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Abstract

We address the problem of organ registration in augmented surgery, where the deformation of
the patient’s organ is reconstructed in real-time from a partial observation of its surface. Physics-
based registration methods rely on adding artificial forces to drive the registration, which may result
in implausible displacement fields. In this paper, we look at this inverse problem through the lens
of optimal control, in an attempt to reconstruct a physically consistent surface load. The resulting
optimization problem features an elastic model, a least-squares data attachment term based on
orthogonal projections, and an admissible set of surface loads defined prior to reconstruction in the
mechanical model. After a discussion about the existence of solutions, we analyze the necessary
optimality conditions and use them to derive a suitable optimization algorithm. We implement an
adjoint method and we test our approach on multiple examples, including the so-called Sparse Data
Challenge. We obtain very promising results, that illustrate the feasibility of our approach with
linear and nonlinear models.

Keywords: Shape registration, Augmented Surgery, Optimal Control

1 Introduction

Compared to open surgery, minimally-invasive surgery is known to improve the outcome of surgical
interventions, reducing pain and infection risk. During a minimally-invasive operation, the surgeon
manipulates organs using instruments inserted through small incisions in the patient’s abdomen. They
receive visual feedback on a screen, thanks to a laparoscopic camera inserted through one of the inci-
sions. In this context of indirect interaction and feedback, operations such as tumor resection remain
challenging. The surgeon must navigate in an opaque organ, avoiding blood vessels and following the
motion due to breathing and heartbeats.

Augmented reality systems have been designed to help the medical staff visualize the motion of the
organ internal structures, including tumours and blood vessels. An example in hepatic surgery is given
in [22]. The augmented reality pipeline features an elastic registration procedure, which combines
data acquired before and during the intervention. Namely, an initial liver mesh is segmented from
tomographic images made before the operation. As the intervention goes on, a point cloud, representing
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the liver surface as it appears in the camera field of view, is provided in real time. The registration
procedure deforms the pre-operative liver model so that its surface matches the observed point cloud.

The elastic registration problem raises several challenges. First, the deformed view should be
updated in real time along the intervention. Though we do not pretend to achieve real-time registration
in this paper, we keep in mind that numerical methods should be as simple as possible. In addition,
intra-operative data only show a part of the current organ surface. As a consequence, many solutions
to the matching problem exist, most of which are not consistent with the physics of the problem. A
successful registration approach should reduce as much as possible the range of reachable displacements,
to return a displacement field as close as possible to the true organ displacement.

Numerous elastic registration methods are nonrigid variants of the Iterative Closest Point algorithm
[3]. They are inspired from image registration methods [47, Section II.A.1], where a cost function is
minimized to enforce landmark correspondence, while the elastic energy is used as a penalty term to
regularize the displacement field. In these methods, fictitious forces are introduced into the direct model
to drive the registration. Artificial forces applied to the organ surface include electrostatic forces [48],
linear and nonlinear springs [21, 43], or Lagrange multipliers that enforce a so-called sliding constraint
between the deformed surface and the observed point cloud [41, 9, 33].

Such methods rely on elaborate constitutive laws, where attention is paid to the stress-strain law
[28], additional stiffness due to blood vessels [42, 21], and boundary conditions [40, 36]. Unfortunately,
whether they derive from an imaginary potential or play the role of constraint-enforcing Lagrange
multipliers, the forces driving the registration do not reflect the real causes of displacement. They
are created by the intra-operative point cloud, which does not really exist. This results in unrealistic
displacement fields, regardless of the elastic model accuracy [45]. Several methods prefer to solve an
inverse problem, where a range of admissible deformations is defined based on physical hypotheses.
Using linear elasticity, the authors in [23, 24] precompute a basis of displacements corresponding to
forces applied in zones where ligaments hold the liver, while they impose a free boundary condition on
the remaining surface. In [39], the initial liver pose is estimated by taking into account the effects of
gravity and gas insufflation in the patient’s abdomen. In [49], forces that create the displacement are
restricted to certain nodes of the liver mesh. Approaches based on an inverse problem often exhibit
an improved registration accuracy and produce more physically relevant displacement fields, at the
expense of execution time.

In this paper, we look at the registration inverse problem from the perspective of optimal control.
While most registration methods are very specific to a given registration scenario, expressed in terms
of finite-dimensional matrix-vector operations, and, often tailored for linear elasticity, we take a step
backward and consider the continuous problem in a more general setting. Using the optimal control
framework results in a very flexible formulation, yielding at the same time physically relevant displace-
ment fields, and where it is easy to include new physical hypotheses or take additional intra-operative
data into account. The wide range of tools provided by the optimal control framework may be of
help to obtain precious mathematical insight about the registration problem. Last but not least, we
expect our approach to lead to new numerical methods inspired from generic numerical optimization
algorithms. The optimal control approach problem studied in this problem was already introduced
in our conference paper [30], which includes numerical examples associated to the augmented surgery
domain.

In the remaining of this paper, we begin by stating the physical model, along with the optimization
problem we consider (Section 2). Then, we propose a mathematical analysis of the optimal control
problem, including the existence of solutions and optimality conditions (Section 3). Finally, we show
some numerical tests to evaluate the performances of our approach (Section 4).
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2 Towards an optimal control formulation

In our approach, we determine a surface force distribution on the organ boundary that generates a
displacement compatible with observed data. The reconstructed force distribution is chosen among a set
of admissible force distributions, which reflects a range of physical causes. Of course, we do not expect
the registration procedure to accurately estimate the forces that created the observed deformation. The
formulation we propose nevertheless allows us to get close to the physics of the problem in a satisfactory
way, while leading to efficient algorithmic methods that are easy to implement. We illustrate our
approach with physical examples.

2.1 Pre-operative biomechanical model

Figure 1 shows a sketch of the system we consider. In its reference configuration, the organ is represented
by an open domain Ω0 ⊂ R3 with Lipschitz boundary, filled with an elastic material. Due to its
interactions with its environment, the organ is subject to surface loadings, such as pressure or contact
with surrounding tissues. Volume forces, such as gravity, are not considered in this study. The boundary
∂Ω0 falls into two parts, ∂ΩD and ∂ΩN. On ∂ΩD, a homogeneous Dirichlet boundary condition applies,
whereas the Neumann boundary ∂ΩN is subject to a surface force distribution g ∈ L2(∂ΩN,R3). A
homogeneous Dirichlet boundary condition is typically set in zones where main blood vessels enter the
organ. The space of displacement fields associated with this partition reads

H1
D(Ω0) = H1

D(Ω0,R3) =
{
u ∈ H1(Ω0,R3)

∣∣∣ u = 0 on ∂ΩD

}
,

and we denote by ug ∈ H1
D(Ω0) the displacement field generated by a given surface force distribution

g on ∂ΩN .
Elastic stress-strain laws used in the literature to describe the behaviour of living tissues range from

the linear elastic model [23] to hyperelastic models such as Neo-Hookean [31] or Ogden [36] models (see
also [28] and references therein). When computation time is a constraint, the linear co-rotational model
is sometimes preferred [35, 43], as it generates nonlinear deformations at the cost of a linear system
inversion. In this paper, we only consider the linear elastic system, except for a brief nonlinear example
in the results section. In the linear case, the generated displacement ug solves the partial differential
equation (PDE) 

div(Aε(u)) = 0 in Ω0

u = 0 on ∂ΩD

Aε(u) · n = g on ∂ΩN,
(1)

where the linearized strain tensor and the Hooke tensor are defined by

ε(u) = 1
2

(
∇u+∇uT

)
and Aε = 2µε+ λ tr(ε)I,

respectively. The Lamé parameters µ and λ describe the material resistance to deformation and volume
change. They are defined from the Young modulus E and the Poisson ratio ν by µ = E/(2(1 + ν)) and
λ = 2νµ/(1− 2ν).

We denote by Ωu = (Id +u)(Ω0) the volume occupied by the deformed organ. Note that we do not
expect (Id +u) to be a bijection, which is consistent with our numerical framework.

2.2 Intra-operative data and surface-matching functional

While the reference configuration Ω0 is known through pre-operative images, the current position shall
be estimated from an intra-operative observation. In our continuous model, the observed data take the
form of a compact two-dimensional surface Γ ⊂ R3. We denote by S0 ⊂ ∂Ω0 the part of the initial
organ boundary that is supposed to match with Γ as the registration ends. We assume that S0 is a
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Figure 1: Problem geometry. The thick dashed line represents the deformed matching surface Su. The
distance between a point y ∈ Γ and its orthogonal projection onto Su is denoted by d(y, Su).

compact subset of ∂Ω0 known by the user (possibly the whole boundary ∂Ω0), and we will use the
notation

Su = (Id +u)(S0) ⊂ (Id +u)(∂Ω0)

to denote the image of S0 under a displacement u. The surface S0 is chosen before the operation starts,
as the surgeon has a vague idea of what part of the organ boundary should appear on the camera.

To measure the discrepancy between a given displacement and the observed data, we introduce the
least-squares function J : C(Ω0)→ R, defined by

J(u) = 1
2

∫
Γ
d2(y, Su) dy, (2)

where d(y, Su)2 = minx∈Su ‖x − y‖2 denote the Euclidean distance between y ∈ Γ and Su. Therefore,
J(u) vanishes whenever Γ ⊂ Su, up to a zero Lebesgue measure set. Existing approaches in shape-
matching use shape similarity metrics between sets such as the signed distance with respect to the
target [11, 34] or the Hausdorff distance [38]. However, they are not relevant in this case, as we
are not comparing shapes, but only open surfaces. Following previous approaches in partial shape-
matching [45, 41], we fall back to the least-squares functional (2). The approaches described in these
aforementioned references differ from the one described in this article in the sense that they depend on
a particular choice of discretization and meshing of the problem. Our approach, on the other hand, is
robust to a change of such parameters.

We consider the constrained optimization problem

min
g∈GM

Φ(g) where Φ(g) = J(ug), (3)

where the feasible set reads

GM =
{
g ∈ L∞(∂ΩN,R3)

∣∣∣ ‖g‖L∞(∂ΩN) < M
}
.

Here, the definition of GM is based on the physical hypothesis that the magnitude of surfaces forces
that are expected in the human body does not exceed the positive constant M > 0. Note that, in
our numerical examples, the definition of admissible forces also includes information concerning the
support of g, i.e. the zones where surface forces apply on the organ boundary.

Setting an upper bound on the pointwise magnitude of g is also useful to handle noise in the observed
surface Γ. In the medical application, Γ is a point cloud provided by an image processing pipeline.
It is likely to include a certain level of noise. In this context, an exact matching between Γ and the
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organ boundary would result in a very irregular displacement field and oscillations in the surface force
distributions. A better outcome would consist in the organ boundary passing through the point cloud
without meeting every point individually. Using the constraint prevents the control g from taking the
large values it needs to reach every point in Γ.

3 Analysis of the optimal control problem

To begin with, an analysis of the optimization problem should help us obtain some mathematical
insight. After we discuss the existence of solutions to the continuous problem, we derive first-order
optimality conditions. Optimality conditions will be useful when it comes to implementing a numerical
method to solve the problem in silico. We take care of that part in the end of the section.

For q > 0, we introduce the notation W 1,q
D (Ω0,R3) to denote the Sobolev space

W 1,q
D (Ω0,R3) =

{
u ∈W 1,q(Ω0,R3)

∣∣∣ u = 0 on ∂ΩD

}
,

and q′ > 0 is the conjugate exponent to q, given by 1/q + 1/q′ = 1. Then, the topological dual of
W 1,q′

D (Ω0,R3) with respect to the pivot space L2(Ω0,R3) is denoted by W−1,q
D (Ω0,R3).

3.1 Well-posedness

Existence of solutions for Problem (3) is critical to guarantee the stability properties of the discrete
problem with respect to the mesh size, or which regularity can be be expected for numerical solutions.

The following results are based on the work by Gröger [16] around the regularity of solutions to
partial differential equations with mixed boundary conditions. The definition of a Gröger-regular set
is based on the following subsets of R3:

B = {x ∈ R3 | ‖x‖ < 1}, B+ = {x ∈ B | x3 > 0}, D = {x ∈ B | x3 = 0}, D0 = {x ∈ D | x1 < 0}.

Definition 3.1. Let Ω0 a bounded open subset of R3 and ∂ΩN a relatively open part of its boundary.
The set G = Ω0 ∪ ∂ΩN is said to be regular in the sense of Gröger if, for each x ∈ ∂Ω0, there is a
neighbourhood U of x and a Lipschitz diffeomorphism Ψ : U → B such that Ψ(U ∩G) either coincides
with B+, or B+ ∪D, or B+ ∪D0.

Remark 3.1. A simpler definition, specific to the three-dimensional case, is provided in [20, section
5]: G is Gröger-regular when Ω0 is a bounded domain of class W 1,∞, ∂ΩD = ∂Ω0 \ ∂ΩN is closed, and
the boundary ∂(∂ΩN), seen as a subset of ∂Ω0, is W 1,∞.

Let us mention [16, 17, 13, 20], investigating the W 1,q or C0,α regularity of solutions to linear and
nonlinear elliptic PDEs with mixed boundary conditions. Unfortunately, these results do not apply to
the linear elasticity system, for which the literature is sparser. In [46], W 1,q regularity is obtained for
solutions to the linear elastic system on a domain of class C1. In [25], the authors extend Gröger’s
framework to a class of linear and nonlinear elastic systems that satisfy an ellipticity condition with
respect to the linear strain tensor ε(u). We state their result in the specific case of the linear elasticity
system.

Proposition 3.1. [25, Theorem 1.1] Assume that Ω0∪∂ΩN is Gröger-regular, and that the Lamé coef-
ficients µ, λ satisfy µ > 0 and 2µ+ 3λ > 0. Then, provided that g defines an element of W−1,q

D (Ω0,R3),
there exists a q0 > 2 such that, for all q ∈ [2, q0], the solution to (1) is in W 1,q

D (Ω0,R3). In addition,
there exists C > 0, depending only on Ω0 and q, such that

‖u‖W 1,q(Ω0) 6 C‖g‖W−1,q(Ω0).
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Our existence result relies on the compact embedding W 1,q(Ω0) ↪→ C(Ω0) for q > dimR3 [5]. In
this regard, Proposition 3.1 is not fully satisfying, as it only guarantees q0 > 2. In the context of elliptic
systems, the articles [26, Appendix] and [12] contain some sufficient conditions for the condition q0 > 3
to hold, but it is not clear that their conditions are relevant in the case of elasticity. For this reason,
we keep the condition q0 > 3 as an assumption in our existence result, stated below. Note that, if
we consider the same problem in R2, such an assumption is not necessary as q0 < dimR2 is already
guaranteed by Proposition 3.1. Also, if one considers a simpler toy problem where the elastic system
is replaced with an elliptic system, the existence result remains valid in any dimension without any
assumption. We refer to [29, Chapter 4] for additional explanations.

Theorem 3.1. Assume that Ω0 ∪ ∂ΩN is Gröger-regular and let M > 0.

1. Let us consider the equivalent of Problem (3) in R2. Then, Problem (3) has at least one solution.

2. In R3, assume that Ω0 and ∂ΩN are such that q0 > 3 with the notations of Proposition 3.1. Then
Problem (3) has a solution.

3.2 Characterization of optimizers

We now turn to first-order conditions satisfied by local minimizers of Problem (3).
Before we state the optimality conditions themselves, let us have a look at the properties of the

discrepancy functional J , defined in (2). In the following proposition, we state the differentiability of
J . This result is fully based on Danskin’s theorem [10, Chapter 3] concerning the differentiability of
functions defined by a minimum. For a given displacement field u ∈ C(Ω0), we use the notation

Py(u) = {x ∈ S0 | ‖x+ u(x)− y‖ = d(y, Su)} = (Id +u)−1ΠSu(y), (4)

where ΠSu(y) is the set of orthogonal projections of y onto Su. In particular, Py(u) ⊂ S0.

Proposition 3.2. Assume that Ω0 is bounded with Lipschitz boundary, and let u ∈ C(Ω0). Then the
functional J has directional derivatives at u. Its derivative in the direction v ∈ C(Ω0) reads

dJ(u)(v) =

∫
Γ

min
x∈Py(u)

[v(x) · (x+ u(x)− y)] dy. (5)

In addition, if Py(u) is a singleton for almost every point y ∈ Γ, then dJ(u) is a continuous linear form
on C(Ω0), i.e. J is differentiable in the sense of Gateaux at u.

Though it is not Gateaux-differentiable a priori, the application J always has directional derivatives.
Nondifferentiability (in the sense of Gateaux) occurs when Py(u) contains several elements for too
many points in Γ. There are two reasons why Py(u) can contain several elements: either y has several
orthogonal projections onto Su, or y has a single projection point pSu(y) which is the image of several
points x1, x2, · · · ∈ S0 under the transformation Id +u.

Note that the directional derivative of J also reads

∀v ∈ C(Ω0), dJ(u)(v) = min
`∈L(u)

〈`, v〉,

where the set of linear forms L(u) is defined by

L(u) =

{
` : C(Ω0) 3 v 7→

∫
Γ
v(xy) · (xy + u(xy)− y) dy

∣∣∣ xy ∈ Py(u)

}
.
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All the linear forms ` involved in the definition of L(u) belong to the concave subdifferential of J , as
they satisfy dJ(u)(v) 6 `(v) for all v ∈ C(Ω0). In addition, according to the expression above, for a
given direction v, there exists a family (x0,y), with x0,y ∈ Py(u) for all y ∈ Γ, such that

dJ(u)(v) =

∫
Γ
v(x0,y) · (x0,y + u(x0,y)− y) dy.

We now state necessary first-order conditions that characterize a minimizer g of Problem (3). Due
to the structure of the derivative dJ , the first-order conditions consist of an equality satisfied by
each element ` ∈ L(ug). In particular, the linear form ` ∈ L(ug) associated to the family (xy)y∈Γ is
represented in the space of controls by an adjoint state p`. From a formal point of view, we aim to
introduce p` as the solution to the adjoint problem

div(Aε(p)) = 0 in Ω0

p = 0 on ∂ΩD

Aε(p) · n =
∫

Γ(xy + u(xy)− y) δxy dy on ∂ΩN,
(6)

where δxy is the two-dimensional (pointwise) Dirac measure at xy on ∂ΩN. To rigorously define a notion
of solution for such a system, we use the so-called transposition method. To this aim, we assume, as
in Theorem 3.1, that Ω0 and ∂ΩN are such that q0 > 3 with the notations of Proposition 3.1, and we
consider a fixed q ∈ (3, q0].

For a given h ∈ Lq(∂ΩN), we denote by wh the solution to the PDE
div(Aε(w)) = 0 in Ω0

w = 0 on ∂ΩD

Aε(w) · n = h on ∂ΩN.
(7)

In what follows, q′ denotes the conjugate exponent to q.

Definition 3.2. One says that p` ∈ Lq
′
(∂ΩN) solves (6) in the sense of transposition if∫

∂ΩN

p` · hds =

∫
Γ
wh(xy) · (xy + u(xy)− y) dy.

for all h ∈ Lq(∂ΩN), where wh solves (7).

We refer to the monography [44] for additional explanations about solutions to PDEs with measure
right-hand sides, as well as the seminal work [27]. Note that, with this definition, the adjoint state p` is
only defined on ∂ΩN. Though the values of the adjoint state inside Ω0 are not needed for our analysis,
p` can easily be extended to the whole domain Ω0 using (6).

Lemma 3.1. Let us assume that Ω0 ∪ ∂ΩN is Gröger-regular and let q ∈ (3, q0]. Then, the adjoint
problem (6) has a unique solution in the sense of transposition.

The first-order optimality conditions are stated below.

Theorem 3.2. Assume that Ω0∪∂ΩN is Gröger-regular and M ∈ [0,∞]. Let g ∈ GM a local minimizer
of Problem (3) and ug the associated displacement field. If ` ∈ L(u), denote by p` the associated adjoint
state defined by (6). For every ` ∈ L(u), there exists a Lagrange multiplier λ` ∈ L2(∂ΩN,R), with

for a.e. x ∈ ∂ΩN

{
λ`(x) = 0 if ‖g(x)‖ < M
λ`(x) > 0 if ‖g(x)‖ = M,

such that g satisfies the first-order optimality condition

for a.e. x ∈ ∂ΩN p`(x) + λ`(x)g(x) = 0.
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Remark 3.2 (Practical use of optimality conditions.). It is notable that if g ∈ GM is a local minimizer
of Problem (3) such that ‖g‖ < M almost everywhere on ∂ΩN, then Φ is Gateaux-differentiable at g
with dΦ(g)(·) = 0. Indeed, if the L∞ constraint is inactive, then λ` = 0 by the so-called slackness
property. In this case, the optimality condition simply reads p` = 0 on ∂ΩN . Using (6), we obtain
` = 0, and therefore L(ug) = {v 7→ 0}, which means that Φ is Gateaux-differentiable at g.

This comment is relevant for the numerical implementation. In practice, even though we take into
account the L∞ constraint in the numerical algorithm, we observe that this constraint is not saturated
as soon as M is chosen large enough. This suggests (but this is only a numerical conjecture) that the
problem still has a solution if we remove the L∞ constraint in the optimal control problem definition.

Furthermore, it can be easily checked that it is only necessary to find one projection per point y ∈ Γ
when evaluating J . Indeed, according to Proposition 3.2, if `0 ∈ L(u) is given and if v is chosen so that
〈`0, v〉 ≤ 0, then,

dJ(u)(v) = min
`∈L(u)

〈`, v〉 6 〈`0, v〉 6 0,

meaning that v is also a descent direction for the whole criterion J .

3.3 Numerical solving

To solve the registration problem numerically, we discretize the optimal control formulation using P1
finite element functions. Due to the complex geometry of organs, using a tetrahedron mesh is very
common in augmented surgery. In addition, choosing piecewise linear functions is more convenient
when it comes to computing orthogonal projections onto the deformed mesh.

We adopt a ‘discretize-then-optimize’ approach, which means that the entire formulation is trans-
formed into a finite-dimensional problem, which is then solved using numerical tools for finite-dimensional
optimization. Indeed, an algorithm based on the ‘optimize-then-discretize’ might be very sensitive to
discretization errors, and might encounter difficulties to find adequate directions of descent by applying
the continuous approach on a discretized problem. We have therefore chosen to adapt mutatis mutandis
the tools developed in the previous section to a discrete framework.

From now on, the discrete displacement field is represented by the finite-dimensional vector u =
(u1, . . . , un) ∈ R3n where n is the number of vertices and uk ∈ R3 is the displacement of the k-th vertex.
The same bold letter u is used to denote the associated finite element function. We control the vector
of nodal forces b = (b1, . . . , bn) at the mesh vertices, and a displacement is determined by solving the
linear system

Au = b,

where A is the stiffness matrix. Note that controlling directly the nodal forces b instead of the
surface force distribution is a good way to lighten computations, at the expense of consistency with the
continuous problem. It remains consistent with the discretize-then-optimize approach, though.

Discrete objective function. Let us first have a look at the discretized functional J . In the dis-
cretized framework, the organ surface ∂Ω0 is a triangular mesh, and defining S0 consists in selecting
the set of triangles that is used to evaluate J . The observation Γ is provided as the point cloud
Γ = {y1, . . . , yp} ⊂ R3, and the discretized functional reads

J(u) = 1
p

p∑
i=1

ji(u) where ji(u) = 1
2d

2(yi, Su). (8)

Our implementation uses the nearest-neighbour search from the Trimesh Python package1 to evaluate
the distance between a point y ∈ Γ and Su. This projection procedure stores triangles from Su in a

1Website: https://trimsh.org
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−∂kj(u)

xk

x`

xm

y

−∂kj(u)
−∂mj(u)

xk

x`
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y

a

Figure 2: Illustration of ∇j(u) in two configurations. Points x`, xk and xm are located on the mesh
boundary, while the last vertex is inside the mesh. The red arrows represent the components of the
descent direction −∇j(u). On the right, the equality y − a = −∂kj(u)− ∂mj(u) holds.

spatial indexing structure [19] to perform efficient nearest-neighbour queries. Using Remark 3.2 and the
fact that nondifferentiability only occurs on a negligible subset of the space of displacements, we only
need the nearest-neighbour search procedure to return a single projection point a = pSu(y) per observed
point y ∈ Γ. Note that handling an unknown number of projections per point y would represent an
additional computational cost, and would require special attention to avoid computing every p`. We
have therefore chosen a compromise between efficiency and complexity of the algorithm.

Since we are dealing with piecewise linear finite element functions, differentiating J with respect to
the displacement field u means differentiating J with respect to the displacements (u1, · · · , un) at the
mesh vertices. Thus, the gradient∇J(u) is defined by its vertex-wise components (∂1J(u), · · · , ∂nJ(u)).
We first consider the elementary application j(u), where we have dropped the index i compared to (8).
Given a displacement field u, we denote by x0 and x the initial and current positions of the mesh
vertices, respectively. In particular, x0 and x satisfy x0 + u = x.

Assume that the projection point a = pSu(y) falls into the triangle composed of vertices k1, k2, k3.
We use the notations

a = θ1xk1 + θ2xk2 + θ3xk3 and a0 = θ1x
0
k1 + θ2x

0
k2 + θ3x

0
k3 ,

where the (nonnegative) barycentric coefficients θ1, θ2, θ3 satisfy θ1 + θ2 + θ3 = 1. In particular,
a = a0 + u(a0). For v a perturbation of u, we obtain after adapting (5)

〈dj(u),v〉 = v(a0) · (a− y) = (θ1vk1 + θ2vk2 + θ3vk3) · (a− y) .

Therefore, the gradient ∇j(u) satisfies

∀i ∈ {1, 2, 3} ∂kij(u) = θi(a− y) ∀k /∈ {k1, k2, k3} ∂kj(u) = 0.

Finally, the gradient ∇J(u) reads

∇J(u) = 1
p

p∑
i=1

∇ji(u).

Figure 2 illustrates the components of ∇j(u) in a two-dimensional configuration.

Adjoint method. As suggested by the problem formulation in (3), we solve the optimization problem
numerically using an adjoint method, where the only variable controlled by the optimization solver is
the nodal force distribution b. Keeping the same notations as in (3), the discrete optimization problem
reads

min
b∈B

Φ(b) where Φ(b) = J(ub). (9)
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Here, the elasticity system is hidden in the objective function Φ and has to be interpreted as an
equality constraint of the optimization problem. In particular, each evaluation of the objective value
Φ(u) requires to solve the elasticity system to compute ub.

Now, to solve (9) using a first-order optimization method, computing the objective gradient∇Φ(b) is
also required. The adjoint method exploits the first-order optimality conditions derived in Remark 3.2,
keeping in mind that we only consider the differentiable case here. In a similar fashion to (6), we define
the adjoint state pb, solution to the adjoint elasticity system

Ap = ∇J(ub).

An immediate adaptation of the proof of Theorem 3.2 yields

∇Φ(b) = pb.

Algorithm 1 shows the outline of the adjoint procedure.
Adjoint methods are convenient as they result in modular implementations, where each part may be

taken care of by a separate entity. In particular, it is easy to switch functionals, mechanical models or
optimization solvers, as they only communicate through simple interfaces. Our implementation 2 relies
on the Numpy framework. The stiffness matrix is assembled using the SOFA finite element software
developed by the Inria Mimesis Team [2], then it is factorized before the procedure starts. Concerning
the optimization procedure itself, it is taken care of by off-the-shelf solvers available in the Scipy library,
namely a limited-memory quasi-Newton solver [6].

Algorithm 1: Computation of the objective gradient using an adjoint method.
Data: Current iterate b
Compute the displacement ub by solving Au = b
Evaluate J(ub) and ∇J(ub)
Compute the adjoint state pb by solving Ap = ∇J(ub)
Result: ∇Φ(b) = pb

4 Numerical results

We now present a few numerical examples involving the adjoint method. First, we illustrate the
convergence properties of the optimization procedure on a toy problem. It is also the occasion to
clarify what can or can’t be expected from the method in terms of registration accuracy. Then we show
an example in a registration scenario involving the Sparse Data Challenge dataset. In our last result,
we opt for a neo-Hookean elastic model and take profit of a simple registration scenario to illustrate
the feasibility of choosing a nonlinear model.

4.1 A toy problem

Let us begin with an unpleasant remark: though registration error might be reduced by taking physical
considerations into account, our registration method comes with no guarantee in terms of displacement
accuracy. To illustrate this disclaimer, we evaluate the displacement error of the procedure on a toy
problem.

We create a truncated sphere mesh with radius 1, where the distance from the sphere centre to the
truncating plane is 1/2. The mesh contains 10,385 nodes and 6,702 triangular faces. The flat surface of
the mesh is subject to a Dirichlet condition, while forces are applied on the round surface to generate

2Our code is available at the following url: https://github.com/gmestdagh/adjoint-elastic-registration.
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a displacement. A linear elastic model is used, with E = 1 and ν = 0.49. After the elastic deformation
is applied to the mesh, the round surface is sampled to create a point cloud of 10,000 points. Figure 3a
shows the initial mesh and the synthetic deformation.

We create very favourable conditions for the registration procedure. First, the point cloud, very
dense and noise-free, provides a good representation of the deformed surface. In addition, the same
mesh is used for data creation and for reconstruction, which evacuates possible discrepancies between
two meshes representing the same shape. Figure 3b shows the objective value and gradient norm along
iterations of the optimization solver. After 176 iterations, the gradient norm has decreased by 5 orders
of magnitude. The objective function keeps decreasing and evaluates to 2 · 10−7 as the procedure ends,
meaning that the quadratic mean of the distance between data points and the deformed surface is
approximately 6 · 10−4. Figure 4a shows the point cloud, along with a superposition of the true (green)
and reconstructed (yellow) surfaces, confirming the good matching between surfaces.

Despite a tight surface matching, the displacement error (Figure 3c) settles around 10−1, with a
maximum error of 0.6 (the sphere radius is 1). In Figure 4b, we illustrated the displacement discrepancy
between the true (green) and reconstructed (yellow) surfaces. The displacement error is plotted in
Figure 4c. Without surprise, the displacement error increases as we move away from the Dirichlet
boundary condition. The last graph in Figure 3c shows the error on nodal forces for the 2,522 vertices
of the Neumann surface. The nodal force errors settle to the same order of magnitude as the nodal
forces themselves, suggesting an average 100% error. In general, it should be difficult to give a meaning
to the reconstructed distribution, especially when it contains many degrees of freedom.

Should we give up every hope for all that? Actually, the sphere test case is not as easy as it
seems. Due to the sphere’s symmetry, the registration method has no clue about the best way to match
the point cloud. As a consequence, generating an inaccurate displacement is costless, as long as the
deformed surface matches the point cloud. In the case of an organ, things are different, as the point
cloud reflects the shape of the surface part it is supposed to match. In addition, in the application
case, some landmarks, detected by the laparoscopic camera [43, Figure 3], may be used to improve
registration accuracy.

4.2 Sparse Data Challenge dataset

In this section, we present an organ registration result in the context of augmented surgery. This
example, developed in our conference paper [30, Section 3.1], involves the Sparse Data Challenge3

dataset. The dataset contains one tetrahedral mesh representing a silicon liver phantom in its initial
configuration and 112 point clouds acquired from 112 deformed configurations of the same phantom
[8, 4]. To generate deformations, the challenge organizers laid the phantom on irregular supports on
its posterior face [45, Figure 2]. They produced the point clouds by acquiring pictures of the anterior
face with a camera. The phantom also contains 159 targets whose position is measured in reference
and deformed configurations to establish ground truth data. The position of targets remains unknown
to us, and the registration error is computed by the challenge website after we upload a reconstructed
mesh position associated with each point cloud. By keeping the ground truth hidden from participants,
the challenge organizers eliminate bias associated with knowledge of the ground truth.

To begin with, we perform a rigid alignment between the initial mesh and the point cloud using
the Iterative closest point algorithm [3], and afterwards we set a homogeneous Dirichlet boundary
condition on a small zone in the liver posterior face to enforce existence and uniqueness of a solutions
to the elasticity system. The Dirichlet boundary is chosen arbitrarily, as available information does not
suggest an area rather than another. Here, the deformation is caused by the irregular support applying
contact forces on the posterior surface, and for this reason we label the posterior surface as the loaded
surface, where nodal forces are allowed to take nonzero values. On the other hand, the point cloud
represents the anterior surface, and in this case, the anterior surface is selected as the matching surface

3Challenge website: sparsedatachallenge.org.
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(a) Initial sphere mesh (left) and synthetic deformation (right).
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(b) Objective value and gradient norm along iterations.
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(c) Reconstruction error statistics for vertex displacements and nodal forces.

Figure 3: Synthetic deformation and convergence statistics for the toy problem.
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(a) Point cloud and superposition of the true and reconstructed surface.

(b) Discrepancy between the true (left) and reconstructed (right) surface.

(c) Displacement error.

Figure 4: Registration results for the toy problem.
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S0. Figure 5a shows the initial mesh with the two labelled surfaces. We run the adjoint method, using
a linear elastic model with E = 1 and ν = 0.4, and we stop the procedure after 200 iterations. The
resulting deformations in four cases are shown in Figure 5b.

Displacement errors for the whole dataset are gathered in Table 5c. In Figure 5d, they are compared
with other submissions displayed on the challenge website. We obtain the second-best result among
submissions that appear on the challenge website. Despite a greater sensibility to surface coverage
than the leading team, our average registration error remains well below the 5 mm limit required by
our clinical partners. This results highlight the interest of methods based on an inverse problem in
intra-operative organ registration.

4.3 Toward nonlinear mechanics

All theoretical and numerical results presented until now rely on the linear elastic model. However, while
linear elasticity is only relevant for small deformations, organs are made of soft living tissues undergoing
large deformations, and a successful registration procedure should allow hyperelastic deformations. In
this section, we illustrate the extension of our results to nonlinear elasticity on a simple example.

We consider a liver mesh with 3,046 vertices, embedded with a Neo-Hookean model. Dirichlet
boundary conditions are applied at the hepatic vein entry and in the falciform region. We create a
synthetic deformation by applying a local force on one lobe of the liver, and we sample the deformed
surface to create a point cloud with 500 points. We perform the registration using the same mesh and
elastic model. The reconstructed force distributions is restricted to a zone slightly larger than the zone
used to generated the deformation.

A few modifications are required in the adjoint pipeline to use hyperelastic models. In particular,
the direct problem is now a nonlinear variational equation, denoted

F(u) = b.

It is usually solved using a Newton [18, 50] or quasi-Newton [15, 51] method. In the Neo-Hookean case,
though, ensuring stability of the iterative method is critical to avoid generating displacement fields
where the elastic residual F(u) cannot be evaluated. For this reason, we use a trust-region Newton
method, for which convergence is guaranteed. Note that the adjoint problem is the linear system

F′(ub)p = ∇J(ub),

where the residual Jacobian F′(ub) is evaluated at the solution of the direct problem.
Figure 6 show registration examples involving the Neo-Hookean model. It is noteworthy that the

number of iterations if the optimization solver is very different between cases. Actually, the registration
procedure did not stop because the optimality tolerance was met, but because the iterative direct solver
accuracy was not sufficient for the optimization solver to keep generating descent directions. In each
case, the original deformation is shown side by side with the reconstructed deformation. The arrows
represent nodal forces. Note that the reconstructed force distribution is much noisier and messier than
the true one, but it somehow exhibits a trend in the right direction.

These results illustrate the feasibility of the optimal control approach for hyperelastic organ regis-
tration. Subsequent work should seek to produce a more mature and efficient procedure involving the
nonlinear model.

5 Discussion and Conclusion

The first numerical results from the implementation of the method described in this paper are very
encouraging, even when considering nonlinear elasticity models. We conclude by mentioning below
some avenues of improvement that are the subject of current and future work.
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(a) Initial mesh. The bottom surface (in blue) is the
loaded surface while the top surface (in magenta) is the
matching surface.

(b) Point cloud (magenta) and reconstructed deforma-
tions for four cases.

Surface Coverage Average Standard deviation Median
20-28 % 3.54 1.11 3.47
28-36 % 3.27 0.85 3.19
36-44 % 3.13 0.82 3.13

All data sets 3.31 0.94 3.19

(c) Target registration error statistics (in millimeters) for all datasets, as returned by the website after submission.
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(d) Comparison of our TRE results with other participants (our column is the middle one).

Figure 5: Results for the Sparse Data Challenge dataset [30].
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(a) Case 1.
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(b) Case 2.

Figure 6: Convergence statistics (top), along with the true and reconstructed deformations (bottom)
for two test cases with the nonlinear model.
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Let us first comment the choice to consider static elasticity problems involving a Dirichlet boundary
condition. The main role of the Dirichlet boundary condition here is to guarantee the well-posed
character of the direct and optimal control problems, in particular the existence and uniqueness of a
solution displacement u given a force distribution g. Its role is also, to a lesser extent, to take into
account anatomical factors that limit the organ motion. In liver surgery, the Dirichlet condition is often
set at the hepatic vein entry, or sometimes at places where ligaments hold the liver (e.g. the falciform
region). However, we believe that the whole procedure could benefit from a finer modelling of those
movement restrictions. We plan to no longer consider a Dirichlet hard-constraint, but instead account
for the presence of the hepatic vein entry using penalty terms in the cost functional.

On another level, even though we made choices in order to make the algorithm as light as possible,
the question of computation time still needs to be addressed. The adjoint method shares processor
time with other parts of the pipeline, including point cloud generation from laparoscopic images and
displaying the augmented view. In this article, we do not clarify whether achieving real-time registra-
tion using the adjoint method is feasible, even with a better implementation of the adjoint procedure
and a good trade-off between accuracy and computation cost. For this reason, we are developing an
implementation where the iterative nonlinear elastic solver is replaced with an artificial neural network.
Preliminary results [37] show a significant speed-up of the procedure due to the efficiency of neural
networks.

Finally, we are currently thinking about modeling issues, around the choice of cost functionals,
in order to improve the robustness against possible measurement errors on the Γ points. Indeed, we
have in practice a cloud of points allowing to reconstruct Γ. We would like to introduce a worst-case
functional to make the result as insensitive as possible to possible measurement errors on the data.

A Proofs of Proposition 3.2, Theorem 3.1 and Theorem 3.2

In this section we provide details about the results stated in Section 3.

A.1 Proof of Proposition 3.2

The continuous version of J reads

J(u) =

∫
Γ
jy(u) dy where jy(u) = 1

2d
2(y, Su).

We begin by studying the properties of the elementary functional jy in a first lemma, and then we finish
the proof of Proposition 3.2 using the dominated convergence theorem. Remember that the definition
of Py(u) is given in (4).

Lemma A.1. Let y a fixed point in Γ. The application jy is locally Lipschitz continuous on C(Ω0). The
Lipschitz constant can be chosen independent from y but still depends on Γ. In addition, for u ∈ C(Ω0),
jy has directional derivatives. The directional derivative in the direction v ∈ C(Ω0) reads

djy(u)(v) = min
x∈Py(u)

v(x) · (x+ u(x)− y).

Proof. Recalling that Su = (Id +u)(S0), we write jy(u) = minx∈S0
1
2‖x+ u(x)− y‖2.

First, we check Lipschitz continuity. Let u1, u2 ∈ C(Ω0). As S0 is compact, there is a x1 ∈ S0 with
jy(u1) = 1

2‖x1 − u1(x1)− y‖2. Then,

jy(u2)− jy(u1) 6 1
2‖x1 + u2(x1)− y‖2 − 1

2‖x1 + u1(x1)− y‖2

= 1
2(2x1 + u2(x1) + u1(x1)− 2y) · (u2(x1)− u1(x1))

6

(
max
x∈S0

‖x− y‖+ 1
2‖u2 + u1‖L∞(Ω0)

)
‖u2 − u1‖L∞(Ω0),
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As Γ is compact, we obtain the Lipschitz constant

L = max
y∈Γ

(
max
x∈S0

‖x− y‖
)

+ 1
2‖u2 + u1‖L∞(Ω0).

To compute directional derivatives, we define the application

f : R+ × S0 → R
(t, x) 7→ 1

2‖x+ u(x) + tv(x)− y‖2,

and we note that jy(u+ tv) = minx∈Py(u+tv) f(t, x). The partial derivative ∂tf exists and is continous,
and for t > 0 the set Py(u + tv) is nonempty and compact. All conditions are gathered to apply
Danskin’s theorem [10, Chapter 3, Theorem I], which stipulates that jy is differentiable at u in the
direction v, with

djy(u)(v) = lim
t↘0

jy(u+ tv)− jy(u)

t
= min

x∈Py(u)
∂tf(0, x),

which is the formula we wanted to end up with.

We now use the dominated convergence theorem to finish the proof. Denote by B = B(0, r) a small
ball of radius r > 0. As jy is Lipschitz continuous on u+B, there is a constant L independent from y
such that

∀v ∈ B ∀t ∈ (0, 1)

∣∣∣∣jy(u+ tv)− jy(u)

t

∣∣∣∣ 6 L‖v‖L∞(Ω0) 6 Lr.

Using the dominated convergence theorem, we pass to the limit in the expression

J(u+ tv)− J(u)

t
=

∫
Γ

jy(u+ tv)− jy(u)

t
dy −−→

t↘0

∫
Γ

djy(u)(v) dy

to obtain the derivative.
Now, if Py(u) is a singleton {xy} for almost every y ∈ Γ, we obtain

〈dJ(u), v〉 =

∫
Γ
v(xy) · (xy + u(xy)− y) dy 6 |Γ|

(
max
y∈Γ

d(y, Su)

)
‖v‖L∞(Ω0),

i.e. dJ(u) is a continuous linear form.

A.2 Proof of Theorem 3.1

Consider a minimizing sequence (gj) of elements of GM . As (gj) is bounded in L∞(∂ΩN), it converges
?-weakly in L∞(∂ΩN), towards a limit that we denote g. As GM is closed for the weak-? topology, g
is an element of GM . We denote respectively by uj = ugj the state associated to gj and by u = ug the
state associated to g. The proof falls into two parts. We first prove that the sequence (uj) converges
towards u, and then we finish the proof by showing that the convergence is uniform.

The state equations for uj and u yield

∀v ∈ H1
D(Ω)

∫
Ω0

Aε(uj) : ε(v) dx =

∫
∂ΩN

gj · v ds

∀v ∈ H1
D(Ω)

∫
Ω0

Aε(u) : ε(v) dx =

∫
∂ΩN

g · v ds.

Taking into account the weak-? convergence of (gj) towards g leads to

∀v ∈ H1
D(Ω)

∫
Ω0

Aε(uj) : ε(v) dx→
∫

Ω0

Aε(u) : ε(v) dx. (10)
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As ∂ΩD has positive measure in ∂Ω, the linear elasticity bilinear form is an inner product on H1
D(Ω0)

[7, Theorems 6.3-3 and 6.3-4], and (10) is equivalent to uj ⇀ u in H1
D(Ω0). In particular, uj ⇀ u in

L2(Ω0).
We now check that (uj) converges uniformly. Let q the exponent from Proposition 3.1 and denote

by q′ = q/(q − 1) its conjugate exponent. Remember that we assumed q > 3. Note that the trace
v|∂ΩN

of a function v ∈W 1,q′

D (Ω0) is in Lq′(∂ΩN) [14, §5.5, Theorem 1]. This confirms that an element
of L∞(∂ΩN) ⊂ Lq

′
(∂ΩN)′ represents an element of W−1,q

D (Ω0) (with continuous injection). Because
elements of (gj) are in GM , the sequence is bounded in W−1,q

D (Ω0). Then, due to Proposition 3.1,
the sequence (uj) is uniformly bounded in W 1,q

D (Ω0), and, as a consequence of the Rellich-Kondrachov
theorem [1, Theorem 6.3], it converges uniformly, up to a subsequence. We check that the uniform
limit is u by noting that uniform convergence implies weak convergence in L2.

Finally, as J is continuous on C(Ω0), we obtain that J(u) = lim J(uj) = minGM Φ, and g is a
solution to (3).

A.3 Proof of Lemma 3.1

Let us construct the solution with the help of an approximation process. We first consider a single
point y ∈ Γ, and we denote z = xy + u(xy)− y ∈ R3. We look for an elementary adjoint state p`,y such
that

∀h ∈ Lq(∂ΩN)

∫
∂ΩN

p`,y · hds = wh(xy) · z. (11)

The regularity assumption on ∂ΩN yields to the existence of a family of bounded open subsets ωδ of
∂ΩN, and such that (ωδ)δ>0 shrinks to {xy} as δ ↘ 0. Setting fδ = 1ωδ/H2(ωδ), where H2(ωδ) is the
two-dimensional Hausdorff measure of ωδ, we introduce pδ as the solution of the PDE

div(Aε(pδ)) = 0 in Ω0

pδ = 0 on ∂ΩD

Aε(pδ) · n = fδ z on ∂ΩN,

According to Proposition 3.1, one has pδ ∈W 1,q
D (Ω0), and using the Green formula, one gets

∀h ∈ Lq(∂ΩN)

∫
∂ΩN

pδ · hds =
1

H2(ωδ)

∫
ωδ

wh · z ds.

Combining this identity to Proposition 3.1 yields∣∣∣∣∫
∂ΩN

pδ · hds

∣∣∣∣ 6 ‖z‖‖wh‖C(Ω0) 6 C ′‖z‖‖wh‖W 1,q(Ω0) 6 C ′′‖z‖‖h‖Lq(∂ΩN),

where the constants C ′ and C ′′ are independent from δ (and from y). This means that (pδ)δ>0 is
bounded as a family in Lq

′
(∂ΩN). One can thus extract from (pδ|∂ΩN

)δ>0 a subsequence (pk)k∈N
converging to some p∗ ∈ Lq′(∂ΩN) for the weak-topology of Lq′(∂ΩN). Since

lim
δ↘0

1

H2(ωδ)

∫
ωδ

wh · z ds = wh(xy) · z,

we conclude that p`,y = p∗ is a solution to (11). Now, if we define p` =
∫

Γ p`,y dy, we can use the Tonelli
and Fubini theorems [5, Theorems IV.4 and IV.5] to check that

∀h ∈ Lq(∂ΩN)

∫
∂ΩN

p` · hds =

∫
Γ

∫
∂ΩN

p`,y · hds dy =

∫
Γ
wh(xy) · (xy + u(xy)− y) dy,

which makes p` a solution to the considered PDE.
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Finally, regarding the uniqueness, one easily gets that if p1 and p2 are two solutions of the PDE,
then ∫

∂ΩN

(p1 − p2) · hds = 0

for all h ∈ Lq(∂ΩN), hence the result.

A.4 Proof of Theorem 3.2

We first give a justification for the structure of dΦ(g). For a direction h ∈ L∞(∂ΩN), we consider the
associated displacement field perturbation wh , which satisfies

∀v ∈ H1
D(Ω)

∫
Ω0

Aε(w) : ε(v) dx =

∫
∂ΩN

h · v ds.

By exploiting the notion of solution in the sense of transposition for Problem (6), we obtain for ` ∈ L(u)

〈`, wh〉 =

∫
∂ΩN

p` · hds,

hence
dΦ(g)(h) = min

`∈L(u)

∫
∂ΩN

p` · hds.

We now characterize the cone of admissible directions at g. Let us introduce the active set Ag =
{x ∈ ∂ΩN | ‖g(x)‖ = M} . The cone of admissible directions is the intersection L∞(∂ΩN) ∩K, where
K is the closed cone

K =

{
h ∈ L2(∂ΩN)

∣∣∣ ∀λ ∈ L2(∂ΩN,R+)

∫
Ag
λ(h · g) ds 6 0

}
,

while its polar cone reads
Q =

{
1Agλg, λ ∈ L2(∂ΩN,R+)

}
.

We denote by −p` = −pK−pQ the so-called Moreau decomposition of −p` [32] with −pK ∈ K, −pQ ∈ Q
and 〈pK , pQ〉 = 0.

Now, the Euler inequation stipulates that dΦ(g)(h) ≥ 0 for every element h of the cone of admissible
directions. To derive the first-order optimality condition, we consider the admissible direction

h =
pK

max(1, ‖pK‖)
∈ L∞(∂ΩN) ∩K.

As g is a local minimizer, it results from the Euler inequation that

0 6 dΦ(g)(h) 6
∫
∂ΩN

p` · hds = −
∫
∂ΩN

min
(
‖pK‖, ‖pK‖2

)
ds.

Finally, we obtain pK(·) = 0, which yields the first-order optimality condition p` − pQ = 0. Observing
that this condition rewrites as in the statement of Theorem 3.2, we are done.
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