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Optimal interpolation inequalities between
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Petru Mironescu

March 21, 2023

Abstract

We exhibit the optimal inequalities of the form

x1 + · · ·+ xn ≤ α(xp1 + · · ·+ xpn)
1/p + βx

1/n
1 · · ·x1/nn , ∀x1, . . . , xn ≥ 0,

with n ≥ 2 and 1 < p <∞,

respectively

(x1 + · · ·+ xn)
p ≤ α(xp1 + · · ·+ xpn) + βx

p/n
1 · · ·xp/nn , ∀x1, . . . , xn ≥ 0,

with n = 2 and 1 < p <∞ or n ≥ 3 and 1 < p ≤ n.

We prove that, when p > n, a qualitative change occurs in the second inequality, and we
present some partial results in the range p > n ≥ 3.

As a byproduct of our analysis, we obtain a quantitative form of the strict convexity of
the Shannon entropy.

1 Introduction
The question we address here is the one of the explicit optimal estimates interpolating between
the standard inequalities involving the generalized means of positive numbers. To give a very
simple example of the type of inequalities we have in mind, let H , G, and A denote the har-
monic, geometric, and arithmetic mean of the positive numbers x, y. Then

G ≤ 1

2
A+

1

2
H, (1)

which, granted the inequality

H ≤ G, (2)
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is a refinement of the inequality

G ≤ A. (3)

One may easily prove that (1) is the optimal improvement of (3) via (2), in the sense that, if

a, b ∈ (0, 1), a+ b = 1 (4)

and

G ≤ aA+ bH, ∀x, y > 0, (5)

then we necessarily have a ≥ 1/2, and thus all the valid inequalities of the form (5) (under the
constraint (4)) are convex combinations of (1), (2), and (3).

Another observation, somewhat marginal in what follows, is that for every a ∈ (0, 1) there
exists some b, not necessarily satisfying (4), such that (5) holds. It is actually easy to see that
the optimal b is given by

b = b(a) :=

{
1− a, if 1/2 ≤ a < 1

4/a, if 0 < a < 1/2
.

More generally, consider the generalized means

Mp = Mp(x1, . . . , xn) :=


(
xp1 + · · ·+ xpn

n

)1/p

, if p 6= 0

x
1/n
1 · · ·x1/nn , if p = 0

,

n ≥ 2, p ∈ R, x1, . . . , xn > 0.

If p0 < p1 < p2, then

Mp0(x1, . . . , xn) ≤Mp1(x1, . . . , xn) ≤Mp2(x1, . . . , xn), ∀x1, . . . , xn > 0, (6)

and one can ask about the analogues of (1) and (5) in this setting, with focus on the exact value of
the optimal a. I do not know the answer in such a general setting; however, I will give the full
analogue of (1) whenp0 = 0. My original interest for this special case comes from the elementary
but noticeable inequality

(x1 + · · ·+ xn)2 ≤ (n− 1)(x21 + · · ·+ x2n) + nx
2/n
1 · · ·x2/nn ,

∀n ≥ 2, ∀x1, . . . , xn ≥ 0,
(7)

that I learned from Dospinescu [3]. Inequality (7) is quoted in Senderov and Turkevich [4] and
attributed to Shleifer. Clearly, (7) can be rewritten as

M2
1 ≤

(
1− 1

n

)
M2

2 +
1

n
M2

0 , (8)

and thus, indeed, (7) is a refinement of the second inequality in (6) (with pj = j, j = 0, 1, 2).
The not so usual feature of (7) is that equality is achieved not only when x1 = . . . = xn (as

one expects), but also when, up to a permutation, x1 = . . . = xn−1 and xn = 0. Motivated by
the above considerations, the two inequalities I investigate are

Mp2
p1
≤ aMp2

p2
+ bMp2

0 , (9)

2



respectively

Mp1 ≤ aMp2 + bM0, (10)

where 0 < p1 < p2.
Let us note that we may assume, with no loss of generality, that p1 = 1. (Perform the

substitution xj = y
1/p1
j .) From now on, we assume p1 = 1 and set p := p2 > 1, α := anp−1,

β := bnp. Then (4), respectively (9), amount to

0 < α < np−1, 0 < β < np, nα + β = np, (11)

(x1 + · · ·+ xn)p ≤ α(xp1 + · · ·+ xpn) + βx
p/n
1 · · ·xp/nn , ∀x1, . . . , xn ≥ 0. (12)

Similarly, (4) and (10) amount to

0 < α < n1−1/p, 0 < β < n, n1/pα + β = n, (13)

x1 + · · ·+ xn ≤ α(xp1 + · · ·+ xpn)1/p + βx
1/n
1 · · ·x1/nn , ∀x1, . . . , xn ≥ 0. (14)

It is easy to see that there exists a minimal α0 such that (11) and(12) hold; see Proposition 4
below. (The existence of the corresponding α0 for (14) follows from Theorem 1.) More delicate
is the matter of the exact value of α0 and the characterization of the cases of equality in (12)
and (14). As we will see, below, despite their formal resemblance, (12) and (14) exhibit different behaviors
when p > n.

Before proceeding further, let us make a simple observation. Assume that (12) holds. Let-
ting x1 = · · · = xn−1 = 1 and xn = 0, we find that

α ≥ (n− 1)p−1. (15)

Similarly, if (14) holds, then

α ≥ (n− 1)1−1/p. (16)

We may now state our main result, which, in view of (15) and (16), is optimal.

Theorem 1.

1. Let n ≥ 2 and 1 < p ≤ n. Then

(x1 + · · ·+ xn)p ≤(n− 1)p−1(xp1 + · · ·+ xpn)

+ (np − n(n− 1)p−1)x
p/n
1 · · ·xp/nn , ∀x1, . . . , xn ≥ 0.

(17)

Moreover, equality holds in (17) if and only if either (i) n = p = 2, or (ii) x1 = · · · = xn,
or (iii) (up to a permutation) x1 = · · · = xn−1 and xn = 0.

2. Let n ≥ 2 and 1 < p <∞. Then

x1 + · · ·+ xn ≤(n− 1)1−1/p(xp1 + · · ·+ xpn)1/p

+ (n− n1/p(n− 1)1−1/p)x
1/n
1 · · · x1/nn , ∀x1, . . . , xn ≥ 0.

(18)

Moreover, equality holds in (18) if and only if either (i) x1 = · · · = xn or (ii) (up to a
permutation) x1 = · · · = xn−1 and xn = 0.
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Remark 2.

1. In some special cases, (17) was known before. Indeed, the case p = 2 corresponds to (7).
On the other hand, (17) was already known to hold when p = 3, p = 4, and p = n (see
Cîrtoaje [1, Remarks 3.6 and 3.7, and the references therein]).

2. In the range 1 < p ≤ n, (17) and (18) can be embedded into a larger family of inequalities;
see Theorems 12 and 13 in Section 4.

3. When n = 2 and 1 < p < 2, an equivalent form of (17) is

(1 + x)p + (1− x)p ≥ 2p − (2p − 2)(1− x2)p/2, ∀x ∈ [0, 1]. (19)

(To reduce (17) to (19), assume, without loss of generality, that x1 + x2 = 2 and x1 ≥ x2,
write x1 = 1+x and x2 = 1−x and plug this into (17).) The interested reader may easily
check that (19) is, for small x > 0, a refinement of the well-known Clarkson’s inequality
[2, ineq. (7)]

(1 + x)p + (1− x)p ≥ 2(1 + xp/(p−1))p−1, ∀ 1 < p < 2, ∀ 0 ≤ x ≤ 1.

We next investigate the case p > n in (12). Noticeably, (17) does not hold anymore (Propo-
sition 4), so that the restriction p ≤ n is necessary in (17).

A second main result yields the explicit optimal inequality (12) when n = 2 and p > 2.

Theorem 3. Assume that n = 2 and p > 2. Then the optimal inequality of the form (12) is

(x+ y)p ≤ 2p−1

p
(xp + yp) + 2p

p− 1

p
xp/2yp/2, ∀ p > 2, ∀x, y ≥ 0. (20)

Equality occurs in (20) if and only if x = y.

Note that not only the formula ofα0 changes at the critical value p = 2, but also the equality
case is different.

The exact value of α0 in (12) when n ≥ 3 and p > n is unknown (at least to me). We warn

the reader that, despite what (20) might suggest, α0 is not given by α0 =
np−1

p
. See Proposition

15 for additional information on α0 and on the equality case.
The remaining sections are devoted to the proofs. In Section 2, we explain the strategy

for obtaining (17), (20), and the equality cases. The main auxiliary estimates, which are at the
heart of the proof of Theorems 1 and 3, are obtained in Section 3. In Section 4, we prove the main
results and derive some noticeable consequences. The proof of Theorem 1 is not so standard: (i)
first, we prove (17); (ii) next, we prove that (17) implies (18) in the range 1 < p ≤ n; (iii) finally,
we prove that the validity of (18) for p close to 1 implies the validity of (18) for every p > 1.
The self-improvement argument in the final step of the proof of Theorem 1 is of independent
interest and should be useful in the proof of more general inequalities of the form (10) (but we
did not investigate (10) in full generality). Last but not least, we obtain in Section 4 an amusing
consequence of Theorem 1: a quantitative strong convexity inequality involving the Shannon
entropy (Corollary 14).
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2 Preliminary remarks
We start by establishing the existence of an optimal α0 in (12). (The existence of an optimal α0

in (14) is part of Theorem 1.) It will be clear that the arguments we present here for p0 = 0 and
p1 = 1 can be easily adapted to all p0 < p1 < p2. Let us note that, by homogeneity, it suffices
to investigate the validity of (12) or (14) when x1 + · · ·+ xn = n.

Proposition 4. Let n ≥ 2 and 1 < p <∞.

(a) Consider the set

A := {0 < α < np−1; (12) holds with β as in (11)}.

ThenA is of the form [α0, n
p−1), with α0 ≥ (n− 1)p−1.

(b) If p > n and α = (n − 1)p−1, then there exists no finite β such that (12) holds. In
particular, we have α0 > (n− 1)p−1.

(c) If p > n and (n − 1)p−1 < α < np−1, then there exists some β > 0 (not necessarily
satisfying (11)) such that (12) holds.

Proof. Step 1. Proof of (b). Argue by contradiction. Plug, into (12), x1 = · · · = xn−1 = 1 and
xn = (n− 1)ε > 0. Then, for some β <∞, we have

(n− 1 + (n− 1)ε)p = (n− 1)p(1 + ε)p ≤ (n− 1)p + (n− 1)2p−1εp + β(n− 1)p/nεp/n,

which implies that

(n− 1)p + (n− 1)ppε+O(ε2) ≤ (n− 1)p +O(εp/n),

a contradiction (since
p

n
> 1).

Step 2. Proof of (c). Argue by contradiction. Let k ≥ 1 be an integer. Consider x1,k, . . . , xn,k ≥ 0,
with sum n and such that (12) with β = k is not satisfied by x1,k, . . . , xn,k. This implies that
x1,k · · ·xn,k → 0 as k → ∞. Up to a subsequence and a permutation, we may assume that
xj,k → xj as k →∞, and that xn = 0. We find that

(x1 + · · ·+ xn−1)
p ≥ α(xp1 + · · ·+ xpn−1) and (x1, . . . , xn−1) 6= (0, . . . , 0),

and this contradicts the assumption α > (n− 1)p−1.
Step 3. Proof of (a). The only issue is to prove thatA is non empty; if this is the case, thenA clearly
has the desired form. Argue by contradiction and assume that, for every 0 < α < np−1, there
exist x1,α, . . . , xn,α ≥ 0 with sum n such that

α(xp1,α + · · ·+ xpn,α) + (np − nα)x
p/n
1,α · · · xp/nn,α < np. (21)

Consider x1, . . . , xn such that, along some subsequenceαk → np−1, we have xj,αk
→ xj as

k →∞, ∀ 1 ≤ j ≤ n. From (21), we find that

xp1 + · · ·+ xpn ≤ n = n

(
x1 + · · · xn

n

)p
,

which implies xj = 1, ∀ 1 ≤ j ≤ n.
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Write xj,αk
= 1 + εj = 1 + εj,k, with ε1,k + · · · + εn,k = 0 and εj,k → 0 as k → ∞,

∀ 1 ≤ j ≤ n. From now on, we omit the subscript k. Note that, with ξ := ε21 + · · ·+ ε2n → 0 as
k →∞, we have ξ > 0 (by (21)) and

x1 . . . xn = (1 + ε1) · · · (1 + εn) = 1 + ε1 + · · ·+ εn +
∑
i<j

εiεj + o(ξ)

= 1 +
∑
i<j

εiεj + o(ξ) = 1− 1

2
ξ + o(ξ),

(22)

where we have used the fact that ε1 + · · ·+ εn = 0 and thus∑
i<j

εiεj = −1

2
ξ. (23)

Using (22) and a second order Taylor expansion, we find that (21) can be rewritten as

np >α + α
p(p− 1)

2
ξ + o(ξ) + (np − nα)− (np − nα)

p

2n
ξ + o(ξ)

=np +

(
α− np−1

p

)
p2

2︸ ︷︷ ︸
:=γ(α)

ξ + o(ξ) = np + γ(α)ξ + o(ξ), (24)

and it is clear that o(ξ) is locally uniform in α and ξ, i.e., given τ > 0 and an interval [α, α] ⊂
[0,∞), there exists some δ > 0 such that

|o(ξ)| ≤ τξ, ∀α ∈ [α, α], ∀ ξ ∈ [0, δ].

From the above the desired contradiction follows from (24) by letting, in (24), α = αk and
then k →∞, provided we have γ(np−1) > 0, which is clear.

We next present the two approaches we use for studying the sharp value ofα0 in (12). While
the second one is, in some sense, more general, the first one seems more effective in the proof
of Theorems 1 and 3. We will use the second one to give some insight on the optimal inequality
(12) in the range p > n ≥ 3.
First approach. Let α, β > 0, and consider the constrained minimization problem

µ := min
{
α(xp1 + · · ·+ xpn) + βx

p/n
1 · · ·xp/nn ; x1, . . . , xn ≥ 0,

x1 + · · ·+ xn = n
}
.

(25)

Clearly, µ is attained, and, at a minimum point (x1, . . . , xn), one of the following two hap-
pens.
First possibility. Up to a permutation, we have xn = 0. In this case, we have

µ = α
np

(n− 1)p−1
and x1 = · · · = xn−1 =

n

n− 1
.

Second possibility. We havex1, . . . , xn > 0. In this case, there exists a Lagrange multiplierλ > 0
such that

αpxp−1j + β
p

n

A

xj
= λ, ∀ 1 ≤ j ≤ n, (26)
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where

A := x
p/n
1 · · ·xp/nn > 0.

Since the function

(0,∞) 3 x 7→ αpxp−1 + β
p

n

A

x

takes at most twice a given positive value, it follows that, at a minimum point, the xj ’s can take at
most two distinct values. If x1 = · · · = xn(= 1), then

µ = nα + β.

Otherwise, there are integers `,m ≥ 1 and a number x such that, up to a permutation,

`+m = n, 0 < x <
1

m
, x1 = · · · = xm = 1 + `x, xm+1 = · · · = xn = 1−mx. (27)

(The second approach will tell us that ` = 1 andm = n− 1, but we ignore this fact at this
stage.) Although this is not the route we will exploit below, we have obtained that

µ = min

{
α

np

(n− 1)p−1
, nα + β, c1, . . . , cn−1

}
,

where

cm := min

{
fm(x); 0 ≤ x ≤ 1

m

}
and

fm(x) :=α[m(1 + (n−m)x)p + (n−m)(1−mx)p]

+ β(1 + (n−m)x)mp/n(1−mx)(n−m)p/n, 1 ≤ m ≤ n− 1, 0 ≤ x ≤ 1

m
.

Thus the validity of (12) amounts to the estimate of the minimal values of the one variable
functions fm, 1 ≤ m ≤ n− 1.

We now turn to the more specific situations considered in Theorems 1 and 3. Let us note
that we then have

nα + β = np and (n− 1)p−1 ≤ α < np−1. (28)

In particular, since (by (25)) µ ≤ nα + β, (28) implies that

µ ≤ np. (29)

In view of the above, we have: either (i) µ = np (which is the desired inequality (12)) or (ii)
(26) and (27) hold. We investigate the latter possibility. Multiplying (26) by xj and summing
over j, we find that

pµ = nλ. (30)

On the other hand, (26) also yields

(1 + `x)p − (1−mx)p = xp1 − xpn =
λ

pα
((1 + `x)− (1−mx)) =

λ

pα
nx. (31)

Inserting (30) into (31) and using (29), we find that

(1 + `x)p − (1−mx)p =
µ

α
x ≤ np

α
x.

We are now at the heart of our first strategy. The above considerations imply the following
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Lemma 5. Let n ≥ 2, p > 1, (n− 1)p−1 ≤ α < np−1, and set β := np − nα. Assume that:

(1 + `x)p − (1−mx)p >
np

α
x, ∀ `,m ≥ 1 integers such that `+m = n,

∀ 0 < x <
1

m
.

(32)

Then (12) holds, with equality if and only if:

(a) Either α > (n− 1)p−1 and x1 = · · · = xn.

(b) Or α = (n − 1)p−1 and either x1 = · · · = xn or, up to a permutation, x1 = · · · = xn−1
and xn = 0.

In order to obtain Theorems 1 and 3, we will prove that, for n, p, and α as in these state-
ments, inequality (32) holds. This is the content of the next section.
Second approach. This is limited to n ≥ 3, and applies to both (12) and (13). Consider again
the minimization problem (25). If (x1, . . . , xn) is a competitor, then 0 ≤ x1 · · ·xn ≤ 1, and
thus

µ := min
{
α(xp1 + · · ·+ xpn) + βtp; x1, . . . , xn ≥ 0,

x1 + · · ·+ xn = n, x
1/n
1 · · ·x1/nn = t

}
.

We next invoke the next result [1, Corollary 1.9]: for fixed 0 ≤ t ≤ 1, a minimizer ofxp1+· · ·+xpn
under the constraints

x1, . . . , xn ≥ 0, x1 + · · ·+ xn = n, x1 · · ·xn = tn,

is, up to a permutation, an (unique) n tuple (x1, . . . , xn) such that

x1 = · · · = xn−1 ≥ xn.

This leads to the following consequence.

Lemma 6. Let n ≥ 3 and 1 < p <∞. Then the optimal α0 in (12) is the smallest α such that

α[(n− 1)(1 + x)p + (1− (n− 1)x)p] + (np − nα)×
× (1 + x)(n−1)p/n(1− (n− 1)x)p/n ≥ np, ∀ 0 ≤ x ≤ 1/(n− 1).

Similarly for the optimal α0 in (14).

A final remark. Going back to (32), the second approach learns us that, in order to use (32)
in the proof of Theorem 1, it suffices establish its validity in the case ` = 1. However, since we
think that the proof Lemma 7 below is of independent interest, we provide the argument in the
full range 1 ≤ ` ≤ n− 1.

3 The main auxiliary inequalities
Lemma 7. Let n ≥ 2 and 1 < p ≤ n. Set α := (n − 1)p−1. Assume that (n, p) 6= (2, 2). Then
(32) holds.
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Lemma 8. Let n = 2 and p > 2. Set α :=
2p−1

p
. Then 1 < α < 2p−1 and (32) holds.

Proof of Lemma 7. We have to prove that, when n ≥ 2, 1 < p ≤ n, (n, p) 6= (2, 2), and `,m ≥ 1
are integers with `+m = n, we have

f(x) >
np

(n− 1)p−1
x, ∀ 0 < x <

1

m
, (33)

where

f(x) := (1 + `x)p − (1−mx)p, ∀ 0 ≤ x ≤ 1

m
.

For further use, let us note that

f ′(x) = p[`(1 + `x)p−1 +m(1−mx)p−1], ∀ 0 ≤ x ≤ 1

m
, (34)

f ′′(x) = p(p− 1)[`2(1 + `x)p−2 −m2(1−mx)p−2], ∀ 0 ≤ x <
1

m
, (35)

f ′′′(x) = p(p− 1)(p− 2)[`3(1 + `x)p−3 +m2(1−mx)p−3], ∀ 0 ≤ x <
1

m
, (36)

and that (35) still holds for x =
1

m
provided p > 2.

Step 1. Proof of (33) when p = 2 and n ≥ 3. After some elementary manipulations, we see that,
in this case, (33) amounts to

(2m− n)x = (m− `)x < 2− n

n− 1
, ∀ 0 < x <

1

m
. (37)

Ifm ≤ n

2
, thenm− ` ≤ 0 and (37) is clear. Ifm >

n

2
, then (37) amounts to

(2m− n)
1

m
= 2− n

m
≤ 2− n

n− 1
,

which holds sincem ≤ n− 1.

Step 2. Proof of (33) when 2 < p ≤ n: the case where ` = 1. Set b :=
1

m
=

1

n− 1
. We note

that f ′′′(x) > 0, ∀ 0 ≤ x <
1

m
(since p > 2), f ′′(0) < 0 (since ` = 1 < n − 1 = m), and

f ′′(b) > 0. Therefore, there exists some a ∈ (0, b) such that f is strictly concave on [0, a] and
strictly convex on [a, b].

We next note that

f(b) =
np

(n− 1)p
=

np

(n− 1)p−1
b (38)

and (since p ≤ n)

f ′(b) = p
np−1

(n− 1)p−1
≤ np

(n− 1)p−1
. (39)

Combining (38) and (39) with Lemma 9 below (whose proof is postponed until the end of

this section), applied withA =
np

(n− 1)p−1
, we obtain (32). This completes Step 2.
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Lemma 9. Let 0 < a < b and let f : [0, b]→ R be a continuous function, which is concave on
[0, a] and strictly convex on [a, b].

LetA ∈ R. If f(0) = 0, f(b) ≥ Ab, and f ′(b−) ≤ A, then f(x) > Ax, ∀x ∈ (0, b).

Step 3. Proof when 2 < p ≤ n: the general case. The proof is by induction on `. The case ` = 1 was
settled in Step 2. We assume that 2 ≤ ` ≤ n − 1 and that (33) holds with ` − 1, respectively
m+ 1, in place of `, respectivelym.

Step 3.1. Proof of (33) when 0 < x <
1

m+ 1
. Let us note the following easy consequence of

Jensen’s inequality. If g : I → R is strictly convex (with I an interval) and x < y < z < t are
points in I such that x+ t = y+z, then g(x)+g(t) > g(y)+g(z). With the choice g(x) := xp,
∀x ≥ 0, we obtain that

(1 + `x)p − (1−mx)p > (1 + (`− 1)x)p − (1− (m+ 1)x)p

≥ np

(n− 1)p−1
x, ∀ 0 < x ≤ 1

m+ 1
,

the latter inequality following from the induction hypothesis. This yields (33) when 0 < x ≤
1

m+ 1
.

It remains to prove (33) when
1

m+ 1
< x <

1

m
.

Step 3.2. Reduction to an inequality at the endpoint x =
1

m
. By (34), we have

f ′(x) ≥ p`(1 + `x)p−1 ≥ p`
(n+ 1)p−1

(m+ 1)p−1
, ∀ 1

m+ 1
≤ x ≤ 1

m
,

and therefore

f(x) ≥ f

(
1

m+ 1

)
+ p`

(n+ 1)p−1

(m+ 1)p−1

(
x− 1

m+ 1

)
, ∀ 1

m+ 1
≤ x ≤ 1

m
.

It thus suffices to prove that

f

(
1

m+ 1

)
+ p`

(n+ 1)p−1

(m+ 1)p−1

(
x− 1

m+ 1

)
>

np

(n− 1)p−1
x, ∀ 1

m+ 1
≤ x ≤ 1

m
. (40)

Since both sides of (40) are affine functions, it suffices to establish (40) when x =
1

m+ 1

andx =
1

m
. Whenx =

1

m+ 1
, (40) holds, by Step 3.1. Therefore, it remains to prove (40) when

x =
1

m
, which amounts to

np

(n− 1)p−1
(m+ 1)p < m [(n+ 1)p − 1] + p(n−m)(n+ 1)p−1, ∀ 1 ≤ m ≤ n− 2. (41)

Step 3.3. Proof of (41). Since the left-hand side of (41) is convex, as a function ofm > −1, and the
right-hand side of (41) is affine in m, it suffices to prove (41) when m = 0, respectively when
m = n− 2.

Whenm = 0, (41) reads(
n

n2 − 1

)p−1
< p,

10



which holds since p > 1 and n < n2 − 1.
Whenm = n− 2, (41) is equivalent to

n(n− 1)

(
n

n+ 1

)p−1
+

n− 2

(n+ 1)p−1
− (n+ 1)(n− 2)− 2p < 0. (42)

Since the left-hand side of (42) decreases with p, it suffices to establish (42) when p = 2. In
this case, (42) is equivalent to n2 + 4 > 0. Step 3 is completed.
Step 4. Proof of (33) when 1 < p < 2: the case where ` ≤ m. By (35) and the assumption p < 2, we

have f ′′(x) < 0, ∀ 0 < x <
1

m
, and thus f is strictly concave. The validity of (33) then follows

from f(0) = 0 and

f

(
1

m

)
=

np

mp
=

np

mp−1
1

m
≥ np

(n− 1)p−1
1

m
.

Step 5. Proof of (33) when 1 < p < 2: the general case. The case ` ≤ m being settled in Step 4, we

assume that ` > m. Set b :=
1

m
. By (35), (36), and the assumption ` > m, we have f ′′(0) > 0,

f ′′(b−) = −∞, and therefore there exists some a ∈ (0, b) such that f is strictly convex on
[0, a] and strictly concave on [a, b].

We next note that

f(b) =
np

mp
≥ np

(n− 1)p−1
b, (43)

f ′(0) = np >
np

(n− 1)p−1
. (44)

Indeed, inequality (43) is clear. In order to prove (44), which amounts to(
n

n− 1

)p
− n

n− 1
p < 0, ∀n ≥ 2, ∀ 1 < p < 2, (45)

we note that the left-hand side of (45) is strictly convex inp, and therefore it suffices to prove the
large inequality in (45) at the endpoints p = 1 and p = 2; both these inequalities are obvious.

We obtain (33) from (43), (44), and Lemma 10 below (whose proof is postponed until the end

of this section), applied withA =
np

(n− 1)p−1
.

Lemma 10. Let 0 < a < b and let f : [0, b] → R be a continuous function, which is strictly
convex on [0, a] and concave on [a, b].

LetA ∈ R. If f(0) = 0, f(b) ≥ Ab, and f ′(0+) ≥ A, then f(x) > Ax, ∀x ∈ (0, b).

The proofs of Step 5 and of Lemma 5 are complete.

Proof of Lemma 8. The inequality α < 2p−1 is clear. The inequality α > 1, or, equivalently,
2p−1 − p > 0, ∀ p > 2, follows from the fact that

(0,∞) 3 p 7→ g(p) := 2p−1 − p

is convex and satisfies g(2) = 0 and g′(2) = 2 ln 2− 1 > 0.
It remains to prove that

f(x) > 2px, ∀x ∈ (0, 1), (46)

11



where

f(x) := (1 + x)p − (1− x)p, ∀x ∈ [0, 1].

Since f(0) = 0, (46) holds provided we have

f ′(x) > 2p, ∀x ∈ (0, 1]. (47)

In turn, (47) follows from the strict convexity inequality

f ′(x) = p(1 + x)p−1 + p(1− x)p−1 = 2p
(1 + x)p−1 + (1− x)p−1

2

> 2p

(
1

2
(1 + x) +

1

2
(1− x)

)p−1
= 2p

(recall that p > 2 and thus p− 1 > 1).

Proof of Lemma 9. It suffices to consider the case whereA = 0 (then apply this case to the map
[0, b] ∈ x 7→ f(x)− Ax). Since f is strictly convex on [a, b], we have

f(x) > f(b) + (x− b)f ′(b−) ≥ 0, ∀x ∈ [a, b),

and, in particular, f(a) > 0.
Since f is concave on [0, a], f(0) = 0, and f(a) > 0, we have f(x) > 0, ∀x ∈ (0, a).

Proof of Lemma 10. Again, it suffices to consider the case whereA = 0.
Since f is strictly convex on [0, a], f(0) = 0, and f ′(0+) ≥ 0, we have f(x) > 0, ∀x ∈

(0, a], and in particular f(a) > 0.
Since f is concave on [a, b], f(a) > 0 and f(b) ≥ 0, we have f(x) > 0, ∀x ∈ (a, b).

4 Proof of the main results
Proof of Theorem 1. Step 1. Proof of (17). The validity of (17) and the equality cases in (17) follow
from Lemmas 5 and 7, and the obvious fact that, when n = 2 and p = 2, the inequality (17) is
actually an identity.
Step 2. Proof of (18) when 1 < p ≤ n. Let x1, . . . , xn ≥ 0 satisfy x1 + · · · + xn = n. (By
homogeneity, this assumption is not restrictive.) Set t := x

1/n
1 · · ·x1/nn ∈ [0, 1]. By (17), we

have

xp1 + · · ·+ xpn ≥
np

(n− 1)p−1
−
(

np

(n− 1)p−1
− n

)
tp. (48)

In view of (48), we see that the desired inequality (18) and the characterization of the equal-
ity cases hold provided

(n− 1)1−1/p
[

np

(n− 1)p−1
−
(

np

(n− 1)p−1
− n

)
tp
]1/p

≥ n− [n− n1/p(n− 1)1−1/p]t, ∀ t ∈ [0, 1],

(49)

12



with equality only when t = 0 and t = 1.
We next note that (49) can be rewritten as

[np − n(n− 1)p−1]tp + (n− [n− n1/p(n− 1)1−1/p]t)p ≤ np, ∀ t ∈ [0, 1]. (50)

Clearly, (i) the left-hand side of (50) is strictly convex in t, and (ii) (50) holds with equality
for t = 0 and t = 1. Therefore, (50) is valid, with strict inequality when t ∈ (0, 1). This
completes the proof of (18) when 1 < p ≤ n.
Step 3. Proof of (18) in the full range 1 < p < ∞. Set, for 1 ≤ p < ∞ and x = (x1, . . . , xn) ∈
[0,∞)n,

F (x, p) := (n− 1)1−1/p

(
n∑
j=1

xpj

)1/p

+ (n− n1/p(n− 1)1−1/p)
n∏
j=1

x
1/n
j −

n∑
j=1

xj. (51)

Let Y denote the set of points x ∈ [0,∞)n such that either (i) x1 = · · · = xn or (ii) up to a
permutation, x1 = · · · = xn−1 and xn = 0. Our aim is to prove that

for 1 < p <∞ and x ∈ [0,∞)n, F (x, p) > 0 unless x ∈ Y . (52)

Clearly, (52) holds if at least one ofx1, . . . , xn vanishes. On the other know, we know, from Step
2, that (52) holds for 1 < p ≤ n. Therefore, it suffices to prove that, for x ∈ (0,∞)n, F (x, ·) is
non-decreasing in p, i.e., that

∂F

∂p
(x, p) ≥ 0, ∀x ∈ (0,∞)n. (53)

The key observation is that, since (18) is valid for 1 ≤ p ≤ n, with equality when p = 1, we have

∂F

∂p
(y, 1) ≥ 0, ∀ y ∈ (0,∞)n. (54)

We will obtain (53) by combining (54) with the following inequality:

for every x ∈ (0,∞)n and 1 < p <∞, there exist

K = K(x, p) > 0 and y = y(x, p) ∈ (0,∞)n such that
∂F

∂p
(x, p) ≥ K

∂F

∂p
(y, 1),

(55)

that we next prove.
Step 4. Proof of (55). Set

S = S(x) := xp1 + · · ·+ xpn.

First, let us note that F (tx, p) = tF (x, p), ∀ t > 0, and thus it suffices to prove (55) for a
(positive) multiple of x. It will be convenient for us to consider points x ∈ (0,∞)n satisfying
the constraint

S(x) = 1. (56)
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If x ∈ (0,∞)n, then we have

∂F

∂p
(x, p) =

1

p2
(n− 1)1−1/p[S(x)]1/p ln(n− 1)

+ (n− 1)1−1/p[S(x)]1/p

− 1

p2
ln(S(x)) +

1

p

n∑
j=1

xpj lnxj

S(x)


+

1

p2
n1/p(n− 1)1−1/p

n∏
j=1

x
1/n
j ln

(
n

n− 1

)
.

(57)

Under the constraint (56), (57) reads

p2(n− 1)1/p−1
∂F

∂p
(x, p) = ln(n− 1) +

n∑
j=1

xpj ln(xpj)

+

(
nn

n∏
j=1

xpj

)1/(np)

ln

(
n

n− 1

)
.

(58)

In particular, (58) becomes, for p = 1 and y := (xp1, . . . , x
p
n) (which satisfies (56) with p = 1),

∂F

∂p
(y, 1) = ln(n− 1) +

n∑
j=1

xpj ln(xpj) +

(
nn

n∏
j=1

xpj

)1/n

ln

(
n

n− 1

)
. (59)

Next, we note that the condition (56) implies that nnxp1 · · ·xpn ≤ 1 and thus(
nn

n∏
j=1

xpj

)1/(np)

≥

(
nn

n∏
j=1

xpj

)1/n

, ∀ p ≥ 1. (60)

Combining (58)–(60), we find that

p2(n− 1)1/p−1
∂F

∂p
(x, p) ≥ ∂F

∂p
(y, 1), (61)

so that (55) holds, as claimed. This completes Step 3 and the proof of Theorem 1.

Remark 11. If x 6∈ S, then the inequalities (60) and (61) are strict. It follows that, for such x,
F (x, p) is increasing in p.

We next present several noticeable consequences of Theorem 1 and its proof. First, let us
note that, in Step 2 in the proof of Theorem 1, the strategy consists of obtaining (18) from (17)
and a convexity argument. Following the same strategy, one obtains the family of inequalities
(62) below, containing (17) and (18) as special cases.

Theorem 12. Let n ≥ 2, 1 < p ≤ n, and 0 < r ≤ p. Then

(x1 + · · ·+ xn)r ≤(n− 1)r(1−1/p)(xp1 + · · ·+ xpn)r

+ (nr − nr/p(n− 1)r(1−1/p))x
r/n
1 · · ·xr/nn , ∀x1, . . . , xn ≥ 0,

(62)

with equality of and only if either (i) n = p = r = 2, or (ii) x1 = · · · = xn, or (iii) (up to a
permutation) x1 = · · · = xn−1 and xn = 0.
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Even more generally, we have the following result.

Theorem 13. Let n ≥ 2 and 1 < p ≤ n. Let Φ1,Φ2 : [0,∞) → [0,∞) be concave homeomor-
phisms. Let

γ := inf


Φ1

(
np

(n− 1)p−1
x

)
− Φ1(nx)

Φ2(x)
; x > 0

 .

Then

Φ1(n
1−p(x1 + · · ·+ xn)p) + γΦ2(n

−p(x1 + · · ·+ xn)p)

≤ Φ1(x
p
1 + · · ·+ xpn) + γΦ2(x

p/n
1 · · ·xp/nn ), ∀x1, . . . , xn ≥ 0.

(63)

One recovers, up to a multiplicative constant, (62) from (63) by letting Φ1(t) = Φ2(t) :=
tr/p, ∀ t ≥ 0. The details of the proofs are left to the reader; one follows exactly the strategy in
Step 2 above.

Here is another interesting consequence of the proof of Theorem 1.

Corollary 14. Let n ≥ 2. Then

n∑
j=1

xj lnxj ≥
n∑
j=1

xj

(
ln

(
n∑
k=1

xk

)
− lnn

)

+

(
n∑
j=1

xj − n
n∏
j=1

x
1/n
j

)
ln

(
n

n− 1

)
, ∀x1, . . . , xn > 0.

(64)

In particular, we have

(1 + t) ln(1 + t) + (1− t) ln(1− t) ≥ 2
(
1− (1− t2)1/2

)
ln 2, ∀ 0 < t < 1. (65)

Note that (64) is stronger than the convexity of the Shannon entropy, defined (up to a sign
convention) by f(t) := t ln t, ∀ t > 0. Indeed, Jensen’s inequality applied to f yields

n∑
j=1

xj lnxj ≥
n∑
j=1

xj

(
ln

(
n∑
k=1

xk

)
− lnn

)
. (66)

Thus, (64) improves indeed (66), by adding on the right-hand side of (66) a term that is > 0
(except when x1 = · · · = xn).

It turns out that inequality (65) is quite sharp near the origin, as shows Figure 1 below.

Proof of Corollary 14. We note that (64) is (57) with p = 1. It then suffices to invoke (54).
Finally, one obtains (65) from (64) by letting n = 2, x1 = 1 + t, and x2 = 1− t.
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Figure 1: The graph of t 7→ (1 + t) ln(1 + t) + (1− t) ln(1− t)− 2(1− (1− t2)1/2) ln 2.

A final consequence of the proof of Theorem 1 and of Remark 11. Given x1, x2 > 0 with
x1 6= x2, we know that

(0,∞) 3 p 7→ (xp1 + xp2)
1/p = ||(x1, x2)||p is decreasing. (67)

Step 3 in the proof of Theorem 1 (combined with Remark 11) shows that F given by (51) is in-
creasing with p ≥ 1, and this implies that

[1,∞) 3 p 7→ (xp1 + xp2)
1/p − (21/p − 1)x

1/2
1 x

1/2
2 is increasing. (68)

Note that the extra term in (68) (vs (67)) is exponentially small, and that (67)–(68) encode the
exponential rate of convergence of (xp1 + xp2)

1/p to max{x1, x2} as p → ∞, and lead to the
estimate

0 ≤ (xp1 + xp2)
1/p −max{x1, x2} ≤ (21/p − 1)x

1/2
1 x

1/2
2 , ∀ p ≥ 1, ∀x1, x2 > 0, (69)

with strict inequalities if x1 6= x2.
We now turn to the

Proof of Theorem 3. The validity of (20) and the equality case in (20) follow from Lemmas 5 and
8.

In order to prove that α0 =
2p−1

p
, it suffices to prove that if, for some α, the inequality (12)

holds with β = 2p − 2α, then we necessarily have α ≥ 2p−1

p
. To see this, we test (12) with

x1 = 1 + x, x2 = 1− x, 0 < x < 1, and find that

2p ≤ α((1 + x)p + (1− x)p) + (2p − 2α)(1− x2)p/2, ∀ 0 < x < 1. (70)

A second order Taylor expansion in (70) leads to

0 ≤ αp(p− 1)x2 +O(x3)− (2p − 2α)
p

2
x2 +O(x4),

which implies

αp(p− 1)− (2p − 2α)
p

2
≥ 0,

and therefore α ≥ 2p−1

p
.
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We end with a qualitative result concerning the optimal minimization problem (12) with
n ≥ 3 and p > n.

Proposition 15. Let n ≥ 3, p > n, and let α0 be the optimal α such that (12) holds with β as in
(11). Then:

(a) We have α0 > max

{
(n− 1)p−1,

np−1

p

}
.

(b) There exists some 0 < x < 1/(n− 1) such that, in (12) with α = α0 and β = np − nα0,
equality holds when x1 = · · · = xn−1 = 1 + x and xn = 1− (n− 1)x.

We do not claim that the above x is unique (though it is likely to be). Part (b) merely states
that, when n ≥ 3 and p > n, there always exists a non symmetric minimizer in (12). This is in
sharp contrast with the case n = 2 settled in Theorem 3.

Proof. We already know, from Proposition 4, that (n− 1)p−1 < α0 <
np−1

p
.

Step 1. For any n and p, the condition α ≥ np−1

p
is necessary for the validity of (17). Consider the set

S := {x = (x1, . . . , xn); xj ≥ 0, ∀ j, x1 + · · ·+ xn = n}.

Denote by F (x) = F (x1, . . . , xn) the right-hand side of (17). Let x ∈ S. As in the proof of
Proposition 4 (a), write xj = 1 + εj , with ε1 + · · · + εn = 0, and set ξ := ε21 + · · · + ε2n. A
second order Taylor expansion of the quantities on the right-hand side of (12) yields, thanks
to the identity (23),

xp1 + · · ·+ xpn = n+
p(p− 1)

2
ξ + o(ξ),

x
p/n
1 · · ·xp/nn = 1− p

2n
ξ + o(ξ),

and thus, assuming (12), we have

np ≤ F (x) = np +
p2

2

[
α0 −

np−1

p

]
ξ + o(ξ). (71)

Letting ε1 = · · · = εn−1 = ε > 0 and εn = −(n− 1)ε in (71) and then ε→ 0, we find that

α ≥ np−1

p
.

Step 2. If p ≥ 3 andn ≥ 3, then (17) does not hold whenα =
np−1

p
. With εj as above andα =

np−1

p
,

a tedious calculation shows that

F (1 + ε, . . . , 1 + ε, 1− (n− 1)ε)

= np − p(n− 1)(n− 2)

6
[nα(p− 3) + 2np] ε3 + o(ε3)

= np − Cε3 + o(ε3),

with C > 0, and thus, as claimed, (17) does not hold. (Note that here we use the assumption
n > 2.)
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Step 3. Existence of non symmetric minimizers. We study the minimizers of the right-hand side of
(17) with α = α0 under the constraint x ∈ S. Note that xj > 0, ∀ j (since α0 > (n− 1)p−1). Also
note that, as explained in the second strategy (end of Section 2), if x achieves the equality, then
either x1 = · · · = xn, or, up to a permutation, the conclusion of Proposition 15 (b) holds. It
thus suffices to prove that there exists some x ∈ S, x 6= x := (1, . . . , 1), achieving equality in
(17). Argue by contradiction, and suppose that F (x) > np for every x ∈ S \ {x}. By (71) and

the fact that α0 >
np−1

p
, there exist someC1 > 0 and δ such that

[x ∈ S, ||x− x||1 ≤ δ] =⇒ F (x)− np = F (x)− F (x) ≥ C1||x− x||21. (72)

On the other hand, we have assumed, by contradiction, that F (x) > np if x ∈ S \ {x}, and
therefore, by compactness, there exists someC2 > 0 such that

[x ∈ S, ||x− x||1 ≥ δ] =⇒ F (x)− np ≥ C2. (73)

Consider now

G(x) := xp1 + · · ·+ xpn − nx
p/n
1 · · ·xp/nn .

ThenG is smooth and bounded inS, and has a unique global minimum atx, whereG vanishes.
Therefore, there exists someK > 0 such that

G(x) ≤ K1||x− x||21, ∀x ∈ S. (74)

Combining (72)–(74) with the fact that

||x− x||1 ≤ 2(n− 1), ∀x ∈ S,

we find that (17) still holds for α := α0 − ε and β := np − nα, where ε > 0 is such that

ε ≤ min{C1/K,C2/(4(n− 1)2K)}.

This contradicts the minimality of α0 and completes the proof of Proposition 15.
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