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The forecasting of high-dimensional, spatiotemporal nonlinear systems has made tremendous
progress with the advent of model-free machine learning techniques. However, in real systems it
is not always possible to have all the information needed; only partial information is available
for learning and forecasting. This can be due to insufficient temporal or spatial samplings, to
inaccessible variables or to noisy training data. Here, we show that it is nevertheless possible to
forecast extreme events occurrence in incomplete experimental recordings from a spatiotemporally
chaotic microcavity laser using reservoir computing. Selecting regions of maximum transfer entropy,
we show that it is possible to get higher forecasting accuracy using nonlocal data vs local data thus
allowing greater warning times, at least twice the time horizon predicted from the nonlinear local
Lyapunov exponent.

The prediction of extreme events (EEs) occurrence,
while having potentially a large impact in many fields of
science and everyday life, remains a challenge especially
in large and complex spatiotemporal systems [1–9]. EEs,
which are rare and intense amplitude phenomena – as
compared to the long-time average of an observable in
a given system [10] – have been found in many types
of systems [11], either natural or in laboratory experi-
ments. In the latter case, optical systems have played a
great role because of the analogy between oceanic rogue
waves and optical pulses propagation in nonlinear opti-
cal fibers [12, 13], allowing to generate and study these
EEs with a large statistics and in a controlled environ-
ment. EEs have also been found in nonlinear optical dis-
sipative systems displaying chaos [14–18] or spatiotem-
poral chaos [19–21]. Likewise, model-free prediction of
low [22–25] and high [26–28] dimensional chaotic time-
series have been made possible thanks to the advent of
machine learning techniques. However they usually re-
quire the precise knowledge of the whole spatiotemporal
history of a dynamical field, which is often impossible
in real situations where only a part of the dynamics is
observable while some dynamical variables remain hid-
den and cannot be recorded. When a dynamical variable
is observed and used to predict the outcome of another
variable, the concept of cross-prediction has been intro-
duced and tested [29, 30]. The application of model-free
techniques is more challenging when dealing with experi-
mental and natural data [31], where the resolution of the
measurements in time and space is limited. Recent re-
sults have been obtained in this area for the prediction
of rogue solitons in supercontinuum generation in an op-
tical fiber [32, 33] and the space-time localization of of
extreme wind speeds in the north Atlantic ocean [8]. In
Ref. [33], the system is purely temporal and a spatiotem-
poral map is obtained by a pseudo-space reconstruction.
In Ref. [8], the full spatiotemporal field is recorded and
used for the forecast, thanks to the relatively slow time
scale of the system’s evolution.

In this work, we utilize a model-free reservoir comput-
ing approach for the prediction of EEs occurrence with
experimental data from a spatiotemporal chaotic broad
area laser [20], where only partial information of the past
spatiotemporal field is known. The only accessible ob-
servable is the laser intensity (not the laser material dy-
namics), and the dynamics can only be known accurately
and simultaneously at two given locations in space. This
simulates the common situation in practice where the
spatiotemporal field is only scarcely sampled in space.
We identify the spatial locations of potential precursors
using an information theoretic measure, namely transfer
entropy [34]. At contrast with Ref. [33], the precursors
cannot be identified reliably but are mostly hidden in
the system’s dynamical fluctuations and in the detection
noise. A classification task is performed using reservoir
computing to identify EEs in advance, using local and
nonlocal information. We compare the prediction results
and identify regimes where the nonlocal, cross prediction
task yields better prediction accuracy than the local task.

We investigate a quasi-1D broad-area microcavity
laser with integrated saturable absorber which has been
shown, both experimentally and numerically. to display
spatiotemporal chaos and and EEs [20, 35]. The ob-
served spatiotemporal chaos results from a chaotic al-
ternation of amplitude and phase turbulence phenomena
[36]. The microcavity laser pumped area is delimited by
a clear aperture of 10×80 µm2 and emits at λc ' 980
nm. Transverse spatial coupling in the microresonator
is obtained through light diffraction with a diffraction
length wd ' 7.4µm [20]. The detailed optical setup is de-
scribed in [20] and recalled in the Suppl. Mat. (SM) for
completeness. This system has the advantage of having
fast timescales, on the order of hundreds of picoseconds,
thus facilitating the sampling of a large number of low
probability events in a single experimental run. EEs are
qualified using the standard definitions used in hydrody-
namics where these phenomena are coined "rogue waves"
[11].
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Figure 1. a) Microlaser near-field image above lasing thresh-
old. b-e) simultaneous recording of scaled intensities at C
(fixed photodetector, upper) and M (mobile photodetector,
lower) for specific events at C (placed at t = 0): an EE is
present (b,d,e) or not present (c) at C. The photodetector is
located at xM = 0 µm in b), xM2 = +12.3 µm in d) and
xM1 = −13.8 µm in e). Red and black lines: average time-
traces over the ensemble of EE or NE and associated standard
deviations (orange and light blue shaded areas). Dark red:
largest EE’s timetrace, in b,d,e, (resp. single random NE in
c) recorded at C with the simultaneous timetrace recorded at
M (light blue). Red dashed line: EE threshold 2 × Hs (to
be compared to the pulse height H from the trough to peak,
not to the peak value). Yellow shaded area in e): information
used for the prediction of an event at t = 0, with history time
τh and warning time τw.

The dynamics recorded at the center of the laser (see
Fig.-1a) displays large amplitude fluctuations (Figs.-1b,
1d and 1e). These fluctuations of height H (defined as
the maximum between the amplitudes measured at the
left and right sides of the pulse) can be classified into
two classes: extreme events (EE) or non-extreme events
(NE). The classification criteria for EEs is H ≥ 2Hs,
where Hs, the significant height, is simply the average of
the height of the events in the highest tercile. For tech-
nical reasons, it is not possible to access the evolution
of the whole section of the laser with the required detec-
tion bandwidth. Only a partial information is available,
namely we detect the simultaneous evolution in two dif-
ferent points, one fixed located at the center of the laser
IC(t) = I(xC , t), and one mobile across the transverse
section IM (t) = I(xM , t). In Fig.-1b) the intensity of
EEs simultaneously measured by the two photodetectors
at the same location displays correlated time traces. The
average time trace of EEs shows some oscillations around
the peak value at time = 0, that quickly dampens away
from it, evidencing a typical temporal pattern for EEs. In

Fig.-1c) by comparison, NE are completely uncorrelated
which results in a very flat average time trace. Away from
the correlation width of an EE, at M1, an EE recorded
in C is accompanied by no clear sign in the time trace
at M2 which displays a dynamics very similar to the one
recorded for a NE in Fig.-1c). By contrast, the average
signal recorded at M = M2 (Fig.-1d) shows a small fluc-
tuation for −1.5 ≤ t ≤ −0.5 ns which may point to the
presence of a precursor. However, the precursor identi-
fication is rendered difficult since the signal fluctuations
are large and on the same order of magnitude as the sig-
nal itself, as can be seen on the non-averaged timetrace.
The identification of potential precursors can be made
easier using the tool of transfer entropy described below.

The dynamical complexity of the dataset can be es-
timated from the Lyapunov spectra computed for the in-
dividual local recordings IM (t). From these, the largest
Lyapunov exponent λM can be extracted, giving access to
a global, mean maximum prediction time τp ' 1

λM
ln( ∆

δ0
)

[37, 38], with δ0 the initial perturbation and ∆ the reso-
lution of the measurement. The mean Kaplan-Yorke di-
mension DKY and fractal dimension Df of the attractor
are respectively 〈DKY 〉 ' 11 and 〈Df 〉 ' 7.1 (Fig.-2a),
which are consistent with a high-dimensional chaos. A
more precise estimate of the prediction time horizon is
given using the rate of growth of initial error rate Φ
computed in Fig.-2, which can be extracted from the
nonlinear local Lyapunov exponent [38] (see SM). The
prediction horizon time can be defined as the time at
which log(Φ) reaches 90% of its saturation value and
is of the order of 0.47 ns here. Using side results (see
SM) we can also estimate δ0 ' 3 × 10−4 and assuming
∆ ' 5 × 10−3, which corresponds to a SNR of 1, and
extracting the mean maximum Lyapunov exponent from
Fig.-2 〈λM 〉 = 7.6 ns−1, we get a mean maximum pre-
diction time τp = 0.37 ns. This time is slightly smaller
than the time obtained from log(Φ), as expected, but is
still larger than the Lyapunov time usually considered as
a time horizon indicator τL = 〈λM 〉−1 = 0.13 ns. Recent
results showed that machine learning aided model-free
predictions of high-dimensional chaotic systems was pos-
sible up to about 6 Lyapunov times [26, 29, 39–41].

Early warning signs of EE, also called precursors,
have been considered in many previous works (e.g. in
[1, 6, 42]) including in low dimensional optical systems
[43–46]. To identify potential regions of precurors, we
consider transfer entropy [34], similarly as in [33], which
measures the information transfer between two signals. It
is more robust that e.g. a simple cross-correlation since
it uses conditional probabilities instead of correlations.

We introduce the two-dimensional effective transfer en-
tropy T eff

M→C(xM , τ) (see SM) which measures the infor-
mation gained at point C (in bits) from the knowledge
of a history of duration τh in the past at M (see Fig. 1e),
with τ parametrizing the time delay in the past. It is ob-
tained by subtracting to the transfer entropy TM→C the
transfer entropy for surrogate data in M, allowing com-
parison between transfer entropies computed using differ-
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Figure 2. a) Largest Lyapunov exponent λM = max(λ)
and Kaplan-Yorke dimension DKY of the time traces versus
recording position. b) Initial error growth rate for the laser
intensity versus time computed at C for both photodetector
recordings. The extracted prediction time horizon (see text)
is 0.47 ns.

ent τh. T eff
M→C(xM , τ) is calculated and plotted in Fig.-3a

for a history of size τh = 0.050 ns. It displays three re-
gions of interest. A large central lobe centered around
xM ' xC which corresponds to causal information in the
immediate spatiotemporal surrounding of the EE, and
two disconnected regions almost symmetric about the
temporal axis which we identify as the location of poten-
tial precursors (around P1 and P2). It is clearly seen that
EEs extend over a finite length of 10µm width, as already
noted in Ref. [20]. At lags around τ = −5∆t = −0.25
ns, there is a net transfer of information to the center of
the laser at τ = 0. This corresponds to the immediate
warning signal of the EE formation. More importantly,
there are disconnected regions around P1 and P2 at delay
times τ ' 0.9 ns where there is a net positive transfer of
information, outside of the initial correlation length of
the system. In the following, we are going to use this
knowledge for a model-free prediction of the occurrence
of EE given the past dynamical information.

A dataset is built after identifying events times tE
of intensity maxima at C and recording the signal at M
for a duration τh corresponding to m samples, i.e. from
[tE − τw − τh, tE − τw], τw being the warning time (see
Fig. 1e). Events at C are labelled as EE or NE. Since
EEs are rare by definition, a balanced dataset is built by
retaining all the N EEs and choosing an equal number of
NEs at random. This allows us to use a standard metric
for the loss function [7]. The dataset therefore consists
of 2 × N time-traces associated to labels which identify
their categories, 70% of which is used as training data and
30% as testing data. The prediction task is carried out
using reservoir computing (RC). RC has been used for
prediction on various low- and high-dimensional dynam-
ical systems [24, 26, 47–49]. It is particularly interesting
as reservoirs are themselves dynamical systems making
them ideal candidates to map other dynamical systems.
While we have tested other machine learning algorithms
(K-nearest neighbours, long-short term memory, logistic

X
X
P1

P2

a) b)

Figure 3. Effective transfer entropy T eff
M→C as a function of

xM and delay τ for τh = 1∆t = 0.050 ns and b) at M2 for
τh = 0.050, 0.250, 0.500 ns. P1 and P2 locate the main
precursor regions in the spatiotemporal diagram. T eff

M→C is
smoothed by a small Gaussian kernel (see SM for the original
data).

regression), none of them did show a significant supe-
riority and RC happened to be the one with the most
overall best performance [50]. The reservoir generation
and update follow standard procedures detailed in the
SM. It comprises N = 50 nodes each with a hyperbolic
tangent activation function and is initialized by a null
state. Its parameters were optimized thanks to a hyper-
optimization routine. At the end of the input sequence,
the state of the reservoir nodes is stored forming an out-
put vector of length N . Thus, an input time-series of m
samples is converted into a vector of at most N values,
which is a representation of the input data. A logistic
classifier assigning a class EE or NE is then trained on
all the training times sequences. The forecasting accu-
racy of an EE at C for a history τh = 1.75 ns versus
the warning time τw is shown on Fig.-4a. It is displayed
for different training data: using the local information
at C, or the nonlocal data at M1 or M2. Note that
the accuracy does not depend significantly on the his-
tory length after a certain length is reached (see SM). In
the first case, an accuracy close to 1 is obtained for small
warning times, since this forecasting task is linear and
simple. As τw increases, the forecasting accuracy also
decreases almost monotonically towards 0.5, i.e. to the
absence of forecasting power. The same behavior occurs
using nonlocal training data, though with important dif-
ferences between M1 and M2. At M1, the forecasting
accuracy is always low since there is almost no informa-
tion present at this location, as can be checked in Fig.-3.
The forecasting accuracy using nonlocal data at M2, on
the contrary, is close to 0.8 for small warning times and
decreases steadily until about 1.2 ns where the accuracy
drops considerably and is on par with the one computed
using data at M1. However, most interestingly, there is
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Figure 4. a) Mean EE forecasting accuracy at C with τh =
1.75 ns versus the warning time, using either local (at C) or
nonlocal (at M1 or M2) data as input. The mean and stan-
dard deviation are computed with 10 different realizations of
the reservoir. Thin line: nonlocal forecasting at M2 using
logistic regression alone. b) Histogram of the testing dataset
heights distribution (blue, NE and red, EE events). c) classifi-
cation probability as an EE (green) or a NE (complementary,
orange) of an event of actual height H occurring τw = 1 ns in
the future at C from the knowledge of a history of τh = 1.75
ns duration of the non-local data at M2. Two different real-
izations of the testing dataset are illustrated (plain and empty
histograms).

a window of forecasting where it is possible to obtain
slightly higher accuracy with the nonlocal data at M2

rather than using the local data at C. This illustrates
the importance of analyzing the transfer entropy pattern
in Fig.-3a, which can allow to improve the prediction ac-
curacy by evidencing the spatiotemporal location of po-
tential precursors. The forecasting accuracy atM2 drops
at 1τw ' 1 ns, which is more than twice the time hori-
zon inferred previously and also about 7.5 times larger
than the Lyapunov time. This corresponds also to the
time at which the logistic regression alone gives compa-
rable results with the RC approach. It also relates to
the drop observed for the effective transfer entropy com-
puted in Fig.-3b for different warning times. This means
that no useful further information can be extracted from
the input time series passed this timescale. For smaller
warning times, the reservoir is able to improve slightly
the forecasting accuracy with respect to a simpler logis-
tic regression approach. By contrast when 1τw � 1 ns,
very little information can be extracted for the prediction

as testified by the low transfer entropy computed.
In Fig.-4b,c we analyze how our model-free approach

classifies EEs depending on their actual heights. As
shown on the testing dataset histogram of heights
(Fig.-4b), despite the fact that the training sets have been
balanced, large EEs are still far less frequent than smaller
ones and will therefore participate less to the training.
The probability P (Event = EE|H) of forecasting as an
EE an event of actual height H at C, given the knowl-
edge of a history of non-local data at M2 characterized
with τw = 1 ns and τh = 1.75 ns is shown on Fig.-4c).
In the perfect case, the probability would evaluate to
one above 2Hs and zero below. It increases with H and
generally reaches one for the largest EE heights values,
while the complementary probability P (Event = NE|H)
goes to zero (green and yellow histograms, respectively).
This trend is true for both the results shown in Fig.-4b,c,
obtained for two different training sets, and shows that
while large EEs are less frequent in the training dataset,
their prediction accuracy increases with their height, re-
sulting in a usually very good prediction for the largest
EEs. We note, however, that some statistical fluctuations
can remain in the forecasting results as can be seen on
the far right of Fig.-4c) where an isolated event has been
misclassified in one realization of the train/test datasets
partitions.

In conclusion, we have shown that a model-free ap-
proach based on reservoir computing can successfully
classify with a reasonable accuracy the occurrence of EE
in a dataset of an experimental system displaying high di-
mensional spatiotemporal chaos, from the partial knowl-
edge of the history of the spatiotemporal field. Using the
transfer entropy concept, we identify specific spatiotem-
poral regions with high information flow pointing to po-
tential precursors, which in our specific case are hidden
in the dynamical fluctuations or detection noise. We find
that while the prediction using the local information gives
generally the best accuracy, forecasting from the nonlocal
precursor region can yield comparable to slightly higher
accuracy in a window of large warning times. The fore-
casting ability extends to at least twice the time hori-
zon computed from the nonlinear local Lyapunov expo-
nent of the system and about 7.5 times the Lyapunov
time, before dropping to a random prediction. We be-
lieve these results pave the way to extreme forecasting in
other areas of science, with applications to many natural
systems, such as in geoscience for the detection of earth-
quakes where the precurors are unknwon and the spatial
detection is incomplete.

ACKNOWLEDGMENTS

MGC thanks for the financial support of ANID- Mil-
lenium Science Initiative Program–ICN17_012 (MIRO)
and FONDECYT Project No. 1210353. This work was
partially supported by the French Renatech network.



5

[1] N. Akhmediev, A. Ankiewicz, J. Soto-Crespo, and J. M.
Dudley, Phys. Lett. A 375, 541 (2011).

[2] A. L. Latifah and E. van Groesen, Nonlinear Proc Geoph
19, 199 (2012).

[3] M.-R. Alam, Geophys. Res. Lett. 41, 8477 (2014).
[4] S. Birkholz, C. Brée, A. Demircan, and G. Steinmeyer,

Phys. Rev. Lett. 114, 213901 (2015).
[5] M. Erkintalo, Nat. Photonics 9, 560 (2015).
[6] C. Bayındır, Phys. Lett. A 380, 156 (2016).
[7] S. Guth and T. P. Sapsis, Entropy 21, 925 (2019).
[8] J. Jiang, Z.-G. Huang, C. Grebogi, and Y.-C. Lai, Phys.

Rev. Research 4, 023028 (2022).
[9] P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumout-

sakos, Nature Machine Intelligence 4, 359 (2022).
[10] G. Nicolis and C. Nicolis, Foundations of complex sys-

tems: emergence, information and predicition (World
Scientific, 2nd edition, 2012).

[11] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and
F. Arecchi, Phys. Rep. 528, 47 (2013).

[12] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature
450, 1054 (2007).

[13] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias,
G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys.
6, 790 (2010).

[14] C. Bonatto, M. Feyereisen, S. Barland, M. Giudici,
C. Masoller, J. R. R. Leite, and J. R. Tredicce, Phys.
Rev. Lett. 107, 053901 (2011).

[15] M. G. Kovalsky, A. A. Hnilo, and J. R. Tredicce, Opt.
Lett. 36, 4449 (2011).

[16] C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and
N. Akhmediev, Phys. Rev. Lett. 108, 233901 (2012).

[17] A. K. D. Bosco, D. Wolfersberger, and M. Sciamanna,
Opt. Lett. 38, 703 (2013).

[18] C. R. Bonazzola, A. A. Hnilo, M. G. Kovalsky, and J. R.
Tredicce, Phys. Rev. A 92, 053816 (2015).

[19] N. Marsal, V. Caullet, D. Wolfersberger, and M. Scia-
manna, Opt. Lett. 39, 3690 (2014).

[20] F. Selmi, S. Coulibaly, Z. Loghmari, I. Sagnes, G. Beau-
doin, M. G. Clerc, and S. Barbay, Phys. Rev. Lett. 116,
013901 (2016).

[21] M. G. Clerc, G. González-Cortés, and M. Wilson, Opt.
Lett. 41, 2711 (2016).

[22] J. D. Farmer and J. J. Sidorowich, Phys. Rev. Lett. 59,
845 (1987).

[23] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S.
Tsimring, Rev. Mod. Phys. 65, 1331 (1993).

[24] W. Maass, T. Natschläger, and H. Markram, Neural
Comput. 14, 2531 (2002).

[25] P. Amil, M. C. Soriano, and C. Masoller, Chaos: An
Interdisciplinary Journal of Nonlinear Science 29, 113111

(2019).
[26] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Phys.

Rev. Lett. 120, 10.1103/physrevlett.120.024102 (2018).
[27] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and

P. Koumoutsakos, Proc. R. Soc. A 474, 20170844 (2018).
[28] K. Nakai and Y. Saiki, Phys. Rev. E 98, 023111 (2018).
[29] R. S. Zimmermann and U. Parlitz, Chaos 28, 043118

(2018).
[30] A. Cunillera, M. C. Soriano, and I. Fischer, Chaos 29,

113113 (2019).
[31] Y.-G. Ham, J.-H. Kim, and J.-J. Luo, Nature 573, 568

(2019).
[32] L. Salmela, C. Lapre, J. M. Dudley, and G. Genty, Sci.

Rep. 10, 10.1038/s41598-020-66308-y (2020).
[33] S. Coulibaly, F. Bessin, M. G. Clerc, and A. Mussot,

Chaos Solitons Fractals 160, 112199 (2022).
[34] T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).
[35] S. Coulibaly, M. G. Clerc, F. Selmi, and S. Barbay, Phys.

Rev. A 95, 023816 (2017).
[36] S. Barbay, S. Coulibaly, and M. Clerc, Entropy 20, 789

(2018).
[37] H. Kantz and T. Schreiber, Nonlinear Time Series Anal-

ysis (Cambridge University Press, 2003).
[38] R. Ding and J. Li, Phys. Lett. A 364, 396 (2007).
[39] J. Jiang and Y.-C. Lai, Phys. Rev. Research 1, 033056

(2019).
[40] H. Fan, J. Jiang, C. Zhang, X. Wang, and Y.-C. Lai,

Phys. Rev. Research 2, 012080 (2020).
[41] P. Vlachas, J. Pathak, B. Hunt, T. Sapsis, M. Girvan,

E. Ott, and P. Koumoutsakos, Neural Networks 126, 191
(2020).

[42] W. Cousins, M. Onorato, A. Chabchoub, and T. P. Sap-
sis, Phys. Rev. E 99, 032201 (2019).

[43] J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici,
J. R. R. Leite, C. Masoller, and J. R. Tredicce, Phys.
Rev. A 87, 035802 (2013).

[44] C. Bonatto and A. Endler, Phys. Rev. E 96, 012216
(2017).

[45] N. M. Alvarez, S. Borkar, and C. Masoller, Eur. Phys. J.
Special Topics 226, 1971 (2017).

[46] C. Bonazzola, A. Hnilo, M. Kovalsky, and J. Tredicce,
Phys. Rev. E 97, 032215 (2018).

[47] H. Jaeger and H. Haas, Science 304, 78 (2004).
[48] M. Lukoševičius and H. Jaeger, Comput. Sci. Rev. 3, 127

(2009).
[49] F. M. Bianchi, S. Scardapane, S. Lokse, and R. Jenssen,

IEEE Transactions on Neural Networks and Learning
Systems 32, 2169 (2021).

[50] V. A. Pammi, Photonic computing with coupled spiking
micropillars and extreme event prediction in microcavity
lasers, Theses, Université Paris-Saclay (2021).

https://doi.org/10.1016/j.physleta.2010.12.027
https://doi.org/10.5194/npg-19-199-2012
https://doi.org/10.5194/npg-19-199-2012
https://doi.org/10.1002/2014gl061214
https://doi.org/10.1103/physrevlett.114.213901
https://doi.org/10.1038/nphoton.2015.161
https://doi.org/10.1016/j.physleta.2015.09.051
https://doi.org/10.3390/e21100925
https://doi.org/10.1103/physrevresearch.4.023028
https://doi.org/10.1103/physrevresearch.4.023028
https://doi.org/10.1038/s42256-022-00464-w
https://doi.org/http://dx.doi.org/10.1016/j.physrep.2013.03.001
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nphys1740
http://dx.doi.org/10.1038/nphys1740
https://doi.org/10.1103/PhysRevLett.107.053901
https://doi.org/10.1103/PhysRevLett.107.053901
https://doi.org/10.1364/ol.36.004449
https://doi.org/10.1364/ol.36.004449
https://doi.org/10.1103/PhysRevLett.108.233901
https://doi.org/10.1364/OL.38.000703
https://doi.org/10.1103/physreva.92.053816
https://doi.org/10.1364/OL.39.003690
https://doi.org/10.1103/PhysRevLett.116.013901
https://doi.org/10.1103/PhysRevLett.116.013901
https://doi.org/10.1364/ol.41.002711
https://doi.org/10.1364/ol.41.002711
https://doi.org/10.1103/physrevlett.59.845
https://doi.org/10.1103/physrevlett.59.845
https://doi.org/10.1103/revmodphys.65.1331
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1063/1.5120755
https://doi.org/10.1063/1.5120755
https://doi.org/10.1063/1.5120755
https://doi.org/10.1103/physrevlett.120.024102
https://doi.org/10.1098/rspa.2017.0844
https://doi.org/10.1103/physreve.98.023111
https://doi.org/10.1063/1.5022276
https://doi.org/10.1063/1.5022276
https://doi.org/10.1063/1.5120822
https://doi.org/10.1063/1.5120822
https://doi.org/10.1038/s41586-019-1559-7
https://doi.org/10.1038/s41586-019-1559-7
https://doi.org/10.1038/s41598-020-66308-y
https://doi.org/10.1016/j.chaos.2022.112199
https://doi.org/10.1103/physrevlett.85.461
https://doi.org/10.1103/physreva.95.023816
https://doi.org/10.1103/physreva.95.023816
https://doi.org/10.3390/e20100789
https://doi.org/10.3390/e20100789
https://doi.org/10.1017/cbo9780511755798
https://doi.org/10.1017/cbo9780511755798
https://doi.org/10.1016/j.physleta.2006.11.094
https://doi.org/10.1103/physrevresearch.1.033056
https://doi.org/10.1103/physrevresearch.1.033056
https://doi.org/10.1103/physrevresearch.2.012080
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1103/physreve.99.032201
https://doi.org/10.1103/physreva.87.035802
https://doi.org/10.1103/physreva.87.035802
https://doi.org/10.1103/physreve.96.012216
https://doi.org/10.1103/physreve.96.012216
https://doi.org/10.1140/epjst/e2016-60391-4
https://doi.org/10.1140/epjst/e2016-60391-4
https://doi.org/10.1103/physreve.97.032215
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1109/tnnls.2020.3001377
https://doi.org/10.1109/tnnls.2020.3001377
https://tel.archives-ouvertes.fr/tel-03634754

	Extreme events prediction from nonlocal partial information in a spatiotemporally chaotic microcavity laser
	Abstract
	Acknowledgments
	References


