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We exhibit the optimal inequalities of the form

We prove that, when p > n, a qualitative change occurs in the second inequality, and we present some partial results in the range p > n ≥ 3.

As a byproduct of our analysis, we obtain a quantitative form of the strict convexity of the Shannon entropy.

Introduction

The question we address here is the one of the explicit optimal estimates interpolating between the standard inequalities involving the generalized means of positive numbers. To give a very simple example of the type of inequalities we have in mind, let H, G, and A denote the harmonic, geometric, and arithmetic mean of the positive numbers x, y. Then

G ≤ 1 2 A + 1 2 H, ( )
which, granted the inequality

H ≤ G, ( )
is a refinement of the inequality

G ≤ A. ( )
One may easily prove that ( ) is the optimal improvement of ( ) via ( ), in the sense that, if a, b ∈ (0, 1), a + b = 1 ( ) and G ≤ aA + bH, ∀ x, y > 0, ( ) then we necessarily have a ≥ 1/2, and thus all the valid inequalities of the form ( ) (under the constraint ( )) are convex combinations of ( ), ( ), and ( ).

Another observation, somewhat marginal in what follows, is that for every a ∈ (0, 1) there exists some b, not necessarily satisfying ( ), such that ( ) holds. It is actually easy to see that the optimal b is given by

b = b(a) := 1 -a, if 1/2 ≤ a < 1 4/a, if 0 < a < 1/2 .
More generally, consider the generalized means

M p = M p (x 1 , . . . , x n ) :=      x p 1 + • • • + x p n n 1/p , if p = 0 x 1/n 1 • • • x 1/n n , if p = 0
, n ≥ 2, p ∈ R, x 1 , . . . , x n > 0.

If p 0 < p 1 < p 2 , then M p 0 (x 1 , . . . , x n ) ≤ M p 1 (x 1 , . . . , x n ) ≤ M p 2 (x 1 , . . . , x n ), ∀ x 1 , . . . , x n > 0, ( ) and one can ask about the analogues of ( ) and ( ) in this setting, with focus on the exact value of the optimal a. I do not know the answer in such a general setting; however, I will give the full analogue of ( ) when p 0 = 0. My original interest for this special case comes from the elementary but noticeable inequality

(x 1 + • • • + x n ) 2 ≤ (n -1)(x 2 1 + • • • + x 2 n ) + nx 2/n 1 • • • x 2/n n , ∀ n ≥ 2, ∀ x 1 , . . . , x n ≥ 0, ( )
that I learned from Dospinescu [ ]. Inequality ( ) is quoted in Senderov and Turkevich [ ] and attributed to Shleifer. Clearly, ( ) can be rewritten as

M 2 1 ≤ 1 - 1 n M 2 2 + 1 n M 2 0 , ( )
and thus, indeed, ( ) is a refinement of the second inequality in ( ) (with p j = j, j = 0, 1, 2).

The not so usual feature of ( ) is that equality is achieved not only when x 1 = . . . = x n (as one expects), but also when, up to a permutation, x 1 = . . . = x n-1 and x n = 0. Motivated by the above considerations, the two inequalities I investigate are

M p 2 p 1 ≤ aM p 2 p 2 + bM p 2 0 , ( ) respectively M p 1 ≤ aM p 2 + bM 0 , ( ) where 0 < p 1 < p 2 .
Let us note that we may assume, with no loss of generality, that p 1 = 1. (Perform the substitution x j = y 1/p 1 j .) From now on, we assume p 1 = 1 and set p := p 2 > 1, α := an p-1 , β := bn p . Then ( ), respectively ( ), amount to

0 < α < n p-1 , 0 < β < n p , nα + β = n p , ( ) 
(x 1 + • • • + x n ) p ≤ α(x p 1 + • • • + x p n ) + βx p/n 1 • • • x p/n n , ∀ x 1 , . . . , x n ≥ 0. ( )
Similarly, ( ) and ( ) amount to

0 < α < n 1-1/p , 0 < β < n, n 1/p α + β = n, ( ) 
x 1 + • • • + x n ≤ α(x p 1 + • • • + x p n ) 1/p + βx 1/n 1 • • • x 1/n n , ∀ x 1 , . . . , x n ≥ 0. ( )
It is easy to see that there exists a minimal α 0 such that ( ) and( ) hold; see Proposition below. (The existence of the corresponding α 0 for ( ) follows from Theorem .) More delicate is the matter of the exact value of α 0 and the characterization of the cases of equality in ( ) and ( ). As we will see, below, despite their formal resemblance, ( ) and ( ) exhibit di ferent behaviors when p > n.

Before proceeding further, let us make a simple observation. Assume that ( ) holds. Letting

x 1 = • • • = x n-1 = 1 and x n = 0, we find that α ≥ (n -1) p-1 . ( ) Similarly, if ( ) holds, then α ≥ (n -1) 1-1/p . ( )
We may now state our main result, which, in view of ( ) and ( ), is optimal.

Theorem .

. Let n ≥ 2 and 1 < p ≤ n. Then

(x 1 + • • • + x n ) p ≤(n -1) p-1 (x p 1 + • • • + x p n ) + (n p -n(n -1) p-1 )x p/n 1 • • • x p/n n , ∀ x 1 , . . . , x n ≥ 0. ( ) Moreover, equality holds in ( ) if and only if either (i) n = p = 2, or (ii) x 1 = • • • = x n , or (iii) (up to a permutation) x 1 = • • • = x n-1 and x n = 0.
. Let n ≥ 2 and 1 < p < ∞. Then

x 1 + • • • + x n ≤(n -1) 1-1/p (x p 1 + • • • + x p n ) 1/p + (n -n 1/p (n -1) 1-1/p )x 1/n 1 • • • x 1/n n , ∀ x 1 , . . . , x n ≥ 0. ( )
Moreover, equality holds in ( ) if and only if either (i)

x 1 = • • • = x n or (ii) (up to a permutation) x 1 = • • • = x n-1 and x n = 0.

Remark .

. In some special cases, ( ) was known before. Indeed, the case p = 2 corresponds to ( ). On the other hand, ( ) was already known to hold when p = 3, p = 4, and p = n (see Cîrtoaje [ , Remarks . and . , and the references therein]).

. In the range 1 < p ≤ n, ( ) and ( ) can be embedded into a larger family of inequalities; see Theorems and in Section .

. When n = 2 and 1 < p < 2, an equivalent form of ( ) is

(1 + x) p + (1 -x) p ≥ 2 p -(2 p -2)(1 -x 2 ) p/2 , ∀ x ∈ [0, 1]. ( )
(To reduce ( ) to ( ), assume, without loss of generality, that x 1 + x 2 = 2 and x 1 ≥ x 2 , write x 1 = 1 + x and x 2 = 1 -x and plug this into ( ).) The interested reader may easily check that ( ) is, for small x > 0, a refinement of the well-known Clarkson's inequality [ , ineq. ( )]

(1 + x) p + (1 -x) p ≥ 2(1 + x p/(p-1) ) p-1 , ∀ 1 < p < 2, ∀ 0 ≤ x ≤ 1.
We next investigate the case p > n in ( ). Noticeably, ( ) does not hold anymore (Proposition ), so that the restriction p ≤ n is necessary in ( ).

A second main result yields the explicit optimal inequality ( ) when n = 2 and p > 2.

Theorem . Assume that n = 2 and p > 2. Then the optimal inequality of the form ( ) is

(x + y) p ≤ 2 p-1 p (x p + y p ) + 2 p p -1 p x p/2 y p/2 , ∀ p > 2, ∀ x, y ≥ 0. ( )
Equality occurs in ( ) if and only if x = y.

Note that not only the formula of α 0 changes at the critical value p = 2, but also the equality case is di ferent.

The exact value of α 0 in ( ) when n ≥ 3 and p > n is unknown (at least to me). We warn the reader that, despite what ( ) might suggest, α 0 is not given by α 0 = n p-1 p . See Proposition for additional information on α 0 and on the equality case.

The remaining sections are devoted to the proofs. In Section , we explain the strategy for obtaining ( ), ( ), and the equality cases. The main auxiliary estimates, which are at the heart of the proof of Theorems and , are obtained in Section . In Section , we prove the main results and derive some noticeable consequences. The proof of Theorem is not so standard: (i) first, we prove ( ); (ii) next, we prove that ( ) implies ( ) in the range 1 < p ≤ n; (iii) finally, we prove that the validity of ( ) for p close to 1 implies the validity of ( ) for every p > 1. The self-improvement argument in the final step of the proof of Theorem is of independent interest and should be useful in the proof of more general inequalities of the form ( ) (but we did not investigate ( ) in full generality). Last but not least, we obtain in Section an amusing consequence of Theorem : a quantitative strong convexity inequality involving the Shannon entropy (Corollary ).

Preliminary remarks

We start by establishing the existence of an optimal α 0 in ( ). (The existence of an optimal α 0 in ( ) is part of Theorem .) It will be clear that the arguments we present here for p 0 = 0 and p 1 = 1 can be easily adapted to all p 0 < p 1 < p 2 . Let us note that, by homogeneity, it su fices to investigate the validity of ( ) or ( ) when

x 1 + • • • + x n = n. Proposition . Let n ≥ 2 and 1 < p < ∞.
(a) Consider the set

A := {0 < α < n p-1 ; ( ) holds with β as in ( )}. Then A is of the form [α 0 , n p-1 ), with α 0 ≥ (n -1) p-1 . (b) If p > n and α = (n -1) p-1
, then there exists no finite β such that ( ) holds. In particular, we have α 0 > (n -1) p-1 .

(c) If p > n and (n -1) p-1 < α < n p-1 , then there exists some β > 0 (not necessarily satisfying ( )) such that ( ) holds.

Proof.

Step . Proof of (b). Argue by contradiction. Plug, into ( ),

x 1 = • • • = x n-1 = 1 and x n = (n -1)ε > 0.
Then, for some β < ∞, we have

(n -1 + (n -1)ε) p = (n -1) p (1 + ε) p ≤ (n -1) p + (n -1) 2p-1 ε p + β(n -1) p/n ε p/n , which implies that (n -1) p + (n -1) p pε + O(ε 2 ) ≤ (n -1) p + O(ε p/n ),
a contradiction (since p n > 1).

Step . Proof of (c). Argue by contradiction. Let k ≥ 1 be an integer. Consider x 1,k , . . . , x n,k ≥ 0, with sum n and such that ( ) with β = k is not satisfied by x 1,k , . . . , x n,k . This implies that

x 1,k • • • x n,k → 0 as k → ∞.
Up to a subsequence and a permutation, we may assume that x j,k → x j as k → ∞, and that x n = 0. We find that

(x 1 + • • • + x n-1 ) p ≥ α(x p 1 + • • • + x p n-1
) and (x 1 , . . . , x n-1 ) = (0, . . . , 0), and this contradicts the assumption α > (n -1) p-1 .

Step . Proof of (a). The only issue is to prove that A is non empty; if this is the case, then A clearly has the desired form. Argue by contradiction and assume that, for every 0 < α < n p-1 , there exist x 1,α , . . . , x n,α ≥ 0 with sum n such that

α(x p 1,α + • • • + x p n,α ) + (n p -nα)x p/n 1,α • • • x p/n n,α < n p . ( ) Consider x 1 , . . . , x n such that, along some subsequence α k → n p-1 , we have x j,α k → x j as k → ∞, ∀ 1 ≤ j ≤ n.
From ( ), we find that

x p 1 + • • • + x p n ≤ n = n x 1 + • • • x n n p , which implies x j = 1, ∀ 1 ≤ j ≤ n. Write x j,α k = 1 + ε j = 1 + ε j,k , with ε 1,k + • • • + ε n,k = 0 and ε j,k → 0 as k → ∞, ∀ 1 ≤ j ≤ n.
From now on, we omit the subscript k. Note that, with ξ :

= ε 2 1 + • • • + ε 2 n → 0 as k → ∞, we have ξ > 0 (by ( )) and x 1 . . . x n = (1 + ε 1 ) • • • (1 + ε n ) = 1 + ε 1 + • • • + ε n + i<j ε i ε j + o(ξ) = 1 + i<j ε i ε j + o(ξ) = 1 - 1 2 ξ + o(ξ), ( )
where we have used the fact that

ε 1 + • • • + ε n = 0 and thus i<j ε i ε j = - 1 2 ξ. ( )
Using ( ) and a second order Taylor expansion, we find that ( ) can be rewritten as

n p >α + α p(p -1) 2 ξ + o(ξ) + (n p -nα) -(n p -nα) p 2n ξ + o(ξ) =n p + α - n p-1 p p 2 2 :=γ(α) ξ + o(ξ) = n p + γ(α)ξ + o(ξ), ( )
and it is clear that o(ξ) is locally uniform in α and ξ, i.e., given τ > 0 and an interval [α, α] ⊂ [0, ∞), there exists some δ > 0 such that

|o(ξ)| ≤ τ ξ, ∀α ∈ [α, α], ∀ ξ ∈ [0, δ].
From the above the desired contradiction follows from ( ) by letting, in ( ), α = α k and then k → ∞, provided we have γ(n p-1 ) > 0, which is clear.

We next present the two approaches we use for studying the sharp value of α 0 in ( ). While the second one is, in some sense, more general, the first one seems more e fective in the proof of Theorems and . We will use the second one to give some insight on the optimal inequality ( ) in the range p > n ≥ 3. First approach. Let α, β > 0, and consider the constrained minimization problem

µ := min α(x p 1 + • • • + x p n ) + βx p/n 1 • • • x p/n n ; x 1 , . . . , x n ≥ 0, x 1 + • • • + x n = n . ( )
Clearly, µ is attained, and, at a minimum point (x 1 , . . . , x n ), one of the following two happens. First possibility. Up to a permutation, we have x n = 0. In this case, we have

µ = α n p (n -1) p-1 and x 1 = • • • = x n-1 = n n -1 .
Second possibility. We have x 1 , . . . , x n > 0. In this case, there exists a Lagrange multiplier λ > 0 such that

αpx p-1 j + β p n A x j = λ, ∀ 1 ≤ j ≤ n, ( )
where

A := x p/n 1 • • • x p/n n > 0.
Since the function

(0, ∞) x → αpx p-1 + β p n
A x takes at most twice a given positive value, it follows that, at a minimum point, the x j 's can take at most two distinct values. If

x 1 = • • • = x n (= 1), then µ = nα + β.
Otherwise, there are integers , m ≥ 1 and a number x such that, up to a permutation,

+ m = n, 0 < x < 1 m , x 1 = • • • = x m = 1 + x, x m+1 = • • • = x n = 1 -mx. ( ) (
The second approach will tell us that = 1 and m = n -1, but we ignore this fact at this stage.) Although this is not the route we will exploit below, we have obtained that

µ = min α n p (n -1) p-1 , nα + β, c 1 , . . . , c n-1 , where c m := min f m (x); 0 ≤ x ≤ 1 m and f m (x) :=α[m(1 + (n -m)x) p + (n -m)(1 -mx) p ] + β(1 + (n -m)x) mp/n (1 -mx) (n-m)p/n , 1 ≤ m ≤ n -1, 0 ≤ x ≤ 1 m .
Thus the validity of ( ) amounts to the estimate of the minimal values of the one variable functions f m , 1 ≤ m ≤ n -1.

We now turn to the more specific situations considered in Theorems and . Let us note that we then have

nα + β = n p and (n -1) p-1 ≤ α < n p-1 . ( )
In particular, since (by ( )

) µ ≤ nα + β, ( ) implies that µ ≤ n p . ( )
In view of the above, we have: either (i) µ = n p (which is the desired inequality ( )) or (ii) ( ) and ( ) hold. We investigate the latter possibility. Multiplying ( ) by x j and summing over j, we find that pµ = nλ.

( )

On the other hand, ( ) also yields

(1 + x) p -(1 -mx) p = x p 1 -x p n = λ pα ((1 + x) -(1 -mx)) = λ pα nx. ( )
Inserting ( ) into ( ) and using ( ), we find that

(1 + x) p -(1 -mx) p = µ α x ≤ n p α x.
We are now at the heart of our first strategy. The above considerations imply the following Lemma . Let n ≥ 2, p > 1, (n -1) p-1 ≤ α < n p-1 , and set β := n p -nα. Assume that:

(1 + x) p -(1 -mx) p > n p α x, ∀ , m ≥ 1 integers such that + m = n, ∀ 0 < x < 1 m . ( )
Then ( ) holds, with equality if and only if:

(a) Either α > (n -1) p-1 and

x 1 = • • • = x n . (b) Or α = (n -1) p-1 and either x 1 = • • • = x n or, up to a permutation, x 1 = • • • = x n-1 and x n = 0.
In order to obtain Theorems and , we will prove that, for n, p, and α as in these statements, inequality ( ) holds. This is the content of the next section. Second approach. This is limited to n ≥ 3, and applies to both ( ) and ( ). Consider again the minimization problem ( ). If (x 1 , . . . , x n ) is a competitor, then 0 ≤ x 1 • • • x n ≤ 1, and thus

µ := min α(x p 1 + • • • + x p n ) + βt p ; x 1 , . . . , x n ≥ 0, x 1 + • • • + x n = n, x 1/n 1 • • • x 1/n n = t .
We next invoke the next result [ , Corollary . ]: for fixed 0 ≤ t ≤ 1, a minimizer of

x p 1 +• • •+x p n under the constraints x 1 , . . . , x n ≥ 0, x 1 + • • • + x n = n, x 1 • • • x n = t n ,
is, up to a permutation, an (unique) n tuple (x 1 , . . . , x n ) such that

x 1 = • • • = x n-1 ≥ x n .
This leads to the following consequence.

Lemma . Let n ≥ 3 and 1 < p < ∞. Then the optimal α 0 in ( ) is the smallest α such that

α[(n -1)(1 + x) p + (1 -(n -1)x) p ] + (n p -nα)× × (1 + x) (n-1)p/n (1 -(n -1)x) p/n ≥ n p , ∀ 0 ≤ x ≤ 1/(n -1).
Similarly for the optimal α 0 in ( ).

A final remark. Going back to ( ), the second approach learns us that, in order to use ( ) in the proof of Theorem , it su fices establish its validity in the case = 1. However, since we think that the proof Lemma below is of independent interest, we provide the argument in the full range 1 ≤ ≤ n -1.

The main auxiliary inequalities

Lemma . Let n ≥ 2 and 1 < p ≤ n. Set α := (n -1) p-1 . Assume that (n, p) = (2, 2). Then ( ) holds.

Lemma . Let n = 2 and p > 2. Set α := 2 p-1 p . Then 1 < α < 2 p-1 and ( ) holds.

Proof of Lemma . We have to prove that, when n ≥ 2, 1 < p ≤ n, (n, p) = (2, 2), and , m ≥ 1 are integers with + m = n, we have

f (x) > n p (n -1) p-1 x, ∀ 0 < x < 1 m , ( )
where

f (x) := (1 + x) p -(1 -mx) p , ∀ 0 ≤ x ≤ 1 m .
For further use, let us note that

f (x) = p[ (1 + x) p-1 + m(1 -mx) p-1 ], ∀ 0 ≤ x ≤ 1 m , ( ) 
f (x) = p(p -1)[ 2 (1 + x) p-2 -m 2 (1 -mx) p-2 ], ∀ 0 ≤ x < 1 m , ( ) 
f (x) = p(p -1)(p -2)[ 3 (1 + x) p-3 + m 2 (1 -mx) p-3 ], ∀ 0 ≤ x < 1 m , ( )
and that ( ) still holds for x = 1 m provided p > 2.

Step . Proof of ( ) when p = 2 and n ≥ 3. A ter some elementary manipulations, we see that, in this case, ( ) amounts to

(2m -n)x = (m -)x < 2 - n n -1 , ∀ 0 < x < 1 m . ( ) If m ≤ n 2 , then m -≤ 0 and ( ) is clear. If m > n 2
, then ( ) amounts to

(2m -n) 1 m = 2 - n m ≤ 2 - n n -1 , which holds since m ≤ n -1.
Step . Proof of ( ) when 2 < p ≤ n: the case where = 1.

Set b := 1 m = 1 n -1 . We note that f (x) > 0, ∀ 0 ≤ x < 1 m (since p > 2), f (0) < 0 (since = 1 < n -1 = m), and 
f (b) > 0.
Therefore, there exists some a ∈ (0, b) such that f is strictly concave on [0, a] and strictly convex on [a, b].

We next note that

f (b) = n p (n -1) p = n p (n -1) p-1 b ( ) and (since p ≤ n) f (b) = p n p-1 (n -1) p-1 ≤ n p (n -1) p-1 . ( )
Combining ( ) and ( ) with Lemma below (whose proof is postponed until the end of this section), applied with A = n p (n -1) p-1 , we obtain ( ). This completes Step .

Lemma . Let 0 < a < b and let f : [0, b] → R be a continuous function, which is concave on [0, a] and strictly convex on [a, b].

Let A ∈ R. If f (0) = 0, f (b) ≥ Ab, and f (b-) ≤ A, then f (x) > Ax, ∀ x ∈ (0, b).
Step . Proof when 2 < p ≤ n: the general case. The proof is by induction on . The case = 1 was settled in Step . We assume that 2 ≤ ≤ n -1 and that ( ) holds with -1, respectively m + 1, in place of , respectively m.

Step . . Proof of ( ) when 0 < x < 1 m + 1

. Let us note the following easy consequence of Jensen's inequality. If g : I → R is strictly convex (with I an interval) and x < y < z < t are points in I such that x + t = y + z, then g(x) + g(t) > g(y) + g(z). With the choice g(x) := x p , ∀ x ≥ 0, we obtain that

(1 + x) p -(1 -mx) p > (1 + ( -1)x) p -(1 -(m + 1)x) p ≥ n p (n -1) p-1 x, ∀ 0 < x ≤ 1 m + 1
, the latter inequality following from the induction hypothesis. This yields ( ) when 0 < x ≤ 1 m + 1 .

It remains to prove ( ) when

1 m + 1 < x < 1 m .
Step . . Reduction to an inequality at the endpoint x = 1 m . By ( ), we have

f (x) ≥ p (1 + x) p-1 ≥ p (n + 1) p-1 (m + 1) p-1 , ∀ 1 m + 1 ≤ x ≤ 1 m ,
and therefore

f (x) ≥ f 1 m + 1 + p (n + 1) p-1 (m + 1) p-1 x - 1 m + 1 , ∀ 1 m + 1 ≤ x ≤ 1 m .
It thus su fices to prove that

f 1 m + 1 + p (n + 1) p-1 (m + 1) p-1 x - 1 m + 1 > n p (n -1) p-1 x, ∀ 1 m + 1 ≤ x ≤ 1 m . ( )
Since both sides of ( ) are a fine functions, it su fices to establish ( ) when x = 1 m + 1

and x = 1 m . When x = 1 m + 1
, ( ) holds, by Step . . Therefore, it remains to prove ( ) when

x = 1 m , which amounts to n p (n -1) p-1 (m + 1) p < m [(n + 1) p -1] + p(n -m)(n + 1) p-1 , ∀ 1 ≤ m ≤ n -2. ( )
Step . . Proof of ( ). Since the le t-hand side of ( ) is convex, as a function of m > -1, and the right-hand side of ( ) is a fine in m, it su fices to prove ( ) when m = 0, respectively when m = n -2.

When m = 0, ( ) reads

n n 2 -1 p-1 < p, which holds since p > 1 and n < n 2 -1. When m = n -2, ( ) is equivalent to n(n -1) n n + 1 p-1 + n -2 (n + 1) p-1 -(n + 1)(n -2) -2p < 0. ( )
Since the le t-hand side of ( ) decreases with p, it su fices to establish ( ) when p = 2. In this case, ( ) is equivalent to n 2 + 4 > 0.

Step is completed.

Step . Proof of ( ) when 1 < p < 2: the case where ≤ m. By ( ) and the assumption p < 2, we have f (x) < 0, ∀ 0 < x < 1 m , and thus f is strictly concave. The validity of ( ) then follows from f (0) = 0 and

f 1 m = n p m p = n p m p-1 1 m ≥ n p (n -1) p-1 1 m .
Step . Proof of ( ) when 1 < p < 2: the general case. The case ≤ m being settled in Step , we assume that > m. Set b := 1 m . By ( ), ( ), and the assumption > m, we have f (0) > 0, f (b-) = -∞, and therefore there exists some a ∈ (0, b) such that f is strictly convex on [0, a] and strictly concave on [a, b].

We next note that

f (b) = n p m p ≥ n p (n -1) p-1 b, ( ) 
f (0) = np > n p (n -1) p-1 .
( ) Indeed, inequality ( ) is clear. In order to prove ( ), which amounts to

n n -1 p - n n -1 p < 0, ∀ n ≥ 2, ∀ 1 < p < 2, ( )
we note that the le t-hand side of ( ) is strictly convex in p, and therefore it su fices to prove the large inequality in ( ) at the endpoints p = 1 and p = 2; both these inequalities are obvious. We obtain ( ) from ( ), ( ), and Lemma below (whose proof is postponed until the end of this section), applied with

A = n p (n -1) p-1 . Lemma . Let 0 < a < b and let f : [0, b] → R be a continuous function, which is strictly convex on [0, a] and concave on [a, b]. Let A ∈ R. If f (0) = 0, f (b) ≥ Ab, and f (0+) ≥ A, then f (x) > Ax, ∀ x ∈ (0, b).
The proofs of Step and of Lemma are complete.

Proof of Lemma . The inequality α < 2 p-1 is clear. The inequality α > 1, or, equivalently, 2 p-1 -p > 0, ∀ p > 2, follows from the fact that (0, ∞) p → g(p) := 2 p-1 -p is convex and satisfies g(2) = 0 and g (2) = 2 ln 2 -1 > 0.

It remains to prove that

f (x) > 2px, ∀ x ∈ (0, 1), ( )
where

f (x) := (1 + x) p -(1 -x) p , ∀ x ∈ [0, 1].
Since f (0) = 0, ( ) holds provided we have

f (x) > 2p, ∀ x ∈ (0, 1]. ( )
In turn, ( ) follows from the strict convexity inequality

f (x) = p(1 + x) p-1 + p(1 -x) p-1 = 2p (1 + x) p-1 + (1 -x) p-1 2 > 2p 1 2 (1 + x) + 1 2 (1 -x) p-1 = 2p
(recall that p > 2 and thus p -1 > 1).

Proof of Lemma . It su fices to consider the case where A = 0 (then apply this case to the map

[0, b] ∈ x → f (x) -Ax). Since f is strictly convex on [a, b], we have f (x) > f (b) + (x -b)f (b-) ≥ 0, ∀ x ∈ [a, b),
and, in particular, f (a) > 0.

Since f is concave on [0, a], f (0) = 0, and f (a) > 0, we have f (x) > 0, ∀ x ∈ (0, a).

Proof of Lemma . Again, it su fices to consider the case where A = 0.

Since f is strictly convex on [0, a], f (0) = 0, and f (0+) ≥ 0, we have f (x) > 0, ∀ x ∈ (0, a], and in particular f (a) > 0.

Since f is concave on [a, b], f (a) > 0 and f (b) ≥ 0, we have f (x) > 0, ∀ x ∈ (a, b).

Proof of the main results

Proof of Theorem .

Step . Proof of ( ). The validity of ( ) and the equality cases in ( ) follow from Lemmas and , and the obvious fact that, when n = 2 and p = 2, the inequality ( ) is actually an identity.

Step . Proof of ( )

when 1 < p ≤ n. Let x 1 , . . . , x n ≥ 0 satisfy x 1 + • • • + x n = n.
(By homogeneity, this assumption is not restrictive.) Set

t := x 1/n 1 • • • x 1/n n ∈ [0, 1]
. By ( ), we have

x p 1 + • • • + x p n ≥ n p (n -1) p-1 - n p (n -1) p-1 -n t p . ( )
In view of ( ), we see that the desired inequality ( ) and the characterization of the equality cases hold provided

(n -1) 1-1/p n p (n -1) p-1 - n p (n -1) p-1 -n t p 1/p ≥ n -[n -n 1/p (n -1) 1-1/p ]t, ∀ t ∈ [0, 1], ( )
with equality only when t = 0 and t = 1.

We next note that ( ) can be rewritten as

[n p -n(n -1) p-1 ]t p + (n -[n -n 1/p (n -1) 1-1/p ]t) p ≤ n p , ∀ t ∈ [0, 1]. ( )
Clearly, (i) the le t-hand side of ( ) is strictly convex in t, and (ii) ( ) holds with equality for t = 0 and t = 1. Therefore, ( ) is valid, with strict inequality when t ∈ (0, 1). This completes the proof of ( ) when 1 < p ≤ n.

Step . Proof of ( ) in the full range 1 < p < ∞. Set, for 1 ≤ p < ∞ and x = (x 1 , . . . ,

x n ) ∈ [0, ∞) n , F (x, p) := (n -1) 1-1/p n j=1 x p j 1/p + (n -n 1/p (n -1) 1-1/p ) n j=1 x 1/n j - n j=1 x j . ( ) Let Y denote the set of points x ∈ [0, ∞) n such that either (i) x 1 = • • • = x n or (ii) up to a permutation, x 1 = • • • = x n-1 and x n = 0. Our aim is to prove that for 1 < p < ∞ and x ∈ [0, ∞) n , F (x, p) > 0 unless x ∈ Y . ( ) 
Clearly, ( ) holds if at least one of x 1 , . . . , x n vanishes. On the other know, we know, from Step , that ( ) holds for 1 < p ≤ n. Therefore, it su fices to prove that, for

x ∈ (0, ∞) n , F (x, •) is non-decreasing in p, i.e., that ∂F ∂p (x, p) ≥ 0, ∀ x ∈ (0, ∞) n . ( )
The key observation is that, since ( ) is valid for 1 ≤ p ≤ n, with equality when p = 1, we have ∂F ∂p (y, 1) ≥ 0, ∀ y ∈ (0, ∞) n . ( )

We will obtain ( ) by combining ( ) with the following inequality:

for every x ∈ (0, ∞) n and 1 < p < ∞, there exist

K = K(x, p) > 0 and y = y(x, p) ∈ (0, ∞) n such that ∂F ∂p (x, p) ≥ K ∂F ∂p (y, 1), ( )
that we next prove.

Step . Proof of ( ). Set

S = S(x) := x p 1 + • • • + x p n .
First, let us note that F (tx, p) = tF (x, p), ∀ t > 0, and thus it su fices to prove ( ) for a (positive) multiple of x. It will be convenient for us to consider points x ∈ (0, ∞) n satisfying the constraint

S(x) = 1. ( ) If x ∈ (0, ∞) n , then we have ∂F ∂p (x, p) = 1 p 2 (n -1) 1-1/p [S(x)] 1/p ln(n -1) + (n -1) 1-1/p [S(x)] 1/p       - 1 p 2 ln(S(x)) + 1 p n j=1 x p j ln x j S(x)       + 1 p 2 n 1/p (n -1) 1-1/p n j=1 x 1/n j ln n n -1 . 
( )

Under the constraint ( ), ( ) reads

p 2 (n -1) 1/p-1 ∂F ∂p (x, p) = ln(n -1) + n j=1 x p j ln(x p j ) + n n n j=1 x p j 1/(np) ln n n -1 . 
( )

In particular, ( ) becomes, for p = 1 and y := (x p 1 , . . . , x p n ) (which satisfies ( ) with p = 1),

∂F ∂p (y, 1) = ln(n -1) + n j=1 x p j ln(x p j ) + n n n j=1 x p j 1/n ln n n -1 . ( ) 
Next, we note that the condition ( ) implies that n n x p 1 • • • x p n ≤ 1 and thus

n n n j=1 x p j 1/(np) ≥ n n n j=1 x p j 1/n , ∀ p ≥ 1. ( )
Combining ( )-( ), we find that p 2 (n -1) 1/p-1 ∂F ∂p (x, p) ≥ ∂F ∂p (y, 1), ( ) so that ( ) holds, as claimed. This completes Step and the proof of Theorem .

Remark . If x ∈ S, then the inequalities ( ) and ( ) are strict. It follows that, for such x, F (x, p) is increasing in p.

We next present several noticeable consequences of Theorem and its proof. First, let us note that, in Step in the proof of Theorem , the strategy consists of obtaining ( ) from ( ) and a convexity argument. Following the same strategy, one obtains the family of inequalities ( ) below, containing ( ) and ( ) as special cases.

Theorem . Let n ≥ 2, 1 < p ≤ n, and 0 < r ≤ p. Then (x 1 + • • • + x n ) r ≤(n -1) r(1-1/p) (x p 1 + • • • + x p n ) r + (n r -n r/p (n -1) r(1-1/p) )x Even more generally, we have the following result.

Theorem . Let n ≥ 2 and 1 < p ≤ n. Let Φ 1 , Φ 2 : [0, ∞) → [0, ∞) be concave homeomorphisms. Let

γ := inf        Φ 1 n p (n -1) p-1 x -Φ 1 (nx) Φ 2 (x) ; x > 0        . Then Φ 1 (n 1-p (x 1 + • • • + x n ) p ) + γΦ 2 (n -p (x 1 + • • • + x n ) p ) ≤ Φ 1 (x p 1 + • • • + x p n ) + γΦ 2 (x p/n 1 • • • x p/n n ), ∀ x 1 , . . . , x n ≥ 0. ( )
One recovers, up to a multiplicative constant, ( ) from ( ) by letting Φ 1 (t) = Φ 2 (t) := t r/p , ∀ t ≥ 0. The details of the proofs are le t to the reader; one follows exactly the strategy in Step above.

Here is another interesting consequence of the proof of Theorem .

Corollary . Let n ≥ 2. Then n j=1

x j ln x j ≥ n j=1

x j ln n k=1

x k -ln n

+ n j=1
x j -n n j=1

x 1/n j ln n n -1 , ∀ x 1 , . . . , x n > 0.

( )

In particular, we have

(1 + t) ln(1 + t) + (1 -t) ln(1 -t) ≥ 2 1 -(1 -t 2 ) 1/2 ln 2, ∀ 0 < t < 1. ( ) Note that ( ) is stronger than the convexity of the Shannon entropy, defined (up to a sign convention) by f (t) := t ln t, ∀ t > 0. Indeed, Jensen's inequality applied to f yields Proof of Corollary . We note that ( ) is ( ) with p = 1. It then su fices to invoke ( ). Finally, one obtains ( ) from ( ) by letting n = 2, x 1 = 1 + t, and x 2 = 1 -t.

  r/n 1 • • • x r/n n , ∀ x 1 , . . . , x n ≥ 0, ( )with equality of and only if either (i) n = p = r = 2, or (ii)x 1 = • • • = x n , or (iii) (up to a permutation) x 1 = • • • = x n-1 and x n = 0.

  indeed ( ), by adding on the right-hand side of ( ) a term that is > 0(except when x 1 = • • • = x n ).It turns out that inequality ( ) is quite sharp near the origin, as shows Figure below.

The graph of t → (1 + t) ln(1 + t) + (1 -t) ln(1 -t) -2(1 -(1 -t 2 ) 1/2 ) ln 2.

A final consequence of the proof of Theorem and of Remark . Given x 1 , x 2 > 0 with x 1 = x 2 , we know that

Step in the proof of Theorem (combined with Remark ) shows that F given by ( ) is increasing with p ≥ 1, and this implies that

Note that the extra term in ( ) (vs ( )) is exponentially small, and that ( )-( ) encode the exponential rate of convergence of (x p 1 + x p 2 ) 1/p to max{x 1 , x 2 } as p → ∞, and lead to the estimate

We now turn to the Proof of Theorem . The validity of ( ) and the equality case in ( ) follow from Lemmas and .

In order to prove that α 0 = 2 p-1 p , it su fices to prove that if, for some α, the inequality ( ) holds with β = 2 p -2α, then we necessarily have α ≥ 2 p-1 p . To see this, we test ( ) with

, and find that

A second order Taylor expansion in ( ) leads to

and therefore α ≥ 2 p-1 p .

We end with a qualitative result concerning the optimal minimization problem ( ) with n ≥ 3 and p > n.

Proposition . Let n ≥ 3, p > n, and let α 0 be the optimal α such that ( ) holds with β as in ( ). Then:

(b) There exists some 0 < x < 1/(n -1) such that, in ( ) with α = α 0 and β = n p -nα 0 , equality holds when

We do not claim that the above x is unique (though it is likely to be). Part (b) merely states that, when n ≥ 3 and p > n, there always exists a non symmetric minimizer in ( ). This is in sharp contrast with the case n = 2 settled in Theorem .

Proof. We already know, from Proposition , that (n -1) p-1 < α 0 < n p-1 p .

Step . For any n and p, the condition α ≥ n p-1 p is necessary for the validity of ( ). Consider the set

Denote by F (x) = F (x 1 , . . . , x n ) the right-hand side of ( ). Let x ∈ S. As in the proof of Proposition (a), write

A second order Taylor expansion of the quantities on the right-hand side of ( ) yields, thanks to the identity ( ),

and thus, assuming ( ), we have

Step . If p ≥ 3 and n ≥ 3, then ( ) does not hold when α = n p-1 p . With ε j as above and α = n p-1 p , a tedious calculation shows that

with C > 0, and thus, as claimed, ( ) does not hold. (Note that here we use the assumption n > 2.)

Step . Existence of non symmetric minimizers. We study the minimizers of the right-hand side of ( ) with α = α 0 under the constraint x ∈ S. Note that x j > 0, ∀ j (since α 0 > (n -1) p-1 ). Also note that, as explained in the second strategy (end of Section ), if x achieves the equality, then either x 1 = • • • = x n , or, up to a permutation, the conclusion of Proposition (b) holds. It thus su fices to prove that there exists some x ∈ S, x = x := (1, . . . , 1), achieving equality in ( ). Argue by contradiction, and suppose that F (x) > n p for every x ∈ S \ {x}. By ( ) and the fact that α 0 > n p-1 p , there exist some C 1 > 0 and δ such that

On the other hand, we have assumed, by contradiction, that F (x) > n p if x ∈ S \ {x}, and therefore, by compactness, there exists some C 2 > 0 such that

Then G is smooth and bounded in S, and has a unique global minimum at x, where G vanishes. Therefore, there exists some K > 0 such that

Combining ( )-( ) with the fact that ||x -x|| 1 ≤ 2(n -1), ∀ x ∈ S, we find that ( ) still holds for α := α 0 -ε and β := n p -nα, where ε > 0 is such that ε ≤ min{C 1 /K, C 2 /(4(n -1) 2 K)}.

This contradicts the minimality of α 0 and completes the proof of Proposition .