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Abstract

We address the problem of organ registration in augmented surgery, where the deformation of
the patient’s organ is reconstructed in real-time from a partial observation of its surface. Physics-
based registration methods rely on adding artificial forces to drive the registration, which may result
in implausible displacement fields. In this paper, we look at this inverse problem through the lens
of optimal control, in an attempt to reconstruct a physically consistent surface load. The resulting
optimization problem features an elastic model, a least-squares data attachment term based on
orthogonal projections, and an admissible set of surface loads defined prior to reconstruction in the
mechanical model. After a discussion about the existence of solutions, we analyze the necessary
optimality conditions and use them to derive a suitable optimization algorithm. We implement an
adjoint method and we test our approach on multiple examples, including the so-called Sparse Data
Challenge. We obtain very promising results, that illustrate the feasibility of our approach with
linear and nonlinear models.

Keywords: Shape registration, Augmented Surgery, Optimal Control

1 Introduction

In this paper, we consider an elastic solid, known in its rest configuration, but subject to an unknown
deformation, that we need to estimate. The deformation is created by forces applied to the solid
boundary. In addition to material elastic properties, the information available to reconstruct the
displacement field inside the solid is an observation of a part of the deformed surface. In particular,
correspondence between this observed surface and the initial surface is not known.

This inverse problem arises in computer-assisted surgery, where the elastic solid is, in fact, the
patient’s liver[1]. To help the medical staff navigate the operation theatre, an augmented reality
system is used to visualize the motion of the liver internal structures (blood vessels, tumours, etc.),
which requires to reconstruct the liver displacement. Tomographic images, taken before the surgical
intervention, provide a detailed view of the liver in rest configuration, along with its internal structures.
A three-dimensional pre-operative mesh is created from these images. On the other hand, during a
minimally-invasive intervention, the liver is not directly visible, and all the available intra-operative
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information is a video feed from a camera inserted in the patient’s abdomen. A point cloud, representing
the visible part of the liver surface, is extracted from the current frame of the video and is used as an
observation. Though this is not our goal in this paper, the liver displacement should be updated in
real-time, as each frame from the camera brings a new observation.

Several methods for anatomical registration focus on the surface-matching problem [2, 3, 4, 5, 6].
They aim to compute a diffeomorphism between the initial liver boundary and the observed surface, and
their performance is measured in terms of surface similarity between the source and target surfaces.
Pure surface-matching may be relevant for our problem when the observation represents the whole
deformed boundary, or at least a large part [5], so that a volume displacement field can be reasonably
computed from the reconstructed surface correspondence. In the augmented surgery setting, though,
only one side of the liver appears in the camera field of view, and the observed point cloud typically
covers less than 50% of the deformed boundary. Even with a perfect surface registration, this is too
small to determine a liver volume displacement. To compensate for the lack of observed data, most
intra-operative registration methods involve an elastic model of the liver. Liver mechanics has been
much studied, with attention paid to the stress-strain law [7], additional stiffness due to blood vessels
[8, 9], and boundary conditions [10, 11].

A whole category of existing methods for intra-operative registration inherits from so-called elastic
image registration methods [12, Section II.A.1], where a cost function is minimized to enforce landmark
or surface correspondence, while an elastic model is used to regularize the displacement field [13, 14,
15, 16, 17]. These methods simulate fictitious forces that attract the liver toward the observed surface,
in the same fashion as the Iterative Closest Point algorithm [18]. Artificial forces applied to the organ
surface include electrostatic forces [19], linear and nonlinear springs [9, 20], or Lagrange multipliers
that enforce a so-called sliding constraint between the deformed surface and the observed point cloud
[21, 22, 23].

Unfortunately, such forces, that apply where the surface-matching occurs, do not reflect the real
causes of displacement (namely, contact forces with other tissues). Whether they derive from an
imaginary potential or act as constraint-enforcing Lagrange multipliers, they are created by the point
cloud, which does not really exist. This results in unrealistic displacement fields, regardless of the
elastic model elaborateness [24]. A more reasonable physical consideration is that the liver surface
represented by the point cloud is visible, and therefore not subject to any mechanical contact force.
In other words, using an elastic model does not guarantee that the resulting deformation is physically
plausible.

Several methods prefer to solve an inverse problem, where a range of admissible deformations is
defined based on physical hypotheses. Using linear elasticity, the authors in [25, 26] precompute a basis
of displacements corresponding to forces applied in zones where ligaments hold the liver, while they
impose a free boundary condition on the remaining surface. In [27], the initial liver pose is estimated by
taking into account the effects of gravity and gas insufflation in the patient’s abdomen. In [28], forces
that create the displacement are restricted to certain nodes of the liver mesh. Approaches based on an
inverse problem often exhibit an improved registration accuracy and produce more physically relevant
displacement fields, at the expense of execution time.

In this paper, we look at the registration inverse problem from the perspective of optimal control.
While most registration methods are very specific to a given registration scenario, expressed in terms
of finite-dimensional matrix-vector operations, and, often tailored for linear elasticity, we take a step
backward and consider the continuous problem in a more general setting. Using the optimal control
framework results in a very flexible formulation, yielding at the same time physically relevant displace-
ment fields, and where it is easy to include new physical hypotheses or take additional intra-operative
data into account. The wide range of tools provided by the optimal control framework may be of help to
obtain precious mathematical insight about the registration problem. Last but not least, we expect our
approach to lead to new numerical methods inspired from generic numerical optimization algorithms.

The optimal control problem studied in this problem was already introduced in our conference
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paper [29], which includes numerical examples associated to the augmented surgery domain. Outside
the augmented surgery domain, other approaches based on the physical causes of displacement involve
an optimal control problem. In [30], the authors control the accretion process leading to the shape of
a horn. In [31], the forces driving the motion of a viscoplastic material are estimated. The authors
in [32] estimate the parameters of a tumor growth model using a series of tomographic images of the
same patient. The same parameter estimation problem is treated together with an atlas-to-patient
registration problem in [33, 34]. All these works revolve around a time-dependent direct model, while
our direct model is an elliptic equation. In our case, the optimal control problem must be solved again
and again each time the observed surface is updated. The authors in [35] retrieve the muscle fiber
tension in a biomechanical heart model to reconstruct the heart motion along a series of MRI images.
A static version of the same model is used in [36]. The authors control a soft robot to reach a target
shape, that is fully known.

In the remaining of this paper, we begin by stating the physical model, along with the optimization
problem we consider (Section 2). Then, we propose a mathematical analysis of the optimal control
problem, including the existence of solutions and optimality conditions (Section 3). Finally, we show
some numerical tests to evaluate the performances of our approach (Section 4). In particular, in the
last test case, we extend our numerical approach to a nonlinear (Neo-Hookean) elastic model.

2 Towards an optimal control formulation

In our approach, we determine a surface force distribution on the organ boundary that generates a
displacement compatible with observed data. The reconstructed force distribution is chosen among a set
of admissible force distributions, which reflects a range of physical causes. Of course, we do not expect
the registration procedure to accurately estimate the forces that created the observed deformation. The
formulation we propose nevertheless allows us to get close to the physics of the problem in a satisfactory
way, while leading to efficient algorithmic methods that are easy to implement. We illustrate our
approach with physical examples.

2.1 Pre-operative biomechanical model

Figure 1 shows a sketch of the system we consider. In its reference configuration, the organ is represented
by an open domain Ω0 ⊂ R3 with Lipschitz boundary, filled with an elastic material. Due to its
interactions with its environment, the organ is subject to surface loadings, such as pressure or contact
with surrounding tissues. Volume forces, such as gravity, are not considered in this study. The boundary
∂Ω0 falls into two parts, ∂ΩD and ∂ΩN. On ∂ΩD, a homogeneous Dirichlet boundary condition applies,
whereas the Neumann boundary ∂ΩN is subject to a surface force distribution g ∈ L2(∂ΩN,R3). A
homogeneous Dirichlet boundary condition is typically set in zones where main blood vessels enter the
organ. The space of displacement fields associated with this partition reads

H1
D(Ω0) = H1

D(Ω0,R3) =
{
u ∈ H1(Ω0,R3)

∣∣∣ u = 0 on ∂ΩD

}
,

and we denote by ug ∈ H1
D(Ω0) the elastic displacement field generated by a given surface force

distribution g on ∂ΩN .
Elastic stress-strain laws used in the literature to describe the behaviour of living tissues range from

the linear elastic model [25] to hyperelastic models such as Neo-Hookean [37] or Ogden [11] models (see
also [7] and references therein). When computation time is a constraint, the linear co-rotational model
is sometimes preferred [38, 20], as it generates nonlinear deformations at the cost of a linear system
inversion. In this paper, we only consider the linear elastic system, except for a brief nonlinear example
in the results section. In the linear case, the generated displacement ug solves the partial differential
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Figure 1: Problem geometry. The thick dashed line represents the deformed matching surface Su. The
distance between a point y ∈ Γ and its orthogonal projection onto Su is denoted by d(y, Su).

equation (PDE) 
−div(Aε(u)) = 0 in Ω0

u = 0 on ∂ΩD

Aε(u) · n = g on ∂ΩN,
(1)

where the linearized strain tensor and the Hooke tensor are defined by

ε(u) = 1
2

(
∇u+∇uT

)
and Aε = 2µε+ λ tr(ε)I,

respectively. The Lamé parameters µ and λ describe the material resistance to deformation and volume
change. They are defined from the Young modulus E and the Poisson ratio ν by µ = E/(2(1 + ν)) and
λ = 2νµ/(1− 2ν).

We denote by Ωu = (Id +u)(Ω0) the volume occupied by the deformed organ. Note that we do
not assume (Id +u) to be a bijection in our theoretical study. This is consistent with our numerical
framework, where, given the range of deformations expected in the surgery application, we do not need
a mechanism to detect self-intersection of the deformed solid.

2.2 Intra-operative data and surface-matching functional

While the reference configuration Ω0 is known through pre-operative images, the current position shall
be estimated from an intra-operative observation. In our continuous model, the observed data take the
form of a compact two-dimensional surface Γ ⊂ R3. We denote by S0 ⊂ ∂Ω0 the matching surface,
i.e. a part of the initial organ boundary that is supposed to partially match with Γ as the registration
ends. We assume that S0 is a compact subset of ∂Ω0 known by the user, and we will use the notation

Su = (Id +u)(S0) ⊂ (Id +u)(∂Ω0)

to denote the image of S0 under a displacement u. The surface S0 is chosen before the operation starts,
as the surgeon has a vague idea of which side of the organ should be visible on the camera. Note
that S0 only acts as a cue for the algorithm, and only a part of it is supposed to match with Γ. If no
information is available, it is still possible to set S0 = ∂Ω0.

To measure the discrepancy between a given displacement and the observed data, we introduce the
least-squares function J : C(Ω0)→ R, defined by

J(u) = 1
2

∫
Γ
d2(y, Su) dy, (2)
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where d(y, Su)2 = minx∈Su ‖x − y‖2 denote the Euclidean distance between y ∈ Γ and Su. Therefore,
J(u) vanishes whenever Γ ⊂ Su, up to a zero Lebesgue measure set. There is a whole zoo of cost
functions for partial shape-matching (see the reviews [39, 40] and reference therein), sometimes involving
frameworks such as varifolds [41, 5] or functional maps [42]. Most of them fit into our optimal control
formulation, and some of them are even differentiable. However, they sometimes require to compute
normal vectors or process the point cloud before the registration begins. On the other hand, in the
context of real-time simulation, it is more appropriate for the cost functional to be as computationally
simple as possible. Also, the elastic model already enforces displacement regularity, and an elaborate
surface discrepancy functional is not really needed here. For these reasons, we fall back to (2), which
is a continuous version of functions previously used in augmented surgery [24, 21]. Although it is
not Gateau-differentiable and requires a special treatment when computing optimality conditions, this
function can be quickly evaluated when Γ is a point cloud, and therefore is more relevant in the context
of augmented surgery.

We consider the constrained optimal control problem

min
g∈GM

Φ(g) where Φ(g) = J(ug), (3)

where g and ug play the role of the control and the state, respectively. The feasible set reads

GM =
{
g ∈ L∞(∂ΩN,R3)

∣∣∣ ‖g‖L∞(∂ΩN) < M
}
.

Here, the definition of GM is based on the physical hypothesis that the magnitude of surfaces forces
that are expected in the human body does not exceed the positive constant M > 0. Note that, in
our numerical examples, the definition of admissible forces also includes information concerning the
support of g, i.e. the zones where surface forces apply on the organ boundary.

Setting an upper bound on the pointwise magnitude of g is also useful to handle noise in the observed
surface Γ. In the medical application, Γ is a point cloud provided by an image processing pipeline. It
is likely to include a certain level of noise. In this context, an exact matching between Γ and the organ
boundary would result in a very irregular displacement field ug and oscillations in the surface force
distribution. A better outcome would consist in the organ boundary passing through the point cloud
without meeting every point individually. Using the constraint prevents the control g from taking the
large values it needs to reach every point in Γ.

3 Analysis of the optimal control problem

To begin with, an analysis of the optimization problem should help us obtain some mathematical
insight. After we discuss the existence of solutions to the continuous problem, we derive first-order
optimality conditions. Optimality conditions will be useful when it comes to implementing a numerical
method to solve the problem in silico. We take care of that part in the end of the section.

For q > 0, we introduce the notation W 1,q
D (Ω0,R3) to denote the Sobolev space

W 1,q
D (Ω0,R3) =

{
u ∈W 1,q(Ω0,R3)

∣∣∣ u = 0 on ∂ΩD

}
,

and q′ > 0 is the conjugate exponent to q, given by 1/q + 1/q′ = 1. Then, the topological dual of
W 1,q′

D (Ω0,R3) with respect to the pivot space L2(Ω0,R3) is denoted by W−1,q
D (Ω0,R3).

3.1 Well-posedness

Existence of solutions for Problem (3) is critical to guarantee the stability properties of the discrete
problem with respect to the mesh size, or which regularity can be be expected for numerical solutions.
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The following results are based on the work by Gröger [43] around the regularity of solutions to
partial differential equations with mixed boundary conditions. The definition of a Gröger-regular set
is based on the following subsets of R3 (with the notation x = (x1, x2, x3)):

B = {x ∈ R3 | ‖x‖ < 1}, B+ = {x ∈ B | x3 > 0}, D = {x ∈ B | x3 = 0}, D0 = {x ∈ D | x1 < 0}.

Definition 3.1. Let Ω0 be a bounded open subset of R3 and let ∂ΩN be a relatively open part of its
boundary. The set G = Ω0 ∪ ∂ΩN is said to be regular in the sense of Gröger if, for each x ∈ ∂Ω0,
there is a neighbourhood U of x and a Lipschitz diffeomorphism Ψ : U → B such that Ψ(U ∩G) either
coincides with B+, or B+ ∪D, or B+ ∪D0.

Remark 3.1. A simpler definition, specific to the three-dimensional case, is provided in [44, section
5]: G is Gröger-regular when Ω0 is a bounded domain of class W 1,∞, ∂ΩD = ∂Ω0 \ ∂ΩN is closed, and
the boundary ∂(∂ΩN), seen as a subset of ∂Ω0, is W 1,∞.

Let us mention [43, 45, 46, 44], investigating the W 1,q or C0,α regularity of solutions to linear and
nonlinear elliptic PDEs with mixed boundary conditions. Unfortunately, these results do not apply to
the linear elasticity system, for which the literature is sparser. In [47], W 1,q regularity is obtained for
solutions to the linear elastic system on a domain of class C1. In [48], the authors extend Gröger’s
framework to a class of linear and nonlinear elastic systems that satisfy an ellipticity condition with
respect to the linear strain tensor ε(u). We state their result in the specific case of the linear elasticity
system.

Proposition 3.1. [48, Theorem 1.1] Assume that Ω0 ∪ ∂ΩN is Gröger-regular, and that the Lamé
coefficients µ, λ satisfy µ > 0 and 2µ+ 3λ > 0. Then there exists a q0 > 2 such that, for all q ∈ [2, q0],
the solution to (1) is in W 1,q

D (Ω0,R3) provided that g defines an element of W−1,q
D (Ω0,R3). In addition,

there exists C > 0, depending only on Ω0 and q, such that

‖u‖W 1,q(Ω0) 6 C‖g‖W−1,q(Ω0).

Our existence result relies on the compact embedding W 1,q(Ω0) ↪→ C(Ω0) for q > dimR3 [49]. In
this regard, Proposition 3.1 is not fully satisfying, as it only guarantees q0 > 2. In the context of elliptic
systems, the articles [50, Appendix] and [51] contain some sufficient conditions for the condition q0 > 3
to hold, but it is not clear that their conditions are relevant in the case of elasticity. For this reason,
we keep the condition q0 > 3 as an assumption in our existence result, stated below. Note that, if
we consider the same problem in R2, such an assumption is not necessary as q0 > dimR2 is already
guaranteed by Proposition 3.1. Also, if one considers a simpler toy problem where the elastic system
is replaced with an elliptic system, the existence result remains valid in any dimension without any
assumption, using a C0,α result from [46]. Should this result extend to the linear elastic system, the
existence of solution would be guaranteed in any dimension for our problem. We refer to [52, Chapter 4]
for additional explanations.

Theorem 3.1 (Proof in Appendix A A.1). Assume that Ω0 ∪ ∂ΩN is Gröger-regular and let M > 0.

1. Let us consider the equivalent of Problem (3) in R2. Then, Problem (3) has at least one solution.

2. In R3, assume that Ω0 and ∂ΩN are such that q0 > 3 with the notations of Proposition 3.1. Then
Problem (3) has a solution.

3.2 Characterization of optimizers

We now turn to first-order conditions satisfied by local minimizers of Problem (3).
Before we state the optimality conditions themselves, let us have a look at the properties of the

discrepancy functional J , defined in (2). In the following proposition, we state the differentiability of
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J . This result is fully based on Danskin’s theorem [53, Chapter 3] concerning the differentiability of
functions defined by a minimum. For a given displacement field u ∈ C(Ω0), we use the notation

Py(u) = {x ∈ S0 | ‖x+ u(x)− y‖ = d(y, Su)} = (Id +u)−1ΠSu(y), (4)

where ΠSu(y) is the set of orthogonal projections of y onto Su. In particular, Py(u) ⊂ S0.

Proposition 3.2 (Proof in Appendix A A.2). Assume that Ω0 is bounded with Lipschitz boundary, and
let u ∈ C(Ω0). Then the functional J has directional derivatives at u. Its derivative in the direction
v ∈ C(Ω0) reads

dJ(u)(v) =

∫
Γ

min
x∈Py(u)

[v(x) · (x+ u(x)− y)] dy. (5)

In addition, if Py(u) is a singleton for almost every point y ∈ Γ, then dJ(u) is a continuous linear form
on C(Ω0), i.e. J is differentiable in the sense of Gateaux at u.

Though it is not Gateaux-differentiable a priori, the application J always has directional derivatives.
Nondifferentiability (in the sense of Gateaux) occurs when Py(u) contains several elements for too
many points in Γ. There are two reasons why Py(u) can contain several elements: either y has several
orthogonal projections onto Su, or y has a single projection point pSu(y) which is the image of several
points x1, x2, · · · ∈ S0 under the transformation Id +u.

Note that the directional derivative of J also reads

∀v ∈ C(Ω0), dJ(u)(v) = min
`∈L(u)

〈`, v〉, (6)

where the set of linear forms L(u) is defined by

L(u) =

{
` : C(Ω0) 3 v 7→

∫
Γ
v(xy) · (xy + u(xy)− y) dy

∣∣∣ xy ∈ Py(u)

}
.

All the linear forms ` involved in the definition of L(u) belong to the concave subdifferential of J , as
they satisfy dJ(u)(v) 6 `(v) for all v ∈ C(Ω0). In addition, according to the expression above, for a
given direction v, there exists a family (x0,y)y∈Γ, with x0,y ∈ Py(u) for all y ∈ Γ, such that

dJ(u)(v) =

∫
Γ
v(x0,y) · (x0,y + u(x0,y)− y) dy.

We now state necessary first-order conditions that characterize a minimizer g of Problem (3). Due
to the structure of the derivative dJ , the first-order conditions consist of an equality satisfied by
each element ` ∈ L(ug). In particular, the linear form ` ∈ L(ug) associated to the family (xy)y∈Γ is
represented in the space of controls by an adjoint state p`. From a formal point of view, we aim to
introduce p` as the solution to the adjoint problem

div(Aε(p)) = 0 in Ω0

p = 0 on ∂ΩD

Aε(p) · n =
∫

Γ(xy + u(xy)− y) δxy dy on ∂ΩN,
(7)

where δxy is the two-dimensional (pointwise) Dirac measure at xy on ∂ΩN. To rigorously define a notion
of solution for such a system, we use the so-called transposition method. To this aim, we assume, as
in Theorem 3.1, that Ω0 and ∂ΩN are such that q0 > 3 with the notations of Proposition 3.1, and we
consider a fixed q ∈ (3, q0].

For a given h ∈ Lq(∂ΩN), we denote by wh the solution to the PDE
div(Aε(w)) = 0 in Ω0

w = 0 on ∂ΩD

Aε(w) · n = h on ∂ΩN.
(8)

In what follows, q′ denotes the conjugate exponent to q.

7



Definition 3.2. One says that p` ∈ Lq
′
(∂ΩN) solves (7) in the sense of transposition if∫

∂ΩN

p` · hds =

∫
Γ
wh(xy) · (xy + u(xy)− y) dy.

for all h ∈ Lq(∂ΩN), where wh solves (8).

We refer to the monography [54] for additional explanations about solutions to PDEs with measure
right-hand sides, as well as the seminal work [55]. Note that, with this definition, the adjoint state p` is
only defined on ∂ΩN. Though the values of the adjoint state inside Ω0 are not needed for our analysis,
p` can easily be extended to the whole domain Ω0 using (7).

Lemma 3.1 (Proof in Appendix A A.3). Let us assume that Ω0 ∪ ∂ΩN is Gröger-regular and let
q ∈ (3, q0]. Then, the adjoint problem (7) has a unique solution in the sense of transposition.

The first-order optimality conditions are stated below.

Theorem 3.2 (Proof in Appendix A A.4). Assume that Ω0 ∪ ∂ΩN is Gröger-regular and M ∈ [0,∞].
Let g ∈ GM a local minimizer of Problem (3) and ug the associated displacement field. If ` ∈ L(u),
denote by p` the associated adjoint state defined by (7). For every ` ∈ L(u), there exists a Lagrange
multiplier λ` ∈ L2(∂ΩN,R), with

for a.e. x ∈ ∂ΩN

{
λ`(x) = 0 if ‖g(x)‖ < M
λ`(x) > 0 if ‖g(x)‖ = M,

such that g satisfies the first-order optimality condition

for a.e. x ∈ ∂ΩN p`(x) + λ`(x)g(x) = 0.

Remark 3.2 (Practical use of optimality conditions.). The three facts mentioned in this remark justify
some implementation choices made in the numerical section that slightly differ from the theoretical
framework.

First, it is notable that if g ∈ GM is a local minimizer of Problem (3) such that ‖g‖ < M almost
everywhere on ∂ΩN, then Φ is Gateaux-differentiable at g with dΦ(g)(·) = 0. Indeed, if the L∞ constraint
is inactive, then λ` = 0 by the so-called slackness property. In this case, the optimality condition simply
reads p` = 0 on ∂ΩN . Using Equation (7), we obtain ` = 0, and therefore L(ug) = {v 7→ 0}, which
means that Φ is Gateaux-differentiable at g.

Furthermore, outside from a local minimizer, a descent direction for the function J can be obtained
using only one projection per point y ∈ Γ. Indeed, performing a single projection per point y is equivalent
to finding one linear form `0 ∈ L(u). When u is not a local minimizer, `0 6= 0, and if v is chosen so
that 〈`0, v〉 < 0, then, using (6),

dJ(u)(v) = min
`∈L(u)

〈`, v〉 6 〈`0, v〉 < 0,

meaning that v is also a descent direction for the whole criterion J .
Finally, even when taking into account the L∞ constraint in the numerical algorithm, we observe

that the constraint is not saturated as soon as M is chosen large enough. This suggests (but this is
only a numerical conjecture) that the problem still has a solution if we remove the L∞ constraint in the
optimal control problem definition.

Based on these remarks, we chose to ignore the L∞ constraint in our numerical examples, and to
work with J as if it were Gateaux differentiable everywhere.
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3.3 Numerical methods

To solve the registration problem numerically, we discretize the initial domain Ω0 using a tetrahedral
mesh, while displacement fields on Ω0 are represented using P1 finite element functions. Due to the
complex geometry of organs, using a tetrahedral mesh is very common in augmented surgery. In
addition, choosing piecewise linear functions is more convenient when it comes to computing orthogonal
projections onto the deformed mesh. Concerning the observation Γ, it is provided in the form of a point
cloud.

We adopt a ‘discretize-then-optimize’ approach, which means that the entire formulation is trans-
formed into a finite-dimensional problem, which is then solved using numerical tools for finite-dimensional
optimization. Indeed, an algorithm based on the ‘optimize-then-discretize’ might be very sensitive to
discretization errors, and might encounter difficulties to find adequate directions of descent by applying
the continuous approach on a discretized problem. We have therefore chosen to adapt mutatis mutandis
the tools developed in the previous section to a discrete framework.

From now on, the discrete displacement field on Ω0 is represented by the finite-dimensional vector
u = (u1, . . . , un) ∈ R3n where n is the number of vertices and uk ∈ R3 is the displacement of the k-th
vertex. The same bold letter u is used to denote the associated finite element function. We control the
vector of nodal forces b = (b1, . . . , bn) at the mesh vertices, and the resulting elastic displacement ub

is determined by solving the linear system

Au = b,

where A is the stiffness matrix of the liver mesh. Nodal forces b are related to the surface force
distribution g by the equality b = Sg, where the matrix S represents the L2 inner product on ∂ΩN.
Controlling directly the nodal forces b instead of the surface force distribution is a good way to lighten
computations, at the expense of consistency with the continuous problem. It remains consistent with
the discretize-then-optimize approach, though.

Discrete objective function. Let us first have a look at the discretized functional J . In the dis-
cretized framework, the organ surface ∂Ω0 is a triangular mesh, and defining S0 consists in selecting
the set of triangles that is used to evaluate J . The observation Γ is provided as the point cloud
Γ = {y1, . . . , yp} ⊂ R3, and the discretized functional reads

J(u) = 1
p

p∑
i=1

ji(u) where ji(u) = 1
2d

2(yi, Su). (9)

Our implementation uses the nearest-neighbour search from the Trimesh Python package1 to evaluate
the distance between a point y ∈ Γ and Su. This projection procedure stores triangles from Su in a
spatial indexing structure [56] to perform efficient nearest-neighbour queries. Using Remark 3.2 and the
fact that nondifferentiability only occurs on a negligible subset of the space of displacements, we only
need the nearest-neighbour search procedure to return a single projection point a = pSu(y) per observed
point y ∈ Γ. Note that handling an unknown number of projections per point y would represent an
additional computational cost, and would require special attention to avoid computing every p`. We
have therefore chosen a compromise between efficiency and complexity of the algorithm.

Since we are dealing with piecewise linear finite element functions, differentiating J with respect to
the displacement field u means differentiating J with respect to the displacements (u1, · · · , un) at the
mesh vertices. Thus, the gradient∇J(u) is defined by its vertex-wise components (∂1J(u), · · · , ∂nJ(u)).
We first consider the elementary application j(u), where we have dropped the index i compared to (9).
Given a displacement field u, we denote by x0 and x the initial and current positions of the mesh
vertices, respectively. In particular, x0 and x satisfy x0 + u = x.

1Website: https://trimsh.org

9

https://trimsh.org


−∂kj(u)

xk

x`

xm

y

−∂kj(u)
−∂mj(u)

xk

x`

xm

y

a

Figure 2: Illustration of ∇j(u) in two configurations. Points x`, xk and xm are located on the mesh
boundary, while the last vertex is inside the mesh. The red arrows represent the components of the
descent direction −∇j(u). On the right, the equality y − a = −∂kj(u)− ∂mj(u) holds.

Assume that the projection point a = pSu(y) falls into the triangle composed of vertices k1, k2, k3.
We use the notations

a = θ1xk1 + θ2xk2 + θ3xk3 and a0 = θ1x
0
k1 + θ2x

0
k2 + θ3x

0
k3 ,

where the (nonnegative) barycentric coefficients θ1, θ2, θ3 satisfy θ1 + θ2 + θ3 = 1. In particular,
a = a0 + u(a0). For v a perturbation of u, we obtain after adapting (5)

〈dj(u),v〉 = v(a0) · (a− y) = (θ1vk1 + θ2vk2 + θ3vk3) · (a− y) .

Therefore, the gradient ∇j(u) satisfies

∀i ∈ {1, 2, 3} ∂kij(u) = θi(a− y) ∀k /∈ {k1, k2, k3} ∂kj(u) = 0.

Finally, the gradient ∇J(u) reads

∇J(u) = 1
p

p∑
i=1

∇ji(u).

Figure 2 illustrates the components of ∇j(u) in a two-dimensional configuration.

Adjoint method. As suggested by the problem formulation in (3), we solve the optimization problem
numerically using an adjoint method, where the only variable controlled by the optimization solver is
the nodal force distribution b. Keeping the same notations as in (3), the discrete optimization problem
reads

min
b∈B

Φ(b) where Φ(b) = J(ub). (10)

Here, the elasticity system is hidden in the objective function Φ and has to be interpreted as an
equality constraint of the optimization problem. In particular, each evaluation of the objective value
Φ(b) requires to solve the elasticity system to compute ub.

Also, based on the facts described in Remark 3.2, we chose to ignore the L∞ constraint on surface
forces in the numerical examples. In this case, the feasible set B still defines on which vertices the nodal
forces bj are allowed to be nonzero.

Now, to solve (10) using a first-order optimization method, computing the objective gradient ∇Φ(b)
is also required. The adjoint method exploits the first-order optimality conditions derived in Theo-
rem 3.2, keeping in mind that we only consider the differentiable case here. In a similar fashion to (7),
we define the adjoint state pb, solution to the adjoint elasticity system

Ap = ∇J(ub).
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We adapt the proof of Theorem 3.2 to the discrete context. If h is a perturbation of the control b, we
denote by wh the associated perturbation of ub, defined by Awh = h. Now, we note that

〈∇Φ(b),h〉 = 〈∇J(ub),wh〉 = 〈Apb,wh〉 = 〈pb,Awh〉 = 〈pb,h〉 ,

hence
∇Φ(b) = pb.

Algorithm 1 shows the outline of the adjoint procedure.
Adjoint methods are convenient as they result in modular implementations, where each part may

be handled by a separate entity. In particular, it is easy to switch functionals, mechanical models or
optimization solvers, as they only communicate through simple interfaces. Our implementation2 relies
on the Numpy framework. The stiffness matrix is assembled using the SOFA finite element software
developed by the Inria Mimesis Team [57], then it is factorized before the procedure starts. Concerning
the optimization procedure itself, it is taken care of by off-the-shelf solvers available in the Scipy library,
namely a limited-memory quasi-Newton solver [58].

Algorithm 1: Computation of the objective gradient using an adjoint method.
Data: Current iterate b
Compute the displacement ub by solving Au = b
Evaluate J(ub) and ∇J(ub)
Compute the adjoint state pb by solving Ap = ∇J(ub)
Result: ∇Φ(b) = pb

4 Numerical results

We now present a few numerical examples involving the adjoint method. First, we illustrate the
convergence properties of the optimization procedure on a toy problem. It is also the occasion to
clarify what can or can’t be expected from the method in terms of registration accuracy. Then we show
an example in a registration scenario involving the Sparse Data Challenge dataset. In our last result,
we opt for a neo-Hookean elastic model and take profit of a simple registration scenario to illustrate
the feasibility of choosing a nonlinear model. In all the following examples, the deformable object Ω0

is represented by a tetrahedral mesh, while the observed data Γ is represented by a point cloud.

4.1 A toy problem

Let us begin with an unpleasant remark: though registration error might be reduced by taking physical
considerations into account, our registration method comes with no guarantee in terms of displacement
accuracy. To illustrate this disclaimer, we evaluate the displacement error of the procedure on a toy
problem.

We create a truncated sphere mesh with radius 1, where the distance from the sphere centre to
the truncating plane is 1/2. The volume mesh contains 10,385 nodes, 53,992 tetrahedral elements and
6,702 triangular faces. The flat surface of the mesh is subject to a Dirichlet condition, while synthetic
forces are applied on the round surface to generate a ground truth displacement field utrue. A linear
elastic model is used, with E = 1 and ν = 0.49. After the elastic deformation is applied to the mesh,
the round surface is sampled to create a point cloud of 10,000 points. Figure 3a shows the initial mesh
and the synthetic deformation that we generated.

2Our code is provided as supplementary material.

11



We create very favourable conditions for the registration procedure. First, the point cloud, very
dense and noise-free, provides a good representation of the deformed surface. In addition, the same
mesh is used for data creation and for reconstruction, which evacuates possible discrepancies between
two meshes representing the same shape. For the reconstruction, we maintain the Dirichlet boundary
condition on the flat surface and allow reconstructed forces to be supported by the whole round surface
∂ΩN. The round part of the mesh surface is also chosen as the matching surface S0 (i.e. S0 = ∂ΩN).

Figure 3b shows the objective value and gradient norm along iterations of the optimization solver.
After 176 iterations (80 seconds on Apple M1 Pro with 32 GB RAM), the gradient norm has decreased
by 5 orders of magnitude. The objective function keeps decreasing and evaluates to 2 · 10−7 as the
procedure ends, meaning that the quadratic mean of the distance between data points and the deformed
surface is approximately 6 · 10−4. Figure 4a shows the point cloud, along with a superposition of the
true (green) and reconstructed (yellow) surfaces, confirming the good matching between surfaces.

We define the displacement error for each node (including nodes inside the mesh) as the distance
between the node position in the reconstructed configuration and its position in the generated ground
truth configuration. Despite a tight surface matching, the displacement error (Figure 3c) settles around
10−1, with a maximum error of 0.6 (the sphere radius is 1). In Figure 4b, we illustrated the displacement
discrepancy between the true (green) and reconstructed (yellow) surfaces, by applying a pattern on the
initial mesh surface. The displacement error is plotted in Figure 4c. Without surprise, the displacement
error increases as we move away from the Dirichlet boundary condition. The last graph in Figure 3c
shows the error on nodal forces for the 2,522 vertices of the Neumann surface. The nodal force errors
settle to the same order of magnitude as the nodal forces themselves, suggesting an average 100% error.
In general, it should be difficult to give a meaning to the reconstructed distribution, especially when it
contains many degrees of freedom.

Should we give up every hope for all that? Actually, the sphere test case is not as easy as it seems.
Due to the sphere’s symmetry, the registration method has no clue about the best way to match the
point cloud. As a consequence, an inaccurate displacement is not penalized as long as the deformed
surface matches the point cloud. In the case of an organ, things are different, as the point cloud
reflects the shape of the surface part it is supposed to match. In addition, in the application case, some
landmarks, detected by the laparoscopic camera [20, Figure 3], may be used to improve registration
accuracy.

4.2 Sparse Data Challenge dataset

In this section, we present an organ registration result in the context of augmented surgery. This
example, developed in our conference paper [29, Section 3.1], involves the Sparse Data Challenge3

dataset. The dataset contains one tetrahedral mesh representing a silicone liver phantom in its initial
configuration and 112 point clouds acquired from 112 deformed configurations of the same phantom
[59, 60]. To generate deformations, the challenge organizers laid the silicone liver on irregular supports
on its posterior face [24, Figure 2]. They produced the point clouds by acquiring pictures of the
anterior face with a camera. The silicone liver also contains 159 targets in its volume whose position is
measured in reference and deformed configurations to establish ground truth data. After we upload our
reconstructed mesh positions to the challenge website, the organisers evaluate the target registration
error by comparing the positions of targets according to our reconstruction with their positions in the
ground truth data. By keeping the ground truth hidden from participants, the challenge organizers
eliminate bias associated with knowledge of the true deformations.

To begin with, we perform a rigid alignment between the initial mesh and the point cloud using
the Iterative closest point algorithm [18], and afterwards we set a homogeneous Dirichlet boundary
condition on a small zone in the liver posterior face to enforce the existence and uniqueness of a
solution to the elasticity system. The Dirichlet boundary is chosen arbitrarily, as available information

3Challenge website: sparsedatachallenge.org. Accessed September 5th, 2023.
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(a) Initial sphere mesh (left) and synthetic deformation (right). The matching surface S0 is the round surface
of the initial mesh. It is transformed into Sutrue

in the right figure.
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(b) Objective value Φ(b) and gradient norm ‖∇Φ(b)‖ along iterations.
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(c) Reconstruction error statistics for vertex displacements in the whole volume (left) and nodal forces on the
mesh surface (right).

Figure 3: Synthetic deformation and convergence statistics for the toy problem.
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(a) Left: Point cloud Γ sampled from the true deformed surface Sutrue
. Right: superposition of the true surface

and the reconstructed surface.

(b) Discrepancy between the true (left) and reconstructed (right) surfaces. Despite both surfaces having the
same shape, the true displacement field was not recovered, as pattern elements were not transported at the same
place on the left and on the right.

(c) Node position error in the mesh volume between the ground truth and the reconstructed displacement field.

Figure 4: Registration results for the toy problem. The yellow surface corresponds to the reconstructed
displacement field, while the green surface corresponds to the true generated displacement field.
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does not suggest an area rather than another. Here, the deformation is caused by the irregular support
applying contact forces on the posterior surface, and for this reason we label the posterior surface as
the loaded surface, where nodal forces are allowed to take nonzero values. On the other hand, the point
cloud represents the anterior surface, and in this case, the anterior surface is selected as the matching
surface S0, which is taken into account when evaluating J . Figure 5a shows the initial mesh with the
two labelled surfaces. We run the adjoint method, using a linear elastic model with E = 1 and ν = 0.4,
and we stop the procedure after 200 iterations. The resulting deformations in four cases are shown in
Figure 5b.

Displacement errors for the whole dataset are gathered in Table 5c. In Figure 5d, they are compared
with other submissions displayed on the challenge website. We obtain the second-best result among
all submissions, close to the best-performing method [26], also based on an inverse biomechanical
simulation. In the method from VEIDA [61], a neural network predicts a shape from the point cloud
in the form level-set function, and then the liver deformation is estimated by fitting this shape. In the
V2SNet method [62], a neural network is trained from synthetic simulations to predict a displacement
field in one step from the point cloud. Finally, the BML2 method is not specified by the challenge
organizers. A more in-depth analysis of the challenge results is proposed in [63], along with a more
detailed description of the compared methods.

Despite a greater sensibility to surface coverage than the leading team, our average registration
error remains well below the 5 mm limit required by our clinical partners. This results highlight the
interest of methods based on an inverse problem in intra-operative organ registration.

4.3 Toward nonlinear mechanics

All theoretical and numerical results presented until now rely on the linear elastic model. However, while
linear elasticity is only relevant for small deformations, organs are made of soft living tissues undergoing
large deformations, and a successful registration procedure should allow hyperelastic deformations. In
this section, we illustrate the extension of our results to nonlinear elasticity on a simple example
involving the neo-Hookean model [64, Section 5.4.3].

The Neo-Hookean model is defined by the local energy function

ψ(∇u) = µ tr(e(u))− µ ln(detF ) +
λ

2
ln(detF )2,

where F = I + ∇u is the deformation gradient and e(u) = 1
2

(
FTF − I

)
is the Green-Saint Venant

strain tensor. The elastic displacement ug is solution to the partial differential equation
−div(ψ′(∇u)) = 0 in Ω0

u = 0 on ∂ΩD

ψ′(∇u) · n = g on ∂ΩN,

where the tensor ψ′(∇u) is also known as the first Piola-Kirchhoff stress tensor.
We consider a liver mesh with 3,046 vertices, embedded with a Neo-Hookean model. Dirichlet

boundary conditions are applied at the hepatic vein entry and in the falciform region. We create a
synthetic deformation by applying a local force on one lobe of the liver, and we sample the deformed
surface to create a point cloud with 500 points. We perform the registration using the same mesh and
elastic model. The reconstructed force distributions is restricted to a zone slightly larger than the zone
used to generated the deformation.

A few modifications are required in the adjoint pipeline to use hyperelastic models. In particular,
the direct problem is now a nonlinear variational equation, denoted

F(u) = b.

15



(a) Initial liver mesh. The bottom surface (in blue) is
the loaded surface , where forces are applied, while the
top surface (in magenta) is the matching surface, that
should match with the point cloud.

(b) Observed point cloud (magenta) and deformed
mesh computed by our algorithm for four cases.

Surface Coverage Average Standard deviation Median
20-28 % 3.54 1.11 3.47
28-36 % 3.27 0.85 3.19
36-44 % 3.13 0.82 3.13

All data sets 3.31 0.94 3.19

(c) Target registration error statistics (in millimeters) for all 112 datasets, as returned by the website after
submission.
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(d) Comparison of our registration results with other participants (our column is the second one).

Figure 5: Results for the Sparse Data Challenge dataset [29].
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It is usually solved using a Newton [65, 66] or quasi-Newton [67, 68] method. In the Neo-Hookean case,
though, ensuring stability of the iterative method is critical to avoid generating displacement fields
where the elastic residual F(u) cannot be evaluated. For this reason, we use a trust-region Newton
method, for which convergence is guaranteed. Note that the adjoint problem is the linear system

F′(ub)p = ∇J(ub),

where the residual Jacobian F′(ub) is evaluated at the solution of the direct problem.
Figure 6 show registration examples involving the Neo-Hookean model. It is noteworthy that the

number of iterations if the optimization solver is very different between cases. Actually, the registration
procedure did not stop because the optimality tolerance was met, but because the iterative direct solver
accuracy was not sufficient for the optimization solver to keep generating descent directions. In each
case, the original deformation is shown side by side with the reconstructed deformation. The arrows
represent nodal forces. Note that the reconstructed force distribution is much noisier and messier than
the true one, but it somehow exhibits a trend in the right direction.

These results illustrate the feasibility of the optimal control approach for hyperelastic organ regis-
tration. Subsequent work should seek to produce a more mature and efficient procedure involving the
nonlinear model.

5 Discussion and Conclusion

The first numerical results from the implementation of the method described in this paper are very
encouraging, even when considering nonlinear elasticity models. We conclude by mentioning below
some avenues of improvement that are the subject of current and future work.

Let us first comment the choice to consider static elasticity problems involving a Dirichlet boundary
condition. The main role of the Dirichlet boundary condition here is to guarantee the well-posed
character of the direct and optimal control problems, in particular the existence and uniqueness of a
solution displacement u given a force distribution g. Its role is also, to a lesser extent, to take into
account anatomical factors that limit the organ motion. In liver surgery, the Dirichlet condition is often
set at the hepatic vein entry, or sometimes at places where ligaments hold the liver (e.g. the falciform
region). However, we believe that the whole procedure could benefit from a finer modelling of those
movement restrictions. We plan to no longer consider a Dirichlet hard-constraint, but instead account
for the presence of the hepatic vein entry using penalty terms in the cost functional.

On another level, even though we made choices in order to make the algorithm as light as possible,
the question of computation time still needs to be addressed. The adjoint method shares processor
time with other parts of the pipeline, including point cloud generation from laparoscopic images and
displaying the augmented view. In this article, we do not clarify whether achieving real-time registra-
tion using the adjoint method is feasible, even with a better implementation of the adjoint procedure
and a good trade-off between accuracy and computation cost. For this reason, we are developing an
implementation where the iterative nonlinear elastic solver is replaced with an artificial neural network.
Preliminary results [69] show a significant speed-up of the procedure due to the efficiency of neural
networks.

Finally, we are currently thinking about modeling issues, around the choice of cost functionals,
in order to improve the robustness against possible measurement errors on the Γ points. Indeed, we
have in practice a cloud of points allowing to reconstruct Γ. We would like to introduce a worst-case
functional to make the result as insensitive as possible to possible measurement errors on the data.

A Proofs of Theorem 3.1, Proposition 3.2 and Theorem 3.2

In this section we provide details about the results stated in Section 3.
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(a) Case 1.
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(b) Case 2.

Figure 6: Convergence statistics (top), along with the true and reconstructed deformations (bottom)
for two test cases with the nonlinear model.
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A.1 Proof of Theorem 3.1

Consider a minimizing sequence (gj) of elements of GM . As (gj) is bounded in L∞(∂ΩN), it converges
?-weakly in L∞(∂ΩN), towards a limit that we denote g. As GM is closed for the weak-? topology, g
is an element of GM . We denote respectively by uj = ugj the state associated to gj and by u = ug the
state associated to g. The proof falls into two parts. We first prove that the sequence (uj) converges
towards u, and then we finish the proof by showing that the convergence is uniform.

The state equations for uj and u yield

∀v ∈ H1
D(Ω)

∫
Ω0

Aε(uj) : ε(v) dx =

∫
∂ΩN

gj · v ds

∀v ∈ H1
D(Ω)

∫
Ω0

Aε(u) : ε(v) dx =

∫
∂ΩN

g · v ds.

Taking into account the weak-? convergence of (gj) towards g leads to

∀v ∈ H1
D(Ω)

∫
Ω0

Aε(uj) : ε(v) dx→
∫

Ω0

Aε(u) : ε(v) dx. (11)

As ∂ΩD has positive measure in ∂Ω, the linear elasticity bilinear form is an inner product on H1
D(Ω0)

[70, Theorems 6.3-3 and 6.3-4], and (11) is equivalent to uj ⇀ u in H1
D(Ω0). In particular, uj ⇀ u in

L2(Ω0).
We now check that (uj) converges uniformly. Let q the exponent from Proposition 3.1 and denote

by q′ = q/(q − 1) its conjugate exponent. Remember that we assumed q > 3. Note that the trace
v|∂ΩN

of a function v ∈W 1,q′

D (Ω0) is in Lq′(∂ΩN) [71, §5.5, Theorem 1]. This confirms that an element
of L∞(∂ΩN) ⊂ Lq

′
(∂ΩN)′ represents an element of W−1,q

D (Ω0) (with continuous injection). Because
elements of (gj) are in GM , the sequence is bounded in W−1,q

D (Ω0). Then, due to Proposition 3.1,
the sequence (uj) is uniformly bounded in W 1,q

D (Ω0), and, as a consequence of the Rellich-Kondrachov
theorem [72, Theorem 6.3], it converges uniformly, up to a subsequence. We check that the uniform
limit is u by noting that uniform convergence implies weak convergence in L2.

Finally, as J is continuous on C(Ω0), we obtain that J(u) = lim J(uj) = minGM Φ, and g is a
solution to (3).

A.2 Proof of Proposition 3.2

The continuous version of J reads

J(u) =

∫
Γ
jy(u) dy where jy(u) = 1

2d
2(y, Su).

We begin by studying the properties of the elementary functional jy in a first lemma, and then we finish
the proof of Proposition 3.2 using the dominated convergence theorem. Remember that the definition
of Py(u) is given in (4).

Lemma A.1. Let y a fixed point in Γ. The application jy is locally Lipschitz continuous on C(Ω0). The
Lipschitz constant can be chosen independent from y but still depends on Γ. In addition, for u ∈ C(Ω0),
jy has directional derivatives. The directional derivative in the direction v ∈ C(Ω0) reads

djy(u)(v) = min
x∈Py(u)

v(x) · (x+ u(x)− y).

Proof. Recalling that Su = (Id +u)(S0), we write jy(u) = minx∈S0
1
2‖x+ u(x)− y‖2.
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First, we check Lipschitz continuity. Let u1, u2 ∈ C(Ω0). As S0 is compact, there is a x1 ∈ S0 with
jy(u1) = 1

2‖x1 − u1(x1)− y‖2. Then,

jy(u2)− jy(u1) 6 1
2‖x1 + u2(x1)− y‖2 − 1

2‖x1 + u1(x1)− y‖2

= 1
2(2x1 + u2(x1) + u1(x1)− 2y) · (u2(x1)− u1(x1))

6

(
max
x∈S0

‖x− y‖+ 1
2‖u2 + u1‖L∞(Ω0)

)
‖u2 − u1‖L∞(Ω0),

As Γ is compact, we obtain the Lipschitz constant

L = max
y∈Γ

(
max
x∈S0

‖x− y‖
)

+ 1
2‖u2 + u1‖L∞(Ω0).

To compute directional derivatives, we define the application

f : R+ × S0 → R
(t, x) 7→ 1

2‖x+ u(x) + tv(x)− y‖2,

and we note that jy(u+ tv) = minx∈Py(u+tv) f(t, x). The partial derivative ∂tf exists and is continous,
and for t > 0 the set Py(u + tv) is nonempty and compact. All conditions are gathered to apply
Danskin’s theorem [53, Chapter 3, Theorem I], which stipulates that jy is differentiable at u in the
direction v, with

djy(u)(v) = lim
t↘0

jy(u+ tv)− jy(u)

t
= min

x∈Py(u)
∂tf(0, x),

which is the formula we wanted to end up with.

We now use the dominated convergence theorem to finish the proof. Denote by B = B(0, r) a small
ball of radius r > 0. As jy is Lipschitz continuous on u+B, there is a constant L independent from y
such that

∀v ∈ B ∀t ∈ (0, 1)

∣∣∣∣jy(u+ tv)− jy(u)

t

∣∣∣∣ 6 L‖v‖L∞(Ω0) 6 Lr.

Using the dominated convergence theorem, we pass to the limit in the expression

J(u+ tv)− J(u)

t
=

∫
Γ

jy(u+ tv)− jy(u)

t
dy −−→

t↘0

∫
Γ

djy(u)(v) dy

to obtain the derivative.
Now, if Py(u) is a singleton {xy} for almost every y ∈ Γ, we obtain

〈dJ(u), v〉 =

∫
Γ
v(xy) · (xy + u(xy)− y) dy 6 |Γ|

(
max
y∈Γ

d(y, Su)

)
‖v‖L∞(Ω0),

i.e. dJ(u) is a continuous linear form.

A.3 Proof of Lemma 3.1

Let us construct the solution with the help of an approximation process. We first consider a single
point y ∈ Γ, and we denote z = xy + u(xy)− y ∈ R3. We look for an elementary adjoint state p`,y such
that

∀h ∈ Lq(∂ΩN)

∫
∂ΩN

p`,y · hds = wh(xy) · z. (12)
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The regularity assumption on ∂ΩN yields to the existence of a family of bounded open subsets ωδ of
∂ΩN, and such that (ωδ)δ>0 shrinks to {xy} as δ ↘ 0. Setting fδ = 1ωδ/H2(ωδ), where H2(ωδ) is the
two-dimensional Hausdorff measure of ωδ, we introduce pδ as the solution of the PDE

div(Aε(pδ)) = 0 in Ω0

pδ = 0 on ∂ΩD

Aε(pδ) · n = fδ z on ∂ΩN,

According to Proposition 3.1, one has pδ ∈W 1,q
D (Ω0), and using the Green formula, one gets

∀h ∈ Lq(∂ΩN)

∫
∂ΩN

pδ · hds =
1

H2(ωδ)

∫
ωδ

wh · z ds.

Combining this identity to Proposition 3.1 yields∣∣∣∣∫
∂ΩN

pδ · hds

∣∣∣∣ 6 ‖z‖‖wh‖C(Ω0) 6 C ′‖z‖‖wh‖W 1,q(Ω0) 6 C ′′‖z‖‖h‖Lq(∂ΩN),

where the constants C ′ and C ′′ are independent from δ (and from y). This means that (pδ)δ>0 is
bounded as a family in Lq

′
(∂ΩN). One can thus extract from (pδ|∂ΩN

)δ>0 a subsequence (pk)k∈N
converging to some p∗ ∈ Lq′(∂ΩN) for the weak-topology of Lq′(∂ΩN). Since

lim
δ↘0

1

H2(ωδ)

∫
ωδ

wh · z ds = wh(xy) · z,

we conclude that p`,y = p∗ is a solution to (12). Now, if we define p` =
∫

Γ p`,y dy, we can use the Tonelli
and Fubini theorems [49, Theorems IV.4 and IV.5] to check that

∀h ∈ Lq(∂ΩN)

∫
∂ΩN

p` · hds =

∫
Γ

∫
∂ΩN

p`,y · hds dy =

∫
Γ
wh(xy) · (xy + u(xy)− y) dy,

which makes p` a solution to the considered PDE.
Finally, regarding the uniqueness, one easily gets that if p1 and p2 are two solutions of the PDE,

then ∫
∂ΩN

(p1 − p2) · hds = 0

for all h ∈ Lq(∂ΩN), hence the result.

A.4 Proof of Theorem 3.2

We first give a justification for the structure of dΦ(g). For a direction h ∈ L∞(∂ΩN), we consider the
associated displacement field perturbation wh , which satisfies

∀v ∈ H1
D(Ω)

∫
Ω0

Aε(w) : ε(v) dx =

∫
∂ΩN

h · v ds.

By exploiting the notion of solution in the sense of transposition for Problem (7), we obtain for ` ∈ L(u)

〈`, wh〉 =

∫
∂ΩN

p` · hds,

hence
dΦ(g)(h) = min

`∈L(u)

∫
∂ΩN

p` · hds.
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We now characterize the cone of admissible directions at g. Let us introduce the active set Ag =
{x ∈ ∂ΩN | ‖g(x)‖ = M}. As the pointwise norm ‖g(x)‖ should not exceed M on ∂ΩN, admissible
directions h ∈ L∞(∂ΩN) are characterized (see for instance [73]) by

h(x) · g(x) 6 0 almost everywhere in Ag.

An alternative formulation for the cone of admissible directions is the intersection L∞(∂ΩN) ∩K,
where K is the closed cone

K =

{
h ∈ L2(∂ΩN)

∣∣∣ ∀λ ∈ L2(∂ΩN,R+)

∫
Ag
λ(h · g) ds 6 0

}
.

Let us briefly check this expression. First, it is clear that a direction h which satisfies h · g 6 0 almost
everywhere in Ag is in K. On the other hand, if there is a subset S ⊂ Ag with positive Lebesgue
measure where h · g > 0, then, by choosing λ = 1S , we obtain h /∈ K.

We notice that this new expression for K is the expression of a polar cone, namely

K = Q◦ =
{
h ∈ L2(∂ΩN)

∣∣∣ ∀q ∈ Q 〈h, q〉 6 0
}
,

where the closed cone Q is defined by

Q =
{
1Agλg, λ ∈ L2(∂ΩN,R+)

}
.

We denote by −p` = pK + pQ the so-called Moreau decomposition of −p` [74] with pK ∈ K, pQ ∈ Q
and 〈pK , pQ〉 = 0.

Now coming back to the optimality condition, as g is a local minimizer of Φ, the Euler inequation
stipulates that dΦ(g)(h) > 0 for every element h of the cone of admissible directions. In particular, we
consider the admissible direction

h =
pK

max(1, ‖pK‖)
∈ L∞(∂ΩN) ∩K.

It results from the Euler inequation that

0 6 dΦ(g)(h) 6
∫
∂ΩN

p` · hds = −
∫
∂ΩN

min
(
‖pK‖, ‖pK‖2

)
ds.

Finally, we obtain pK(·) = 0, which yields the first-order optimality condition p` + pQ = 0. Observing
that this condition rewrites as in the statement of Theorem 3.2, we are done.
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