
HAL Id: hal-04043411
https://hal.science/hal-04043411v1

Submitted on 23 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Identification of Genetic Markers for the Detection of
Bacillus thuringiensis Strains of Interest for Food Safety

Arnaud Fichant, Arnaud Felten, Armel Gallet, Olivier Firmesse, Mathilde
Bonis

To cite this version:
Arnaud Fichant, Arnaud Felten, Armel Gallet, Olivier Firmesse, Mathilde Bonis. Identification of
Genetic Markers for the Detection of Bacillus thuringiensis Strains of Interest for Food Safety. Foods,
2022, 11 (23), pp.3924. �10.3390/foods11233924�. �hal-04043411�

https://hal.science/hal-04043411v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Fichant, A.; Felten, A.;

Gallet, A.; Firmesse, O.; Bonis, M.

Identification of Genetic Markers for

the Detection of Bacillus thuringiensis

Strains of Interest for Food Safety.

Foods 2022, 11, 3924. https://

doi.org/10.3390/foods11233924

Academic Editor: Michel Federighi

Received: 27 October 2022

Accepted: 28 November 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Identification of Genetic Markers for the Detection of Bacillus
thuringiensis Strains of Interest for Food Safety
Arnaud Fichant 1,2, Arnaud Felten 3, Armel Gallet 2, Olivier Firmesse 1 and Mathilde Bonis 1,*

1 Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational
Health & Safety (ANSES), 94700 Maisons-Alfort, France

2 Université Côte d’Azur, CNRS, INRAE, ISA, France
3 Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosafety Unit, French Agency for Food,

Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
* Correspondence: mathilde.bonis@anses.fr

Abstract: Bacillus thuringiensis (Bt), belonging to the Bacillus cereus (Bc) group, is commonly used as
a biopesticide worldwide due to its ability to produce insecticidal crystals during sporulation. The
use of Bt, especially subspecies aizawai and kurstaki, to control pests such as Lepidoptera, generally
involves spraying mixtures containing spores and crystals on crops intended for human consumption.
Recent studies have suggested that the consumption of commercial Bt strains may be responsible
for foodborne outbreaks (FBOs). However, its genetic proximity to Bc strains has hindered the
development of routine tests to discriminate Bt from other Bc, especially Bacillus cereus sensu stricto
(Bc ss), well known for its involvement in FBOs. Here, to develop tools for the detection and
the discrimination of Bt in food, we carried out a genome-wide association study (GWAS) on
286 complete genomes of Bc group strains to identify and validate in silico new molecular markers
specific to different Bt subtypes. The analyses led to the determination and the in silico validation of
128 molecular markers specific to Bt, its subspecies aizawai, kurstaki and four previously described
proximity clusters associated with these subspecies. We developed a command line tool based on a
14-marker workflow, to carry out a computational search for Bt-related markers from a putative Bc
genome, thereby facilitating the detection of Bt of interest for food safety, especially in the context
of FBOs.

Keywords: Bacillus thuringiensis; Bacillus cereus; foodborne outbreak; genome-wide association study

1. Introduction

Bacillus cereus sensu lato, or the Bacillus cereus group (Bc), is composed of Gram-
positive, facultative anaerobic, spore-forming, ubiquitous bacteria. This group com-
prises at least nine species: B. anthracis, B. cereus sensu stricto (Bc s.s.), B. thuringiensis
(Bt), B. mycoides, B. pseudomycoides, B. weihenstephanensis, B. cytotoxicus, B. toyonensis and
B. wiedmannii [1]. Furthermore, Bc members have very similar characteristics and highly
conserved genomes [2]. As a result, the taxonomic classification within the group is regu-
larly revised, particularly due to the widespread use of whole-genome sequencing (WGS)
which has led to a higher resolution for the definition of new species [3,4].

An large number of virulence genes can be found in the Bc group, causing the occur-
rence of foodborne outbreaks (FBOs). According to the European Food Safety Authority
(EFSA), in 2019, Bc represented the leading cause of FBOs due to bacterial toxins in Eu-
rope [5]. Bc can cause gastrointestinal disorders, such as diarrhea, vomiting, abdominal
pain, or a combination thereof. The diarrhea is due to the ingestion of bacteria that produce
enterotoxins, including three major pore-forming toxins; the non-hemolytic enterotoxin
(Nhe) is found in approximately 85% to 100% of Bc strains, and hemolysin BL (Hbl) and
cytotoxin K (CytK) are found in approximately 40 to 70% [6]. In contrast, the cereulide
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toxin, produced in food by some vegetative Bc, can lead to emetic syndromes, which pre-
dominantly cause vomiting. The ces operon coding for the emetic toxin synthesis genes is
located on a megaplasmid in a restricted range of Bc s.s. strains [7]. More rarely, Bc can also
be responsible for extra-digestive pathologies such as ocular or nosocomial infections [8,9].
Although the aforementioned toxins play a crucial role in food poisoning events, Bc also
carries many other virulence genes that can modulate its pathogenicity [10].

Unlike the other members of the Bc group, Bt species were initially defined by a
capacity to produce parasporal crystals containing toxins, some of which are extremely
toxic for insect larvae [11]. Bt strains are therefore widely used as biopesticides in organic
and conventional agriculture [12]. These crystals are composed of Cry and Cyt protoxins
(also called δ-endotoxins) for which several hundred different haplotypes have been de-
scribed so far [13]. Their classification has been recently revised based on protein sequence
identity [14]. Upon ingestion of spores and crystals by larvae, larval digestive enzymes
allow the release and activation of toxins from the crystals. Cry/Cyt toxins bind to specific
receptors of the host midgut, forming pores in the cytoplasmic membrane of enterocytes,
thereby triggering their death and creating breaches in the intestinal lining. In parallel, the
favorable environment of the midgut supports the germination of spores and their entry in
the internal milieu [15]. Vegetative bacteria can proliferate, ultimately leading to septicemia
and the death of the host. Four subspecies of Bt are commonly used in commercial products.
Bt ssp. aizawai (Bta) and Bt ssp. kurstaki (Btk) target Lepidoptera, Bt ssp. morrisoni (Btm)
targets Coleoptera and Bt ssp. israelensis (Bti) is used against mosquitoes. Due to the ability
of Bt to produce a large spectrum of insecticidal molecules, it is now considered as the
leading microbial pesticide worldwide [16].

Interestingly, Bc and Bt share some virulence genes, particularly those encoding
enterotoxins [6]. In addition, bacterial spores, in particular Bt spores, have the ability to
persist in the environment, and have been found on vegetables that have been treated with
commercial products [17–20]. Because Bc s.s. and Bt are genetically very closely related,
their distinction is not straightforward, and very few accurate tests are available to address
this issue, leading to some authors to propose the merging of Bc s.s. and Bt species several
decades ago [13]. Nevertheless, the production of the parasporal crystals, consensually
accepted as the primary definition of Bt, can be observed using optical microscopy (NF EN
ISO 7932/Amd1), although this method requires expertise and several days to obtain an
accurate identification. Based on this approach, retrospective analyses in Canada [21] and
France [17] identified Bt in FBOs that were initially attributed to Bc. In a report dealing
with the possible involvement of Bt in foodborne infection events, EFSA called for the
development of a simple method to differentiate Bt from other Bc members [22], and a
fortiori, the Bt strains used as pesticides. In addition, the issue of food monitoring and, in
particular, the acceptable dose of Bc/Bt in food is regularly examined by health authorities.
The development of new tools for the specific identification of Bt strains would facilitate
and extend this monitoring, to prevent and limit the emergence of new intoxication cases.

Genetic proximity between Bt and other members of the Bc group, especially Bc
s.s. [2,3], makes it difficult to develop identification methods; however, some genomic
approaches may offer a solution. With the development of high-throughput sequencing
(HTS), the rapid acquisition of complete genomes has been greatly facilitated. Based
on pangenome analyses, recent studies have split the Bc group into three to five major
clades [2,23], whereas a previous classification defined seven phylogenetic panC groups
named I to VII and associated with different levels of psychrotolerance [24]. This phyloge-
netic group assignment, as well as other typing methods (search for virulence genes and
MLST, for instance) have allowed the development of a new computational classification
tool for Bc genomes [25]. According to the literature, the entire Bt species is spread across
several of these clades or groups, and this taxon should be considered as a polyphyletic
biovar, defined by the presence of plasmid genes encoding insecticidal toxins (cry and
cyt) [23,26]. One study has even also proposed a new pairwise ANI-based classification
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of the Bc group into genomospecies, Bt genomes being mostly (though not completely)
grouped with Bc s.s. within the genomospecies of the same name [26].

Most Bt strains of interest with regard to food safety (e.g., isolated from pesticides or
FBOs) have been carefully studied and have shown very little divergence from each other
and from other Bc strains of phylogenetic group IV, clade 2 [17]. In an attempt to distinguish
among them, four proximity clusters (named a to d), composed of FBO-associated Bt and
commercial Bta and Btk, have been defined using an SNP calling approach. The clusters
have been circumscribed from phylogenetic reconstruction and pairwise single-nucleotide
polymorphism (SNP) distance calculations (ranging from 0 to 10 within a cluster and with
inter-group distances significantly higher than intra-group SNP distances for each cluster).

The genome-wide association study (GWAS) approach, originally developed for
human studies, has been adapted for the analysis of microorganisms [27]. The GWAS
approach can establish a statistical link between a feature polymorphism (named hereafter
“trait”) and a molecular marker, such as a gene, a k-mer or an SNP. Several studies have
already been carried out to correlate the presence of associated markers with a given
phenotype, for example, in the context of host-pathogen interactions [28], persistence
and resistance to antibiotics [29] as well as low-temperature growth phenotypes in food
production [30]. Nevertheless, to date, no studies have identified markers specific to
bacterial species or subspecies for the investigation on FBO etiological agents.

In this study, we searched for specific marker sequences allowing the identification of
Bt and some Bt groups of interest, among other Bc. We performed a pan-GWAS analysis on
230 complete genomes. A total of 249 genomic markers strongly associated with various
traits (Bt species, Bt subspecies and Bt clusters a to d) were identified. Among them,
128 showed potential informativeness as genomic markers after a TBLASTN validation
step. Although the Bt species is defined by the presence of genes encoding Cry/Cyt toxins,
the identified markers are not related to these genes, due to the high diversity of Cry and
Cyt families within the species. For each designated trait, we discovered one marker or
a combination of up to six markers able to identify all the Bt in the study dataset. We
wrote a Python script using 14 markers for the automated identification of Bt from a
genomic assembly.

2. Materials and Methods
2.1. Whole-Genome Sequencing

The genomic DNA of 78 Bt/Bc isolates was extracted and sequenced as described in
Bonis et al. [17]. Briefly, the KingFisher Cell and Tissue DNA kit (Thermo Fisher Scientific,
Waltham, MA, USA) was used to isolate genomic DNA. DNA purity and concentration
were determined using a Nanodrop Spectrophometer and a Qubit fluorimeter, respectively.
Global DNA integrity was visualized on a 0.8% agarose gel (Seakem GTG™ Agarose)
after migration for 2 h at 90 V. Library preparation was carried out using the Nextera XT
DNA Library Prep kit (Illumina, San Diego, CA, USA) and 150 bp paired-end sequencing
of isolated DNA was performed by the Institut du Cerveau et de la Moëlle epinière, using
a Nextseq500 sequencing system (Illumina). An in-house workflow called ARtWORK
v1.0 [17,31] was used to assemble reads with default parameters. The paired-end reads
of the isolates are available in the PRJNA781790 BioProject on NCBI and the associated
accession numbers are listed in Supplementary Table S1.

2.2. Dataset Definition

A total of 286 genomes were used, corresponding to 216 FBO-associated Bc isolates,
18 commercial Bt strains [17], one Bt reference strain, and 51 Bc isolates of various origins
associated with robust metadata, whose complete genomes were retrieved from the NCBI
RefSeq database (Supplementary Table S1). In addition to the detection of parasporal insecti-
cidal crystals under a microscope (NF EN ISO 7932/Amd1), Bt membership was confirmed
by the presence of insecticidal protein-coding genes using the BtToxins_Digger pipeline
v1.0.5 [32]. For Bt genomes collected from NCBI, only BtToxins_Digger was used to confirm
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Bt membership. Using R v4.0.1, a random draw was carried out to split the whole dataset
into a study dataset (SD) and a validation dataset (VD) (Supplementary Table S1), repre-
senting 80% (n = 230) and 20% (n = 56) of the whole dataset, respectively. The SD was used
as an input for the GWAS analysis, and the VD was used to validate the selected genetic
markers. The SD included the genomes of 144 strains belonging to Bt species (i.e., carrying
genes encoding crystal proteins), especially from the subspecies aizawai (n = 56) and kurstaki
(n = 57), and 86 genomes belonging to other Bc, including at least one assembly for each of
the nine distinct representative species of the group (Table 1) and for each of the seven previ-
ously defined phylogenetic groups [24] given in Supplementary Table S1. The VD included
the genomes of 35 strains (62.5%) belonging to Bt species (with more than four subspecies,
including ssp. aizawai, kurstaki, israelensis and morissoni) and 21 genomes (37.5%) belonging
to other Bc, spread across five distinct phylogenetic groups [24] (Supplementary Table S1).

Table 1. Composition of the study dataset (SD).

Species Subspecies No. of
Genome(s)

Representative
Genome

NCBI
Accession Number

Bacillus anthracis 1 Ames NC_003997.3
B. cereus (sensu stricto) (Bc s.s.) 2 ATCC 14579 NC_004722.1

B. cytotoxicus 1 NVH 391-98 NC_009674.1
B. mycoides 1 DSM 2048 NZ_CM000742.1

B. pseudomycoides 1 DSM 12442 NZ_CM000745.1
B. thuringiensis (Bt) Bt ssp. aizawai 56 Leapi01 AMXS00000000.2

Bt ssp. kurstaki 57 HD-1 NZ_CP004870.1
Bt ssp. israelensis 5 AM6552 NZ_CP013275.1
Bt ssp. morrisoni 1 BGSC 4AA1 NZ_CP010577.1

other and/or unknown 25 ATCC 10792 NZ_CP021061.1
B. toyonensis 1 BCT-7112 NC_022781.1

B. weihenstephanensis 1 WSBC 10204 NZ_CP009746.1
B. wiedmannii 1 MM3 NZ_CM000718.1

other B. cereus (sensu lato) * 77

* genomes of Bc isolates collected from foodborne outbreaks, and for which, under sporulation conditions, no
crystals were detected using optical microscopy.

2.3. Pangenome Analysis
2.3.1. Pangenome Construction

An analysis was carried out to deduce the pangenome (i.e., core and accessory genes)
from all 230 SD genomes (Figure 1). The whole genome annotation of the assembly was
performed using Prokka v1.13.3 [33] with default parameters, and GFF3 files were provided
to Panaroo v1.2.3 [34] as input. Panaroo was run using the strict mode with default identity
parameters and length difference thresholds (98%), for initial clustering of protein sequences
with CD-HIT v4.8.1 [35]. Then, close clusters were collapsed into putative families when
they had at least 70% sequence identity. The assignment of a gene cluster to a core genome
was defined by the presence of the gene in at least 99% of the genomes (n = 228). As output,
Panaroo produced a presence/absence matrix, used for the pan-GWAS analysis.
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sensitivity and 100% specificity for the SD were selected. A TBLASTN validation step of the selected 
genes was performed after recovering the protein sequences from Panaroo. The genes were vali-
dated when the respective sequence criteria of coverage and identity were met and when exhibiting 
at least 80% sensitivity and 100% specificity for the validation dataset (VD). The core-gene alignment 
obtained from Panaroo was used to construct the phylogeny of the 230 genomes, using IQtree [36]. 
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used as insecticides. After targeting traits for each GWAS analysis, a gene search was car-
ried out on the SD. Scoary v1.6.16 [37] was run to identify statistically robust genes 
(Fisher’s test) associated with each of the designated traits, based on the null hypothesis 
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permutations were conducted and p-values were adjusted by applying the Bonferroni cor-
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Figure 1. Flowchart of the pan-GWAS analysis. Pangenome construction was first performed using
Panaroo [34] to obtain an estimation of the core and accessory genomes of the study dataset (SD).
Then, the presence/absence matrix output from Panaroo was used for the GWAS analysis performed
using Scoary, thereby providing a list of associated genes for each trait. Only genes with at least
80% sensitivity and 100% specificity for the SD were selected. A TBLASTN validation step of the
selected genes was performed after recovering the protein sequences from Panaroo. The genes
were validated when the respective sequence criteria of coverage and identity were met and when
exhibiting at least 80% sensitivity and 100% specificity for the validation dataset (VD). The core-gene
alignment obtained from Panaroo was used to construct the phylogeny of the 230 genomes, using
IQtree [36].

2.3.2. Genotype Association

A three-level pan-GWAS analysis was performed to associate the presence or absence
of a gene with a particular phenotype or trait. The first GWAS analysis (named L1 for
Level 1) was conducted to search for genes specific to Bt species and the second analysis
(named L2 for Level 2) for the Bt subspecies: Bt ssp. aizawai (Bta), Bt ssp. kurstaki (Btk), Bt
ssp. israelensis (Bti) and Bt ssp. morrisoni (Btm). Then, specific genes for the SNP proximity
clusters a, b, c and d within Bt subspecies (a, b for Bta and c, d for Btk) were investigated
(analysis L3 for Level 3). These clusters were identified in a previous SNP study [17] and
involve Bta or Btk strains that show strong genetic proximity with commercial strains
used as insecticides. After targeting traits for each GWAS analysis, a gene search was
carried out on the SD. Scoary v1.6.16 [37] was run to identify statistically robust genes
(Fisher’s test) associated with each of the designated traits, based on the null hypothesis
that the presence/absence of the gene is unrelated to the trait. For each gene, 1000 replicate
permutations were conducted and p-values were adjusted by applying the Bonferroni
correction [38] and the Benjamini-Hochberg procedure [39] (Supplementary Table S2). Only
genes with p-values (naive and corrected) <0.05 (rejection of the null hypothesis, gene
significantly associated with the trait), 100% specificity and at least 80% sensitivity for
the screened traits were selected for the validation steps. In case of cluster-specific gene
investigation, GWAS analysis (L3) was performed only on SD genomes with clear cluster
attribution (n = 104), due to the impossibility of determining trait-specific genes when
performed against all SD genomes. For each selected gene cluster, a protein sequence was
extracted and tested as a candidate marker.
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2.3.3. Core Genome Phylogeny

Core-genome sequences from Panaroo were aligned using MAFFT v7.471 [40]. A
phylogenetic tree of the SD was built with the maximum likelihood method using iQtree
v1.6.9 [36], and the best substitution model GTR + F + R10 was determined with Mod-
elFinder [41] on 286 DNA models. The core genome phylogeny was visualized using
Phandango v1.3.0 [42], alongside pangenome metadata. Selected marker presence/absence
information within the SD was added to the phylogenetic tree using iTol v6.1.2 [43].

2.3.4. In Silico Validation of Genetic Markers

To certify the reliability of the selected markers, we carried out a TBLASTN v2.7.1+
against the VD to validate candidate marker sequences meeting the required conditions.
For each cluster associated with a given marker, a protein sequence was retrieved from the
Panaroo output and screened for in the VD genomes. Markers were selected only when
sequence coverage and identity were strictly higher than 90% compared with genomes
displaying the same trait (intragroup), and when the sequence coverage and identity were
strictly lower than 80% compared with genomes not associated with the specific trait
(intergroup). This extra step made it possible to test the pan-GWAS selected markers in
silico against a new dataset of genomes, and to confirm the sensitivity and the specificity
of the markers. To enhance the identification of a genotype, a combination of validated
markers associated with the best sensitivity was defined. Predicted genomic localization
(i.e., chromosome vs. plasmid) of the gene encoding for the protein selected as a marker was
carried out with TBLASTN, using protein sequences and a Bt plasmid database (n = 342)
collected from PLSBD [44].

3. Results

Among the 286 genomes used for this study, 235 (the “ANSES collection”) were
sequenced and assembled according to satisfactory quality criteria (median N50: 5,727,322;
median number of contig: 103), (Supplementary Table S1). This panel was completed with
51 public genomes from NCBI, associated with the full representation of the genome.

3.1. Bacillus cereus Group Pangenome

The Bt species is defined here by the presence of Cry/Cyt toxin encoding genes, leading
to the release of insecticidal crystals during sporulation. To identify specific Bt markers
associated with different traits of interest (Bt species, Bt subspecies Bta, Btk, Bti and Btm,
and Bt clusters a to d) using a pan-GWAS approach with Scoary, the pangenome of the Bc
group was inferred using Panaroo on SD, resulting in a total of 39,021 clusters of genes. The
core genome of the 230 Bc complete genomes was composed of 1854 genes (representing
about 5% of all genes), leaving 37,167 accessory genes (Figure 2). Among the accessory
genes, 1695 were considered soft core genes (present in 95 to 99% of all genomes), 4358 shell
genes (present in 15 to 95% of all genomes) and 31,114 cloud genes (present in less than 15%
of all the genomes). A rarefaction curve of the 230 genomes (Supplementary Figure S1)
suggests the existence of an open pangenome, as previously assumed for Bc [23,45]. The
presence–absence matrix showed that the B. cytotoxicus population, which roots the tree,
seemed to possess a reduced number of accessory genes. In contrast, the Bta and Btk
subspecies, whose genomes represent highly conserved populations, displayed a greater
number of accessory genes.

3.2. Pan-GWAS Analysis
3.2.1. Gene-Based GWAS

We used Scoary to associate specific genes with the presence or absence of specific
traits (Bt species, Bt subspecies Bta, Btk, Bti and Btm, and Bt clusters a to d) with a GWAS
analysis. Three GWAS analyses were run to identify a large number of candidate genes
for each trait (Table 2). A total of 1304 genes were significantly associated with the traits of
interest. Interestingly, the majority of the identified genes were associated with subspecies
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israelensis and morrisoni in the GWAS L2 analysis, with 809 and 246 genes, respectively.
However, this large number of associated genes can be explained by the low number of
genomes available for these two subspecies in the dataset reducing the analytical strength.
Given the low diversity in the dataset for these subspecies, we did not pursue the search
for specific markers for these subspecies.
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Figure 2. Phylogenetic tree of 230 Bacillus cereus (Bc) genomes alongside the gene presence–absence
variation matrix. The maximum-likelihood phylogeny (GTR + F + R10 substitution model) was
performed with IQtree [36] using the Panaroo [34] core–gene alignment of the study dataset (SD)
genomes and visualized with Phandango [42]. The presence–absence matrix obtained with Panaroo
identified 1854 core genes (present in 99% of SD genomes) and 37,167 accessory genes for the
230 Bc genomes.

Table 2. Summary results of the validation of specific markers associated with three levels of GWAS
analysis (L1, L2 and L3).

\ Scoary TBLASTN

GWAS Analysis Trait
No. of Genome(s)

Associated
with Trait

No. of Genome(s)
Exempt from Trait

No. of Genes
Strongly Associated

with Trait *

No. of Genes
Validated In

Silico (Annotated)

L1 (n = 230) Bacillus
thuringiensis (Bt) 144 86 99 32 (22)

L2 (n = 230)

Bt ssp. aizawai 56 169 27 17 (4)
Bt ssp. kurstaki 57 168 5 3 (0)

Bt ssp. israelensis 5 220 809 NA (78)
Bt ssp. morrisoni 1 224 246 NA (101)

L3 (n = 104)

Cluster a 11 93 10 6 (0)
Cluster b 40 64 14 10 (1)
Cluster c 24 80 46 30 (1)
Cluster d 29 75 48 30 (3)

Level 1 analysis (L1) refers to markers associated with the Bt species; level 2 analysis (L2) refers to markers
associated with the Bt subspecies; and level 3 analysis (L3) refers to markers associated with the proximity clusters
a, b, c and d, within Bt subspecies aizawai and kurtaki (Bla and Btk). * genes with a low p-value (<0.05) in the
Scoary analysis; at least 80% sensitivity and 100% specificity for genomes associated with the trait in question.

Among the other 249 candidate genes, 131 genes met the specificity and sensitivity
requirements for the L1 and L2 GWAS analyses, corresponding, respectively, to the Bt
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species trait and the Bt subspecies traits of the two remaining subspecies (i.e., Btk and
Bta). Accordingly, 99 genes were specific to the Bt species and 27 to the Bta subspecies.
Interestingly, only 5 genes were specific to Btk, suggesting relatively high diversity within
the Btk subspecies. In the L3 GWAS analysis performed on a smaller panel of genomes,
118 genes were identified among the four traits corresponding to clusters a, b, c and d with
10, 14, 46 and 48 genes, respectively.

3.2.2. Validation of GWAS Results

We then validated the markers selected using GWAS by comparing them in silico
with the VD using TBLASTN. For each selected candidate gene associated with a specific
trait in the GWAS analysis, a protein sequence was extracted and compared to all VD
genomes that shared or did not share the trait in question. Out of the 249 highly associated
genes obtained with Scoary, 128 protein sequences met the criteria of coverage, specificity
and sensitivity of the TBLASTN analysis (Table 2). All validated marker sequences had a
sensitivity range between 80% and 100%, and 100% specificity on both SD and VD datasets.
When a single marker was not sufficient, combinations of markers were tested to identify
all the associated genomes for each trait.

3.2.3. Functions and Distribution of Specific Markers

To predict whether the genes coding for the markers were localized or not on a plasmid,
a TBLASTN alignment on a Bt plasmid database was carried out. When the function was
known, the closest protein identified in Uniprot [46] was indicated (Supplementary Table S2).
Table 3 lists 14 markers associated with low p-values, and whose combination could detect
all genomes of a given trait (i.e., 100% sensitivity). The Bt species can thus be identified
with a combination of only six markers (cwlA, intQ, group_3916, group_20749, group_20361
and sdpR). For example, the cwlA gene located in an operon along with cwlB, encodes
a peptidoglycan hydrolase known for its role in cell lysis during Bt spore release [47].
Regarding the markers that emerged from the GWAS L2 analysis for Bt subspecies, all
Bta genomes (n = 56) could be identified based on the apr gene, which encodes a specific
chromosomal alkaline serine protease, also called subtilisin, in Bacillus subtilis [48]. For Btk,
two genes encoding hypothetical proteins (group_27293 and group_27336) were needed to
identify the 57 genomes present in the SD. Moreover, both genes were located on plasmids,
suggesting the presence of a common plasmid in these subspecies. Regarding the cluster-
specific markers identified with the GWAS L3 analysis, clusters a, c and d could each be
identified with a single chromosomal marker, respectively with group_10114 encoding a
hypothetical protein, the repressor lexA, involved in the SOS system [49], and the gene
encoding a subunit of Clp protease [50]. Cluster b, like Btk, needed two markers for
the identification of all genomes: the rapF gene, involved in bacterial competence [51],
combined with a plasmid gene of unknown function (group_20667). For all hypothetical
protein-coding genes, we attempted to annotate them with the 3D structure using SWISS-
MODEL [52]. However, it was not possible to assign new putative functions to them
(Supplementary Table S3).

Phylogenetic reconstruction of the 1854 core genes from the 230 genomes (Figure 3)
showed a clear distinction between most Bc genomes, including Bt genomes, and five
genomes of the B. cytotoxicus species, which is known to be the most distant group mem-
ber [2]. In contrast, the genomes of the two subspecies Btk and Bta were located on the
outermost branch of the tree compared with B. cytotoxicus genomes. Unsurprisingly, other
Bt subspecies or unknown subspecies genomes were scattered around the tree. Some
of them, such as MTC28 (NCBI accession: NC_018693.1) and Bt finitimus YBT020 (NCBI
accession: NC_017200.1) were phylogenetically very distant.
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Table 3. List of 14 genes with strong evidence and best combinations for Bacillus thuringiensis (Bt)
trait identification associated with three GWAS analysis.

GWAS
Analysis Gene Name Replicon Annotation UniprotKB Trait

Marker
Sensitivity

(%)

Cumulative
Sensitivity

(%)
p-Value * NCBI Acces-

sion Number

L1

cwlA Chromosome
N-acetylmuramoyl-L-

alanine
amidase CwlA

P24808 Bt 93.8 93.8 1.72 × 10−51 WP_021728236.1

intQ Chromosome Putative defective
protein IntQ P76168 Bt 91.7 94.4 1.64 × 10−48 WP_000237488.1

group_3916 Chromosome Hypothetical protein N/A Bt 88.9 95.1 3.29 × 10−47 WP_000858032.1
group_20749 Chromosome Hypothetical protein N/A Bt 86.8 97.2 6.36 × 10−45 WP_042596929.1
group_20361 Plasmid Hypothetical protein N/A Bt 84.7 98.6 8.43 × 10−43 WP_002101540.1

sdpR Plasmid Transcriptional
repressor SdpR O32242 Bt 84.0 100.0 4.00 × 10−42 WP_000998670.1

L2
apr Chromosome Subtilisin P04189 Bta 100.0 N/A 9.10 × 10−53 WP_021728520.1

group_27293 Plasmid Hypothetical protein N/A Btk 98.2 98.2 5.83 × 10−52 WP_003273526.1
group_27336 Plasmid Hypothetical protein N/A Btk 89.5 100.0 1.05 × 10−43 WP_001293418.1

L3

group_10114 Chromosome Hypothetical protein N/A Cluster a 100.0 N/A 4.48 × 10−15 WP_000415284.1

rapF Chromosome Response regulator
aspartate phosphatase F P71002 Cluster b 92.5 92.5 4.82 × 10−25 WP_050062578.1

group_20667 Plasmid Hypothetical protein N/A Cluster b 82.5 100.0 1.34 × 10−20 WP_131256056.1
lexA Chromosome LexA repressor P31080 Cluster c 100.0 N/A 4.31 × 10−24 AHZ54004.1

clpP1 Chromosome ATP-dependent Clp
subunit 1 B0B803 Cluster d 100.0 N/A 2.13 × 10−26 WP_000791073.1

* Naive p-value provided by Scoary (Fisher’s test). A p-value < 0.05 leads to the rejection of the null hypothesis
that the presence of the gene is unrelated to the trait; the gene is therefore significantly associated with the trait
in question. Level 1 analysis (L1) refers to markers associated with the Bt species; level 2 analysis (L2) refers to
markers associated with the Bt subspecies; and level 3 analysis (L3) refers to markers associated with the proximity
clusters a, b, c and d, within Bt subspecies aizawai and kurtaki (Bla and Btk).
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Figure 3. Core genome phylogeny of 230 Bacillus cereus (Bc) genomes. The maximum-likelihood
phylogeny (GTR + F + R10 substitution model) was performed with IQtree [36] using a Panaroo [34]
core–gene alignment of the study dataset (SD) genomes. Visualization and annotation were performed
using iTol [43]. Filled circles indicate the presence of the 14 Bt markers for the successive GWAS
analysis levels (L1, L2 and L3) in the corresponding SD genomes.

The 14 Bt-specific markers identified with the three levels of GWAS analysis and
validated by TBLASTN were mapped on the phylogenetic tree (Figure 3). Despite the great
distance between some Bt strains, a combination of six markers can identify all of them.
Similarly, with two markers specific to Btk and cluster b, all associated genomes can be
retrieved. Only one marker was needed for the identification of Bta, clusters a, c and d.
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3.2.4. Workflow for Bt Identification

Based on the 14 selected markers, a workflow was developed to distinguish Bt from
the genome of a putative Bc isolate (Figure 4). We wrote an in-house script in Python 3 to
automate the screening of the markers in genome assemblies. Using BLASTX, the script
detects the markers for Bt, Bt subspecies and Bt clusters using the same thresholds as
the TBLASTN validation (90% identity and coverage) in the user-input genomes. The
output indicates the presence (+) or absence (−) of all trait-associated markers for each
genome query. Then, according to the workflow pathway, based on the presence/absence
of the markers within the genome, a putative Bt identification is given. The script is freely
available at https://github.com/afelten-Anses/Bt_typing (accessed on 2 February 2022).
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Figure 4. Workflow for Bacillus thuringiensis (Bt) identification. The proposed decision tree is used
to determine if a putative Bacillus cereus (Bc) isolate belongs to the Bt species (L1), to the Bt ssp.
kurstaki (Btk) or aizawai (Bta) subspecies (L2) and to the clusters a, b, c, and d (L3), based on the
14 marker protein sequences previously identified (see Table 3). A marker is considered present when
its sequence coverage and its identity are both higher than 90% in the assembly tested.

4. Discussion

To differentiate Bt from other members of the Bc group and especially in the context of
food poisoning, we analyzed a large database of Bc to identify genetic markers specific to Bt.
The construction of the Bc pangenome from 230 Bc genomes showed that it was composed
of 39,021 protein-coding genes and that the core genome corresponded to 1854 genes. These
results differ somewhat from those previously published for the Bc pangenome. A previous
pangenome study of 114 Bc highlighted 59,989 genes; however, only 600 were described
as core genes [23]. Normally, increasing the number of genomes in a dataset can lead
to a decrease in the core genome size, along with an increase in the accessory genome
size. However, the difference in tools used for pangenome deduction here can explain
this large difference in gene numbers, as already highlighted in a genome-wide analysis
of Clostridium difficile pangenome [53]. For instance, the previous popular pangenome
analysis software, named Roary [54], uses a default threshold of 95% identity (versus 98%
with Panaroo) to create clustered protein sequences. Nonetheless, Panaroo, unlike Roary,
clusters potential close family genes together. Moreover, Roary does not take assembly
and annotation errors into account, thereby resulting in an overestimation of the total gene
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number and thus a reduction of the core genome size, especially for datasets with high
diversity as in the Bc group.

In addition, many Bt genomes (especially from the Btk and Bta subspecies) that were
used for this study comprised a large number of accessory genes, which can be explained
by the high diversity of the genomes in these subspecies in the dataset, and/or the presence
of mobile genetic elements, particularly plasmids. Several studies have already highlighted
that the number of plasmids is high in Bt, in comparison with Bc [55–57]. A comparative
genomic analysis study has shown that Bt strains with high insecticidal potency harbor
genes promoting infection, immune evasion and nutrient access that may play a key role
in entomopathogenicity and host adaptation [58]. Toxin-carrying plasmids, which repre-
sent an important part of the Bt plasmid pool, have also been shown to be involved in
cellular functions such as germination, sporulation and horizontal gene transfer [55,59].
For the Bti and Btm subspecies, for which only a limited number of genomes were in-
cluded in this study, no gene validation step could be performed to define specific markers.
Nevertheless, our analysis led to the identification of genes only present in a restricted
population of Bti (18SBCL211A, 18SBCL484A, Bt_israelensis_4Q1, Bt_israelensis_HD789,
Bt_israelensis_AM6552) or in one strain of Btm (Bt_morrisoni_BGSC 4AA1), whose speci-
ficity deserves further investigation.

A total of 249 candidate genes were selected based on their sensitivity and speci-
ficity for a given trait. As recommended for GWAS analyses [60], the results obtained
were validated by testing them on a test dataset (here, the VD). The fact that almost 50%
of the selected markers did not pass this step demonstrates the importance of testing
results. To extend identification to other traits or Bt genomes, marker selection prefer-
entially targeted genes with a chromosomal location and a known or predicted function.
Of the 128 validated genes, only 21 had predicted functions, annotated with Prokka [33]
(Supplementary Table S3). At least one gene associated with a known function and lo-
cated on the chromosome was identified for L1- and L2-associated traits (Bt species and
subspecies, respectively), with the exception of Btk. However, we showed that Btk could
be identified based on the combination of two plasmid markers, which underlines the
importance of plasmid content, especially for the discrimination of closely related Bt strains.

The phylogenic visualization of the SD dataset illustrates the challenge—even when
using genomic approaches—of differentiating Bt populations from each other or other
Bc group members, due to their close genetic proximity [3,23]. For example, L3 analysis
performed for cluster identification could not be performed on the whole SD. The im-
possibility of identifying specific genes revealed a limitation of gene-based GWAS when
comparing extremely close groups. Fortunately, the sequential use of a combination of
markers allows the use of cluster-specific markers after confirmation of Bt membership and
then one of two subspecies, Bta or Btk. Furthermore, the use of a highly diverse dataset in
this study allowed the identification of specific and high sensitivity markers. For example,
among the Bt markers identified, the cwlA gene was found in 93.8% of SD Bt genomes
(n = 144), making it a very reliable marker compared with the previously proposed de-
tection system [61–63]. Furthermore, this previous system did not include commercial
Bt strains, unlike the analyses performed for this study. Nevertheless, it is noteworthy
that the identified markers refer to a specific dataset, meaning they may not allow the
identification of the entire Bt species. In addition, we cannot exclude the existence of some
non-sequenced strains, in particular divergent strains not included in our dataset that may
not possess one or more of the selected markers. However, the workflow developed here
can easily be adapted with the addition of new markers or modification of existing markers
to detect additional Bt strains of interest.

The 2016 EFSA report [22] highlighted the need for the development of new methods
to differentiate among Bc members, in particular to discriminate Bt from Bc s.s. An inter-
esting tool (BTyper3) has been developed based on a compilation of typing methods from
sequencing data (including typing virulence genes), for the classification of Bc members,
in particular the virulent B. anthracis and emetic strains [25]. The markers we highlighted
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here constitute a complementary approach, because they allow the accurate detection of Bt
strains of interest for food safety. To differentiate Bt from other members of the Bc group,
particularly in the context of FBOs, our work shows that a combination of six markers
can identify Bt species, three for the two major subspecies of interest in food safety, and
five for the proximity clusters of pesticide strains frequently used in agriculture. Based
on these 14 markers, we developed a new tool, associated with a workflow (Figure 4) and
a script to predict the identity putative Bt among Bc isolates. Moreover, the gene-based
GWAS approach developed here demonstrated that the four proximity clusters associated
with commercial Bta or Btk strains likely belong to Bt [17]. Currently, the workflow cannot
be used to distinguish certain Bt strains (particularly the insecticide strains belonging to
the kurstaki subspecies) within the same cluster. Gene-based approaches are limited in
their specific identification of commercial Bt strains used in agriculture. New approaches,
notably based on SNP calling, can be conducted to search for differentiation methods at
the strain level. In this perspective, our workflow can be easily updated and optimized,
if necessary.

With the routine use of sequencing methods in laboratories and the significant devel-
opment of high-throughput sequencing techniques, the use of computational tools as a
complementary method for the identification of bacterial species may prove to be a valu-
able asset, especially in the context of food poisoning. This complementary identification
method can be used to quickly assign a Bc strain to the Bt species, as well as to challenge
false positives and false negatives resulting from microscope searches for protein crystals,
possibly due to ambiguous phenotypes, misinterpretation of results, or loss of plasmids
carrying the cry genes. With different levels of analysis, possible assumptions on the origin
of the isolates can be made.

5. Conclusions

Bt biopesticides constitute a topic of concern in food safety due to their wide use in
agriculture and their suspected association with food poisoning events, therefore warrant-
ing the development of tools for their traceability in food. This study identified specific
molecular markers, usable either alone or in combination, for the detection of the most
widely used Bt pesticides, at the scale of the Bt species, subspecies (aizawai and kurstaki)
and four clusters of genetic proximity (a to d) previously defined [17] referring to seven
Bt pesticidal strains. Thus, each presumptive Bc genome can be classified according to an
established workflow into Bt species (versus non-Bt, n = 6 markers), then into subspecies
(kurstaki n = 2 markers, aizawai n = 1 marker), and finally into genomic proximity clusters (a:
n = 1 marker, b: n = 2 markers, c: n = 1 marker and d: n = 1 marker). A command line tool,
based on a 14-marker workflow, was developed for the automated serial search of these
markers (https://github.com/afelten-Anses/Bt_typing, accessed on 2 February 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11233924/s1, Figure S1. Rarefaction curve of gene diversity
as a function of the number of samples generated with non-parametric incidence-based estimator
jack1 [64]. Table S1. List of the 286 genomes used in this study. The genome set was divided
into two datasets, a study dataset (SD) (n = 230) and a validation dataset (VD) (n = 56). a Clusters
were determined by SNP calling, using iVARCall2 [17]. b All the sequencing data used in this
study are associated with two BioProjects: PRJNA547495 [17] and PRJNA781790 (this study). The
attribution to panC groups was performed after partial sequencing of panC gene, and according to
Guinebretière et al., [24]. Abbreviations: FBO = foodborne outbreak. Table S2. List of the 21 annotated
genes found with GWAS analysis and validated using TBLASTN. Table S3. Search for 3D structure
prediction for workflow markers of unknown function. The search was performed using SWISS-
PROT. a GMQE (global model quality estimation) is a quality estimation that combines properties
from the target–template alignment and the template structure. b QMEAN is a composite estimator
based on different geometrical properties and provides both global (i.e., for the entire structure)
and local (i.e., per residue) absolute quality estimates on the basis of one single model. c QSQE

https://github.com/afelten-Anses/Bt_typing
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(quaternary structure quality estimate) score is a number between 0 and 1, reflecting the expected
accuracy of the interchain contacts for a model built based on given alignment and template.
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