N

N

SeMaFoR - Self-Management of Fog Resources with
Collaborative Decentralized Controllers
Abdelghani Alidra, Hugo Bruneliere, Hélene Coullon, Thomas Ledoux,
Charles Prud’Homme, Jonathan Lejeune, Pierre Sens, Julien Sopena,

Jonathan Rivalan

» To cite this version:

Abdelghani Alidra, Hugo Bruneliere, Hélene Coullon, Thomas Ledoux, Charles Prud’Homme, et al..
SeMaFoR - Self-Management of Fog Resources with Collaborative Decentralized Controllers. SEAMS
2023 - IEEE/ACM 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems,
May 2023, Melbourne, Australia. pp.25-31, 10.1109/SEAMS59076.2023.00014 . hal-04043471

HAL Id: hal-04043471
https://hal.science/hal-04043471
Submitted on 23 Mar 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04043471
https://hal.archives-ouvertes.fr

SeMaFoR - Self-Management of Fog Resources
with Collaborative Decentralized Controllers

Abdelghani Alidra, Hugo Bruneliere,
Hélene Coullon, Thomas Ledoux,
Charles Prud’homme
IMT Atlantique, LS2N (UMR CNRS 6004)
Nantes, France
firstname.lastname @imt-atlantique.fr

Abstract—Fog Computing is a paradigm aiming to decentralize
the Cloud by geographically distributing away computation, stor-
age and network resources as well as related services. This notably
reduces bottlenecks and data movement. However, managing Fog
resources is a major challenge because the targeted systems are
large, geographically distributed, unreliable and very dynamic.
Cloud systems are generally managed via centralized autonomic
controllers automatically optimizing both application QoS and
resource usage. To leverage the self-management of Fog resources,
we propose to orchestrate a fleet of autonomic controllers in a
decentralized manner, each with a local view of its own resources.
In this paper, we present our SeMaFoR (Self-Management of
Fog Resources) vision that aims at collaboratively operating
Fog resources. SeMaFoR is a generic approach made of three
cornerstones: an Architecture Description Language for the Fog,
a collaborative and consensual decision-making process, and an
automatic coordination mechanism for reconfiguration.

Index Terms—Fog Computing, Architecture Description Lan-
guage, Autonomic Controllers, Decision-making

1. INTRODUCTION

Fog Computing [1]-[3] is a paradigm aiming to decentralize
the Cloud by geographically distributing away computation,
storage and network resources, and related services. Instead of
considering a huge centralized Cloud system, both data centers
of various sizes in the core network and smaller data centers or
devices at the edge of the network can be collaboratively used
to form a single large-scale geo-distributed system. Thanks to
resource locality, this paradigm allows better performance in
terms of service latency, power consumption, network traffic
or content distribution. The main gains are twofold: 1) Avoid
network bottlenecks and single points of failure; 2) Keep the
data as close as possible to their sources (e.g., sensors) and to
their final usage (i.e., end-users). However, managing resources
in such heterogeneous and dynamic large systems is highly
challenging and requires fully decentralized solutions for scal-
ability and reliability reasons. Notably, in Fog Computing,
network interruptions and faults are very frequent [4ﬂ

Centralized Cloud systems are often designed with a set of
centralized autonomic controllersE] [5], [6] in order to auto-
matically manage (i.e., without human intervention) different
levels of Cloud administration such as applications Quality of
Service (QoS) or virtual resources optimization, etc. However,

Ihttps://www.microsoft.com/en-us/research/publication/
the-emerging-landscape- of-edge-computing/

“In the remainder of the paper, autonomic controllers are also called
autonomic managers or MAPE-K loops.

Jonathan Lejeune, Pierre Sens,
Julien Sopena
Sorbonne Université, Inria

Jonathan Rivalan
Smile
Asnieres sur Seine, France

Paris, France jonathan.rivalan @smile.fr

firstname.lastname @lip6.fr

in Fog Computing, the system is much larger (i.e., number
of resources and services), more heterogeneous (i.e., variety of
hardware), unreliable and highly dynamic (e.g., faults, mobility
of devices). This prevents from building a consistent centralized
view to take control decisions. Thus, to automatically operate
Fog systems, distributed solutions are needed to coordinate
(i.e., orchestrate) a possibly large number of small autonomic
controllers, each one having a local view of their controllable
resources, i.e., of their respective Fog area. In order to address
a potentially wide range of large-scale Fog systems, the concept
of Fog area must be generic enough to represent a logical par-
tition of the Fog configuration such as a delay-aware network
community, a trusted data zone, a hardware-specific subset, etc.

In this paper, we present our SeMaFoR (Self-Management
of Fog Resources) vision towards a generic, end-to-end, decen-
tralized and collaborative self-management solution to operate
different kinds of Fog systems. To this end, we aim at address-
ing the following challenges:

1) Provide a generic and customizable Architecture Descrip-
tion Language (ADL) for modeling any kind of Fog
system (i.e., infrastructure topologies, resources configu-
rations) and their specific features such as the locality
concept, QoS constraints applied on resources (e.g.,
energy, data privacy, latency) and their dependencies, the
dynamicity of considered workloads, the heterogeneity of
both applications and devices, etc.

2) Support collaborative decision-making between a fleet
of small autonomic controllers distributed over the Fog.
We think that tackling the convergence of local decisions
to obtain a shared consistent decision among these au-
tonomic controllers requires new distributed agreement
protocols based on distributed consensus algorithms.

3) Support the automatic generation and coordination of
reconfiguration plans between the autonomic controllers.
The controller gets a new local target configuration to
apply from the consensus, but the execution plan of the
overall reconfiguration also needs to be generated and
coordinated to minimize the disruption time and avoid
reaching errors or inconsistent states.

For validation purposes, and with the support of the Smile
company, we plan to design and implement a concrete im-
plementation of the SeMaFoR approach that can be used for
managing large-scale distributed systems composed of different
Fog areas. Notably, we plan to evaluate the relevance and

https://www.microsoft.com/en-us/research/publication/the-emerging-landscape-of-edge-computing/
https://www.microsoft.com/en-us/research/publication/the-emerging-landscape-of-edge-computing/

efficiency of the SeMaFoR solution on both simulated Fog
infrastructures (simulating practical examples of Fog systems)
and real infrastructures (e.g., the French experimental platform
Grid’SOO(ﬂ or commercial ones such as Amazon EC2).

The rest of this document is organized as follows. Section]
presents the background of and motivation for our SeMaFoR
vision. Section introduces the overall SeMaFoR approach
and describes each step of the approach by using a running
example. Finally, Section discusses open challenges to be
tackled in SeMaFoR or in other research efforts.

II. MOTIVATION AND BACKGROUND

A. Motivation and approach

The main objective of SeMaFoR is to go beyond existing
autonomic Cloud approaches [6]], [7] and towards emerging
large-scale and geographically-distributed Fog environments.

In the past, we have addressed the challenge of coordinating
multiple autonomic managers in the Cloud between the SaaS
and the IaaS layers [§]] in a ad hoc manner. Then, we proposed
a generic model-based architecture for autonomic management
of Cloud systems [6] where any XaaS (Anything as a Service)
layer can be defined (e.g., energy as a service). However, our
approach has been specific to client-server relationship, with a
set of centralized autonomic controllers and does not address
large-scale geo-distributed system with its different issues (e.g.,
heterogeneity, unreliability, highly dynamicity).

Going further, we now propose an end-to-end approach to
specify, (re)configure and orchestrate Fog resources in a generic
and automated way. We advocate for a generic approach to
address a wide range of topologies, different use cases and
various reconfiguration scenarios such as, for instance:

o Dynamically and continuously migrate, scale, and load
balance some services from one Fog area to another to
ensure a constant Quality of Service despite user mobility;

« Reconfigure some applications, services, or even the con-
trollers themselves after faults;

o Support the geographically distributed deployment of new
multi-region applications in the Fog system;

« Reconfigure resources usage to reduce the overall energy
consumption, or dynamically and continuously migrate
services to follow solar energy within the system, etc.

A Fog system is made of a set of various resources — from
hardware ones (e.g., IoT devices, servers or any data center
distributed over the network) to software ones (e.g., virtual
machines, micro-services) — potentially interconnected (e.g.,
network connections, dependencies between resources). As
introduced in Section|[I] our assumption is not to have a central-
ized view of the overall Fog system, nor to take global control
decisions, but rather to consider Fog areas with controllers
handling a local subset of interconnected resources.

To preserve the elasticity of the Cloud paradigm in the
Fog, collaboration is required between Fog areas when one
(or more) autonomic controller is not able to find locally a
satisfying configuration (e.g., due to some services that cannot
be physically hosted, or QoS expectations) and thus needs the
resources from other Fog areas.

3https://www.grid5000.fr

B. Fog and Autonomic Computing

Decentralized self-management in Fog Computing is a recent
research area and, to the best of our knowledge, the related
literature is currently limited. To realize the Fog Comput-
ing paradigm, several approaches have been proposed [I],
[31, [9]. Some works propose a hierarchical architecture of
Fog Computing, while others advocate a more decentralized
approach relying on peer-to-peer (P2P) networking at the
edge. Some approaches emphasize on the difference between
application-agnostic and specific Fog architectures, while oth-
ers highlight multi-tenancy or data flow as essential features.
However, only a few works address the self-management of
Fog resources [[10]], [[11]] and none of them proposes a generic
approach for distributed and collaborative decision making.
For example, a recent work studies the impact of different
decentralization and coordination schemes [12] but, contrary
to us, does not intend to propose an end-to-end approach.

In Autonomic Computing, the decentralization of self-
adaptive systems has been largely studied during the last
decade [13]-[16]. It has been shown that the realization of
the coordination between several MAPE-K loops follows a set
of design patterns [13]. Based on these, we decided to adopt
the Coordinated Control Pattern in the SeMaFoR approach.
Indeed, each control loop must coordinate with its peers (i.e.,
other Fog areas) to reach some joint decision about how
to adapt to a particular situation. More recently, a mapping
study [15] listed open challenges for future work on decen-
tralized self-adaptive systems. It appears that only two studies
worked on the need for a disciplined engineering approach
to realize more easily decentralized self-management. Moving
forward in this direction, SeMaFoR plans to provide a generic,
integrated and end-to-end approach allowing Fog architects to
build decentralized and collaborative autonomic Fog systems.

Finally, specific decentralized, hierarchical, or federated ver-
sions of Kubernetes (e.g., KubeEdge, mck8s [[17], Admiralty
[18]], KubeFed [19]], me-kube [20]]) and other decentralized
orchestrators [21]], [22] have been proposed to address the
management of container-based Edge/Fog resources. However,
most of these solutions either decentralize a subpart of the
control, or adopt a federated or hierarchical approach. We
rather intend to reach a fully decentralized solution.

C. Architecture Description Languages and Fog Computing
modeling

Architecture Description Languages (ADLs) and modeling
languages have been widely used since a long time, including
in the context of distributed systems and Cloud Comput-
ing [23]. Among others, a standard called TOSCA [24] for
modeling portable Cloud applications and supporting their
life-cycle management is getting more attention. With the
emergence of Fog Computing, the research community then
started to work on the definition of Fog common architectures
and underlying concepts [25]. Nevertheless, according to our
detailed study of the state-of-the-art in terms of already existing
Fog Modeling Languages [26], none of the available solutions
appears to come with a generic reusable language that would
allow engineers to easily specify, share, maintain and evolve
Fog system’s models supporting different kinds of Fog archi-
tectures. We intend to fill this gap in SeMaFoR.

https://www.grid5000.fr

To this end, we already worked in the past on a model-
based approach for heterogeneous Cloud systems [6]: we
notably proposed a corresponding Cloud modeling language
that can interoperate with TOSCA [27]]. More recently, we also
integrated various languages and related models of large and
heterogeneous systems [28]]. Based on these previous efforts,
we now go further by adapting the core of our Cloud modeling
language and refining it in order to also integrate more specific
concepts and properties related to Fog systems.

D. Collaborative decision-making

In the context of SeMaFoR, the decision problem must be
considered through two dimensions: 1) The intra-controller
dimension, specific to a controller that has to manage resources
and services within its logical Fog area; 2) The inter-controller
dimension, wherein two or more controllers must reach a stable
point, i.e., a fixed point, between them. The controllers involved
define a neighbourhood and a controller can be in several
different neighbourhoods. Finding a fixed point within a neigh-
bourhood is intrinsically decentralized. Indeed, a controller
has to take decisions with partial knowledge on an unreliable
and dynamic environment, in a competitive way. Thus, there
exist links between the Fog area controllers and these links
imply that some of them share common resources, or vari-
ables. Consequently a logical common variable is replicated
physically on all concerned controllers. Then, a collaborative
decision making about its value has to be done consensually.

This matches the well-known fundamental consensus problem!]

[29], [30] of distributed systems. It specifies that all non-faulty
nodes will decide definitively (integrity property) in a finite
time a common value among a set of proposed values. However
implementing such autonomic controller federation leads to
multiple decisions taken asynchronously by several subsets
of nodes. Therefore, potential decision conflict between two
agreements may happen on nodes involved in several agree-
ments due to the system’s dynamics. In this case, a previous
decision can be canceled to resolve conflicts that violate the
integrity property. This questions the original definition of the
consensus problem and the existing distributed algorithms.
There are multiple ways to solve the decision problem a con-
troller has to deal with, known as mathematical programming
techniques. In [|6], we proposed a generic approach based on
Constraint Programming (CP) techniques to handle centralized
generic controller decision-making. Indeed, CP provides a
generic and declarative way to describe combinatorial prob-
lems, known as Constraint Satisfaction Problem (CSP). Based
on high-level objects (constraints), the paradigm keeps the code
human-readable and eases its implementation and maintenance.
In addition, CP also comes with automatic solving techniques
which exploit the sub-problems captured in the constraints
to reduce the search space by eliminating the impossible
areas. Constraint-based techniques exist to solve problems in
decentralised ways, namely distributed CSP [31]]. Most of the
time, these algorithms are situated in contexts where agents are
hierarchically organized to cooperate in a static environment.
In addition, it is also assumed that an agent is responsible for

4Consensus algorithms aim to solve common problems in distributed sys-
tems such as transaction commit in replicated databases, clock synchronization,
control of autonomous vehicles or blockchains.

a single variable. Unfortunately, these assumptions do not hold
in SeMaFoR since some variables need to be shared among
many controllers and the controllers may not be ordered and
are competitors in a dynamic environment.

III. THE SEMAFOR APPROACH
A. Overview of the approach

By considering that each controller follows a local MAPE-
K model [5], Figure [T] depicts the overview of the SeMaFoR
approach for three controllers, one for each Fog area. We use
the Coordinated Control Pattern defined by [13]] where all the
'M’,’A’, ’P” and "E’ components of different loops can interact
to share particular information and/or coordinate their actions.
The different loops in each Fog area run asynchronously, i.e., a
loop can be in the "A’ state while another can be in a ’P’ state.
Synchronization occurs when it is necessary to collectively
make a decision that impacts the state of several Fog areas
in the same neighborhood. In the SeMaFoR approach, two
controllers are considered as neighbors (or peers) if their
corresponding Fog area are logically linked implying thus a
potential collaboration in their control. A link can represent
for instance the offering of same type of physical or logical
resources, a geographical area sharing, services offered by one
and consumed by the other one, etc. In Figure [I] the controller
C1 is linked with controller C2 (in red) and C3 (in green).
However, C2 and C3 are not neighbors and do not interact. The
different colors represent the different neighborhoods. Note that
a neighborhood can have more than two controllers.

T
v , A |
M A R (M A e]

[]

[}
Fog Area 1 i Fog Area 3
Controller i K, Controller
(c1) i J) (C3)

' R
Fog Area 2
Co%troller : K ’—' Information sharing

2 ~¢— Collaborative decision making

- - Decentralized planning
<& - — » Coordinated execution

(2
AP

Fig. 1: Overview of the SeMaFoR approach with three collab-
orating MAPE-K controllers of Fog areas.

Inside a loop, a local monitoring is performed to continu-
ously keep an updated state of the set of resources (nodes and
services) within a Fog area. This knowledge 'K’ also contains
the set of constraints and goals to continuously satisfy on the
nodes and services (e.g., QoS). From this local knowledge,
some high-level information can be shared between neighbor
areas. However, building a complete global knowledge of the
Fog system is not considered: our approach is fundamentally
based on information decentralization.

When some constraints are identified as not satisfied through
monitoring, and if the problem cannot be solved locally, a
collaborative decision making (through a consensus protocol)
between controllers in the relevant neighborhood is initiated.
The neighborhood is established depending on the type of con-
straints violated. More than one neighborhood can be required
to satisfy again a set of constraints. Once a neighborhood is
established, all associated controllers participate in the decision
making and potentially to the rest of the adaptation process.

After this collaborative step and if all concerned neighbor-
hoods find a fixed point, a new state to reach is computed for
each Fog area involved in the neighborhood. Then, a reconfig-
uration plan (i.e.,, a program) is built from the knowledge of
both the current state and the new state to reach for each Fog
area. In this step, even if a local state is used, the plan may
require some synchronization with the plans of other areas.
For this reason, the plan needs to be decentralized. Finally,
the plan of each Fog area is executed which requires some
point-to-point decentralized coordination between Fog areas.

The rest of this section gives details on three challenges we
address: the description language required to model the Fog
resources in 'K’; the collaborative decision-making in *A’; and
the decentralized plans in 'P’. The monitoring "M’ and the
execution 'E’ are discussed in Section

Running example - Throughout this section we will use
a running example to illustrate our approach. This example
focuses on a placement problem (i.e., the first configuration) but
the approach is valid for any (re)configuration. Let us consider
a new request from a user of the platform to host a new service-
oriented application A. A is made of four types of services,
namely sa, sp, sc¢, and sp. As illustrated in Figure [2| the
service provided by s4 is used by the four instances of the
service sp and by one instance of the service sp. In addition,
the service provided by sp is used by one instance of the
service s¢. Each service is associated to a set of constraints to
be continuously satisfied:

e 54 should have access to CO, sensors;

e sp, as running Al algorithms, should have access to GPU

hardware;

o sp must be geographically close to s 4 for latency reasons;

e sc¢ need a machine with at least 100GB of RAM.
This is a typical application that may run in the Fog, as for
example a smart-city application where dynamic C'O, data are
used to build a machine learning model (by using GPUs), and
aggregated to other information to perform a postmortem big
data computation that requires more than 100GB of RAM.

002 sensors GPUs
SA —>— °B
S
°p > c
RAM = 100GB

Latency wrt s,
Fig. 2: Example of a new application A to host on the Fog
resources. A is made of one instance of the service s4, sc,
and sp, and four instances of the service sp. Each service has
some specific constraints.

B. A Fog architecture description language

The main objective of the SeMaFoR Fog Modeling Lan-
guage is to allow specifying both the resources composing
the Fog resources and the required knowledge associated to

the services and applications hosted on this infrastructure. In
the context of our ongoing work on this modeling language,
we have already identified key characteristics to be supported:
at the Fog system level, it is required to properly model the
different Fog areas and their possible interconnections; at the
Fog area level, it is needed to adequately represent the various
involved Fog resources, their type, corresponding constraints,
and tags (to label these resources with required metadata
according to specific properties of interest).

Running example - In the model defined with the SeMaFoR
Fog Modeling Language, we can notably specify the following
information in the context of our running example with more
than ten Fog areas (for instance):
1) The user is located in the Fog area F7;
2) The service s4 can be hosted either on F} or F} that
provide CO, sensors;
3) sp can be hosted either on F} or Fig that provide GPUs;
4) sp must be hosted in the same area as s 4;
5) sc can be hosted either on Fy, F3, or F) that provide
machines with sufficient RAM.
This can be formalized as follows with the notation — for
“hosted on”:

user —» Fy)]

sq4 — F1V Fy 2)

sp — 1V Fio 3)

sp — Area(sa) 4
sc — FyV F3V Fy (5)

From an end-user perspective, this will be modeled using a
YAML-like textual syntax proposed with our ADL (currently
still under development), as previewed in Listing [I]

Listing 1: Running example specified in the SeMaFoR Fog
Modeling Language (excerpt)

resourceType: Application
metadata:
alias: co2DataCollection
Spec:
services:
- sA:
metadata:
alias: sensingService
tags:
- sensor :
Spec:
networkPorts:
- ’servicePort’:
protocol: TCP
portNumber: 3333
hostPort: 8181
hostedOn:
softwarePacakge:
- sensorCode:
command: ’'python_featureExtraction.py’

co2

constraints:
replicas: 1
hostingNode:
tags:
- co2Sensor: true
- sB:
metadata:
alias: ML

- sC:
metadata:
alias: BigData

- sD:
metadata:

alias: dataAgregation

connectors:
- sATosB:
- sATosD:
sourceServices:
- sensingService:servicePort
targetServices:
- dataAgregation:receptionPort
constraints:
- latency:
lesserThan:
- sDTosC:

100 miliseconds

C. Collaborative analysis by combining DCSP and Consensus
algorithms

The model describes a set of rules to be respected in order
to decide where each service must be located. Such decision
making may involve several Fog areas. Therefore, the decision
is made collaboratively between the controllers distributed over
the Fog logical areas (a.k.a. neighbors). First, each autonomic
controller will be defined as a constraint satisfaction problem,
to take into account its local constraints. Then, the inter-
controller decision requires a distributed consensus algorithm
where multiple decisions are taken asynchronously by several
subsets of controllers, managing potential conflicts.

Running example - From the running example, we can
note that satisfying the constraints on a single local area is
impossible. Hence, a collaboration between areas is required.
The set of areas to consider for the consensus is the union of
areas of Equations (1) to (3): {F}, F», F, Fy, Fio}. The goal
is to collaboratively decide on which area each service will be
hosted. For instance, the result of the consensus could be the
following, by denoting sp, the i*" instance of the service sp:

54— I (6)
$B,>SB, — F1 7
$Bs,5B; — F1o 3
sp — I)
sc —» F3 (10)

In particular, no single Fog area is able to host all instances
of sp. A collaborative decision must be made between F; and
Fy to spread instances of sp among these Fog areas.

Each request (or reconfiguration stimuli) questions either the
internal state of a controller or a shared state. Each involved
controller integrates the request within its CSP, solves the new
problem and indicates in return whether or not a consensus is
needed. If exactly one controller is able to satisfy the request, a
solution is found and no consensus is required (intra-controller
dimension). When several controllers can individually satisfy
the request or when none of them can, there is a need for
a consensus (inter-controller dimension). In the first case, a
collaborative decision must be taken to assign the request to
a single Fog area. The second case concerns two different
situations. When several controllers can jointly satisfy the
request, a consensus will define how to allocate the request over
these Fog areas. When there is no solution without changing
the data of the problems, a consensus is required to decide on
the action to be executed : a) revocation of previous decisions,

b) relaxation of some constraints or ¢) rejection of the request.
Such a decision could be facilitated by querying the different
CSPs to determine the conflicting variables and constraints,
namely the minimal conflict set [[32]. On the running example,
the explanation of why a single Fog Area cannot host all Sp
is a high-level information that allows the consensus algorithm
to limit the scope of the decision to be arbitrated.

D. Decentralized plan with CSPs

As explained in Section the planning step of the
SeMaFoR approach takes as input the current state of the
local Fog area, and the goal state for this Fog area that has
been decided by the collaborative analysis step (see previous
section). Each Fog area takes its own local inputs and will have
to build their reconfiguration plan. Hence, the output is a set of
plans, one for each Fog area concerned by the collaboration.
Intuitively, as Fog areas have collaborated in the analysis step to
find a solution to the global current problem (e.g., new request,
reconfiguration, etc.), the plan of each Fog area needs at some
point to synchronize with the plans of other neighbor Fog
areas. In the literature the inference of reconfiguration plans
has been previously studied, notably in our previous work [33]],
however, as far as we know, a decentralized and synchronized
plan among different controllers has never been explored.

Running example - From the decision taken by the consensus
with Equations (6) to (I0), the goal here is to synthesize
or infer a decentralized reconfiguration plan between areas.
The decentralized reconfiguration plan could be simplified as
the three following reconfiguration plans on Fj, Fig, and Fj
(respectively). The wait instruction in this example illustrates
the required point-to-point synchronizations (between areas)
when deploying the application A of Figure [2] For instance,
as sp is using s 4, the instances sp, and sp, deployed on Fig
cannot be deployed before s 4 is deployed on Fj.

Algorithm 1 Reconfiguration plan on F}

deploy sa

deploy sp,, SB,
wait(sp,, s, on Fip)
deploy sp

Algorithm 2 Reconfiguration plan on Fijq

wait(s 4 on Fy)
deploy sp,, sB,

Algorithm 3 Reconfiguration plan on Fj3
wait(sp on Fp)
deploy s¢

Note that this example is voluntarily simplified for clarity.
Indeed, at least one local CSP is usually needed after the
consensus to precisely decide where to deploy a service in
the Fog area [34], as well as how to deploy it [35]], [36].

Inferring a plan requires to solve a specific kind of schedul-
ing problem [33]. Indeed, generating a program means finding
the right order of instructions to move from the current state to
the goal state. CP is extensively used in the literature to solve
scheduling problems so we plan to follow this direction again.
The modeling of the problem consists in modeling the set of

available reconfiguration instructions (e.g., adding, removing,
connecting some elements, waiting) and their impact on the
state of the Fog area, and the set of constraints on these
reconfiguration instructions (e.g., impossible combinations).
However, as the global knowledge of the target state of each
Fog area is unknown, several interdependent planning problems
have to be solved. For example, a simple synchronization can
rely on the knowledge of which Fog area to wait and when. To
go further, more complex collaborations between neighboring
Fog areas could be considered as well to, for instance, optimize
their reconfiguration duration.

IV. DISCUSSIONS

We previously described the core of our vision of Fog
autonomic computing. However, there are still some interesting
medium-term challenges, notably when it comes to integrate
our solution into open source ecosystem(s).

A. Models and Monitoring

One of the main benefits of a Fog Modeling Language is
to be able to create and reuse models describing snapshots of
the modeled Fog system and resources at different points in
time. Such a feature is fundamental for supporting Fog system
monitoring within the approach we propose. To this end,
existing model-based techniques could be studied. Notably,
models @ runtime proposes to rely on models describing actual
system’s states to reason on it and then react accordingly [37].
This paradigm has already been applied in the context of
dynamic adaptive systems, but some challenges remain. For
example, it is often complex to maintain the required synchro-
nization between the system and its model. This is even more
complicated when dealing with highly decentralized systems,
such as Fog ones, possibly represented by several interrelated
(sub)models. Indeed, this requires the modeling system to 1)
efficiently collect the needed system runtime data from various
heterogeneous Fog resources, 2) correctly federate this data
into consistent model(s), and 3) propagate eventual model
changes back to the appropriate parts of the system. In the
context of SeMaFoR, we plan to realize this work in close
collaboration with our industrial partner Smile who has a strong
expertise on monitoring solutions (e.g., Prometheusﬂ Jaegelﬂ).

B. Constraints relaxation

In dynamic environments such as Fog systems, it is quite
possible that no consensus can be reached without revisiting
the constraints that should be satisfied by a controller, i.e.,
relaxing its CSP. In this situation, deciding what and how to
relax the controller’s constraints is also a collaborative process.
In SeMaFoR, we plan to exploit the minimum conflict sets [32]]
established by the controllers to identify more specifically the
incompatibilities. This phase could be improved by leveraging
resolution proofs [38]]. The latter should define precisely the
reasons for the failure, i.e., the constraints involved, in order to
relax the problem in a relevant way. Actually, it is quite possible
to automatically relax the CSPs formulation by softening the
constraints [39]]. This possibly leads to the reformulation of
the original problem into a Valued CSP [40]. Such a VCSP is

Shttps://prometheus.io/
Shttps://www.jaegertracing.io/

then able to take into account costs, uncertainties, priorities,
etc. However, this raises the question of the distance which
affects the quality of solutions of the relaxed problem. Indeed,
the functions that define the distance to the satisfaction of each
constraint can be very varied. Such choices introduce biases on
the solutions to be produced. In SeMaFoR, we plan to study
first distance functions on the constraints that govern the Fog
areas, that is, those of resource constrained problems.

C. Execution of the reconfiguration and DevOps ecosystem
integration

Many DevOps frameworks/tools offer specific adaptation ca-
pabilities. For instance, AWS Cloud Formatiorﬂ and OpenStack
Heaf®| can switch from one resource template (virtual machines
and services) to another. Some configuration tools (e.g., Puppet,
Salt, Anisble etc.) and service orchestrators (e.g., Kubernetes,
Nomad) are now used to handle infrastructures as a code, thus
automating the on the fly changing of infrastructure configu-
rations. However, these techniques are often based on specific
virtualization techniques and thus technology-dependent. For
instance, Kuberneteﬁj and Docker Swar support scaling and
reboot-on-crash for services in containers [41]]. Service meshes
even go further by dynamically handling the connections
between services and associated network aspects. For example,
solutions like Istiﬂ (on top of Kubernetes) can handle circuit
breaking to prevent service faults.

SeMaFoR focuses on a generic and abstracted reconfigu-
ration without considering specific virtualization techniques
or targeted platforms unlike the above approaches. Such
genericity enhances reuse, maintainability and extensibility
of reconfiguration and make our solution theoretically com-
patible with all the above tools if an integration effort is
made. Thanks of its extensibility properties, Component-Based
Software Engineering (CBSE) has been widely used as an
enabler technology to enhance dynamic reconfiguration of
distributed software systems. In particular, Aeolus [42] and
Concerto [35], [43]] offer a very powerful expressiveness to
customize any reconfiguration operation and the associated
coordination points between components (resp. inspired by
state machines and Petri nets). These reconfiguration models
also offer the finest granularity which enhances efficiency
capabilities. Recently, the semantics of Concerto has been
adapted to a decentralized execution, making this tool a good
candidate for the reconfiguration language of SeMaFoR (the
(E)xecution of the MAPE-K model). However, even though
the goal of SeMaFoR is to be as generic as possible, we
plan to integrate the SeMaFoR solution with different concrete
backends such as Kubernetes or OpenStack.

ACKNOWLEDGMENT

The authors acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant ANR-20-CE25-
0017 (SeMaFoR project).

7https://aws.amazon.com/cloudformation/
Shttps://wiki.openstack.org/wiki/Heat
9https://kubernetes.io/
10https://docs.docker.com/engine/swarm/
Whttps://istio.io/

https://prometheus.io/
https://www.jaegertracing.io/
https://aws.amazon.com/cloudformation/
https://wiki.openstack.org/wiki/Heat
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://istio.io/

(1]

[2

—

(3]

(4]

[5

—

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]

REFERENCES

C.-H. Hong and B. Varghese, “Resource management in fog/edge com-
puting: A survey on architectures, infrastructure, and algorithms,” ACM
Comput. Surv., vol. 52, no. 5, pp. 97:1-97:37, Sep. 2019.

A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289 — 330, 2019.

I. B. Lahmar and K. Boukadi, “Resource allocation in fog computing:
A systematic mapping study,” in 2020 Fifth International Conference on
Fog and Mobile Edge Computing (FMEC), 2020, pp. 86-93.

R.-A. Cherrueau, A. Lebre, D. Pertin, F. Wuhib, and J. M. Soares,
“Edge computing resource management system: a critical building block!
initiating the debate via openstack,” in USENIX Workshop on Hot Topics
in Edge Computing (HotEdge 18), Boston, MA, Jul. 2018.

J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, pp. 41-50, 2003.

Z. Al-Shara, F. Alvares, H. Bruneliere, J. Lejeune, C. Prud’Homme,
and T. Ledoux, “Come4acloud: An end-to-end framework for autonomic
cloud systems,” Future Generation Computer Systems, vol. 86, pp. 339
— 354, 2018.

M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An autonomic
resource provisioning approach for service-based cloud applications: A
hybrid approach,” Future Generation Computer Systems, vol. 78, pp. 191
- 210, 2018.

F. A. d. Oliveira, T. Ledoux, and R. Sharrock, “A framework for the
coordination of multiple autonomic managers in cloud environments,”
in 2013 IEEE 7th International Conference on Self-Adaptive and Self-
Organizing Systems, Sep. 2013, pp. 179-188.

C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, “A comprehensive survey on fog computing: State-of-the-
art and research challenges,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 1, pp. 416-464, 2018.

S. Dlamini, J. Mwangama, N. Ventura, and T. Magedanz, “Design of
an autonomous management and orchestration for fog computing,” in
2018 Int. Conf. on Intelligent and Innovative Computing Applications
(ICONIC), 2018, pp. 1-6.

L. Baresi, D. F. Mendonga, and G. Quattrocchi, “Paps: A framework
for decentralized self-management at the edge,” in Service-Oriented
Computing, S. Yangui, 1. Bouassida Rodriguez, K. Drira, and Z. Tari,
Eds. Springer, 2019, pp. 508-522.

Z. A. Mann, “Decentralized application placement in fog computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33, pp.
3262-3273, 12 2022.

D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,
J. Wuttke, J. Andersson, H. Giese, and K. M. Goschka, On Patterns
for Decentralized Control in Self-Adaptive Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 76-107.

A. Belhaj Seboui, N. Ben Hadj-Alouane, G. Delaval, E. Rutten, and
M. Yeddes, “An approach for the synthesis of decentralised supervisors
for distributed adaptive systems,” International Journal on Critical
Computer-based Systems, vol. 2, no. 3/4, pp. 246-265, 2011.

F. Quin, D. Weyns, and O. Gheibi, “Decentralized self-adaptive systems:
A mapping study,” in 2021 International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS). 1EEE,
2021, pp. 18-29.

S. Forti, M. Gaglianese, and A. Brogi, “Lightweight self-organising dis-
tributed monitoring of fog infrastructures,” Future Generation Computer
Systems, vol. 114, pp. 605-618, 1 2021.

M. A. Tamiru, G. Pierre, J. Tordsson, and E. Elmroth, “mck8s: An
orchestration platform for geo-distributed multi-cluster environments,”
in 2021 International Conference on Computer Communications and
Networks (ICCCN), 2021.

“Admiralty.” [Online]. Available: https://github.com/admiraltyio/
admiralty
“Kubefed.” [Online]. Available: https:/github.com/kubernetes-sigs/
kubefed

F. Rossi, V. Cardellini, and F. L. Presti, “Hierarchical scaling of mi-
croservices in kubernetes,” in 2020 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS), 2020.

A. Pires, J. Simdo, and L. Veiga, “Distributed and decentralized orches-
tration of containers on edge clouds,” Journal of Grid Computing, vol. 19,
no. 3, pp. 1-20, 2021.

L. L. Jiménez and O. Schelén, “Docma: A decentralized orchestrator for
containerized microservice applications,” in 2019 IEEE Cloud Summit,
2019.

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

A. Bergmayr, U. Breitenbiicher, N. Ferry, A. Rossini, A. Solberg,
M. Wimmer, G. Kappel, and F. Leymann, “A Systematic Review of
Cloud Modeling Languages,” ACM Computing Surveys (CSUR), vol. 51,
no. 1, p. 22, 2018.

OASIS, “Topology and Orchestration Specification for
Applications (TOSCA),” Nov. 2013. [Online]. Available:
//docs.oasis-open.org/tosca/ TOSCA/v1.0/TOSCA-v1.0.html

P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia,
“Fog Computing: A Comprehensive Architectural Survey,” IEEE Access,
vol. 8, pp. 69 105-69 133, 2020.

A. Alidra, H. Bruneliere, and T. Ledoux, “A feature-based survey of fog
modeling languages,” Future Generation Computer Systems, vol. 138,
pp. 104-119, 2023.

H. Bruneliere, Z. Al-Shara, F. Alvares, J. Lejeune, and T. Ledoux,
“A model-based architecture for autonomic and heterogeneous cloud
systems,” in 8th Int. Conference on Cloud Computing and Services
Science. SciTePress, 2018, pp. 201-212.

H. Bruneliere, FE. M. de Kerchove, G. Daniel, S. Madani, D. Kolovos,
and J. Cabot, “Scalable model views over heterogeneous modeling
technologies and resources,” Software and Systems Modeling, 2020.

L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382-401, Jul. 1982.
M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374-382, Apr. 1985.

F. Fioretto, E. Pontelli, and W. Yeoh, “Distributed constraint optimization
problems and applications: A survey,” Journal of Artificial Intelligence
Research, vol. 61, 02 2016.

U. Junker and F-Valbonne, “Quickxplain: Conflict detection for arbitrary
constraint propagation algorithms,” 2001.

S. Robillard and H. Coullon, “Smt-based planning synthesis for dis-
tributed system reconfigurations,” in Fundamental Approaches to Soft-
ware Engineering, 2022.

H. Coullon, G. Le Louét, and J.-M. Menaud, “Virtual Machine Placement
for Hybrid Cloud using Constraint Programming,” in ICPADS 2017,
Shenzhen, China, Dec. 2017.

M. Chardet, H. Coullon, and C. Pérez, “Predictable efficiency for
reconfiguration of service-oriented systems with concerto,” in CCGrid
2020 - 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing. Melbourne, Australia: IEEE, Nov. 2020.

M. Chardet, H. Coullon, and S. Robillard, “Toward Safe and Efficient
Reconfiguration with Concerto,” Science of Computer Programming, vol.
203, pp. 1-31, Mar. 2021.

N. Bencomo, S. Gotz, and H. Song, “Models@ run. time: a guided tour
of the state of the art and research challenges,” Software & Systems
Modeling, vol. 18, no. 5, pp. 3049-3082, 2019.

M. Veksler and O. Strichman, “A proof-producing CSP solver,” in Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, M. Fox and
D. Poole, Eds. AAAI Press, 2010.

P. Meseguer, F. Rossi, and T. Schiex, “Soft constraints,” in Handbook
of Constraint Programming, ser. Foundations of Artificial Intelligence,
F. Rossi, P. van Beek, and T. Walsh, Eds. Elsevier, 2006, vol. 2, pp.
281-328.

M. Cooper, S. De Givry, and T. Schiex, “Valued Constraint Satisfaction
Problems,” in A Guided Tour of Artificial Intelligence Research, ser. Al
Algorithms. Springer Int. Publishing, 2020, vol. 2, pp. 185-207.

H. Coullon, D. Pertin, and C. Pérez, ‘“Production deployment tools for
iaases: an overall model and survey,” in The IEEE 5th International
Conference on Future Internet of Things and Cloud (FiCloud), Prague,
Czech Republic, Aug. 2017, pp. 183-190.

R. Di Cosmo, J. Mauro, S. Zacchiroli, and G. Zavattaro, “Aeolus: a
component model for the Cloud,” Information and Computation, pp. 100—
121, Jan. 2014.

M. Chardet, H. Coullon, D. Pertin, and C. Pérez, “Madeus: A formal
deployment model,” in 4PAD 2018 - 5th International Symposium on
Formal Approaches to Parallel and Distributed Systems (hosted at HPCS
2018), Orléans, France, Jul. 2018, pp. 1-8.

Cloud
http:

https://github.com/admiraltyio/admiralty
https://github.com/admiraltyio/admiralty
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html

	Introduction
	Motivation and background
	Motivation and approach
	Fog and Autonomic Computing
	Architecture Description Languages and Fog Computing modeling
	Collaborative decision-making

	The SeMaFoR approach
	Overview of the approach
	A Fog architecture description language
	Collaborative analysis by combining DCSP and Consensus algorithms
	Decentralized plan with CSPs

	Discussions
	Models and Monitoring
	Constraints relaxation
	Execution of the reconfiguration and DevOps ecosystem integration

	References

