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Abstract: We provide a rigorous mathematical framework to establish the hydrody-
namic limit of the Vlasov model introduced in Takata and Noguchi (J. Stat. Phys.
172:880-903, 2018) by Noguchi and Takata in order to describe phase transition of
fluids by kinetic equations. We prove that, when the scale parameter tends to 0, this
model converges to a nonlocal Cahn-Hilliard equation with degenerate mobility. For our
analysis, we introduce apropriate forms of the short and long range potentials which
allow us to derive Helmhotlz free energy estimates. Several compactness properties fol-
low from the energy, the energy dissipation and kinetic averaging lemmas. In particular
we prove a new weak compactness bound on the flux.

1. Introduction

We consider the following Vlasov-Cahn-Hilliard equation (VCH in short){
ε2∂t fε + εξ.∇x fε + εFε.∇ξ fε = �ε(t, x)M(ξ) − fε, t ≥ 0, x ∈ R

d , ξ ∈ R
d ,

�ε(t, x) = ∫
Rd fε(t, x, ξ) dξ,

(1)

with an initial data fε(0, x, ξ) = f 0(x, ξ) ≥ 0.
The unknown is the function

fε ≡ fε(t, x, ξ), t ∈ (0, T ), x ∈ R
d , ξ ∈ R

d ,

such that, for every infinitesimal volume dx dξ around the point (x, ξ) in the phase
space, the quantity fε(t, x, ξ) dx dξ is the number of particles which have position x
and velocity ξ at fixed time t . The small parameter ε > 0 arises fromphysical dimensions
of the system and we are interested in the limit when it tends to 0. Following [33], the
force field Fε(t, x) is decomposed as long-range attractive and short-range repulsive

Fε = F L
ε + F S

ε , F L ,S
ε (t, x) = −∇�L ,S

ε (t, x). (2)
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We define the convolution in the space variable as f � g = ∫
Rd f (y)g(x − y) dy and set

�S
α,ε(t, x) = 1

α2ωS � ωS � �ε,

where ωS ≥ 0 is a function that may be thought of as a centered Gaussian. We use
a double convolution in order to enforce positivity of the corresponding operator as it
appears in energy considerations. We assume that ωS satisfies∫

Rd
ωS(y) dy = 1,

∫
Rd

yωS(y) dy = 0,
∫
Rd

|y|2ωS(y) dy < ∞. (3)

The long-range potential is of the form

�L
α,ε(t, x) = − 1

α2ωL
α � ωS � ωS � �ε, (4)

where ωL
α (x) = 1

αd ωL
( x

α

)
may be thought of as a high temperature Gaussian and ωL

is a smooth, nonnegative, symmetric, compactly supported function such that, for some
δ > 0, ∫

Rd
ωL(y) dy = 1,

∫
Rd

yωL(y) dy = 0,∫
Rd

yi y jω
L dy = δi, j δ,

∫
Rd

ωL(y)|y|3 dy < ∞. (5)

The equilibrium distribution M(ξ) ≥ 0 is a Maxwellian that we normalize as

M(ξ) :=
(

1

2π D

)d/2

exp

(
−|ξ |2
2D

)
, (6)

and we have, for i = 1, . . . , d,∫
Rd

M(ξ) dξ = 1,
∫
Rd

ξi M(ξ) dξ = 0,
∫
Rd

ξ2i M(ξ) dξ = D < ∞, (7)

so that D can be interpreted as the diffusion coefficient.

1.1. The macroscopic limit. The right-hand side of Equation (1) is a relaxation term
that conserves mass but neither momentum nor energy since we aim at using a diffusive
scaling. Formally one can guess that

fε(t, x, ξ) → �(t, x)M(ξ), as ε → 0. (8)

The mass conservation equation on �ε is obtained by integrating Equation (1) with
respect to ξ against 1,

∂t�ε(t, x) + divJε(t, x) = 0, Jε(t, x) =
∫
Rd

ξ

ε
fε(t, x, ξ) dξ. (9)

Then, integrating against ξ , we obtain the flux equation

ε2∂t Jε(t, x) + ∇x ·
∫
Rd

ξ ⊗ ξ fε(t, x, ξ) dξ − Fε�ε = −Jε(t, x). (10)

Combined with (8), this flux equation allows us to identify the limit of Jε and to prove
that as ε, α → 0, the macroscopic densities tend to a solution of a degenerate nonlocal
Cahn-Hilliard equation type. More precisely, we have the
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Theorem 1 (Limit ε → 0). With the assumptions and notations (2)–(6), let α = ε. Let
f 0 be a non-negative distribution that satisfies (13), (14) and let fε be a solution of (1)
with initial condition f 0. Then, we can extract a subsequence (not relabelled) such that
�ε → � in L p

t L1
x strongly for 1 ≤ p < ∞ where � solves in the distributional sense the

equation

∂t� − D�� − div(�∇�) = 0, � = −δ�[ωS � ωS � �], (11)

with initial data �0 = ∫
Rd f 0(x, ξ) dξ .

In fact, [33] obtains formally a more complete description which we cannot prove at
the moment (see Sect. 4).

Remark 2. • Writing formally �� = div(�∇ log(�)), this term can be added to the
potential so as to obtain a kind of Cahn-Hilliard equation.
• Different scaling between α and ε can be considered, α constant is also possible
• Uniqueness can be proved in the class of uniformly bounded densities, see Ap-
pendix C.
• The proof of this result uses compactness arguments, therefore we do not have any
explicit control on the error between the limit solution and the system in terms of ε.

1.2. Contents of the paper. In Sect. 2, we collect various uniform estimates ε. Section3
is devoted to passing to the limit ε → 0. Some open problems are drawn in Sect. 4. The
Appendix contains different mathematical tools and lemmas used throughout the proofs.

1.3. Literature review and relevancy of the system. Phase transitions in fluids In [33],
Noguchi and Takata consider a kinetic model to capture the dynamics of phase transition
for the Van der Waals fluid. The model reads as follows

∂t f + ξ · ∇x f + F · ∇ξ f = A(�)(�M − f ), A(�) > 0,

F = F1 + F2, F1,2 = −∇�1,2,

�1 =
{

� − ωL � �

or − κ��
, �2 = −C1 log(1 − �) +

�

1 − �
− C2�, C1, C2 ∈ R,

for some kernel ωL and κ > 0. �1 is a combination of short range repulsion and long
range attraction. �2 is a short range interaction potential.

The authors state that full details of intermolecular collisions are not considered and
that the collision term on the right-hand side plays just a thermal bath role which is less
desirable for a physical/mechanical justification of the system. This problem has been
adressed formally in [16,32]. From the mathematical point of view, it raises new and
interesting different difficulties and it can be definitely seen as a next step in our work.
Nevertheless, the authors show that with this thermal bath term, the system exhibits the
essential features of phase transition dynamics, both theoretically and numerically. By
placing themselves in the framework of the strong interaction, they find a rescaling of
the first equation of the system and obtain Equation (1) of VCH. Then, setting A ≡ 1 and
letting ε → 0 they obtain formally that in the limit (that we refer to as the hydrodynamic
limit), the macroscopic density � satisfy

∂t� − �� − div(�∇(�1 + �2)) = 0.
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Noting that �� = div(�∇ log(�)) they obtain the Cahn-Hilliard equation with de-
generate mobility

∂t� − div(�∇(�1 + �̃2)) = 0, �̃2 = �2 + log(�).

This model presents several mathematical difficulties. First of all, we are not aware of
any existence result concerning the Vlasov equation when the potential � is a function
of the density �. In the Vlasov-Poisson system, one has � = �−1� and there is a
gain of two derivatives. For the existence of classical solutions for Vlasov-Poisson we
refer to [20,22,29,30]. A second difficulty comes from the rigorous passage to the limit.
Indeed, the bound provided by the energy do not provide enough compactness. For
instance, one cannot apply the averaging lemma 12 on this system because the functions
are not bounded in L1 uniformly in ε. For these reasons, we add the convolutions ωS

in (1)–(4) and provide a rigorousmathematical framework to establish the hydrodynamic
limit of this model when �2 = 0. It would be possible to prove a similar result when
�2 = ωS � f ′(�) where | f (�)| ≤ C |� log �| for C small enough.

Our work also provides a generic model to obtain different nonlocal and degenerate
equations of Cahn-Hilliard/thin-film type as the hydrodynamic limit of kinetic models.
For other kinetic models modeling phase transitions, we refer to [16,19,21].
Kinetic theory The main purpose of kinetic theory is to provide a description of the
evolution of a gas or plasma, and more generally a many-particle system made up of N
similar individual elements, in the limit when N tends to infinity which corresponds to
the so-called thermodynamical limit.
In the kinetic theory, the density of particles is described with the probability measure

f ≡ f (t, x, ξ), t ≥ 0, x ∈ R
d , ξ ∈ R

d ,

such that, for every infinitesimal volume dx dξ around the point (x, ξ) in the phase
space, the quantity f (t, x, ξ) dx dξ is the number of particles which have position x and
velocity ξ at fixed time t . For this reason, f is a nonnegative function and integrable
in both space and velocity variables, but it is not directly observable. Nevertheless, at
each point of the domain it provides all measurable macroscopic quantities which can
be expressed in terms of microscopic averages:

�(t, x) =
∫
Rd

f (t, x, ξ) dξ (macroscopic density),

J (t, x) =
∫
Rd

ξ f (t, x, ξ) dξ (flux).

It is clear that such a statistical description makes sense only with a very large number
of particles, and as a consequence, all kinetic equations are expected to approximate the
true dynamics of gases just in the thermodynamical limit. Rescaling the time and space
with a parameter ε, i.e. t → ε2t , x → εx and sending ε → 0 is called the hydrodynamic
limit. It allows us to find a rigorous derivation ofmacroscopicmodels from amicroscopic
description of matter. For hydrodynamics on the Vlasov-Poisson-Fokker-Planck system,
we refer to [9,18].

Our aim is to obtain an equation on the macroscopic density and to relate it to a
known model that has applications in fluid dynamics or biology, i.e. the Cahn-Hilliard
equation.
The Cahn-Hilliard equationEquation (11) is an example of aCahn-Hilliard type equation
that is widely used nowadays to represent phase transitions in fluids and living tissues
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[7,8,10,12–15,23,27,34]. Originally introduced in the context of materials sciences [2,
3], it is currently applied in numerous fields, including complex fluids, polymer science,
and mathematical biology. For the overview of mathematical theory, we refer to [26].

Cahn-Hilliard equation takes the form of

∂t� = div (b(�)∇ (�(�) − δ��)) →
{

∂t� = div (b(�)∇μ) ,

� = −δ�� + �I (�),
(12)

where � represents the relative density of one component � = �1/(�1 + �2), b(�) is the
mobility, �I is the interaction potential while � is the quantity of chemical potential.

We obtain a nonlocal version of the Cahn-Hilliard equation. The nonlocality comes
from the convolution of the Laplace operator with a smooth kernel ωS concentrated
around the origin. There is a different possibility to approximate this operator nonlocally,
we refer for instance to [5,25], where the authors prove the convergence of a nonlocal
Cahn-Hilliard equation with constant mobility to a local Cahn-Hilliard equation and to
[11] for a similar result with degenerate mobility. In our case, because of the degenerate
mobility, it is not clear that we can pass from the nonlocal Equation (11) to a local one
by sending ωS to a Dirac mass.

2. Entropy, Energy, and Uniform Estimates

The analysis relies on various uniform bounds in ε which use an initial data that satisfies∫
R2d

(1 + |x | + |ξ |2 + | log f 0|) f 0(x, ξ) dx dξ < +∞, (13)

sup
α≤1

1

α2

∫
R2d

ωL
α (y)[�0 � ωS(x) − �0 � ωS(x − y)]2 dx dy < +∞. (14)

Then, we begin with proving the bounds

Theorem 3 (Uniform estimates). With the assumptions (13) and (14), the following
uniform estimates hold for ε ∈ (0, 1):

(A) { fε} in L∞
t L1

x,ξ and {�ε} in L∞
t L1

x ,

(B) { fε| log( fε)|} and { fε |ξ |2} in L∞
t L1

x,ξ ,

(C) {�ε| log(�ε)|} in L∞
t L1

x ,

(D)
{

(�ε M− fε) (log(�ε M)−log( fε))
ε2

}
in L1

t,x,ξ ,

(E)
{

�ε M− fε
ε

}
in L1

t,x,ξ ,

(F) {Jε} and {Jε log1/2 log1/2 max(Jε, e)} in L1
t,x ,

(G) { fε|x |}, {�ε |x |} in L∞
t L1

x,ξ and L∞
t L1

x respectively.

Moreover, {�ε} and {Jε} are weakly compact in L1
t,x .

The proof of these estimates uses a fundamental property of energy dissipation. To show
that, we define the energy (kinetic+potential) and the Helmholtz free energy respectively
as

E(t) :=
∫
R2d

|ξ |2 fε dx dξ +
1

2α2

∫
R2d

ωL
α (y)[�ε � ωS(t, x) − �ε � ωS(t, x − y)]2 dx dy, (15)
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F(t) :=
∫
R2d

[2D log( fε) + |ξ |2] fε dx dξ

+
1

2α2

∫
R2d

ωL
α (y)[�ε � ωS(t, x) − �ε � ωS(t, x − y)]2 dx dy. (16)

The Helmholtz free energy satisfies the

Theorem 4 (Free energy dissipation). The free energy F(t) is dissipated as

d

dt
F(t) = −2D

ε2

∫
R2d

[
fε − �ε M(ξ)

] [
log fε − log (�ε M(ξ))

]
dx dξ

= −2D
∫
R2d

Dε dx dξ, (17)

where the dissipation term is defined as

Dε(t, x, ξ) := 1

ε2

[
fε − �ε M(ξ)

] [
log fε − log (�ε M(ξ))

] ≥ 0. (18)

This theorem can be seen as a combination of relations for both the total energy and the
entropy of the system.

Proposition 5 (Total energy dissipation). The total energy E(t) is dissipated as

d

dt
E(t) = 1

ε2

∫
R2d

|ξ |2 [�ε M(ξ) − fε
]
dx dξ. (19)

Proof. By multiplying (1) by |ξ |2 and taking the integrals with respect to x and ξ we
obtain

ε2
∫
R2d

|ξ |2∂t fε dx dξ + ε

∫
R2d

|ξ |2ξ · ∇x fε dx dξ + ε

∫
R2d

|ξ |2Fε∇ξ fε dx dξ

=
∫
R2d

|ξ |2[�ε M(ξ) − fε] dx dξ. (20)

For integrable solutions, the second term on the left-hand side vanishes. Furthermore,
with integration by parts, the above equation reduces to

ε2
d

dt

∫
R2d

|ξ |2 fε dx dξ − 2ε
∫
R2d

ξ Fε fε dx dξ =
∫
R2d

|ξ |2[�ε M(ξ) − fε] dx dξ. (21)

By recalling (9), the second term can be rewritten as

− 2ε
∫
R2d

ξ Fε fε dx dξ = −2ε2
∫
Rd

�α,ε divJε dx = 2ε2
∫
Rd

�α,ε ∂t�ε dx . (22)

We now want to prove that

2
∫
Rd

�α,ε∂t�ε dx = 1

2α2

d

dt

∫
R2d

ωL
α (y)[�ε � ωS(t, x)

−�ε � ωS(t, x − y)]2 dx dy. (23)
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First, by recalling (2),

2
∫
Rd

�α,ε(t, x)∂t�ε(t, x) dx = 2
∫
Rd

�L
α,ε(t, x)∂t�ε(t, x) dx

+2
∫
Rd

�S
α,ε(t, x)∂t�ε(t, x) dx . (24)

As regards the first term on the right-hand side

2
∫
Rd

�L
α,ε(t, x)∂t�ε(t, x) dx

= − 2

α2

∫
Rd

[ωL
α � ωS � ωS � �ε](t, x)∂t�ε(t, x) dx

= − 2

α2

∫
Rd

[ωL
α � �ε � ωS](t, x)∂t [�ε � ωS](t, x) dx

= − 1

α2

∫
R2d

ωL
α (y)[�ε � ωS](t, x − y)∂t [�ε � ωS](t, x) dx dy

− 1

α2

∫
R2d

ωL
α (y)[�ε � ωS](t, x)∂t [�ε � ωS](t, x − y) dx dy

= − 1

α2

d

dt

∫
R2d

ωL
α (y)[[�ε � ωS](t, x) · [�ε � ωS](t, x − y)] dx dy

The second term on the right-hand side can be handled similarly and gives

2
∫
Rd

�S
α,ε(t, x)∂t�ε(t, x) dx = 2

α2

∫
Rd

[ωS � �ε](t, x)∂t [�ε � ωS](t, x) dx

= 1

α2

d

dt

∫
Rd

[�ε � ωS]2(t, x) dx

= 1

2α2

d

dt

∫
R2d

ωL
α (y)

[[�ε � ωS]2(t, x)

+[�ε � ωS]2(t, x − y)
]
dx dy.

By summing up the twoprevious identitieswe get (23),which, inserted in (21), concludes
that

ε2
d

dt

∫
R2d

|ξ |2 fε dx dξ +
ε2

2α2

d

dt

∫
R2d

ωL
α (y)[�ε � ωS(t, x) − �ε � ωS(t, x − y)]2 dx dy

=
∫
R2d

|ξ |2[�ε M(ξ) − fε] dx dξ.

��
Proposition 6 (Entropy relation). The following estimate holds:

d

dt

∫
R2d

fε log fε dx dξ = 1

ε2

∫
R2d

[�ε M(ξ) − fε] log fε dx dξ. (25)
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Proof. By multiplying (1) by (1 + log fε) we obtain

ε2
d

dt
( fε log fε) + εξ · ∇x fε(1 + log fε) + εFε∇ξ fε(1 + log fε) = [�ε M(ξ) − fε](1 + log fε)

By taking the integrals with respect to x and ξ , the second and third terms in the above
equation vanish and we obtain

ε2
d

dt

∫
R2d

fε log fε dx dξ =
∫
R2d

[�ε M(ξ) − fε] log fε dx dξ

as announced. ��
With these two estimates, we can finally prove Theorem 4.

Proof of Theorem 4. From Propositions 5 and 6, we get the following result:

d

dt
F(t) = 1

ε2

[∫
R2d

|ξ |2[�ε M(ξ) − fε] dx dξ + 2D
∫
R2d

[�ε M(ξ) − fε] log fε dx dξ

]

= 1

ε2

[∫
R2d

�ε M(ξ)|ξ |2 dx dξ −
∫
R2d

|ξ |2 fε dx dξ

+2D
∫
R2d

[�ε M(ξ) − fε] log fε dx dξ

]
. (26)

Using (6), we know that log(�ε M(ξ)) = log �ε +C − |ξ |2
2D for some constant C . Inserting

this expression of |ξ |2 in the first two terms on the righthand side of (26), we obtain

2D

ε2

∫
R2d

[
�ε M(ξ) − fε

] [
log �ε + C − log(�ε M(ξ))

]
dx dξ

= 2D

ε2

∫
R2d

[
�ε M(ξ) − fε

] [− log(�ε M(ξ))
]
dx dξ.

Added to the third term on the righthand side of (26), we obtain the announced result. ��
In order to prove Theorem 3, a major difficulty is to estimate the flux Jε defined by (9).
We start by establishing a useful inequality, recalling the notation (18).

Lemma 7 (Pointwise estimates on Jε). For every 0 < r ≤ 1 and (s, x) ∈ (0, T ) × R
d ,

we have

|Jε(s, x)| ≤ rε‖Dε(s, x, ·)‖L1
ξ
+ C

1

rd
exp

(
2CM

r2

)
�ε(s, x)1/2‖Dε(s, x, ·)‖1/2

L1
ξ

.

Proof. For r > 0, we decompose Jε(s, x) = J (1)
ε (s, x) + J (2)

ε (s, x), with

J (1)
ε = 1

ε

∫
{∣∣∣log( fε

�ε M )

∣∣∣≥ |ξ |
r

} ξ( fε − �ε M(ξ)) dξ,

J (2)
ε = 1

ε

∫
{∣∣∣log( fε

�ε M )

∣∣∣≤ |ξ |
r

} ξ( fε − �ε M(ξ)) dξ.
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For J (1)
ε , we write

|J (1)
ε (s, x)| ≤ r

ε

∫
{∣∣∣log( fε

�ε M )

∣∣∣≥ |ξ |
r

}
∣∣∣∣log

(
fε

�ε M

)∣∣∣∣ �ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣ dξ ≤ rε‖Dε(s, x, ·)‖L1
ξ
.

For J (2)
ε , we use the Cauchy-Schwarz inequality and, with B(ξ) := |ξ |

r(exp( |ξ |
r )−1)

,

|J (2)
ε (s, x)| ≤

(∫
Rd

|ξ |2 �ε M

B(ξ)
dξ

)1/2
(

1

ε2

∫
{
| log( fε

�ε M )|≤ |ξ |
r

} �ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣
2

B(ξ) dξ

)1/2

.

Because M(ξ) is a Gaussian and �ε depends only on (t, x), we obtain

|J (2)
ε (s, x)| ≤ �ε(s, x)1/2

(∫
Rd

|ξ |2 M(ξ)

B(ξ)
dξ

)1/2

(I1 + I2)
1/2.

Here we have split the second integral according to the sign of log( fε
�ε M ). When it is

negative, we may write, since B(ξ) ≤ 1,

I1 := 1

ε2

∫
{

fε
�ε M ≤1

} �ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣
2

B(ξ) dξ

≤ 1

ε2

∫
Rd

�ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣
∣∣∣∣log fε

�ε M

∣∣∣∣ dξ = ‖Dε(s, x, ·)‖L1
ξ
.

The second term is defined as

I2 := 1

ε2

∫
{
0≤log( fε

�ε M )≤ |ξ |
r

} �ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣
2

B(ξ) dξ.

Since log is a concave function, for A > 1 and y ∈ [1, A], we have y − 1 ≤
log(y) A−1

log(A)
. We choose A = A(ξ) := exp( |ξ |

r ) and y = fε
�ε M so that y ∈ [1, A] means

exactly 0 ≤ log( fε
�ε M ) ≤ |ξ |

r . Then, I2 can be estimated as follows

I2 ≤ 1

ε2

∫
Rd

�ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣ log
(

fε
�ε M

)
r(exp( |ξ |

r ) − 1)

|ξ | B(ξ) dξ = ‖Dε(s, x, ·)‖L1
ξ
.

Therefore, for some constant CM , defined through M(ξ), we have

|J (2)
ε (s, x)| ≤ C�ε(s, x)1/2‖Dε(s, x, ·)‖1/2

L1
ξ(∫

Rd
r |ξ | exp

(−|ξ |2
CM

)(
exp

( |ξ |
r

)
− 1

)
dξ

)1/2
.

It remains to treat the integral factor that we denote by I3 and for r smaller than 1,

I3 =
∫
Rd

r |ξ | exp
(−|ξ |2

CM

)(
exp

( |ξ |
r

)
− 1

)
dξ ≤ C

rd
exp

(
2CM

r2

)
where C does not depend on r . This can be seen by splitting the integral in the zones
{|ξ | ≤ 2CM

r } and {|ξ | ≥ 2CM
r }. Finally, we obtain

|Jε| ≤ rε‖Dε(s, x, ·)‖L1
ξ
+ C

1

rd
exp

(
2CM

r2

)
�ε(s, x)1/2‖Dε(s, x, ·)‖1/2

L1
ξ

.

��
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From this lemma, we deduce the following L1 bounds on Jε

Proposition 8 (Estimate on Jε in L1
x ). With the decomposition of Lemma 7, Jε(s, x) =

J (1)
ε (s, x) + J (2)

ε (s, x), we have

• |J (1)
ε (s, x)| ≤ ε‖Dε(s, x, ·)‖L1

ξ
,

• |J (2)
ε (s, x)| ≤ C�ε(s, x)1/2‖Dε(s, x, ·)‖1/2

L1
ξ

,

• ‖J (2)
ε (s, ·) log1/2+ |J (2)

ε (s, ·)|‖L1
x

≤ C
[
‖�ε(s, ·) log+ �ε(s, ·)‖L1

x
+ ‖Dε(s, ·, ·)‖L1

x,ξ

]
,

• ‖Jε log1/2 log1/2 max(Jε, e)‖L1
t,x

≤ C(‖Dε(s, ·, ·)‖L1
x,ξ

, ‖�ε(s, ·) log+ �ε(s, ·)‖L1
t,x

).

The first two estimates are similar to [9, Proposition 7.1] for the Vlasov-Poisson-
Fokker-Planck system. Here, we have additionally included the last two controls and we
give a different proof.

Proof. The first two estimates are a direct consequence of Lemma 7. The third estimate
follows from the inequality, for u ≥ 1, v ≥ 0 and uv ≥ 1,

(uv)1/2 log1/2(uv) ≤ u log u +
√
2v.

The last result is given for the sake of completeness and its technical proof is post-
poned to Appendix D. This concludes the proof of Proposition 8. ��
With these estimates, we can now prove the main result of this section.

Proof of Theorem 3. Estimate (A) follows by mass conservation. The next bounds are
deduced from the energy equality (16)-(17) which we write as∫

R2d

[
2D log( fε(t)) + |ξ |2] fε(t) dx dξ + 2D

∫ t

0
‖Dε(s, ·, ·)‖L1

x,ξ
ds ≤ F(0), (27)

where we ignore the nonnegative interaction term as it does not help in this computation.
It is standard, see Appendix A, to conclude from this inequality that∫

R2d

[
2D| log( fε(t))| + 1

2
|ξ |2] fε(t) dx dξ + D ‖Dε‖L1

t,x,ξ

≤ F(0) + C
(
‖�ε‖L∞

t L1
x
, ‖x f 0‖L1

x,ξ

)
. (28)

The estimates (B) and (D) follow immediately. Then, estimate (E) follows from
estimate (D) and the Csiszár-Kullback Inequality, see Lemma 13.
Estimate (C) is also very standard and we reproduce the proof from [18, Lemma 2.1].
We consider the convex function ψ(�) = � log(�) and apply the Jensen inequality. We
obtain

�ε log(�ε) = ψ(�ε) = ψ

(∫
Rd

fε
M

M dξ

)
≤
∫
Rd

ψ

(
fε
M

)
M dξ =

=
∫
Rd

fε
M

[
log fε − log M(ξ)

]
M dξ

=
∫
Rd

fε

[
log fε +

|ξ |2
2D

]
dξ + C

∫
Rd

fε dξ.
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The conclusion follows by taking the absolute values of both sides and integrating with
respect to x .

Finally, estimate (F) is a direct consequence of Proposition 8, whereas (G) follows
from (40). Concerning the weak compactness of {�ε}, it follows from estimates (C)
and (G). Then, the weak local compactness of {Jε} is a direct consequence of Propo-
sition 8 and the Dunford-Pettis theorem. Indeed, with the notations of Lemma 7, J 1

ε

converges strongly to 0 in L1
t,x . For J 2

ε we first have the weak local compactness in L1
t,x

thanks to the third estimate of Proposition 8, bound (C) and the Dunford Pettis theorem.
To prove the global weak compactness we only need to prove it for J (2)

ε . We recall that,
from Lemma 7, we have

|J (2)
ε (s, x)| ≤ C�ε(s, x)1/2‖Dε(s, x, ·)‖1/2

L1
ξ

.

Therefore we can estimate with the Cauchy-Schwarz inequality

‖J (2)
ε |x |1/2‖L1

t,x
≤ C ‖�ε |x |‖1/2

L1
t,x

‖Dε‖1/2L1
t,x,ξ

which yields global weak compactness in L1
t,x with the Dunford-Pettis theorem. This

ends the proof. ��

3. The Limit ε → 0

We now perform the analysis allowing us to prove Theorem 1. We take α = ε where the
parameter α defines the long range potential (4). Note, however, that different scaling
between α and ε could possibly be considered.
Recalling the mass balance equation (9) and the ξ -moment equation (10), our aim is to
take the limit ε → 0 in these equations, and establish the relations

∂t�(t, x) + div J (t, x) = 0, (29)

J (t, x) = −D∇�(t, x) − �∇�(t, x), � = −δ�[ωS � ωS � �], (30)

which are equivalent to (11).
A significant contribution comes from Theorem 3. The entropy bound for �ε, see (C),
and the L1 bound on Jε, see Proposition 8, we immediately conclude that

• After extractions, �ε and Jε(t, x) admit weak limits in L1
t,x , � and J , see also

Theorem 3,
• The equation (29) holds in the distributional sense.

The latter estimate on Jε also tells us that ε2∂t Jε(t, x) converges to 0 in the distribu-
tional sense. Therefore, establishing the equation (30) from equation (10), is reduced to
proving the two local weak limits in L1

t,x∫
Rd

ξ ⊗ ξ fε(t, x, ξ) dξ → D�(t, x) I, �ε∇�ε → �∇�(t, x).

These follow directly from the following three lemmas

Lemma 9. We have∫
(0,T )×Rd

∣∣∣∣
∫
Rd

ξ ⊗ ξ( fε − �ε M) dξ

∣∣∣∣ dx dt −−→
ε→0

0.
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Lemma 10. The sequence {�ε} is precompact in L p
t L1

x for every 1 ≤ p < ∞.

Lemma 11. The potential �ε(t, x) satisfies, uniformly in ε ∈ (0, 1),

‖�ε‖∞ ≤ C, ‖∇�ε‖∞ ≤ C. (31)

Moreover, we have for every 1 ≤ p < ∞ the strong convergence in L p
t L∞

x ,

�ε(t, x) −→ �(t, x), ∇�ε(t, x) −→ ∇�(t, x),

�(t, x) := −δ�[ωS � ωS � �(t, x)]. (32)

The end of the proof of Theorem 1 is thus to establish these results.

Proof of Lemma 11. Recalling the expressions of both long-range and short-range po-
tentials and that α = ε, we see that

�ε(t, x) = − 1

ε2

∫
Rd

ωL
ε (z)

[
ωS � ωS � �ε(t, x − z) − ωS � ωS � �ε(t, x)

]
dz.

Let now set y = z
ε
, so that from (5) we deduce that

�ε(t, x) = − 1

ε2

∫
Rd

ωL(y)
[
ωS � ωS � �ε(t, x − εy) − ωS � ωS � �ε(t, x)

]
dy.

Because the convolution terms are smooth (say W 3,∞), wemay use the Taylor expansion
and obtain

�ε(t, x) = 1

ε

∫
Rd

∇x [ωS � ωS � �ε(t, x)] · y ωL(y) dy

−
∫
Rd

D2
x [ωS � ωS � �ε(t, x)]y · y ωL(y) dy + O(ε)

where the term O(ε) converges to 0 in L∞ since it is controlled by

Cε

∫
Rd

|y|3ωL(y)‖D3
x ωS � ωS � �ε(t, ·)‖∞ dy,

and we recall the uniform bound (A). Moreover, recalling (5), we see that the first term
in the right-hand side vanishes and the Hessian matrix reduces to the Laplacian, so that

�ε(t, x) = −δ�x

[
ωS � ωS � �ε(t, x)

]
+ O(ε) (33)

from which we directly conclude from (A)

||�ε||∞ ≤ C uniformly in ε ∈ (0, 1).

As far as ∇�ε is concerned, the properties of convolution with respect to derivatives
gives

∇�ε(t, x) = − 1

ε2

∫
Rd

ωL
ε (z)

[
∇ωS � ωS � �ε(t, x − z) − ∇ωS � ωS � �ε(t, x)

]
dz,

so that the L∞
t,x bounded on ∇�ε follows from the previous argument assuming now

that ωS ∈ W 4,∞.
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It remains to show that �ε → � strongly in L p
t L∞

x , the convergence of ∇�ε uses the
same arguments. The convergence follows from (33) since we have

�ε(t, x) − �(t, x) = −δ
[
�ωS � ωS � (�ε − �)(t, x)

]
+ O(ε),

so that, thanks to the above control of the term O(ε) and properties of the convolution,

‖�ε − �‖L p
t L∞

x
≤ C ‖�ε − �‖L p

t L1
x
+ Cε. (34)

Using Lemma 10, we obtain the result. ��
Proof of Lemma 10. This result is a consequence of the compactness averaging lemma
in kinetic theory [17,28]. Here, we use the following variant from [24, Lemma 4.2].

Lemma 12. Assume that {hε} is bounded in L2
t,x,ξ , {hε

0} and {hε
1} are bounded in L1

t,x,ξ .
Moreover, suppose that

ε∂t h
ε + ξ · ∇x hε = hε

0 + ∇ξ · hε
1.

Then, for all ψ ∈ C∞
0 (Rd),∥∥∥∥

∫
Rd

(hε(t, x + y, ξ) − hε(t, x, ξ)) ψ(ξ) dξ

∥∥∥∥
L1

t,x

→ 0,

when y → 0 uniformly in ε.

To prove Lemma 10, we cannot apply this averaging lemma directly on { fε} because
{ fε} is not bounded in L2

t,x,ξ and we follow the argument in [9] which follows idea of

renormalized solutions [6]. We fix ν > 0 and we consider the functions βν( f ) = f
1+ν f

with derivative β ′
ν( f ) = 1

(1+ν f )2
. Now we multiply (1) by β ′

ν( f ) and obtain

ε∂tβν( fε) + ξ · ∇xβν( fε) = (�ε M − f )β ′
ν( f )

ε
− ∇ξ · (Fεβν( fε)).

We verify assumptions of Lemma 12. From (A) we see that hε = βν( fε) is bounded
in L1

t,x,ξ ∩ L∞
t,x,ξ and hence in L2

t,x,ξ by interpolation. The L1
t,x,ξ bound on hε

0 =
(�ε M− f )β ′

ν ( fε)
ε

is deduced from (E) and the L∞
t,x,ξ bound on β ′

ν( fε). Finally, since Fε is

bounded in L∞
t,x and βν( fε) is bounded in L1

t,x,ξ we see that hε
1 = −Fεβν( fε) is bounded

in L1
t,x,ξ .

The assumptions of Lemma 12 are satisfied and we obtain∥∥∥∥
∫
Rd

(βν( fε)(t, x + y, ξ) − βν( fε)(t, x, ξ)) ψ(ξ) dξ

∥∥∥∥
L1

t,x

→ 0,

when y → 0, uniformly in ε. As this is true for all ν > 0, Lemma 15 implies∥∥∥∥
∫
Rd

( fε(t, x + y, ξ) − fε(t, x, ξ)) ψ(ξ) dξ

∥∥∥∥
L1

t,x

→ 0, (35)

when y → 0, uniformly in ε.
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The final step is to remove the weightψ in the convergence (35) using uniform bound
on { fε |ξ |2}. To this end, consider a sequence of functions {ψn(ξ)}n in D(Rd) such that
ψn(ξ) = 1 for |ξ | ≤ n and ψn(ξ) = 0 for |ξ | ≥ n + 1. Then,

∥∥∥∥
∫
Rd

( fε(t, x, ξ)(1 − ψn(ξ)) dξ

∥∥∥∥
L1

t,x

≤
∥∥∥∥
∫

|ξ |≥n
fε(t, x, ξ)

|ξ |2
n2 dξ

∥∥∥∥
L1

t,x

≤
‖ fε|ξ |2‖L1

t,x,ξ

n2

and similarly for the termwith fε(t, x + y, ξ). Hence, wemay choose first n large enough
and then for such n apply (35) to deduce

‖�ε(x + y) − �ε(x)‖L1
t,x

=
∥∥∥∥
∫
Rd

( fε(t, x + y, ξ) − fε(t, x, ξ)) dξ

∥∥∥∥
L1

t,x

→ 0, (36)

when |y| → 0, uniformly in ε > 0. This yields compactness in space.
From Lemma 16 we know that {�ε} is also compact in time, and as a result∫ T −h

0

∫
Rd

|�ε(t + h, x + k) − �ε(t, x)| dx dt

≤
∫ T −h

0

∫
Rd

|�ε(t + h, x + k) − �ε(t + h, x)| dt dx

+
∫ T −h

0

∫
Rd

|�ε(t + h, x) − �ε(t, x)| dt dx ≤ θ(h, k),

where θ(h, k) → 0 whenever |h|, |k| → 0 uniformly in ε. This provides the equiconti-
nuity of {�ε} in L1

t,x which provides us with local compactness in x .
From (G) in Theorem 3 we know that

sup
0<ε<1

∫
(0,T )×Rd

|x�ε(t, x)| dt dx < ∞,

and we obtain the strong convergence of the density in L1
t,x by Fréchet-Kolmogorov

theorem, see also [31]. Using Estimate (A) we obtain by interpolation and [31, Theorem
1] the strong convergence in L p

t L1
x for every 1 ≤ p < ∞ and this concludes the proof

of Lemma 10. ��
Proof of Lemma 9. We adapt the proof of Lemma 7. We write

Rε :=
∣∣∣∣
∫
Rd

ξ ⊗ ξ( fε − �ε M) dξ

∣∣∣∣ ≤
∫
Rd

|ξ |2| fε − �ε M | dξ

≤
∫
{∣∣∣log( fε

�ε M )

∣∣∣≥ |ξ |2
r

} |ξ |2�ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣ dξ
+
∫
{∣∣∣log( fε

�ε M )

∣∣∣≤ |ξ |2
r

} |ξ |2�ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣ dξ = I1 + I2,

where r is chosen later. For the first term, we just write

I1 ≤ r
∫
Rd

log

(
fε

�ε M

)
�ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣ dξ ≤ rε2 ‖Dε‖L1
ξ
.
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The term I2 is decomposed in two parts: where fε ≥ �ε M and fε < �ε M . The resulting
integrals are called I A

2 and I B
2 . We only discuss I A

2 as I B
2 can be treated similarly as it

was discussed in Lemma 7. We use the Cauchy-Schwarz inequality to obtain

I A
2 ≤

(∫
{
0≤log( fε

�ε M )≤ |ξ |2
r

} |ξ |4 �ε M

B(ξ)
dξ

)1/2

·

·
(∫

{
0≤log( fε

�ε M )≤ |ξ |2
r

} �ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣
2

B(ξ) dξ

)1/2

=: I A,1
2 · I A,2

2 ,

where, as before, B(ξ) = log(A)
A−1 = |ξ |2

r(exp( |ξ |2
r )−1)

, with A = A(ξ) := exp( |ξ |2
r ). As in

the proof of Lemma 7, we have the inequality log(y) ≥ (y − 1) log(A)
A−1 which yields with

y = fε
�ε M

I A,2
2 ≤

(∫
{
0≤log( fε

�ε M )≤ |ξ |2
r

} �ε M

∣∣∣∣ fε
�ε M

− 1

∣∣∣∣ log
(

fε
�ε M

)
dξ

)1/2

≤ ε ‖Dε‖1/2L1
ξ

.

Now we choose r such that M(ξ) exp( |ξ |2
r ) = C exp(−a|ξ |2) for some a > 0. Then, we

have
∫
Rd

|ξ |4 M(ξ)

B(ξ)
dξ ≤ r

∫
Rd

|ξ |2 M(ξ) exp

( |ξ |2
r

)
dξ ≤ Cr

∫
Rd

|ξ |2 exp(−a|ξ |2) dξ =: C2.

It follows that I A,1
2 ≤ C�

1/2
ε .

Finally we get

Rε ≤ rε2 ‖Dε‖L1
ξ
+ Cε�1/2

ε ‖Dε‖1/2L1
ξ

and, using the Cauchy-Schwarz inequality, the proof of Lemma 9 is concluded. ��
This also concludes the proof of Theorem 1.

4. Conclusion

We proved that macroscopic densities {�ε} formed from solutions of the Vlasov-Cahn-
Hilliard equation (1) converge to the solutions of non-local degenerate Cahn-Hilliard
(11). It is an open question whether one can obtain a local version of this equation by
sending short-range interaction kernel ωS to the Dirac mass δ0. One expects in the limit
the local degenerate Cahn-Hilliard equation:

∂t� − D�� − div(�∇�) = 0 (37)

where � = −δ��. One can try to perform this limit either on equation (11) or directly

on (1), by sending ωL
α

∗
⇀ δ0, ωS ∗

⇀ δ0 together, see Fig. 1. Passing from (1) to (37), the
main difficulty is the lack of entropywhich gives integrability of second-order derivatives
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Vlasov-Cahn-Hilliard
equation (1)

Non-local degenerate
Cahn-Hilliard (11)

Local degenerate
Cahn-Hilliard (37)Theorem 1

ε → 0; ωL
α

∗
0

open problem

ωS ∗
0

open problem, formally obtained in [33]

ε → 0; ωS , ωL
α

∗
0 together

Fig. 1. Relation between three types of the degenerate Cahn-Hilliard equations

in the nondegenerate Cahn-Hilliard. On the other hand, when one tries to pass to the
limit from (11) to (37), the entropy is available but it yields estimates only on

�(� � ωS) in L2
t L2

x , ∇√
� in L2

t L2
x .

The minimal required information allowing to pass to the limit seems to be strong
compactness of {∇�} in L2

t L2
x .

Moreover, it is also open to prove whether we can add the “usual” double-well
Cahn-Hilliard interaction potential in the system. In fact, as far as this modification is
concerned, it is not even clear if there exists a solution to the Vlasov-Cahn-Hilliard
equation when the potential � is a function of the density �.
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A. Useful Inequality and Lower Bound on the Energy

We recall two lemmas which have been used in the proof of Theorem 3. The first one is
a variant of the Csiszar-Kullback inequality.

Lemma 13. Let f, g ≥ 0 with ‖ f ‖1 = ‖g‖1. Then,

‖ f − g‖21 ≤ ‖ f ‖1
∫
Rd

( f − g) (log f − log g)

The second lemma is used to control f log−( f ) from f log f , which immediately es-
tablishes the Inequality (38).

http://creativecommons.org/licenses/by/4.0/
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Lemma 14. Let log−( f ) := max{− log( f ), 0}. Then∫
R2d

2D log−( fε(t)) fε(t) dx dξ ≤ C
(
‖�ε‖L1

t,x
, ‖x f 0‖L1

x,ξ

)
+
∫
R2d

|ξ |2
4

fε(t) dξ dx

+D
∫ t

0
||Dε(s, ·, ·)||L1

x,ξ
ds. (38)

Proof of Lemma 13. Let ‖ f ‖1 = ‖g‖1 = 1. Usual the Csiszar-Kullback inequality
gives us

‖ f − g‖21 ≤ 2
∫
Rd

f log

(
f

g

)
.

By symmetry of the (LHS) we have

2‖ f − g‖21 ≤ 2
∫
Rd

f log

(
f

g

)
+ 2
∫
Rd

g log

(
g

f

)
= 2

∫
Rd

( f − g)(log f − log(g)).

The general case follows by rescaling. ��
Proof of Lemma 14. We proceed as in [9, Proposition 5.1].
We divide the domain in two parts:

�1 :=
{

fε > exp

(
−|x |

4
− |ξ |2

8D

)}
, �2 :=

{
fε ≤ exp

(
−|x |

4
− |ξ |2

8D

)}
,

On �1, log−( fε) is bounded so that we have

fε log−( fε) ≤
( |x |

4
+

|ξ |2
8D

)
fε,

while on �2, fε ≤ 1 so that
√

fε log−( fε) is bounded by some constant C . Hence,

fε log−( fε) ≤ C
√

fε ≤ C exp

(
−|x |

8
− |ξ |2

16D

)
.

It follows that∫
R2d

log−( fε(t)) fε(t) dx dξ ≤
∫
R2d

C exp

(
−|x |

8
− |ξ |2

16D

)

+

( |x |
4

+
|ξ |2
8D

)
fε(t) dξ dx . (39)

Now, we only need to bound the term
∫
R2d

|x |
4 fε(t) dξ dx . For this, we first observe that

d

dt

∫
Rd

|x | fε(t) dξ = 1

ε

∫
Rd

fε(t)
x

|x |ξ dξ = x

|x | Jε ≤ 2‖Dε(s, ·, ·)‖L1
ξ
+ C�ε,

where we have used Proposition 8 and Young’s inequality (with ε ≤ 1). Therefore, for
all t ≥ 0

∫
R2d

|x | fε(t) dξ dx ≤
∫
R2d

|x | f 0 dξ dx + C‖�ε‖L1
t,x

+ 2
∫ t

0
‖Dε(s, ·, ·)‖L1

x,ξ
ds. (40)

Finally, equation (39) simplifies to give the desired result (38). ��
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B. Criteria for Compactness

Lemma 15 (Compactness of βν( fn) implies compactness of fn). Let { fn(t, x, ξ)} be a
sequence such that { fn} and { fn log fn} are bounded in L1

t,x,ξ . Let ψ(ξ) ∈ C∞
c (Rd).

Suppose that for all ν > 0 and all ε > 0, there exists δ(ν, ε) such that,whenever
|y| ≤ δ(ν, ε),∥∥∥∥

∫
Rd

(βν( fn(t, x + y, ξ)) − βν( fn(t, x, ξ))) ψ(ξ) dξ

∥∥∥∥
L1

t,x

≤ ε.

Then, for all ε > 0 there exists δ(ε) > 0 such that∥∥∥∥
∫
Rd

( fn(t, x + y, ξ) − fn(t, x, ξ)) ψ(ξ) dξ

∥∥∥∥
L1

t,x

≤ ε.

Proof. First, we observe that

|βν(s) − s| ≤
∣∣∣ s

1 + s ν
− s
∣∣∣ = νs2

1 + ν s
≤ min(ν s2, s).

Therefore, for M and ν to be chosen later∥∥∥∥
∫
Rd

( fn(t, x + y, ξ) − βν( fn(t, x + y, ξ))) ψ(ξ) dξ

∥∥∥∥
L1

t,x

≤

≤ ‖ψ‖∞ ν

∫
fn(t,x+y,ξ)≤M

f 2n (t, x + y, ξ) dξ dx dt

+ ‖ψ‖∞
∫

fn(t,x+y,ξ)≥M
fn(t, x + y, ξ) dξ dx dt

≤ ‖ψ‖∞ ν M ‖ fn‖1 + ‖ψ‖∞
‖ fn log fn‖1

log M
.

Similarly, ∥∥∥∥
∫
Rd

( fn(t, x, ξ) − βν( fn(t, x, ξ))) ψ(ξ) dξ

∥∥∥∥
L1

t,x

≤ ‖ψ‖∞ ν M ‖ fn‖1 + ‖ψ‖∞
‖ fn log fn‖1

log M
.

Let ε > 0. First, we choose ν and M such that

‖ψ‖∞ ν M ‖ fn‖1 + ‖ψ‖∞
‖ fn log fn‖1

log M
≤ ε

3
.

Then, we take δ(ν, ε/3) such that∥∥∥∥
∫
Rd

(βν( fn(t, x + y, ξ)) − βν( fn(t, x, ξ))) ψ(ξ) dξ

∥∥∥∥
L1

t,x

≤ ε/3

when |y| ≤ δ(ν, ε/3). The conclusion follows by the triangle inequality. ��
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Lemma 16. The sequence {�ε} from Lemma 10 is compact in time, i.e.

lim|h|→0

∫ T −h

0

∫
Rd

|�ε(t + h, x) − �ε(t, x)| dx dt = 0 uniformly in ε.

The proof of this lemma uses a sequence (ϕδ)δ>0 ∈ C∞
c (Rd) of standard mollifiers with

mass 1 such that ϕδ(x) = 1
δd ϕ( x

δ
)with ϕ of mass 1 and compactly supported. Moreover

‖∇kϕδ‖L1(Rd ) ≤ C

δk
,

and for any function g ∈ L p(Rd),

‖g � ϕδ‖L p(Rd ) ≤ ‖ϕδ‖L1(Rd )‖g‖L p(Rd ).

Proof. We know that

∂t�ε + ∇ · Jε = 0

where Jε is bounded uniformly in L1
t,x , see Proposition 8.

Using the mollifiers with δ depending on h to be specified later on, we first notice that∫ T −h

0

∫
Rd

|�ε(t + h, x) − �ε(t, x)| dx dt

≤
∫ T −h

0

∫
Rd

|�ε(t, x) − �ε(t, ·) � ϕδ(x)| dx dt

+
∫ T −h

0

∫
Rd

|�ε(t + h, x) − �ε(t + h, ·) � ϕδ(x)| dx dt

+
∫ T −h

0

∫
Rd

|�ε(t + h, ·) � ϕδ(x) − �ε(t, ·) � ϕδ(x)| dx dt.

For the first and second terms, the computations are the same, hence, we only present
it for the first term. Using the properties of the mollifiers and the compactness of �ε in
space, we want to prove that∫ T −h

0

∫
Rd

|�ε(t, x) − �ε(t, ·) � ϕδ(x)| dx dt ≤ θ(δ).

where θ(δ) → 0 when δ → 0 uniformly in ε. We write∫ T −h

0

∫
Rd

|�ε(t, x) − �ε(t, ·) � ϕδ(x)| dx dt

=
∫ T −h

0

∫
Rd

∣∣∣∣
∫
Rd

ϕ(y)(�ε(t, x) − �ε(t, x − δy)) dy

∣∣∣∣ dx dt.

ThenweuseFubini’s theoremand the fact thatϕ is compactly supported in some compact
set K we obtain∫ T −h

0

∫
Rd

∣∣∣∣
∫
Rd

ϕ(y)(�ε(t, x) − �ε(t, x − δy)) dy

∣∣∣∣ dx dt
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≤
∫

K
‖τδy�ε − �ε‖L1((0,T )×Rd ) dy.

where τx is the translation operator in x variable. Now we use the compactness in space
obtained in (36), so that∫

K
‖τδy�ε − �ε‖L1((0,T )×Rd ) dy ≤ |K | sup

y∈K
‖τδy�ε − �ε‖L1((0,T )×Rd ) ≤ θ(δ).

Therefore the first and the second term are bounded by θ(δ) where θ(δ) → 0 when
δ → 0 uniformly in ε. It remains to study the third term. The third term reads

∫ T −h

0

∫
Rd

|�ε(t + h, ·) � ϕδ(x) − �ε(t, ·) � ϕδ(x)| dx dt

=
∫ T −h

0

∫
Rd

∣∣∣∣
∫ t+h

t
∂t�ε(s, ·) � ϕδ(x)ds

∣∣∣∣ dx dt

=
∫ T −h

0

∫
Rd

∣∣∣∣∣−
d∑

i=1

∫ t+h

t
Ji � ∂iϕδ(s, x)ds

∣∣∣∣∣ dx dt

≤
d∑

i=1

∫ T −h

0

∫
Rd

∫ t+h

t
|Ji � ∂iϕδ(s, x)| ds dx dt,

where we used Jε = (Ji )i=1,...,d . We perform the change of variables v = s−t
h , use

Fubini’s theorem and obtain∫ T −h

0

∫
Rd

∫ t+h

t
|Ji � ∂iϕδ(s, x)| ds dx dt

= h
∫ 1

0

∫
Rd

∫ T −h

0
|Ji � ∂iϕδ(vh + t, x)| dt dx dv.

Then we use the change of variables τ = vh + t and obtain

h
∫ 1

0

∫
Rd

∫ T −h

0
|Ji � ∂iϕδ(vh + t, x)| dt dx dv

= h
∫ 1

0

∫
Rd

∫ T+h(v−1)

vh
|Ji � ∂iϕδ(τ, x)| dτ dx dv ≤ h

δ
‖Jε‖L1

t,x
.

Using the L1
t,x bound on Jε and taking δ = h1/2 we conclude. ��

C. Uniqueness in L∞

Let d ≥ 3.We are interested in the uniqueness of these solutions in the class of functions
such that

� ∈ L∞
t,x ∩ L∞

t L1
x ∩ Cw

t L1
x (41)
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where Cw
t L1

x denotes the space of weakly continuous in time functions with values in
L1

x . In this class, the definition of distributional solutions of Theorem 1 can be formulated
as follows: for every test function ϕ ∈ C∞

c ([0, T ) × R
d) we have, with

−
∫
Rd

�0ϕ(0, x) dx −
∫ T

0

∫
Rd

�∂tϕ dx dt = D
∫ T

0

∫
Rd

��ϕ dx dt

−
∫ T

0

∫
Rd

�∇�(�) · ∇ϕ dx dt,

where �(�) = −δ�(ωS � ωS � �) and � ∈ L∞
t L1

x .
By interpolation � belongs to every L p

t,x , 1 ≤ p ≤ ∞ and so is ∇�(ρ). Therefore this
formulation implies∫ T

0
〈∂t�, ϕ〉 = D

∫ T

0

∫
Rd

��ϕ dx dt−
∫ T

0

∫
Rd

�∇�(�) · ∇ϕ dx dt, (42)

for every ϕ ∈ L1
t W 1,1

x ∩ L1
t Ḣ2

x where 〈·, ·〉 denotes the dual pairing between Ḣ−2 and
Ḣ2.
Let �1, �2 be two solutions as above with same initial data which satisfy �1, �2 ∈ L∞

t,x .
The goal is to prove that �1 = �2. We substract Equation (42) for �2 and �1. Writing
� = �2 − �1, we obtain

∫ T

0
〈∂t�, ϕ〉 = D

∫ T
0
∫
Rd ��ϕ dx dt − ∫ T

0
∫
Rd �∇�(�2) · ∇ϕ dx dt dt

− ∫ T
0
∫
Rd �1∇�(�) · ∇ϕ dx dt. (43)

We want to test (43) with ϕ(t) = −N ∗ � where N is the Newtonian potential so that
−�ϕ = �. This is an admissible test function. Indeed, ∂xi ,x j ϕ ∈ L∞

t L2
x by the Calderon-

Zygmund theory cf. [4, Theorem 3.5, Chapter 3].Moreover, as∇N ∈ L
d

d−1 ,∞ (i.e. weak
L p spaces) we can use Young’s convolutional inequality to deduce

‖∇ϕ‖L∞
t L2

x
≤ C‖∇N‖

L
d

d−1 ,∞‖�‖
L∞

t L
2d

d+2
x

.

Finally, ϕ ∈ L∞
t,x cf. [1, Lemma 1]. Therefore, testing (43) with ϕ we obtain

1

2

∫
Rd

|∇ϕ(T )|2 dx + D
∫ T

0

∫
Rd

�2 = −
∫ T

0

∫
Rd

�∇�(�2) · ∇ϕ

−
∫ T

0

∫
Rd

�1∇�(�) · ∇ϕ.

We denote by I1 and I2 the two terms of the right-hand side. Using −�ϕ = � and the
formula �ϕ∇ϕ = ∇ · (∇ϕ ⊗ ∇ϕ) − 1

2∇|∇ϕ|2 we obtain

I1 =
∫ T

0

∫
Rd

�ϕ∇ϕ · ∇�(�2) ≤ C
∫ T

0

∫
Rd

|D2�(�2)||∇ϕ|2 ≤ C
∫ T

0

∫
Rd

|∇ϕ|2.

as |D2�(�2)| can be bounded as in Lemma 11 only in terms of ‖�2‖L∞
t,x
. For I2 we recall

that �1 is bounded in L∞
t,x . Using the Cauchy-Schwarz inequality it remains to see that



C. Elbar, M. Mason, B. Perthame, J. Skrzeczkowski

‖∇�(�)‖L2 ≤ C‖∇ϕ‖L2 which can be achieved by definition of �(�) and ϕ and the
fact that convolutions commute with derivatives. Therefore

I2 ≤ C‖∇ϕ‖2
L2

t,x
.

Combining the previous results we obtain

‖∇ϕ(T, ·)‖2L2 ≤ C
∫ T

0
‖∇ϕ‖2L2 ,

so that ‖∇ϕ‖2
L2 = 0 and the proof is concluded.

D. Estimate on Jε log1/2 log1/2 max(Jε, e)

From Lemma 7 we recall that for 0 < r ≤ 1

|Jε(s, x)| ≤ rε‖Dε(s, x, ·)‖L1
ξ
+ C

1

rd
exp

(
2CM

r2

)
�ε(s, x)1/2‖Dε(s, x, ·)‖1/2

L1
ξ

.

We can make further simplifications: applying a simple rescaling of r , ignoring ε, esti-
mating 1

rd ≤ exp( 1
rd ) and changing r = 1

α
we can assume

|Jε(s, x)| ≤ C

α
‖Dε(s, x, ·)‖L1

ξ
+ C exp

(
α2
)

�ε(s, x)1/2‖Dε(s, x, ·)‖1/2
L1

ξ

. (44)

To choose the best α in the inequality above, we let u = �ε, v = ‖Dε(s, x, ·)‖L1
ξ
so that

we can estimate

|Jε(s, x)| ≤ C v min
1<α<∞

[
1

α
+ exp

(
α2
)√u

v

]
. (45)

Lemma 17. Let v ≥ e, u ≥ 0, v > e2 u. The minimum in (45) is attained for α > 1
which is the unique solution of

2α3 exp(α2) =
√

v

u
.

For such α > 1 we have

v

[
1

α
+ exp

(
α2
)√u

v

]
= v

[
1

α
+

1

2α3

]
≤ 2v

α
.

Then,

2v

α
≤
⎧⎨
⎩

2
√
2 v

log1/2+ log1/2+ v
if v ≥ u log1/2+ v,

2 u log1/2+ v if v < u log1/2+ v.

(46)
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Proof. The first statement is a consequence of simple calculus and we only have to prove
that the minimum is attained for α > 1. This follows from√

v

u
= 2α3 exp(α2) ≤ exp(2α2) �⇒ 1

2
log
(v

u

)
≤ α2. (47)

As v > e2 u, we deduce α > 1.
We proceed to the estimates on v

2α . Suppose that v ≥ u log1/2+ v. Then, we have

log v ≥ log u + log log1/2+ v �⇒ log1/2+

(v

u

)
≥ log1/2+ log1/2+ v

(we use here v
u > e2 and v > e to write log+ instead of log). In view of (47), this gives

lower bound on α which implies

2v

α
≤ 2

√
2v

log1/2+ log1/2+ v
.

We are left with the case v < u log1/2+ v. In this case we estimate directly using α > 1:

2v

α
≤ 2v ≤ 2 u log1/2+ v.

��
We proceed to estimating Jε log1/2 log1/2 max(Jε, e) in L1

t,x . Let us observe that we can
always restrict the set of integration to the points (t, x)where ‖Dε‖L1

ξ
is arbitrarily large.

Indeed, given M ≥ e, we estimate

∫ T

0

∫
Rd

Jε log
1/2 log1/2 max(Jε, e) ≤

≤
∫ T

0

∫
Rd

Jε log
1/2 log1/2 max(Jε, e)1Jε≤M

+
∫ T

0

∫
Rd

Jε log
1/2 log1/2 max(Jε, e)1‖Dε‖L1

ξ
≤e2�ε

+
∫ T

0

∫
Rd

Jε log
1/2 log1/2 max(Jε, e)1‖Dε‖L1

ξ
>e2�ε

1Jε>M .

The first integral is bounded by ‖Jε‖L1
t,x

log1/2 log1/2 M . For the second integral, we
note that (44) implies that Jε ≤ C �ε so this integral is finite because we can use Young’s
inequality and log x ≤ x to get

�ε log
1/2 log1/2 max(�ε, e) ≤ �ε +

1

2
�ε logmax(�ε, e).

In the third integral, by estimate (44) with α = 2, we have ‖Dε‖L1
ξ

≥ M
C for some

constant C . It follows that ‖Dε‖L1
ξ
can be assumed to be arbitrarily large by taking

sufficiently large M . This allows us to apply Lemma 17.
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Splitting the domain of integration for two subsets as in Lemma 17, it is sufficient to
prove that the following functions

P1
ε :=

‖Dε‖L1
ξ

log1/2+ log1/2+ ‖Dε‖L1
ξ

log1/2+ log1/2+

⎛
⎝ ‖Dε‖L1

ξ

log1/2+ log1/2+ ‖Dε‖L1
ξ

⎞
⎠ ,

P2
ε := �ε log1/2+ ‖Dε‖L1

ξ
log1/2+ log1/2+

(
�ε log1/2+ ‖Dε‖L1

ξ

)
.

are bounded in L1
t,x (here, we use that log1/2+ log1/2+ v = log1/2 log1/2 max(v, e)).

For P1
ε (this is the limiting case!), we restrict to the values of ‖Dε‖L1

ξ
so large that

log1/2+ log1/2+ ‖Dε‖L1
ξ

> 1. Then,

log1/2+ log1/2+

⎛
⎝ ‖Dε‖L1

ξ

log1/2+ log1/2+ ‖Dε‖L1
ξ

⎞
⎠ ≤ log1/2+ log1/2+

(
‖Dε‖L1

ξ

)

so that P1
ε ≤ ‖Dε‖L1

ξ
.

For P2
ε , we apply log x ≤ x ,

√
x + y ≤ √

x +
√

y and 2 x y ≤ x2 + y2 to get

P2
ε ≤ �ε log1/2+ ‖Dε‖L1

ξ
log1/2+

(
�ε log1/2+ ‖Dε‖L1

ξ

)
≤

≤ �ε log1/2+ ‖Dε‖L1
ξ
log1/2+ �ε + �ε log1/2+ ‖Dε‖L1

ξ
log1/2+ log1/2+ ‖Dε‖L1

ξ

≤ �ε log+ �ε + �ε log+ ‖Dε‖L1
ξ
+ �ε log+ ‖Dε‖L1

ξ

so it is sufficient to prove that �ε log+ ‖Dε‖L1
ξ
is bounded in L1

t,x . This follows from

Fenchel-Young’s inequality

�ε log+ ‖Dε‖L1
ξ

≤ �ε log �ε + �ε + ‖Dε‖L1
ξ
.

References

1. Bardos, C., Degond, P.: Global existence for the Vlasov-Poisson equation in 3 space variables with small
initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 101–118 (1985)

2. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)
3. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys.

28, 258–267 (1958)
4. Chen, Y.-Z., Wu, L.-C.: Second order elliptic equations and elliptic systems, vol. 174. In Translations

of Mathematical Monographs. American Mathematical Society, Providence (1998). Translated from the
1991 Chinese original by Bei Hu

5. Davoli, E., Scarpa, L., Trussardi, L.: Nonlocal-to-local convergence of Cahn-Hilliard equations: neumann
boundary conditions and viscosity terms. Arch. Ration. Mech. Anal. 239, 117–149 (2021)

6. DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak
stability. Ann. Math. (2) 130, 321–366 (1989)

7. Ebenbeck, M., Garcke, H.: On a Cahn-Hilliard-Brinkman model for tumor growth and its singular limits.
SIAM J. Math. Anal. 51, 1868–1912 (2019)

8. Ebenbeck, M., Garcke, H., Nürnberg, R.: Cahn-Hilliard-Brinkman systems for tumour growth. Discrete
Contin. Dyn. Syst. Ser. S 14, 3989–4033 (2021)



From Vlasov Equation to Degenerate Nonlocal Cahn-Hilliard Equation

9. El Ghani, N., Masmoudi, N.: Diffusion limit of the Vlasov-Poisson-Fokker-Planck system. Commun.
Math. Sci. 8, 463–479 (2010)

10. Elbar, C., Perthame, B., Poulain, A.: Degenerate Cahn-Hilliard and incompressible limit of a Keller-Segel
model. Commun. Math. Sci. 20(7), 1901–1926 (2022)

11. Elbar, C., Skrzeczkowski, J.: Degenerate Cahn-Hilliard equation: from nonlocal to local. arXiv preprint
arXiv:2208.08955 (2022)

12. Frieboes, H.B., Jin, F., Chuang, Y.-L., Wise, S.M., Lowengrub, J.S., Cristini, V.: Three-dimensional
multispecies nonlinear tumor growth–II: tumor invasion and angiogenesis. J. Theor. Biol. 264, 1254–
1278 (2010)

13. Frigeri, S., Lam, K.F., Rocca, E., Schimperna, G.: On a multi-species Cahn-Hilliard-Darcy tumor growth
model with singular potentials. Commun. Math. Sci. 16, 821–856 (2018)

14. Garcke, H., Lam, K.F., Nürnberg, R., Sitka, E.: A multiphase Cahn-Hilliard-Darcy model for tumour
growth with necrosis. Math. Models Methods Appl. Sci. 28, 525–577 (2018)

15. Garcke, H., Lam, K.F., Sitka, E., Styles, V.: A Cahn-Hilliard-Darcy model for tumour growth with
chemotaxis and active transport. Math. Models Methods Appl. Sci. 26, 1095–1148 (2016)

16. Giovangigli, V.: Kinetic derivation of Cahn-Hilliard fluid models. Phys. Rev. E 104, 054109 (2021)
17. Golse, F., Lions, P.-L., Perthame, B., Sentis, R.: Regularity of the moments of the solution of a transport

equation. J. Funct. Anal. 76, 110–125 (1988)
18. Goudon, T.: Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: analysis of the two-

dimensional case. Math. Models Methods Appl. Sci. 15, 737–752 (2005)
19. Grmela, M.: On the approach to equilibrium in kinetic theory. J. Math. Phys. 15, 35–40 (1974)
20. Horst, E.: On the asymptotic growth of the solutions of the Vlasov-Poisson system. Math. Methods Appl.

Sci. 16, 75–86 (1993)
21. Kobayashi, K., Ohashi, K., Watanabe, M.: Numerical analysis of vapor-liquid two-phase system based

on the Enskog-Vlasov equation. AIP Conf. Proc. 1501, 1145–1151 (2012)
22. Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson

system. Invent. Math. 105, 415–430 (1991)
23. Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.:

Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, R1–R91
(2010)

24. Masmoudi, N., Tayeb, M.L.: Diffusion limit of a semiconductor Boltzmann-Poisson system. SIAM J.
Math. Anal. 38, 1788–1807 (2007)

25. Melchionna, S., Ranetbauer, H., Scarpa, L., Trussardi, L.: From nonlocal to local Cahn-Hilliard equation.
Adv. Math. Sci. Appl. 28, 197–211 (2019)

26. Miranville, A.: The Cahn-Hilliard equation. . In: Recent advances and applications, vol. 95 of CBMS-
NSF Regional Conference Series in Applied Mathematics. Society for Industrial andAppliedMathematics
(SIAM), Philadelphia (2019)

27. Perthame, B., Poulain, A.: Relaxation of the Cahn-Hilliard equation with singular single-well potential
and degenerate mobility. Eur. J. Appl. Math. 32, 89–112 (2021)

28. Perthame, B., Souganidis, P.E.: A limiting case for velocity averaging. Ann. Sci. École Norm. Sup. (4)
31, 591–598 (1998)

29. Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general
initial data. J. Differ. Equ. 95, 281–303 (1992)

30. Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions.
Commun. Part. Differ. Equ. 16, 1313–1335 (1991)

31. Simon, J.: Compact sets in the space L p(0, T ; B). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)
32. Takata, S., Matsumoto, T., Hattori, M.: Kinetic model for the phase transition of the van der waals fluid.

Phys. Rev. E 103, 062110 (2021)
33. Takata, S., Noguchi, T.: A simple kinetic model for the phase transition of the van der Waals fluid. J. Stat.

Phys. 172, 880–903 (2018)
34. Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Three-dimensional multispecies nonlinear

tumor growth–I: model and numerical method. J. Theor. Biol. 253, 524–543 (2008)

Communicated by A. Ionescu

http://arxiv.org/abs/2208.08955

	From Vlasov Equation to Degenerate Nonlocal Cahn-Hilliard Equation
	Abstract:
	1 Introduction
	1.1 The macroscopic limit
	1.2 Contents of the paper
	1.3 Literature review and relevancy of the system

	2 Entropy, Energy, and Uniform Estimates
	3 The Limit εto0
	4 Conclusion
	Acknowledgements.
	A Useful Inequality and Lower Bound on the Energy
	B Criteria for Compactness
	C Uniqueness in Linfty
	D Estimate on Jε log1/2 log1/2 max(Jε,e)
	References


