ Az Aw.
e For allu,yébﬁ,ugy:@*usﬁQ*y—i—AugAy.

The following technical lemmas are very useful.

Lemma 2.1 Let T be an absolutely continuous contraction on L(H). Then for any w € H

and any sequence (ug )y (resp. (vg)x) in H such that klim |lugowl|| = 0 (resp. klim |lwovg|| =
0) we have:
klim |Quiow]|| = 0 and klim | Asurowl] =0
(resp. klim |lwoQ.vk|| = 0 and klim |lwoAuvg|| = 0).

Lemma 2.2 Let T be an absolutely continuous contraction on L(H). Then for any w € H
and any sequence (ug)x in H which tends weakly to 0, we have:

lim | woQuk|| =0 and lim ||Q.uiow|| = 0.
k—o0 k—o0

Lemma 2.3 Let T be an absolutely continuous contraction on H. Then for any h € 'H,
we have:
i [QT"h]| =0 and. Jim Q.7 =0,

Lemma 2.4 For any x in 'H and any function f in H*™, we have:

f

Besides the sesquilinear map (z,y) € H x H — zoy € L'/H] there is also a fundamental
functional sesquilinear map associated to an a.c.c. T'. It is convenient to define it first for its
minimal unitary dilation, U. Since U is absolutely continuous, the family {u,,, =,y € U}
of elementary spectral measures attached to U (defined by [ fdu,, = (f(U)x,y) for f

. . . U d
continuous on 7) provides a sesquilinear map (z,y) — z - y = Hay

from U x U into



LY(T). 1t U is M, (the operator of multiplication by the position function) acting on some
vector-valued Lebesgue Hilbert space L*(7, E) then z - y(§) = < z(£),y(§) >, € T. In
particular if £ = C then z -y = 27. Note also an immediate consequence of the definitions:

[z -y] = zoy for all z,y € H.

If T is an arbitrary a.c.c. on H we define x T y for x,y € H by x T y==x v Y.

3 Preliminary results

First, we give lemmas which are important steps in the proof of the next propositions.

Lemma 3.1 Suppose T € L(H) is an absolutely continuous contraction acting on H.
Then for any h € H we have:

lim [|[T"how[| = 0 and lim [[woT™" Al = 0,w € H.

n—~o0

Proof We will just give the proof of the first assertion. The second one can be deduced
from similar arguments. Indeed we have:

| AT how|| = (gn(R.) AT h,w), w € H
for some g,, of norm 1 in H>®(T); thus (recall that A,T"h = R} A.h)
|AT" how|| = (g (R R Ach, w) =< g, Achow >, w € H.
Since the sequence (g,a™), converges weak™® to 0 in H*(T), we obtain:
lim [[A,T"how| = 0,w € K.

This combined with the fact that lim |QT"h|| = 0 (see Lemma 2.3) easily leads to the
above lemma.

Now we present two lemmas of factorization which will be important steps in the proof of
the lemmas of approximation.

Lemma 3.2 Let o be a Borel subset of T, let | be in L'(c) and f,g be some elements of
L*0),0<p<3.
Then there exist u € H?, (¢y)nen in L*(0) such that:
L+ f.g=(f+a" ).c, nenN
1
lealle < T (R + llglls) n € N

1/2
ulla < 211137,



Similarly there exist also v € H?, (d,)nen in L*(0) such that:

I+ f.g=d,(9+a™) nenN
1

], < E(HZH}/Q + ) neN

loll> < 212113,

Proof We will just give the proof of the first assertion. The second one can be deduced from
similar arguments. Let 0 < p < %, e > 0 such that ¢ < 5%). Since |l| + v is log-integrable
for any v > 0, there exists a function I’ in H? such that |l| + v = |I'|* (¢f. [Hof65], p53).
Moreover, we can choose v > 0 in order to have ||[I'|2 < (1 +€)HHH/2. If we set 1" == 1, it
is clear that I" € L*(o) and that we have | = 1'.1".

We set Q := {e;|f|(e") < |[I'|(e")} and let 6§ be a function in H> such that:

2 — on )
|e|:{ /

p otherwise.
The ezistence of such a function is granted by [Hof65] (p 53). We obtain that:
|/ + 0a™l = (1= p) max{|f[,[']}.
We set Z := {e € o; f(e") = —(0a™')(e")} and we define the function c, by:
[ . , A
LTI ity et e o\z

ea(e®) =3 f+barl
0 otherwise.

1
We easily get: |c,| < 1—(|l"| + 1gl), which proves that ¢, € L*(o) and moreover ||c,|l2 <
—p

1 1/2
— (|1 + .
1 p(H H1 HQHZ)

We obtain that:
I+ f.g=(f+a").c, whereu € H* u =0l

So we get ||ulla < |0||so||]]2 < 2HZH}/2 and the proof is complete.
The proof of the next lemma of factorization is left to the reader since it uses similar

arguments. The starting point is the fact that any function | € L'(o) can be written
[ =1'.1" where I' and I” are some elements of L?(c).

Lemma 3.3 Let o be a Borel subset of T, let | be in L*(o) and let f,g be some elements

of L*(0).
Then there exist u € L*(0) and (cp)nen in L*(0) such that:

I+ fg=(f+a"u).c, neN
1/2

leall, < U+ llal, € M

Jell2 < 2)03"
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There exist also v € L*(0), (dp)nen in L*(a) such that:

I+ fg=d,(9g+a™) neN
a1, < I+ 151, n e
[ollz < 2[|7]];"

Notations:

From now on, if (resp. ) is a reducing subspace for (resp. R), we shall denote by A,
(resp. Aj) the orthogonal projection onto (resp. ) and A, (resp. Ajy) the orthogonal
projection onto & (resp. RO).

If a unitary operator U € L(U) is of multiplicity greater than or equal to n on a Borel set
o, we write: mult(U) > n on o.

Now we give the first lemma of approximation, which can be seen as a localization (in
terms of the Borel set) and generalization (in terms of the form of the vectors obtained) of
Theorem 3.11 in [CP88].

Lemma 3.4 Let T be an absolutely continuous contraction, B its minimal coisometric
extension, B = S* @ R,. Let o be a Borel subset of T. We suppose that there exists a
reducing subspace R, for such that:

mult(R,) > 1 on o where R, := Ry g,

Span{ R,"(R, N (A H)),n € 2} = R..
Let a € H,b €,F € L'(0),e > 0,0 < p < % Then there exist h € H,c, € RL (is a

reducing subspace for R, included in R, such that R, is unitarily equivalent to M,) such
that, for any n > 0, we have:

|F + Asa.b— A (a+T"h).(c, + b2)|| < € where by =b— A b
1 1/2
leall < = (14l + I1F1%).

Moreover, we may assume ||T"h]|| < QHF]H/Q for allm > 1.

Proof We consider the isometry W defined by W := R.ja1)-- If Wia.n)-n 1s unitary,
we get = N(AH) ™, which implies that C (AJH)™. Since mult(R,) > 1 on o, there exists
a reducing subspace for R, such that C (A,H)~ and such that Ry is unitarily equivalent
to M.

If Wia,m)-n is not unitary, using the Wold decomposition, we know there ewists a
reducing subspace for W such that W|(= R.)) is unitarily equivalent to S, the standard
unilateral shift acting on H*. Moreover we have C (A.H)~. We recall that in this case
there also exists a reducing subspace for R, such that R,  is unitarily equivalent to M.
We write: F 4+ Aya.b=F + A,a.Aqb+ Awa.Awnb. First we modify F+ Aqa.Aqb. In the
particular case where C (AJH)™, using Lemma 3.3 and the vector-function identification



= L*(0), there exist u €, (¢,), in such that:

F+ Aqa.Aagb = (Aga+ Rlu).c,
leall < 171, + |14
lull < 2]1F11*.

If¢ (A H)™, using Lemma 3.2 and the natural vector-function identifications = L*(c), W) =
H?, there exist u' € W} C (AJH) ™, (c),)n in such that:

F + Aqa.Anb = (Aga+ R).c
1
el < 7= (I + [ 4.a0)

1/2
/|| < 2| F[)y>.

/
n

Since is a reducing subspace for R,, we get:

F + A.a.Ab = (Asa+ RMu).(c,, + Awb)  cp,u €C (AVH)™ or
F+ A.a.Ab = (Awa+ RM).(c), + Awd) ¢, €,u/ e W! C (AH) .

We assume ||c, + Awb|| # 0 and ||, + Awb|| # 0 otherwise the proof is immediate taking
h =0,¢, = Aab. Now according to the inclusion C (A, H)™ or W} C (AJH) ™, we are able
to find h € H, ' € H so that:

3

— A <
I = A1 < e

Aph|l| < ——
[ AR < ull
and
9

AN < —
lu ” 2)|ch + A0
13

ARl < ——
14K 2||ct, 4+ Aub||
AL < [Ju]].

Since R, is an isometry and considering the equality R} Axh = AaT"h, we get:

|Riw — A T™h|| < and

£
oo + A
R — A Th|| < ————
N R
which. easily leads to the desired inequality. Since lim |T"h|| = ||Ash|| and since | ALh| <

|ull, if n large enough, we can get | T"h| < QHF]H/Q. Thus, replacing h by T"™h where ng

is a sufficiently large integer, we may assume || T"h| < 2HF\H/2 for alln > 1.

Now we state the dual version of the previous lemma whose proof is left to the reader since
it can be deduced from similar arguments.
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Lemma 3.5 Let T be an absolutely continuous contraction, U, its minimal isometric di-
lation, Uy = S, @ R. Let o be a Borel subset of T. We suppose that there exists a reducing
subspace R' for R such that:

mult(R') > 1 on o where R' := R/
Span{R"(R' N (AH)"),ne Z} =R

Letae R,be H,F € L'(0),e > 0,0 < p < 5. Then there exist h € H,d, € Ry ( Ry is a
reducing subspace for R included in R' such that Rz, is unitarily equivalent to M,) such
that, for any n > 0, we have:

|F + a.Ab — (d,, + a2).A(b+ T*"h)|| < € where ay = a — Aja
1
ldnll < = (1 Asall + 1FIF™).

Moreover, we may asume ||T*"h|| < QHF]H/Q for alln > 1.
For a A, x, version of Lemma 3.4 and a Ay, 1 version of Lemma 3.5, we need the following
lemma.

1 be a norm summable sequence of

Lemma 3.6 Let o be a Borel subset of T. Let (F)x
< 3. Then for every k > 1, there exist

functions in L' (o), let f,(gx)k>1 be in L'(0),0 < p
win H?, (Ckn)n in L*(0) such that:

>
1
2

Fr+ fge = (f +a™u).crp
ulla < 2037 (| Fll)'?

k>1

1
[k nll2 < ﬂ(HFk!H/Q + llgkll2)  for any n e N.

There also exist v in H?, (dypn)n in L*(0) such that:

Fy + fr.9g = dgn-(g + ™)
[v]l2 < 2037 |1 Fill)"?

k>1
1
Idials < T (IFIL™ + 1filla) ~ for any € N

Proof We just give the proof of the first assertion. The second one can be deduced from
similar arguments. Let F =Y 5, |Fi| and let 0 < p < %, e > 0 be some positive reals such
that € < ﬁ . Since F + v is log-integrable for any v > 0, there exists a function h € H>

such that F+v = |h|%. Moreover we can choose v > 0 in order to have ||h|j2 < (1+€)||F|}/>.

We consider the Borel set Q = {e;|f|(e") < |h|(e")} and we define a function § € H>®

such that:
0] = { 2—p on§l

p otherwise.

11



The existence of the functions h and 6 are granted by [Hof65], p53. Then, for a given n,
define the measurable function cy, by:

Fre + f.9%

— 7 +0a™h =0
Ckn = [+ 0a™h on o\{f @ }

0 elsewhere .

As in Lemma 3.2, we easily get cx, € L*(0) and ||ck |2 < l%p(HFkH}/Z + [lgkll,). Now we

set u = 0h € L*(c). So we get |Julla < 2(Xpz1 |1Fell1)Y? and Fy + f.gr = (f + a™u).cpn,
which ends the proof of the lemma.

Using the previous lemma, we can state the following propositions:

Proposition 3.1 Let T be an absolutely continuous contraction, B = S*® R, its minimal
cotsometric extension. Let o be a Borel subset of T. We suppose that there exists a reducing
subspace R, for such that:

mult(R,) > 1 on o where R, := R,/
Span{ R*"*(R,. N (AH)"),n€ Z} =R..

Let a € H, (by)k €, (Fi)r € L*(0),e > 0,0 < p < 5. Then there exist h € H, (cop)n € R
( is some reducing subspace for R, included in R, such that R, is unitarily equivalent to
M, ) such that, for any n,k >0, we have:

| Fr + Asaby, — Au(a +T"h).(cpp + bag)|| < e where byy, = b, — Auiby

1 1/2
lenall < 7 (lAnbull + IFLIY™).

Moreover, we may assume | T"h|| < 2(X k=1 || Fill) >
As usual this lemma has a dual version whose statement is left to the reader.

Proposition 3.2 Let T be an absolutely continuous contraction, U, its minimal isometric
dilation, Uy = S, @ R. Let o be a Borel subset of T. We suppose that there exists a reducing
subspace R’ for R such that:

mult(R') > 1 on o where R' := Rig/
Span{R"(R' N (AH)"),ne Z} =R

Let (ag)r € R,b € H, (F})r a norm summable sequence of functions in L'(c), e > 0,0 <
p < % Then there exist h € H, (dpx)n € R1 ( Ry is some reducing subspace for R included
in R' such that R, is unitarily equivalent to M, ) such that, for any n >0, we have:

| Fr + ag.Ab — (dp . + a2x). A(b+ T*"h)|| < & where asy = ap — Ajay
1
ldnell < =l Araell + I1ELIL).

Moreover, we may assume | T*"h| < 2(Xes1 | Fxll;) Y2

12



Using matricial tools (see for example part I, section 1.4 in [Che]) which are helpful in
making certain arguments more transparent, we easily state the following proposition:

Proposition 3.3 Let T € L(H) be an absolutely continuous contraction and let { {7, 1 <
i <k, 1<j<n} (where k and n are some positive integers) be a collection of functions
in the unit ball of L'(Xt). Then there exist sequences of H, (z!,)m and (y2,)m such that:

tim [[[f*] = 27,00, = 0

lim_[[woyy,[| =0 weH,1<j<n
lim_|7,00] =0 weM,1<i<k
27, < n m>1,1<i<k
gl |l < K m>1,1<j<n.

The next propositions (Proposition 3.4, 3.5, and 3.6) are very important tools in the proof
of the main results. They show we can get some results of approximation where we can
choose the sequences of approximation in the space H; or Hj (it depends on the choice of
the elements of the predual of H>) with a “vanishing condition” extended to the whole
space (recall that the subspaces H; and H are those involved in the canonical Cy. — C}.
triangulation introduced in section 2). The following proposition slightly generalizes Propo-
sition 2.2, part V in [Che]. The main improvement is the fact we achieve the approximation
for a collection of functions.

Proposition 3.4 Suppose T' is an absolutely continuous contraction.

Let (f7)1<j<n be a finite sequence of elements of L*(3,1) such that ||f7||, <1 (the integer
n is arbitrarily large) and let a, b’ be some elements in Hy, 1 < j < n. Let p be a positive
real such that p < 5. Then there exist sequences (Tp)m and (y))m in Hi (1 < j < n) such
that:

Tim [|[f7] + act! — zmoyh| =0 1<j<n
nlbilllool|(xm—a)mw]| =0 weH
n ) i
la =2l <203 11F1,)2 m =1
7j=1
. . coL )
lyll < s (1 + 1711 2) 1<j<nm>1

The following proposition is the dual version of Proposition 3.4.

Proposition 3.5 Suppose T is an absolutely continuous contraction and let (f*)1<j<k be a
finite sequence of elements of L' (X)) (the integer k is arbitrarily large) and a’,b,1 < i < k
in Hy. Then there exist sequences (7)), and (yn)n in Hy (1 <i < k) such that:

Tim [+ a'ob — zhoya|| =0 1<i<k

Jim [|wo(y, —b)[| =0 weH
k
i 1
lyn = Bl < 203 1£'111)2 nzl
i=1
. A L1 )
Izl < (el 10,7 1<i<kn>1
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The next proposition states precisely the approximation for a collection of functions in
LY(Ep) .

Proposition 3.6 Suppose T is an absolutely continuous contraction and let (f*)1<i<k be a
finite sequence of elements of L*(Ey) (the integer k is arbitrarily large) and a*,b,1 <1i < k
in Ho. Then there exist sequences (x%), and (Yn)n n Ho (1 <i < k) such that

lim ||[f'] +a'ob — 2j0y,]| =0 1<i<k
Jim |wo(yn, —b)H:O weH
i N L
Hyn—bll<2Z||fH 2 n>1
]l < 7% (HaH+Hf\h) 1<i<kn>1

4 Techniques of approximation involving multiplicity

Let W € L£L(W) be an absolutely continuous isometry and let W € £(W) be its minimal
unitary extension. We define the multiplicity of the isometry W as the multiplicity of W.

Lemma 4.1 Let W € L(W) be an absolutely continuous isometry. Let M be an invariant
subspace for W and let M, be the reducing subspace for W generated by M and M the
reducing subspace for W generated by M. Then we have: )
(i) M, = M, that is to say, the reducing subspace for W generated by M., is equal to M
and
(i) W*(W © M,) L M and consequently, the minimal unitary extension of Wiwem, s
W

ML

Proof First we give the proof of (i). By definition we have M C M, where M, is a
reducing subspace for W. Hence we get M C M,. If we suppose that the inclusion is a
strict one we get a contradiction by minimality of the unitary extension W.

Now we give the proof of (ii). For anyy € W& M, we get:

(Wkhy, W M) = (Wky, W" M) for any k,n > 0.

Thus we have W"(W@Mr) 1 M,n € N, which implies that the minimal unitary extension
of Wiwenm, lives on M*. In fact we have:

W = Wiae, @ Whvone, and 1V = W5 ® W,

where VT/W is the minimal unitary extension of Win,, from (i). By minimality of W and
since the minimal unitary extension of Wiy, 1s defined on ML, we get that the minimal
unitary extension of Wiwem, s W yu, which ends the proof of the lemma.

14



Notation: If U € L£(U) is a unitary operator and if ay, ..., a are some elements of U, we
denote by Redy(ay,...,ax) the reducing subspace for U generated by ay, . .., ay.

Now, we are able to prove the following lemma which is essential to our understanding
of multiplicity.

Lemma 4.2 Let 0 be a Borel subset of T and let T € L(H) be an absolutely continuous
contraction. Suppose that mult(R) > n (resp. mult(R.) > n) on o and let xy,...,x,—1 be
some elements of H. Then there exists a reducing subspace R’ (resp. ) for R (resp. Ry)
such that:

(1) R' L Redr(Axy,...,Ax,_1)(resp. L Redg, (Axy,..., AZn_1))
(ii) mult(Rir:) > 1(resp. mult(R,) > 1) on o
(iii) Span{R"(R' N (AH) ),n € Z} = R’
(resp. Span{ R} (N(AH)™),n € Z} =).

In particular we have R' N (AH)~™ # (0) (resp. N(AH)™ # (0)).

Proof We establish this lemma in the case mult(R) > n on o. The assertion of this
lemma in the case mult(R.) > n on o can be proved in the same way. We set R" =
Redgr(Axy,. .., Ax,_1). Remark that mult(Rrs) < n—1 on o. If R" is the reducing
subspace for the isometry W := Rjan)- generated by {Axy,..., Ax,_1}, since R is the
manimal unitary extension of W and using Lemma 4.1, the subspace R" is equal to the
reducing subspace for R generated by R". Hence the equality (AH)~ = R" implies that
Rigr = R, which contradicts the hypothesis mult(R) > n on o. Hence we consider the
non-trivial invariant subspace R’ defined by W' := (AH)~ © R”. Using Lemma 4.1, if we
set

R’ := Span{R"W' n € Z}, we get:
R 1 R" and R = R|R/@ = R‘R//.

In particular we have mult( Rjg/) > 1 on o and since W C R'N(AH)~, we get Span{ R*(R'N
(AH) ),ne Z} =R

Now we can state the following propositions which are essential steps in the proof of the
main results, that is to say, sufficient conditions for being in the class A, ..

Proposition 4.1 Suppose T € L(H) is an absolutely continuous contraction and let o be
a Borel set of .. We also suppose that mult(R.) > k on o and let p be a real number
satisfying 0 < p < 5. Let {7, 1 <i <k, j > 1} be a collection of fuctions in L*(o) be
such that:

SN, < oo forany i€ {1,...,k}

j>1
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and let ' € H,b €,1 < i < k,j > 1. Then there exist sequences (al), in H, (b)), in

such that: o o o
lim | f —|—A a'bt —Aa, b =0 1<i<kj>1

,}ugOHQ( —a’)|=0 1<i<k
nh_)rroloH( —a")owl|| =0 weH,1<i<k.

Proof First we show how to construct a}, b{ for1 <i<kandj>1. Letty, ..., t; afinite
sequence of elements of H,e1 > 0,17 > 0 be given. We will proceed via k steps in order to
construct those elements. If @ is a reducing subspace for R., i € N, we shall denote by
A*l the orthogonal projection onto ¥ and by A*Q the orthogonal projection onto @()
First, we approximate (fL])]Zl using Proposition 3.1 and Lemma 4.2. Let (U be a
reducing subspace for R, orthogonal to the reducing subspace generated by {A.a;,2 < i <

k}, such that mult(Ryw) > 1 on o and such that Span{R2(Y N (A,H)"),n € Z} = 1.
By Proposition 3.1, there exist (c(l)-)nzl in M, Al in H such that:

n,J
wa' + A ALY — A(at + TR (b + AQY) | <e n>1
ez, (HA*l 1) n=>1

By Lemma 2.2 and Lemma 3.1, there exists ny € N such that, for any n > ny; we have:

lQT™h || <1
|T"h'at,)| <y 1<p<gq.

Now we set a* = a' + T™h', b} = cm] + A Ybi. For any i € {2,...,k}, by the choice of
(1), we get:

Ad' AV = Aad bl j> 1.
Next, we approzimate (f*7);>1. Let @) be a reducing subspace for R, orthogonal to the
reducing subspace generated by {A*Ql, A.a;,3 <i <k} such that
mult(R. ) > 1 on o and such that Span{R2(® N (A/H)"),n € Z} = @. By Proposi-
tion 3.1, there exist (¢ ;)n>1 in P, h? in H such that:
1737 4+ Ava b} — Au(@® + T"h2).(2, + AGB])| < a1 n>1

1/2.
lengll < T IAZEDI + 172711 ) n> 1
By Lemma 2.2 and Lemma 3’.1, there exists ny € N such that, for any n > ny we have:

lQT™h?|| <1
|T"h2at,|| <1y 1<p<gq.

Now we set a> = a® 4+ T™h?, b} = 2 i+ A*Q)lf By the choice of ¥, we get:

Al Ab] = A*ai.bg Cj>13<i<k

16



The last step consists in the approximation of (f%7) 51

We suppose that a', ..., a*! andb{, ..., bl are constructed. Let *) be a reducing subspace
for R, orthogonal to the reducing subspace generated by {A.a',1 < i < k —1}, such that
mult(R*‘(k)) > 1 on o and such that we have

Span{ R: (W' N (AH)™),n € Z} = ¥ By Proposition 3.1, there exist (% ;)51 in ®), h¥ in
H such that:

759 + Avat by — Au(a® +TRR).(ck + AR, )| <e n>1
lensll < 7— (HA*lb; L+ 11572 n>1

By Lemma 2.2 and Lemma 3.1, there exists ny € N such that, for any n > n; we have:

1QT™h*|| < v,
|T"hkat,|| <v 1 <p<q.

eseta”=a"+1"n" an _'—c + ,J > 1. By the choice o we get:
We set a* = a* + T h* and b, = &+ AR,b]_,,j > 1. By the ch f (k) t
A*Qi-A*bkfl - A*QZ-A*Qka 1 S { S k—1.
Then we can easily verify that, setting a} = a',1 <1i <k and b{ = I_)i,j > 1 we obtain:
94 AW — Adb b = f9 + Adl bl — Al
which implies that: || f* + A.a’.b) — A,al.b]|| < e;.
Moreover, by construction, we have:
1Q(ay — a')|| < v, [l[(a) — a')aty|| <1, 1 < p <gq.

The proof of this proposition results from iterations of the previous process, taking (t;); a
sequence dense in H and (,)n, (Vn)n some sequences of positive reals decreasing to 0.

Remark: By construction, and by Proposition 3.1, we have:

las, — o'l §2(§:||fi’j!|1)1/2 1<i<k
j>1
i 1/2
1621 < 77— WH +ZHJ”H > 1.

Proposition 4.2 Let T be an absolutely continuous contraction , o C X, p. Suppose that
mult() >kono. If {f*, 1<i<k, j > 1} is a collection offunctwns in L' (o) such that

Yzl <00 (1 <i < k) and al ., a® (V) are in 'H, then there exist sequences
(@), B ) 1<i<k,j>1) suchthat

lir%o\][fi’j]—i—aimbj—a;lmbw\:O 1<i<kj>1
nlg%oﬂ( —a")owl|| =0 weH,1<i<k
las, — a'll < 203 1F% )" 1<i<k
]>1
ij111/2 ,
167, H<3WH+ZHJ”H/ j=1
a, —a"—0 1<i<k.
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Proof We can write: [f*] + a'ob/ = [f*] + A,a'0AW + Qa’'oQV . Using multiplicity on
o and Proposition 4.1, we can find sequences (a’,)m (1 <1 <k) and (b"” ), (j >1) in'H
such that:

(1) Tim [|[f"] + Aca'0 Al — (Aua, oAb, =0 1<i<h,j>1
@) Tim_|l(a}, — a')ow] = 0 weH1<i<h
3) lim [|Q(a}, — )] =0 1<i<h
4) Nai, —a'll <203 171D 1<i<k
j=1
(5) AL < 20107+ D I1F 1) j>1
=1
Moreover, for 1 <i<k,j > 1, we have:
%E?)O(A*@;DA*U%@) + Qa'oQb
= lim a’ o(QY + A*b’f;l) — Qa’ oQV + Qa'oQV.

m—0o0

But, we can work on the two last items as follows (1 <i<k,j>1):
QaioQY — Qa,cQV = Q(a’ — al,)oQY = (a — al,)oQV

which tends to 0 when m becomes large by (2). Finally the approximation is established

with b, = Qb + AW which gives, via (5),

m’

k
10,11 < 20 A7) + QY| + 23 111,

i=1

that is: i
162,11 < 3(I07]] + S M F4)1/%). 5 > 1,m > 1.

i=1

Now we give (without proof) a dual version of the Proposition 4.1.

Proposition 4.3 Suppose T € L(H) is an absolutely continuous contraction and let o be
a Borel set of . We also suppose that mult(R) > k on o and let p be a real satisfying
0<p<s. Let {f, i>1,1<j<n} bea collection of functions in L'(c) be such that:

ZHf”Hl < oo foranyje{l,...,n}

i>1
and let a' € R,V € H,1 < j <mn,i > 1. Then there exist sequences (a’,)m in R, (b7 )y in
H such that:

Tim |[f +a" AV — a;, Ab, || =0 1<j<ni>1

T Q. (8, — )] =0 1<j<n
T [lwo(s, = ¥)]| =0 weH1<j<n

18



Remark: Moreover we have:

167, — V|| SQ(Z L7112 1<j<n
1>1
i, 1/2
lall < 77— Ha I +Z 17711,

We now give a dual version of the Proposition 4.2 :

Proposition 4.4 Let T be an absolutely continuous contraction, o C YXr ; Suppose that
mult(R) >n ono. If {f*, 1 <j<mn, i >1} is a collection of functions in L*(c) such
that Y1 || [%]]1 < 00, and b*,.... 0", a*,i > 1 are in H, then there exist sequences (b)),
(1 <j<n) (a)m (7 >1) such that:

Tim [|[f*] + a'ol —aj,ob),| i>1,1<j<n
nligx})O’|wD(bj —bj)HZO weH,1<5<n

m

b, =) <200 1)V 1<j<n

2>1

ignl/2\ s
a3, ||<3|a!|+Z||fJI|/ i>1

b7m - =0 1<y <n.
Now we give a new result for some triangulation of absolutely continuous contraction.

Theorem 4.1 Let T € L(H) be an absolutely continuous contraction such that: T =

< 01 T: ) relative to some or thogonal aecompositi(m H = 711 D Hg. Then we have:
2
E} = Ej, UE}, and EY = By, U EY,

Proof What we have to do is to show that for any F' € L'(T\EYy,),||Fll1 < 1, the class
[F] is such that there exist two sequences (Up)n, (Un)n in Hy such that

lim ||[F] — upov,]| =0
n—oo
lim ||u,ow| =0 w € H;.
n—od
For this, it is sufficient to prove that given € > 0,ws,...,w, € Hi, there exist u,v € H;

such that:
{ |[F] — uov|| < e

HuquH <e¢ q:177p

Suppose T = EI. up to a Borel set of Lebesgue measure 0. For any A\ € D, there exists a
sequence (Ty\)n in H such that:

Jg& |Ex — Tpp0xn ]| =0
lim ||z, ow|| =0 w € H.
n—oo
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We set x), \ = Py xny and x} \ = Pyn . Since ||Ex|| = 1, without loss of generality
we may assume that ||z, a|| = 1 (all n, all X) and also (removing for each \ a suitable
subsequence) that the sequence (||x7 ||)n is convergent. Let vy = lim |22 || Relative to

the choice of the sequences (xy ), we define, for 0 <y <1, the sets:
D,:={AeD;v <~}
Observe that if X € D., then:

limsup || Ey — 2 o2 ;|| < l1msup [@n a0z, || < (1 — )2,

n—~o0

Moreover we have:

Jim |22 \ow|| = lim |z ow||, w € Ha.
Thus we get NTL(D\D,)) C Ef,, that is, T\E}, C NTL(D,) for any v €]0,1[. Let v be

3

10 dmax{||wy|,1 < g < p}
for T\EY,, there exist Ay, ...\, in D such that
T, < ) = 1...n, and ay,...,a, € D such that 37_; |oy| < 1 satisfying ||[F] —

i oyl < 55 Foreach j = 1,...,n we may assume (throwing away if necessary

a finite number of terms in each of the n sequences (w;y;);) that ||z, || <~ (where y' has
been chosen such that v; < <v,1<j<n) and

a positive real satisfying v < min } . Since D is dominating

{ By, —zinomin || <55 i>1,1<j<n

Hxi,)\jqu||<4€_n 1§Q§p71§]§n7121
We set x,, == Ty, »,, x,fj = PHlx,,],;ﬁJ = Py,x,,, and if v = (11,...,1,), we set x, =
PGy, Ty = Y0 \JOGT,, T, = Py, v, 22 = Py,x,,T. = Py, T,, T2 = Py, T,
We get:
I1F] = 3 agm,om, | < >
7j=1
||xl,qu]| <3 g=1,...,p.

Since ||xzl|| <~ by construction, we get:
£ £
HxlllquH < Z —}-'ymaX{quH,q = 17 tee 7p} < 57(] = 17 -5 D

Since Al h = Ah for any h € Hy, and since ||z, — x;, =1zl |l < v < 55 we can easily
conclude that:

n
1> oAz, 04,13, — Zoz]AHlx oA ! | <

j=1 j=1

Using the vanishing condition satisfied by the sequence (x;,); we can find v such that:

n - 3
H ZanijDQij - QZ'Z,DQI'VH < E
=1
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(see for example Proposition 1.3, part Il in [Che]). For such a v, we transform 37%_, @jAflx},jDAflx},j
in AT (), + 7).b where T € Hy,b € R, with the following inequalities: ||Tow,| < £,1 <

g <p and Q" Taz,|| < 5.

In fact we get:

I[F] = (z + 7)0Py, (QM T, + b)|| < e
(2}, + T)ow,|| < e 1<qg<p.

If T # Ep (up to a Borel set of Lebesgue measure 0) we set T = M,®T, where
o = T\E%. Relative to the decomposition H = L*(0) ® Hy © Ha, we have the following
representation of the operator T':

M, 0 O
0 T1 *
0 0 T

By construction Ef, = T since we have Ef, = By, UE! = o UEL. If we set T, =M, ®T,
by what precedes, we get:

Ey =B} UEy, =0UEy UE;, =o0UE;.

Thus we get B}, = Ef, U E}, . Using the equality Xr+ = Xr and X, r- = S, (see Proposi-
tion 8.5 in [CEP]) and the equality EY. = Ef.. U Ef, ., we easily get:

EL = E%Fl U EZT2 for any triangulation of T.

We can add that for any triangulation of an absolutely continuous contraction 7" such that

T = ( 7(;1 ; ) relative to some orthogonal decomposition H = H; & H,, we have:
2

2>s<,T = 2>s<,T1 U E*,Tg and ET = ETl U ET2‘

The above equalities are trivial consequences of Lemma 1.4 in [BK83]. The flavour of
these results is that the boundary sets E}. and EL behave well with respect to (arbitrary)
triangulations. With regard to the sets Xp, this behaviour is not completely settled. The
inclusion Xp, UX7, C X7 is always valid, with equality if 77 or T is Cj. (cf. Proposition 3.5
and Corollary 6.4 in [CEP]), but the question wether the equality holds in general is still
open.

5 Main results

Recall that T is in the class A, y, if and only if 7 = E}. (see Theorem 4.6 in [CEP]). The
following result shows how much the multiplicity of R0 on 7\ EZ “pushes” the operator
into the class A, ,.
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Theorem 5.1 Let T € L(H) be in the class A such that mult(R™°) > n on T\E}. Then
T belongs to the class Aj .

Proof Of course if T = Ef. the conclusion holds since T is in the class Ayy,. So we
consider the case where the Borel set T\EY. has positive Lebesque measure. We first show
how to, approximately and simultaneously, transform elements of the type [f7] + acl’ in
the form aobi. Let f',.... f"* be in L'(T), € > 0, and b',...,b" a in H. We split the
3,1 < j < n into pieces: f7 = fI+ fﬁ'(T + ff,', where 0 = T\E}, and o' = ER\(Xr)
(C i1, ). Then we get for 1 < j <mn:

7]+ aob? = ([f2] + aoobd) + ([f2] + a1ob]) + [f%,] + a10b]

where we refer to notations in preliminaries. We first deal with [fJ] + apnbl) = [f7] +
0ago0b) + OaODQb{). Using multiplicity on o and Proposition 4.4, we can find two sequences
(a0,m)m and (By ,)m in Ho such that:

(1) lim [[f7] + agabf — aomabh,l| =0 1<j<n
(2) lim_fwo(,, — b)) =0 weH,1<j<n
(3) 116d — VIl < 201 £2111° m>1,1<j<n
<®|mmnsawm+zyﬁm% m>1.

<

In fact, using Proposition 4.4, we get that the vanishing condition (2) is obtained for any
w € Ho, but since wo(by ,,, —by) = QwoQ(by,, —by) where (b, —by); tends weakly to 0 and
using Lemma 2.1, we get the vanishing condition (2) for any w € H. Next we use the fact

that o' C X, 1, and Proposition 3.4 to find sequences (ay,), and (b7 JpinHy, (1<j<n)

such that: , , ' o
(5) lim [|[f2)] + aob] — (ar,0b],)[| =0 1<j<n
(6) lim [|(ar, — ar)ow| =0 weH
(@) el < 20100+ 172127) 1<j<n
@)WM—MMSSZMﬁMW p>1
=

Finally, we use the property of the set Xr. Using Proposition 3.3, we can find sequences
(24)q and (yl)q in H, 1 < j <n, such that:

9) lim [|[f%,] -2yl =0 1<j<n
q—00
(10) qlLrgo |zow|| =0 weH
11) lim ||woyl|| =0 weH,1<j<n
q—00 k.
12) il < | f, I ¢>1,1<j<n
] 1/2
(13) gl < SNt g>1.
j=1
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We now put the pieces together; from (1),(5),(9) and the initial decomposition of the ele-
ments [f7] + aobl (1 < j < n) we easily deduce the existence of integers M, P,Q such that
for anym > M,p > P,q > () we have:

] + anb” — (aom0by m + arpobyp + 2goyy + k)| < 7 1< j<n
We can write, for any 1 < j < n:
0,mb}  + a1,,0b] , + z40y) + a10b) = (agm + a1 + 24)0(0 p )

+(- @1,p556,m +a106) — (a0m + a1p)0y; — 2q0 (b, + b{,p)
Moreover we have:
al[‘bé — ap,p0 (‘),m = (ay — al,p)‘jbé + al,pm(bg) - bé,m)‘
Now we use relations (2), (6), (10), (11), and we choose successively,

p > P so that ||(a1 — al,p)mb(%]\‘ <% 1<j<mn,
m > M so that [|(aopo(by — b, < 5 ' 1<j<nand
4> Q 50 that |(aom + a1)ul]l + 70 + B <5 17,

Thus, upon setting i/ = yl, & = x4 in H, V= blp, a1 = ay, in Hy, b = bOm? ao = Ao.m
in Ho (1 <j<n) we have:

I[£7] + actl — (ao + @y + &)o(By + 0] +§7)| <e 1<j<n
16 — b’||<2!|f’||1/2 1<j<n
i — ] <350 |17

j=1

12
léio|| < 3(]|aol] +Z 1717
1/2 .

18] < 2<r|bfr| + Hfﬂll 2 1<j<n
157 < ||fﬂr| 1<j<n

1/2
17 < Z 1F7112.

Now we use this result to start the standard self improving process, which leads to property
Ai . Let us take (€,,)m a sequence of positive reals decreasing to 0 such that €., < 2—m, m >

1. Suppose we have found vectors agm, @1.m, Tm, bOm? b]lm, gl such that: ||[f7] — (G1m +
Ao,m + Tm)O (blm + b7 m TP < em, 1 < j < n; then by the above, we can find vectors

ag ,m~+1, aq ,m~+1; T, b{)m—}—l) b{m+1; ym+1 such that:

H[f]] (@1m+a0m+xm) (b +B' +g7]n)
+(A1,m + Qom + Tm)O (67 m+ ym)
—(@1,m+1 + Gom+1 + Ting1)0 (bi mt1 T b(])erl + ym+1)|| < Em+1

23



with the folowing control of the norms:

10 ms1 = Bl < 2232 1<j<n
HCNLLm_H — CNLLmH < 3”5,17,{2

@om1 ]l < 3(l|ao.mll + ne)/?)

107 s | < 20|87 ll +1ep?) 1<j<mn
[ Zmia]] < mers?

H?ﬁwﬂ“ <ey? I1<j<n

We then get Cauchy sequences (Bém)m, (Z)m, (G2)m and (aym)m (1 < § < n), which
converge to by, T, 7 and @, respectively. Moreover (E{m)m, (Go.m)m (1 < j < n), have

weak cluster point Ej, ao respectively. Using mized continuity of (x,y) — xoy we can write:
] = @ +a + 7)o@+ 5 +7), L<j<n
which ends the proof.

Since T' € A, , is equivalent to T™ € A, 1, the following theorem is easily deduced:

Theorem 5.2 Let T € L(H) be in the class A. If mult(R™) > n on T\E}., then T
belongs to the class A,1, where R™ is the unitary part of the minimal isometric dilation
of the Cy. part ot T™.

Remark that the condition 7" does not belong to the class Ay, ; means that the Borel set
T\E}. has a positive Lebesgue measure. Indeed T in the class A belongs to the Ay, if
and only if 7 = E. and EL. = {(,( € EL.}.

Now we give another sufficient condition for an operator 7" in the class A to be in the
class Ay 1. Recall that if T"is Cp. then T' € Ay, 1 (see Proposition 4.5 in [CEP]).

Theorem 5.3 Let T' € L(H) be an absolutely continuous contraction in the class A. If
mult(RT) > k on E\\Xr, then T € Ay ;.

Proof Of course, if E\\Xr = () then T' € Ay,1 and the conclusion holds. So we consider
the case where E1\Xr has positive Lebesque measure. Let f1,.... f* be in L}(T), ¢ > 0,
anda',...,a" binH. We split the functions f* (1 < i < k) into pieces: ' = fi+ [k, + fo
where 0 = E1\Xr, and o' = T\(0 U Xr). Then we get for 1 <i <k,

[f'] 4 a’ob = ([f2] + aioby) + ([fo] + agobe) + [fi,] + aiobo,

where we refer to notations from the preliminaries. By Proposition 4.2, we know there
exist sequences (al,)n and (bin)n in Hy, (1 <4 < k) such that:

1) Tim [[[f2]+ aloby — a byl =0 1<i<k

2) lim [|(ay, — a})ow| =0 weH,1<i<k
3) llat, —aill < 2| £k 1<i<kn>1
)

k
4) Nbeal < 30101+ S n> 1.
=1

~~ o~ —~
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Next we use the fact that o' C X, and Proposition 3.6 to find sequences (af ), and (bop)p
in Ho (1 <i<k) such that:

(5) plggou[ L]+ agoby — afy obo,l| =0 1<i<k

(6) hm |lwa (b, — bo)|| =0 weH

(7) Haopu<2<uaou+uﬂ 1% 1<i<hkp>1
(8) b0 — byl < 32 Y

Finally, we use the property of the set X and Proposition 3.3 to find sequences (z!),, and
(Ym)m in H such that:

9)  lim [|[fx,] = 25,00l =0 1<i<k

(10) lim,, .o |28, 0w] = 0 1<i<kweH
(11) limy, .o ||woym| =0 weH

(12) || < HfXTH”2 m>1,1<i<k
(13) [lymll < z I £, 111 m>1.

We now put the pieces together; Let us take N, M, P such that, for any
n>N,m> M,p> P, we get:

) ) ) ) ) ) £
|[f*] + a'ob — (a} ,0b1 ., + ag ,0bop + 27, 0Um + ajoby)|| < 1

We can write for any 1 < i <k that af,,0by, + af ,obop + b, 0Ym + aioby is equal to the
following expression:

(—aj ,0bop + ajobo) — (af, + ag,)0Ym — 23,0(b1s + boy)
+(&Z1,n + a%),p + x:n)lj(bl,n + bOﬁD + ym)

Moreover we have:
ajoby — af ,obo, = (ai — ai,)oby + af ,0(by — boy).
Now we use relations (2), (6), (10), (11), and we choose successively,
n > N so that ||(a} — af,)obol| <,

p > P so that ||(a},,0(bo — boy)|| < & and
m > M so that || (a1, + ag ,)oym|| + 123,0(b1n + bop) || < §
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Thus we have found vectors (1 < i < k) @, by in Hy, by, @ in Ho, @, § in H such that:

I[f1] + afob — (@}, + @ + 3)o(b + by +9)| <e 1<i<k
H%—aﬂ<2wwm 1<i<k
b — Dol < 32 171"

H%H<%Wﬂ+WHW% 1<i<k
!WH<3wﬂ+§]WW”

WH<WHW211 L<i<h
mu<szW@

By a standard self improving process, the proof can now be completed as in the proof of
Theorem 5.1.

The following result generalizes Theorem 5.1 and Theorem 5.3. We give sufficient condi-
tions for an operator 7 in the class A for being in the class Ay .

Theorem 5.4 Suppose T is in the class A\(Axy1 U Aix,). If mult(R™) > n on oy C
Yo\ X7 and if mult(RT) >k on o1 C ¥\ X1 where oq and o1 are some Borel subsets of
T such that: og Uoy UXp =T, then T belongs to the class Ay,.

Remark:

o If mult(R™) > n on 7\E} and if mult(R?*) > k on ¥,,\ X7, then
T e Ak;,n-

e If mult(R™) > n on Ey\Xr and if mult(R?) >k on B\ X7, then T' € Ay .

Proof Let us consider {f*/, 1 <i <k, 1 <j <n} afinite sequence 'offunctions in LNT),
e>0,anda',... a" bt ..., b" inH. We write f = f”+f”+f . Once again we have
to deal with terms such as [f*] + a’ob’ = ([f29] + afob}) + ([f29] + almb]) (] + alob),
1 <i<k,/1<j<n. Using Proposition 4.4, we can find sequences (ao’m)m and (bf m)m in
Ho such that, if 1 < i<k and if 1 < j <n we have:

(1) lim [|[£2]) + abobf — (ah ot ) =0 1<i<k1<j<n
(2)  lim_ | wa (b, —bj)H—O weH,1<j<n
3) 1V —b’H<2ZH J]|1)? m>1,1<j<n
7 1/2 .
(4) H%mH<3H%H+ZHfUJH/) m>1,1<i<k.
7j=1
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Using Proposition 4.2, we can find sequences (aﬁ,p)p and (b{"p)p in Hy such that:

5) lim f”Jran] ai obl |=0 1<i<k1<j<n
p—00 1 1,p ,D

(6) lim [[(a}, — ai)ow] = 0 weH,1<i<k

(7) |\a1p—a1u<2zuf; 11/ 1<i<hkp>1

(8) r|b7,p||<3||bf||+zr|f; 11/?) 1<j<np>L

We now use Proposition 3.3 to find two sequences (x})q and (y])q in H such that:

(9) g;rgoll[ﬁéi]—xémyél|=0 1<i<k1<j<n
(10) (}Lrglol|xzmw||20 weH,1<i<k
(11) Jim [woyl|| =0 weH,1<j<n
(12) ||} ||<Z||f 2 1<i<kqg>1
(13) qu\<zufggu”2 1<j<ng>1.

We now put the pieces together; Let us take M, P, Q) such that if m > M, p > P,q > @,
forany 1 <1<k and any 1 < j <n we have:

17T + a'ab” — (a1 5001, + ag ol m + 24095 + arabp) | < -
We can write, 1 <1<k, 1 <75 <n:

ainDb] + aOmme + xloyl + alobl = (af, + ab, + xé);(b{p + b%',m +yl)
+(— al,pD 0.m T almbj) — (ail’p + agvm)myg — xinm(bip + b.m)-
Moreover we have:
ajobh — aj by, = (a) — aj,)obf + ai o) — b,m)-
Now we use relations (2), (6), (10), (11), and we choose (1 <i < k,1<j<n):

p> P so that ||(a} — aipmb%” <%
m > M  so that H(aip o(by — bo.m)|l < 5
¢>Q  so that ]|(a1p+a0m)myq“+“$ (b, + )l < £
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Finally we have found vectors @, b) in Ho, @i, b} in Hy and &3 in H, such that:

I[f9] + alob — (@ + @l + #)a(b) + 0] +§)| <e 1<i<k
lag — aill <237 (1497 1<i<k
=1
165 — B3l <23 11 £l 1<j<n
=1
~4 i “ i,5111/2 .
laall < 3(llagll + S 1711 1<i<k
7=1
k
1511 < 31631+ 1L 1) 1<j<n
=1
1z < 3 1)L 1<i<k
7j=1
= k i inl/2 .
il < SO 1<ji<n.
=1

This result is the core of the standard self improving process, which leads to property Ay,
in the same way as in the proofs of the previous theorems.

In view of the above results, the following conjecture seems a reasonable first step towards
the obtention of necessary conditions for membership in the classes Ay .

Conjecture : If T € L(H) belongs to the class A, then T € A, if and only if
mult(RA°) > n on T\EY.

If we were able to prove this conjecture, we could easily prove that:

ﬂ Al,n,:Al,No,.

n>1

Acknowledgements: The authors express their deep gratitude to G.Exner for helpful
suggestions and stimulating discussions.
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