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Abstract Bacillus thuringiensis subsp. kurstaki (Btk) is a strong pathogen toward lepidopteran 
larvae thanks to specific Cry toxins causing leaky gut phenotypes. Hence, Btk and its toxins are 
used worldwide as microbial insecticide and in genetically modified crops, respectively, to fight crop 
pests. However, Btk belongs to the B. cereus group, some strains of which are well known human 
opportunistic pathogens. Therefore, ingestion of Btk along with food may threaten organisms not 
susceptible to Btk infection. Here we show that Cry1A toxins induce enterocyte death and intestinal 
stem cell (ISC) proliferation in the midgut of Drosophila melanogaster, an organism non-susceptible 
to Btk. Surprisingly, a high proportion of the ISC daughter cells differentiate into enteroendocrine 
cells instead of their initial enterocyte destiny. We show that Cry1A toxins weaken the E-Cadherin-
dependent adherens junction between the ISC and its immediate daughter progenitor, leading the 
latter to adopt an enteroendocrine fate. Hence, although not lethal to non-susceptible organisms, 
Cry toxins can interfere with conserved cell adhesion mechanisms, thereby disrupting intestinal 
homeostasis and endocrine functions.

Editor's evaluation
The microbial pathogen Bacillus thuringiensis subsp. kurstaki (Btk) and its Cry toxins are used exten-
sively to kill lepidopteran crop pests. Although Btk is not lethal to Drosophila, Jneid et al. present 
convincing evidence that Btk's Cry1A toxins disrupt Drosophila intestinal homeostasis by inducing 
enterocyte death, activating stem cell divisions, and promoting excess enteroendocrine differenti-
ation via weakening of adherens junctions between stem cells and terminal daughter cells. These 
important findings raise the possibility that Btk and Cry-based insecticides may alter the intestinal 
lining of non-targeted animal species.

Introduction
The gut lining is undergoing constant damage caused by environmental aggressors (pesticides, 
drugs, viruses, bacteria and toxins) ingested along with food. The gut quickly responds to these 
aggressions by accelerating its epithelium renewal to replace damaged cells. Over the past decade, 
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studies in Drosophila melanogaster have contributed substantially to the understanding of the cellular 
and molecular mechanisms controlling the maintenance of intestinal homeostasis and regeneration. 
These mechanisms have proven to be highly conserved in the animal kingdom. In Drosophila, resident 
intestinal stem cells (ISCs) are the guarantors of this cell renewal process. Under normal conditions, 
asymmetric division of an ISC gives rise to a new ISC (to maintain the pool of ISC) and to a daughter 
progenitor cell that can commit to two different paths of differentiation (de Navascués et al., 2012; 
Goulas et al., 2012; O’Brien et al., 2011; Perdigoto et al., 2011; Tian and Jiang, 2014). The entero-
blasts (EBs) and enteroendocrine precursors (EEPs) are the precursors of enterocytes (ECs) and entero-
endocrine cells (EEs), respectively (Guo et al., 2021; Joly and Rousset, 2020; Pasco et al., 2015). 
ECs are the main intestinal epithelial bricks constituting an efficient barrier against aggressors and 
are therefore their first victims. The damaged or dying ECs emit cytokines, which stimulate the prolif-
eration of ISCs to augment the pool of EBs that will differentiate into ECs to replace the damaged 
ones (Bonfini et al., 2016; Osman et al., 2012). Two mechanisms underlying intestinal regeneration 
have been described. The first one is the ‘cell renewal’ model, which occurs under weak aggression 
conditions that does not induce EC apoptosis. In this case, ISC proliferation is low and the neo-EBs 
differentiate into ECs. However, this provokes a transient excess of ECs due to the absence of prior EC 
death. The gut cell homeostasis is subsequently reestablished by the removal of old ECs (Loudhaief 
et al., 2017). The second mechanism, called ‘cell replenishment’ or ‘regenerative cell death’, occurs 
after a strong aggression that induces massive EC apoptosis. In this case, a rapid ISC proliferation is 
followed by the differentiation of EBs into ECs to replace the dying ones (Loudhaief et al., 2017; Vriz 
et al., 2014) without producing supernumerary ECs.

Bacillus thuringiensis (Bt) bacteria are largely used as microbial insecticides to fight crop pests. Bt 
is a Gram-positive sporulating bacterium belonging to the Bacillus cereus (Bc) group (Ehling-Schulz 
et al., 2019). It was first identified and characterized for its specific entomopathogenic properties due 
to the presence of a crystal containing specific Cry protoxins, which are produced during the bacteria 
sporulation (Rabinovitch et al., 2017). Among all the subspecies of Bt inventoried (http://www.bgsc.​
org/), spores of Bt subsp. Kurstaki (Btk) are used to specifically kill lepidopteran larvae that threaten 
crops, through a cocktail of Cry toxins made of Cry1Aa, Cry1Ab, Cry1Ac, Cry2Aa and Cry2Ab (Cabal-
lero et al., 2020). Cry toxins sequentially bind to different receptors present in the midgut to exert 
their cytotoxicity. Among those receptors, the ones named Bt-R that belong to the Cadherin trans-
membrane cell adhesion molecules are primordial for the Cry1A holotype of toxins, allowing them to 
bind to enterocyte brush borders. The other receptors—such as Alkaline phosphatases, Aminopepti-
dases N, and ABC transporters—appear to account for the cytotoxicity that Cry exert toward suscep-
tible organisms (Adang et al., 2014; Gao et al., 2019; Li et al., 2020; Liu et al., 2018b). In susceptible 
insects, upon ingestion of spores and crystals, the basic midgut pH dissolves the crystals, releasing 
the Cry protoxins. Then, digestive enzymes cleave Cry protoxins (130kD and 72kD for proCry1A and 
proCry2A, respectively) into activated Cry toxins (around 67kD) allowing them to bind their midgut 
receptors. Thereby, Cry toxins form pores in the plasma membrane of ECs, ultimately leading to their 
death. An alternative mode of action of Cry toxins suggested that Cry binding to Cadherin induces an 
intracellular flux of Mg2+ resulting in EC apoptosis (Castella et al., 2019; Mendoza-Almanza et al., 
2020). In both models, toxin-induced breaches within the gut lining allow bacteria (spores and vegeta-
tive cells) to reach the internal body cavity, generating a septicemia and subsequent death of the lepi-
dopteran larvae within 2 or 3 days after ingestion of Btk spores (Mendoza-Almanza et al., 2020). It is 
assumed that Btk do not harm the intestine of non-susceptible organisms because, first, the intestinal 
pH is not suitable for the solubilization of the crystal of protoxins and, second, the Cry toxin receptors 
are absent from their gut epithelium (Rubio-Infante and Moreno-Fierros, 2016).

However, recent studies provide evidence that Btk also exhibits some adverse effects on non-
susceptible organisms including humans. Indeed, Bt belongs to the B. cereus group to which some 
strains are well-known worldwide food-poisoning pathogens causing diarrheal-type illnesses (Jova-
novic et al., 2021). Recently, Bt has also been implicated in foodborne outbreak events and the strains 
identified were indistinguishable from the commercial ones (Biggel et al., 2021; Bonis et al., 2021; 
Johler et al., 2018). Furthermore, we have shown that Btk spores and toxins at concentrations close 
to those recovered on vegetables after spraying induce growth defects and developmental delay in 
Drosophila larvae (Nawrot-Esposito et al., 2020). Increasing spore and toxin doses ultimately lead to 
larval lethality (Babin et al., 2020). Cry toxins produced by Btk are also used in genetically modified 
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crops (GMCs) (ISAAA, 2017), and it has been reported that GMC-produced Cry1Ab toxin is found 
in agricultural water stream networks at abnormally high doses that may affect the survival rate of 
non-susceptible insects (Rosi-Marshall et al., 2007). In a similar vein, laboratory studies have demon-
strated genotoxic activity of Cry1Aa, Cry1Ab, Cry1Ac, and Cry2A in zebrafish rearing water (Grisolia 
et al., 2009). Based on all these data, our aim in this study was to decipher the interaction of Btk and 
its toxins with the intestinal epithelium using Drosophila melanogaster, an organism non-susceptible 
to Btk Cry toxin and a well-established model for studying host-pathogen interaction mechanisms.

Using environmental doses of spores and crystals of protoxins recovered on vegetables after 
treatment, we first showed that crystals of Btk Cry protoxins induced moderate enterocyte death 
that triggers a quick cell replenishment. We then demonstrated that the crystals diverted a higher 
number of progenitor cells from their initial EC fate toward an EE fate, generating an excess of EEs. 
Importantly, this effect was due to a weakened cell-cell interaction between ISC mother cells and 
progenitor daughter cells. We were able to rescue the crystal-dependent excess of EEs by specifically 
overexpressing the DE-Cadherin in ISC and progenitor daughters, reinforcing the strength of the 
adherens junction between these cells. Moreover, we found that among the five Btk Cry toxins, only 
the Cry1A holotype was able to induce this EE excess. Unexpectedly, we observed that Btk crystals 
are processed in the midgut of adult Drosophila as they are in that of susceptible-organisms, releasing 
activated Cry1A toxins. Hence, since our data demonstrate that Cry1A toxins disrupt conserved 
cellular processes, many non-susceptible organisms may exhibit an excess of EEs and consequently a 
disruption of their enteroendocrine functions.

Results
Crystals of Btk Cry protoxins induce EC death and stimulate 
proliferation of intestinal stem cells
During sporulation, Btk produces a crystal of protoxins that is lethal to lepidopteran larvae once 
ingested by the insect. To study the Btk effects on the non-susceptible organism Drosophila mela-
nogaster, we orally infected flies with the SA11 Btk strain (hereafter named BtkSA11), which is widely 
utilized in commercial microbial insecticides. A suspension of spores/crystals in water was deposited 
on the fly medium corresponding to 106 CFU (Colony Forming Unit) of spores per female for 4 cm². 
The impact on the gut of the spores alone, or the toxins alone, was also monitored using a Btk strain 
devoid of protoxin crystals (BtkΔCry) or purified crystals, respectively (see Materials and methods).

The Gal4/UAS binary expression control system (Brand and Perrimon, 1993) allowed us to monitor 
first the effect of the spores/crystals on EC apoptosis by expressing the Caspase 3 sensor Casp::GFP; 
(Schott et al., 2017) under the control of the myo1A-Gal4 EC driver (myo1A>Casp::GFP). With this 
transgenic combination, the GFP is detectable only when the Caspase 3 is activated in ECs. As a 
negative control, we fed flies with water alone. In all our experiments, we focused our observations on 
the posterior midgut (R4 region, https://flygut.epfl.ch/overview) (Figure 1—figure supplement 1A; 
Buchon et al., 2013) because this region is known to show a high stem cell renewal activity (Marianes 
and Spradling, 2013) and exhibits the strongest phenotypes (see below). One day post-ingestion, 
BtkSA11 or purified crystals induced moderate apoptosis of the ECs compared to the control (Figure 1A 
and Figure 1—figure supplement 1B). However, the treatment with spores alone devoid of protoxin 
crystals (BtkΔCry) did not induce EC death. Noteworthy, the overall morphology of the posterior midgut 
was not altered in the different conditions (Figure 1—figure supplement 1A).

Induction of cell death is known to strongly induce ISC proliferation in the whole midgut (Biteau 
et al., 2008; Chatterjee and Ip, 2009; Jiang et al., 2009; Loudhaief et al., 2017). This prompted 
us to assess the number of ISC mitoses in the different conditions, using an Anti-phospho-Histone 
H3 antibody marking mitotic cells. As expected, ISC mitotic indexes were stronger upon oral infec-
tion with BtkSA11 spores or purified crystals than in the control (Figure  1B). In BtkΔCry spore infec-
tion, mitotic figures were only moderately increased (Figure  1B). This is consistent with previous 
observations showing that a low dose (106 CFU per Drosophila) of Btk vegetative cells (that do not 
produce and contain crystals of Cry protoxins) only moderately activates ISC proliferation without 
inducing EC apoptosis (Loudhaief et al., 2017). We confirmed this increase in ISC proliferation by 
analyzing ISC density and proportion in the posterior midgut (R4 region). To specifically mark ISCs, we 
expressed the GFP under the control of the Dl-Gal4 driver that is expressed in ISCs and EEPs (Joly 

https://doi.org/10.7554/eLife.80179
https://flygut.epfl.ch/overview


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology

Jneid et al. eLife 2023;12:e80179. DOI: https://doi.org/10.7554/eLife.80179 � 4 of 34

and Rousset, 2020), and we co-stained with an anti-Prospero (Pros), an EEP and EE marker (ISCs were 
therefore GFP+, Pros-). While we observed an increase in ISC number with BtkSA11 spores or purified 
crystals (both density and ratio increased), BtkΔCry spores did not induce any increase (Figure 1C and 
Figure 1—figure supplement 2A–B). This could be explained by the fact that the moderate stimula-
tion of ISC proliferation by BtkΔCry spores was not sufficient to promote a detectable increase in global 
ISC number. Nonetheless, to verify that ISC daughter cells committed to a process of differentiation 
upon BtkΔCry or BtkSA11 spore ingestion, we used the ReDDM Drosophila genetic tool (Antonello et al., 
2015) under the control of the Dl-Gal4 driver (Dl-ReDDM). This tool allows us to follow the progeny 
of the ISCs because they express a stable RFP (H2B::RFP) while the mother cells (the ISCs) express a 
labile GFP. After shifting the flies to 29 °C to activate the Dl-ReDDM tool, the GFP was only expressed 

Figure 1. Crystals of Btk Cry protoxins induce EC death and stimulate proliferation of intestinal stem cells. (A) EC apoptosis was monitored by 
expressing the Caspase 3 sensor (Casp:: GFP) using the myo1A-GAL4 EC driver (myo1A>Casp::GFP). With this transgenic combination, the GFP is 
detectable only when the Caspase 3 is activated in ECs. Left panel: ×40 magnification of a R4 subregion. Green stars mark GFP-positive dying ECs. 
Scale bar = 20 µm. Right panel: quantification of dead ECs 24 hr post ingestion (PI) in the posterior midgut (R4 region). (B) Quantification of mitoses 
using the anti-PH3 antibody in the whole midgut 24 hr PI. (C) ISC density in the R4 region of esg >GFP flies 24, 72, and 120 hr PI. (D) EC density in the R4 
region of myo1A>GFP flies 24, 72, and 120 hr PI. Data is reported as mean ± SEM. ns = not significant; * (p≤0.05); ** (p≤0.01), *** (p≤0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Cell type counting.

Figure supplement 1. Crystals of Btk Cry protoxins disturb intestinal homeostasis.

Figure supplement 2. Cell ratio analysis in the R4 region.

Figure supplement 2—source data 1. Cell ratio analysis in the R4 region.

https://doi.org/10.7554/eLife.80179
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in Dl + cells (i.e. the ISCs and EEPs) while the H2B::RFP was expressed in Dl + cells but also stably 
transmitted to the progeny. We also used an anti-Pros to label EEPs and EEs. Consequently, ISCs 
were recognized by their expression of both GFP and RFP; EEPs expressed GFP, RFP and Pros, EEs 
expressed only Pros, EBs and ECs expressed only the RFP. As expected, both BtkΔCry or BtkSA11 spore 
ingestion promoted ISC daughter cell differentiation (Figure 1—figure supplement 1C) but surpris-
ingly we observed an abnormal elevated number of EEP doublets upon ingestion of BtkSA11 spore (see 
below).

We next monitored the density and ratio of ECs using the fly strain myo1A>GFP allowing the 
expression of GFP in all ECs. BtkΔCry spores induced an increase of EC density at days 1 and 3 post-
ingestion though their ratio was not altered; the right density of ECs was recovered 5 days after inges-
tion (Figure 1D and Figure 1—figure supplements 1D and 2A, C). Along with the low number of 
dying EC (Figure 1A) and the moderate induction of ISC proliferation (Figure 1B), our data strongly 
suggest that BtkΔCry spores weakly damage the intestinal epithelium, reminiscent of the ‘cell renewal’ 
process previously described after infection with poorly virulent bacteria (Loudhaief et al., 2017). 
On the contrary, ingestion of the BtkSA11 spores or purified crystals provoked a decrease in total EC 
number 3 days post-ingestion (both density and ratio dropped down) (Figure 1D and Figure 1—
figure supplements 1D and 2A, C) that we attributed to EC apoptosis (Figure 1A; Loudhaief et al., 
2017). A normal number of ECs was restored 5 days post-ingestion for BtkSA11 spores and to a lesser 
extent for purified crystals (Figure 1D and Figure 1—figure supplements 1D and 2A, C). Hence, 
BtkSA11 spores or purified crystals launch a process of regenerative cell death, inducing a strong prolif-
eration of ISCs to quickly replenish the gut lining as previously described for strong pathogens (Vriz 
et al., 2014). Importantly, the ingestion of purified crystals containing the Btk Cry-protoxins recapitu-
lates the midgut phenotypes caused by the ingestion of BtkSA11 spores.

BtkSA11 spores induced an increase in EB, EEP and EE numbers
During the course of our experiments we observed that many more EEs were apparently present in 
the flies that had ingested BtkSA11 spores compared with the control flies (Figure 2—figure supple-
ment 1A–C). As ECs derive from EBs and EEs from EEPs, we assessed the amount and the identity of 
the precursors in the different conditions of infection (H2O; BtkΔCry spores, BtkSA11 spores and purified 
crystals). To count the EBs, we used a Gal4 strain of Drosophila driving GFP expression specifically 
in EBs (Su(H)>CD8::GFP). As expected, a significant increase in the number of EBs was observed 
between the first and the fifth day after ingestion of BtkΔCry, BtkSA11 or purified crystals (Figure 2A and 
Figure 1—figure supplement 2A, D). The EEP density was assessed using two markers: the GFP 
expressed in ISCs and progenitors (EBs and EEPs) using the esg-Gal4 driver (esg >GFP) and a Pros 
staining which labels EEPs and EEs. Cells expressing both GFP and Pros corresponded to EEPs. While 
BtkΔCry spores did not modify the density of EEPs, ingestion of either BtkSA11 spores or purified crystals 
resulted in an increase in EEPs from day one onwards (Figure 2B and D). Since EEPs must differentiate 
into EEs, we then counted the differentiated EEs that were GFP-/Pros+. No difference in EE density 
was obtained with BtkΔCry spores compared to the control, whereas there was a net increase with the 
BtkSA11 spores and with the purified crystals (Figure 2C and D, Figure 1—figure supplement 2A 
and E, and Figure 2—figure supplement 1A–D). Interestingly, although this event was rare, we also 
observed that EEPs could undergo a cycle of mitosis that might contribute to the increase in EEPs 
and EEs (Figure 2E; Biteau and Jasper, 2014; Li et al., 2014; Zeng and Hou, 2015). Noticeably, we 
never observed such an increase in EEPs and EEs in the anterior part of the midgut (Figure 2—figure 
supplement 1E–I). Altogether, our results showed that the protoxin crystals of BtkSA11 were respon-
sible for the excess of EEs in the posterior midgut.

EE excess arises from newborn EEPs after ingestion of crystals of 
BtkSA11 protoxins
To demonstrate that the excess of EEPs and EEs arose from proliferating ISCs caused by the inges-
tion of protoxin crystals, we used the ReDDM cell lineage tracing system using the esg-Gal4 driver 
(esg-ReDDM flies). We chose to analyze the progeny at day 3 post-ingestion (Figure 3A), when the 
increase in EEs reached its peak (Figure 2C and Figure 1—figure supplement 1E). According to the 
expression of specific cell markers and nucleus size, we could identify different cell types either that 
existed before the ingestion or that appeared after the ingestion of BtkΔCry spores, BtkSA11 spores or 

https://doi.org/10.7554/eLife.80179
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Figure 2. BtkSA11 spores induce an increase in EB, EEP and EE numbers. (A–D) Flies were fed with water, BtkΔCry spores, BtkSA11 spores or Crystals. (E-
E") Flies were fed with BtkSA11 spores. (A–C) Control (water-ctrl): blue; BtkΔCry spores: green; BtkSA11 spores: purple; Crystals: beige. (A) EB density in the 
R4 region of Su(H)>CD8::GFP flies 24, 48, and 72 h PI. (B and C) EEP (B) and EE (C) density in the R4 region of esg >GFP flies 24, 48, and 72 hr PI. (D-
E") R4 region of esg >GFP flies labeled with anti-Pros (Red). GFP was expressed in ISCs, EBs and EEPs, and Pros was expressed in EEPs (yellow arrows 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.80179
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purified crystals. Identities of the different cell types were defined as follows: ISCs and EBs were GFP+/
RFP+/DAPI +with small nuclei (although EBs were bigger cell than ISCs); EEPs were GFP+/RFP+/
Pros+/DAPI+; new EEs were RFP+/Pros+/DAPI+; old EEs were Pros+/DAPI+, new ECs were RFP+/
DAPI + with big polyploid nuclei and old ECs were DAPI + with very big nuclei (Figure 3B–E"). In the 
control experiments, a few newborn ECs (red arrows in Figure 3B and B', and Figure 3G) and rare 
newborn EEs (Figure 3F) appeared 3 days post-ingestion, reflecting the relative steady state of the 
cellular homeostasis. As expected for poorly virulent bacteria, ingestion of BtkΔCry spores induced the 
appearance of newborn ECs (red arrows in Figure 3C and C' and Figure 3G) and only rare newborn 
EEs resulted (pink arrow in Figure 3C–C" and Figure 3F). Similarly, ingestion of BtkSA11 spores or puri-
fied crystals promoted the appearance of newborn ECs (red arrows in Figure 3D, D', E and E' and 
Figure 3G) but, strikingly, a high number of newborn EEs appeared (pink arrows in Figure 3D–E" and 
Figure 3F). However, we could not rule out the possibility that the BtkSA11 spores altered EB behavior, 
pushing them toward an EE fate. To verify this possibility, we carried out a ReDDM lineage tracing 
using the Su(H)-Gal 4 driver that is specifically expressed in EBs (Su(H)-ReDDM flies). In this case, no 
newborn EEs were detectable upon ingestion of the BtkSA11 spores while many newborn ECs were 
present (Figure 3—figure supplement 1A–D), indicating that EBs are not the source of the increase in 
the number of EEs. These data confirm previous observations that EEs never develop from Su(H)+EBs 
(Biteau and Jasper, 2014; Zeng and Hou, 2015).

Altogether, our data demonstrate that ingestion of BtkSA11 spores damages the intestinal epithe-
lium, stimulating ISC proliferation. However, some of the progenitors make the choice to commit 
to an EEP/EE fate instead of an EB/EC fate. Consequently, there is a lack of new ECs to replace the 
dying ones and there is an excess of EEs. Interestingly, the crystals containing the Cry protoxins can 
recapitulate all the BtkSA11 spore effects. In contrast, the effect of BtkΔCry spores is less damaging for 
the gut epithelium. In this case, ISC proliferation is only weakly stimulated and the progenitors make 
the choice to commit to the EB/EC fate to replace the damaged ones.

Crystals of BtkSA11 protoxins decrease ISC-progenitor cell-cell adhesion
It is well established that the Notch (N) signaling pathway governs progenitor differentiation and 
cell lineage choice in the adult Drosophila midgut (Micchelli and Perrimon, 2006; Ohlstein and 
Spradling, 2006; Ohlstein and Spradling, 2007; Pasco et al., 2015). Indeed, the transmembrane 
ligand Delta (Dl) expressed in ISCs binds to its N receptor present on the surface of progenitors. This 
induces the cleavage of the intracellular domain of N and its relocation into the nucleus to activate its 
target genes (Perdigoto and Bardin, 2013). Upon N activation, progenitors differentiate into EBs and 
then into ECs while in the absence/weak activation of N signaling, progenitors commit to an EEP/EE 
fate (Beehler-Evans and Micchelli, 2015; Guo and Ohlstein, 2015; Ohlstein and Spradling, 2007; 
Sallé et al., 2017). A prolonged and/or strong interaction between the ISC and its progenitor is neces-
sary to reach the threshold of the N signaling activation sufficient to commit the progenitor to the EB/
EC fate. A shorter and/or weaker interaction between the ISC and its progenitor weakly induces the 
N pathway, pushing the progenitor towards the EE fate (Guisoni et al., 2017; Sallé et al., 2017). The 
adherens junctions between ISCs and progenitors formed by E-Cadherins and Connectins intervene 
to prolong the contact between Dl and N, favoring the EB/EC fate (Choi et al., 2011; Falo-Sanjuan 
and Bray, 2021; Maeda et al., 2008; Zhai et al., 2017). As the consensus receptors for Cry1A toxins 
in target organisms are members of the Cadherin family (Adang et al., 2014), we wondered whether 
the BtkSA11 could interfere with the function of the adherens junctions. We hypothesized that ISC-
progenitor interaction could be reduced via interference of Cry toxins with Cadherins, modifying the 
progenitor cell fate and thus explaining the excess in EE number seen after ingestion of BtkSA11 spores 

in D) and EEs (red arrows in D). (E-E’’) PH3 staining (blue) marks mitosis. Pink arrows point to dividing EEPs and blue arrows point to dividing ISCs. ×40 
magnification. Scale bar = 20 µm. Data is reported as mean ± SEM. ns = not significant; * (p≤0.05); ** (p≤0.01), *** (p≤0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Cell type counting.

Figure supplement 1. BtkSA11 crystals induce an increase in EEP and EE number in the posterior midgut.

Figure supplement 1—source data 1. Cell counting.

Figure 2 continued

https://doi.org/10.7554/eLife.80179
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Figure 3. EE excess arises from newborn EEPs after ingestion of BtkSA11 crystals. (A) Schema of the experimental design for the esg-ReDDM cell lineage 
used in this entire figure. (B-E") R4 region of esg-ReDDM flies. Midguts were stained for Pros (blue) and DAPI which marks nuclei (white in B, C, D 
and E). (B-E’’) show the different cell types which either existed before the ingestion (green and red) or arise after the ingestion (red only) of water 
(B-B", Ctrl), Btk∆Cry spores (C-C") or BtkSA11 spores (D-D") and Crystals (E-E’’). ISCs were GFP + RFP + DAPI +with small nuclei; EBs were GFP + RFP + 

Figure 3 continued on next page
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or purified crystals. To test this hypothesis, we labelled the intestines of esg >GFP Drosophila fed with 
BtkΔCry spores, BtkSA11 spores or purified crystals with the anti-Armadillo (Arm)/β-catenin antibody that 
strongly marks the adherens junctions. We observed an intense labeling at the level of the junctions 
between pairs of GFP + cells in the control (Figure 4—figure supplement 1A–A’’, E) or following 
intoxication by BtkΔCry spores (Figure 4—figure supplement 1B–B, E). Strikingly, this labeling became 
less intense following ingestion of BtkSA11 spores or purified crystals (Figure 4—figure supplement 
1C–E), and correlated with an increase in EEPs number. To verify that weakening of cell junctions 
corresponded to cell shift towards an EEP fate, we used a Drosophila line expressing the endogenous 
DE-Cadherin (DE-Cad) fused to a Tomato tag in which progenitor cells (ISCs, EBs and EEPs) were 
labelled with GFP, while EEPs and EEs were marked with Pros (Figure 4). Using this genetic back-
ground, we first confirmed the decrease in the proportion of cells showing strong junctions between 
pairs of GFP + cells upon feeding with BtkSA11 spores or purified crystals (Figure  4E). Second, as 
expected, we observed that the weak Tomato::DE-Cad labelling between a GFP + cell (an ISC or an 
EB) and its neighboring cells was correlated with the expression of the EEP marker Pros (blue stars in 
Figure 4A–D' and Table 1). Together, our results suggested that crystals of Cry protoxins produced 
by BtkSA11 are responsible for the increase in the number of EEPs/EEs, this effect being associated with 
a decrease in intercellular adhesion between ISCs and progenitors.

Increasing adherens junction strength rescues crystal-dependent cell 
fate diversion
To confirm that the crystals of BtkSA11 interfered with progenitor fate by disturbing adherens junctions, 
we wondered whether increasing the strength of cell adhesion between ISCs and progenitors could 
rescue the right number of EEPs/EEs. Thus, we overexpressed the DE-Cad in these cells using the 
esg-ReDDM flies (Figure 5A–G and Figure 5—figure supplement 1A–E). We analyzed the identity 
of newborn cells 3 days after ingestion of water (control), BtkΔCry or BtkSA11 spores, or purified crystals. 
First of all, we verified that DE-Cad overexpression in ISCs and progenitor cells (esg + cells) did not 
blocked ISC proliferation (Figure 5—figure supplement 1E compared to Figure 3—figure supple-
ment 1E). Interestingly, in flies overexpressing the DE-Cad fed with BtkSA11 spores or purified crystals, 
we observed a rescue in the number of EEs (blue arrows in Figure 5A–D', and Figure 5E compared to 
Figure 3F). In agreement, the number of ISC-progenitor pairs with a strong interaction was increased 
(Figure 5G compared to Figure 4E). Furthermore, as expected, more newborn ECs appeared (red 
arrows in Figure 5B–D' and Figure 5F compared to Figure 3G), strongly suggesting that increasing 
the cell adhesion between ISCs and progenitors rescued the progenitor fate disturbance generated 
by the BtkSA11 crystals. Surprisingly, overexpressing the Connectin, another cell adhesion molecule, 
which mediates hemophilic cell-cell adhesion (Zhai et al., 2017), in both ISCs and progenitors did not 
rescue the number of EEs following feeding with BtkSA11 spores or purified crystals (Figure 5—figure 
supplement 2). The emergence of new Pros + cells were still considerable upon ingestion of BtkSA11 or 
crystals at the expense of new ECs (Figure 5—figure supplement 2I and J). Of note, the overexpres-
sion of the Connectin in esg+ cells did not impact ISC proliferation (Figure 5—figure supplement 2K). 
To confirm the disturbance of DE-Cad-dependent cell adhesion by purified crystals, we carried out 
an aggregation assay in Drosophila S2 cell culture. Indeed, S2 cells do not endogenously express the 
DE-Cad and display only a weak cell-cell adhesion phenotype (Toret et al., 2014). Transfection of S2 
cells with a plasmid encoding a DE-Cad::GFP fusion resulted in large aggregate formation as early as 
1 hr post-agitation (Ctrl in Figure 5H and Figure 5—figure supplement 1F). Adding purified crystals 

DAPI +with bigger nuclei; EEPs were GFP + RFP + Pros +DAPI + ; new EEs were RFP+, Pros + DAPI + ; old EEs were Pros +DAPI + ; new ECs were RFP 
+ DAPI + with polyploid big nuclei and old ECs were DAPI +with very big nuclei. 40 X magnification. Scale bar = 20 µm. (F) Counting old EEs (Pros + 
RFP-) and new EEs (Pros + RFP + ) in the conditions described in (B–E). (G) Counting old ECs (DAPI+) and new ECs (DAPI + RFP + ) in the conditions 
described in (B–E) n=number of 40 x images analyzed Data is reported as mean ± SEM. ns = not significant; * (p≤0.05); *** (p≤0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Cell type counting.

Figure supplement 1. EBs do not give birth to EEs.

Figure supplement 1—source data 1. Cell type counting.

Figure 3 continued

https://doi.org/10.7554/eLife.80179
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Figure 4. Btk crystals decrease ISC-Progenitor cell-cell adhesion. (A–E) esg >UAS GFP, Tomato::shg Drosophila 
midgut R4 region 24 hr PI of water (A-A” Ctrl), Btk∆Cry spores (B-B”), BtkSA11 spores (C-C”) or crystals (D-D”). (A-
D") Midguts are labelled for Pros (blue), DE-Cadherin (red) and ISCs and progenitors (green). Red arrows point to 
the high intensity of adherens junctions staining between ISC and progenitors. Yellow arrows point to the weak 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.80179
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to the cell culture medium strongly reduced the size of aggregates. Interestingly, purified Cry1Ab and 
Cry1Ac protoxins have the same effect although Cry1Ab needed a longer time to reduce the size of 
S2 cell aggregates (Figure 5H–H" and Figure 5—figure supplement 1F). Because Cadherins serve 
as receptors for the Cry1A toxin family in target Lepidoptera (Adang et al., 2014), our data suggest 
that in non-target organisms such as Drosophila melanogaster, Cry1A toxins could interfere physically 
with the well-conserved E-Cadherin.

Cry1A toxins mimic BtkSA11 spore effects
BtkSA11 produces five different Cry toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry2Aa, and Cry2Ab) (Caballero 
et al., 2020). We investigated whether the increase in EEP/EE number was due to all toxins present 
in the crystals or to only one family of toxins (i.e. the Cry1A or Cry2A family). We made use of the 
BtkCry1Ac strain (referred to as 4D4 in https://bgsc.org/) which produces crystals composed only of the 
Cry1Ac protoxin. We fed esg >GFP flies either with spores of BtkCry1Ac or with purified Cry1Ac crystals. 
In both conditions, we observed a significant increase in the number of EEPs and EEs 3 days post-
ingestion compared to controls (Figure 6A and Figure 6—figure supplement 1A, C, D). To verify 
whether other toxins of the Cry1A family induced a similar rise in EEP/EE number, we generated 
a BtkCry1Ab strain (see Material and Methods) producing only the Cry1Ab toxins (Figure  6—figure 
supplement 1I). Similar to the BtkCry1Ac spores, BtkCry1Ab spores induced an increase in EEP/EE numbers 
(Figure 6B and Figure 6—figure supplement 1B). Unfortunately, no Btk strain yielding only Cry2A-
containing crystals was available and we were unsuccessful in generating one. To overcome this, 
we used heterologous expression of Cry toxins in E coli. We first checked whether Cry1Ac protoxin 
produced and purified from Escherichia coli (E. coli) was indeed able to induce an increase in EEP/
EE numbers. We also forced the activation of the Cry1Ac protoxin into an activated form in vitro (see 
Materials and methods). Interestingly, both the protoxin and the activated form of Cry1Ac were able 
to induce the expected phenotype, although the activated Cry1Ac form was more efficient (Figure 6C 
and Figure 6—figure supplement 1E, F). Conversely, both Cry2Aa protoxin and its activated form 
purified from E coli were unable to increase the number of EEP/EEs (Figure 6C and Figure 6—figure 
supplement 1G and H). Therefore, our data demonstrate that ingestion of Cry1A toxins was sufficient 
to induce a rise in the numbers of both EEPs and EEs.

Cry1A Protoxins from Btk crystals are activated in the Drosophila 
midgut
Our data above showed that purified activated Cry1Ac toxin was more efficient for inducing an EEP/
EE excess than the purified Cry1Ac protoxin. Interestingly, the magnitude of EEP/EE excess was 
similar using either Cry1Ac crystals or purified activated Cry1Ac toxin (compare Figure 6A and C), 
suggesting that Cry1Ac protoxins contained in the crystals were activated in the Drosophila intestine. 
However, the admitted model proposes that protoxins can be activated in vivo only in the intestine 
of the susceptible lepidopteran owing to the presence of appropriate digestive proteases specifically 
functioning at the basic pH and reducing conditions encountered in the larval midgut of lepidopteran 
(Pardo-López et  al., 2013; Soberón et  al., 2009; Vachon et  al., 2012). We therefore wondered 
whether the effects we observed in vivo were due to the crystal on its own (i.e. protoxins) or to the 
activated Cry toxins after processing in the Drosophila midgut. We first monitored by western Blot the 

intensity of adherens junction staining. Note that the high intensity of adherens junction staining is associated with 
ISC/EB interaction while the weak intensity of adherens junction staining is associated with ISC/EEP interaction 
(blue stars mark EEPs). ×40 magnification. Scale bar = 10 µm. (E) Graph representing the percentage of the 
different categories of cell contact intensity between ISCs and progenitors. n=number of cell pairs analyzed. Weak 
= Contact Intensity/Membrane Intensity <1.4; Mild = 1.4 < Contact Intensity/Membrane Intensity <1.6; Strong = 
Contact Intensity/Membrane Intensity >1.6.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Ratio of contact intensity.

Figure supplement 1. Btk bioinsecticide decreases ISC-Progenitor cell-cell adhesion.

Figure supplement 1—source data 1. Ratio of contact intensity.

Figure 4 continued

https://doi.org/10.7554/eLife.80179
https://bgsc.org/
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Table 1. Cell junction intensity ratio measurement between pairs of progenitors.
Cadherin::RFP labeling intensity were measured first at the cell junction between pairs of 
progenitors and second around the rest of the cell membrane (see Figure 4—figure supplement 
1F–G). Ratio correspond to the Junction intensity/the rest of the membrane. Prospero positive 
progenitors were both GFP+/Pros+ (see Figure 4). Yellow highlight labels Pros + progenitors with a 
weak intensity ratio. Orange highlight labels Pros + progenitors with a medium intensity ratio. Red 
highlight labels Pros + progenitors with a strong intensity ratio.

H2O
Intensity ratio Pros +

BtkΔCry Intensity 
ratio Pros +

BtkSA11

Intensity ratio Pros +
Crystals 
Intensity ratio Pros +

2,29 1,46 1,49 Yes 1,27 Yes

1,37 2,27 1,38 Yes 2,03

1,43 2,25 1,91 0,78 Yes

1,75 1,92 1,52 1,18 Yes

1,87 1,51 1,89 1,89

2,37 2,19 1,88 2,56

2,54 1,96 1,19 Yes 2,20

1,77 1,91 2,27 3,12

1,45 1,35 Yes 1,63 4,05

1,49 1,94 1,39 1,91

1,83 2,46 1,54 Yes 1,70

1,76 2,93 1,87 1,76

2,20 2,29 2,55 2,17

1,25 yes 3,60 1,63 1,55

2,48 3,03 1,84 2,06

1,12 yes 2,12 1,31 Yes 1,77

1,75 2,30 0,79 Yes 1,62

1,67 1,36 Yes 1,55

1,43 2,91 1,98

2,41 1,60 1,89

2,64 2,82 1,65

2,49 1,55 1,78

1,60 Yes 3,00 1,21 Yes

2,95 1,88 1,86 Yes

2,67 2,32 1,07 Yes

2,31 3,69 2,24

2,24 2,93 2,20

2,45 1,87 1,08 Yes

1,49 2,55 1,46

2,06 1,70 1,72

3,67 2,80 2,29

2,57 3,74 1,74

2,33 2,27 0,92 Yes

1,50 1,92

Table 1 continued on next page
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processing of the Cry1A toxin family in the fly midgut fed with BtkSA11 spores. We used an anti-Cry1A 
antibody raised against the activated form of the toxin, which therefore recognizes both forms (Babin 
et al., 2020). As a control, we incubated BtkSA11 spores in vitro in water, at 25 °C for 4 hr, 1 days, 
3 days and 6 days. Under these conditions, the protoxin form of Cry1A at 130kD was predominant and 
stable for at least 3 days before fading (control in Figure 6D, right part of the blot). This observation 
is in agreement with the fact that the half-life of Cry1A crystals has been estimated at about 1 week 
in soil or under laboratory conditions at 25 °C (Hung et al., 2016). We used the same initial BtkSA11 
spore preparation (0 hr) to feed the flies. We further dissected intestines and extracted total proteins 
at different times post-feeding. Interestingly, as early as 4 hr, we observed the 67kD activated form 
of the Cry1A toxins (Figure 6D left part). Noteworthy, the 130kD protoxin forms were still present, 
as the flies kept ingesting spores and crystals throughout the experiments. Six days after ingestion, 
almost no more protoxins or toxins were detectable due to the instability of the crystals (Figure 6D). 
Thus, our data show that the crystals can be processed in the midgut of adult Drosophila to give rise 
to active forms of the Cry1A toxins.

As mentioned previously, the increase in EEPs/EEs number was prominent in the posterior midgut 
(Figure  2—figure supplement 1). Indeed, it has been previously observed that posterior midgut 
is more prone to ISC proliferation and EE differentiation or tumor formation (Beebe et al., 2010; 
Marianes and Spradling, 2013; Tamamouna et  al., 2020). Nonetheless, a differential processing 
of Cry1A protoxins along the midgut could also participate to this difference. Thereby, we fed flies 
with purified BtkSA11 crystals and 24 hr later, we dissected and crushed the intestines by separating 
the anterior midgut from the posterior part. Furthermore, we performed subcellular fractioning by 
separating the soluble fraction (considered as the cytosol-enriched fraction) and the insoluble fraction 
containing membranes. As expected, actin is mainly found in insoluble fraction (lysis buffer detergent-
free) and was consequently used as house-keeping protein for this cellular compartment. Interest-
ingly, we observed that protoxins were already activated in the anterior part of the midgut (the 67kD 
form) but were only found in insoluble fraction, containing membranes (Figure 6E). In the posterior 
midgut, we detected a stronger quantity of the 67kD-activated form both in the soluble and insol-
uble fraction, suggesting an internalization by epithelial cells (Figure 6E). In this part of the midgut, 
smaller forms appeared mainly associated with the membrane, probably resulting from degradation 
processes. Notably, we did not detect the 130kD protoxins in the cytoplasmic fraction of both anterior 
and posterior midguts, suggesting that the protoxins remained associated with membranes. More-
over, total processing was never achieved since some protoxins still remained detectable. Altogether, 
our data show that crystals containing Cry1A protoxins are processed all along the adult Drosophila 
midgut to generate activated Cry1A toxins.

Cry1A toxins cross the intestinal barrier independently of cell adhesion 
strength and cell death
DE-Cad/adherens junctions are located basally in the posterior Drosophila midgut (Chen et al., 2018; 
Chen and St Johnston, 2022; Loudhaief et al., 2017; St Johnston and Ahringer, 2010) and are 
therefore protected from direct contact with the luminal content (i.e. from the Cry1A toxins ingested 
along with the food) by the septate junctions (i.e. the tight junctions) located apically. To reach the 
ISC-progenitor pairs that are also located basally within the intestinal epithelium, Cry1A toxins can 
follow different routes. Indeed, toxins could weaken the septate junctions, penetrating the intercel-
lular space to directly interact with DE-Cadherins. An alternative might be that Cry-induced cell death 
would cause a leaky midgut favoring the toxin passage. To address this question, we first overex-
pressed either DE-Cad or Connectin in ECs using myo1Ats-Gal4 UAS-GFP driver. We assumed that 

H2O
Intensity ratio Pros +

BtkΔCry Intensity 
ratio Pros +

BtkSA11

Intensity ratio Pros +
Crystals 
Intensity ratio Pros +

2,10 1,79

1,47 2,39

1,76

Table 1 continued
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Figure 5. Increasing adherens junction strength rescues crystal-dependent cell fate diversion. (A–G) esg-ReDDM >DE Cad Drosophila midgut R4 
region. These flies specifically overexpress the DE-Cad in ISCs and progenitors. Flies were fed with water (A-A', and blue in E and F, Ctrl), Btk∆Cry spores 
(B, B’, and green in E and F), BtkSA11 spores (C, C’ and purple in E and F) or Crystal (D-D' and beige in E and F) and observed 72 h PI (see Figure 3A for 
the experimental design). In (A-D') blue arrows point to old EEs and red arrows newborn ECs. (E) Number of old EEs (Pros + RFP-) and new EEs (Pros + 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.80179
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increasing the amount of cell-cell adhesion molecules would strengthen the sealing of the intestinal 
epithelium, thereby limiting intercellular passage of Cry toxins. As expected, DE-Cad overexpression 
in ECs partially rescued the increased number of EEs due to BtkSA11 or crystal ingestion (Figure 7B–G 
and N and Figure 7—figure supplement 1A–F) while, surprisingly, Connectin overexpression did not 
(Figure 7H–J and N and Figure 7—figure supplement 1G–I). These data suggest that strengthening 
EC-EC interaction on its own is not sufficient to prevent Cry toxins to reach basal ISC-progenitor cell 
junctions. However, the partial rescue obtained with the DE-Cad overexpression suggest that DE-Cad 
in ECs could trap Cry1A toxins away from the ISC-progenitor cell junctions, limiting the amount of 
toxins able to interfere. We then blocked EC death by overexpressing the anti-apoptotic factor p35 
in ECs, but we did not rescue EE increase induced by BtkSA11 or crystal ingestion (Figure 7K–N and 
Figure  7—figure supplement 1J–L). Together our data suggest that Cry1A toxins can reach the 
basally located ISC through routes that do not depend on cell adhesion strength or cell death. Further 
investigations are therefore needed to clearly identify the cellular mechanisms involved.

Discussion
Our results show that the Cry1A toxin family of Btk disrupts the gut cellular homeostasis of the non-
susceptible organism Drosophila melanogaster. Cry1A induces EC death coupled to an increase in ISC 
proliferation to replace the damaged ECs. Importantly, Cry1A toxins also altered intestinal cell compo-
sition by weakening DE-Cadherin-dependant cell-cell adhesion which is normally highly enriched in 
adherens junctions linking ISCs to their immediate progenitors (Choi et  al., 2011; Maeda et  al., 
2008; Ohlstein and Spradling, 2006; Zhai et al., 2017). As a consequence, progenitors are pushed 
toward the EE path of differentiation instead of the EC, owing to reduced activation of N signaling in 
progenitors (Figure 8; Guo and Ohlstein, 2015; Maeda et al., 2008; Ohlstein and Spradling, 2006; 
Ohlstein and Spradling, 2007; Pasco et al., 2015; Zhai et al., 2017). Our data confirmed that the 
duration and/or the strength of the cell-cell contact between the ISC and its progenitor daughter 
cell is important to drive the progeny toward an appropriate fate. Indeed, it has been shown both in 
Drosophila and in mammalian cell culture that adherens junctions are crucial to reinforce the contact 
between neighboring cells to allow the activation of N signaling (Falo-Sanjuan and Bray, 2021; Shaya 
et al., 2017; Zhai et al., 2017), N being necessary for the EB-EC cell fate choice.

Only the Cry1A family of toxins induces an increased number of EEs while Cry2A toxins do not 
display any phenotype. Previous studies showed that Cry1A and Cry2A bind to different recep-
tors in the intestinal epithelium of susceptible lepidopteran larvae, and proteins of the Cadherin 
family appear essential for Cry1A, but not Cry2A, binding (Adang et al., 2014; Gao et al., 2019; 
Hernández-Rodríguez et al., 2013; Li et al., 2020; Liu et al., 2018a). Drosophila possesses 17 genes 
encoding for members of the Cadherin superfamily (Hill et al., 2001). Cad88C is the most similar to 
Bt-R Cadherin of susceptible Lepidoptera, but shares only 17% of identity, (Stevens et al., 2017) and 
is poorly expressed in the Drosophila midgut (see http://flygutseq.buchonlab.com/ and https://flygut.​

RFP + ) and (F) number of old ECs (DAPI +RFP-) and new ECs (DAPI + RFP + ) in the conditions described in (A–D). (A-D') 40 X magnification. Scale bar 
= 20 µm. (G) Graph representing the percentage of the different categories of cell contact intensity between ISCs and progenitors in the experimental 
conditions shown in Figure 5—figure supplement 1A–D’. Weak = Contact Intensity/Membrane Intensity <1.4; Mild = 1.4 < Contact Intensity/
Membrane Intensity <1.6; Strong = Contact Intensity/Membrane Intensity >1.6. n=number of cell pairs analysed. (H-H") Cell aggregation assays on S2 
cells expressing the DE-Cadherin::GFP. Cells placed under constant rotation were incubated with or without Bt crystals or purified Cry protoxins (Cry1Ab 
or Cry1Ac) for 1 hr (G), 2 hr (G') or 3 hr (G"). Each scatter plot represents the area (µm2) of all objects (aggregates or individual cells) obtained from three 
independent experiments. Representative images of cell aggregates formed in aggregation assays are shown in Figure 5—figure supplement 1F 
data. In (E and F), n=number of 40 X images analyzed. In (G), n=number of cell pairs analyzed. Data is reported as mean ± SEM. ns (non-significant), * 
(p≤0.05), ** (p≤0.01), *** (p≤0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Assessment of ISC division.

Figure supplement 1. Cry1A protoxins reduced homophilic interactions of DE-cadherin.

Figure supplement 1—source data 1. Assessment of ISC division.

Figure supplement 2. Connectin overexpression does not rescue cell adhesion disturbance induced by Btk crystals of toxins.

Figure supplement 2—source data 1. Counting of cell types.

Figure 5 continued

https://doi.org/10.7554/eLife.80179
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Figure 6. Cry1A toxins mimic Btk crystal effects. (A–C) esg >GFP flies fed with water (blue, Ctrl), BtkCry1Ac spores (fuchsia in A), Cry1Ac crystals (orange 
in A), BtkCry1Ab spores (rose in B), Cry1Ac protoxins (light khaki in C), Cry1Ac activated toxins (khaki in C), Cry2Aa protoxins (light grey in C) and Cry2Aa 
activated toxins (grey in C). ns (non-significant). Data is reported as mean ± SEM. *** (p≤0.001). (A and B) Density of EEPs or EEs in the R4 region 
72 hr PI. (C) Density of Pros + cells in the R4 region 72 hr PI. (D and E) Western Blot from dissected intestines using a polyclonal Anti-Cry1A antibody 

Figure 6 continued on next page
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epfl.ch/). However, Cry1A effects on Drosophila progenitor cell fate appear to depend specifically on 
the DE-Cadherin present in the adherens junctions, since overexpression of DE-Cadherin in progen-
itor cells (ISCs, EBs and EEPs) can overcome Cry1A-induced impacts while another component of the 
adherens junctions (Connectin) cannot. Interestingly, the percentage of identity between the Cry1A 
binding regions (CBRs) shared by the orthologs of Cadherin-type receptors in different susceptible 
lepidopteran species ranges from 21% to 66% (Li et al., 2021; Shao et al., 2018). Hence, the pres-
ence of a well-conserved primary consensus sequence within the CBRs cannot explain the specificity of 
binding. In agreement, it has been recently shown in susceptible Lepidoptera that only two dipeptides 
within the CBRs are essential for high-affinity binding of Cry1A to its Cadherin receptor (Liu et al., 
2018a). These two dipeptides are not conserved in the CBRs of the Bt-R orthologs in different lepi-
dopteran species targeted by Cry1A toxins (Li et al., 2021). These data suggest that binding of Cry1A 
to the receptor relies more on a conserved conformation of the CBRs than on a conserved primary 
sequence. In addition, alignment of the Helicoverpa armigera (a Cry1A susceptible lepidopteran) CBR 
sequence (Gao et al., 2019) and the DE-Cadherin sequence between amino acids 164 and 298 shows 
24% identity and 47% similarity (using BlastP, https://blast.ncbi.nlm.nih.gov/). Altogether, these results 
support a possible binding of Cry1A toxins to Drosophila intestinal DE-cadherins, although this could 
occur with a low affinity.

Susceptibility of lepidopteran larvae to CryA1 toxins relies on the presence of a secondary receptor 
such as Alkaline phosphatases, Aminopeptidases N, or ABC transporters (Adang et al., 2014; Gao 
et al., 2019; Li et al., 2020; Liu et al., 2018b). None of the orthologs of these receptors has been 
shown to be strongly expressed in the Drosophila midgut (Li et al., 2021; Stevens et al., 2017), which 
could explain why binding of Cry1A to DE-cadherins does not lead to the death of adult Drosophila. 
Interestingly, in Drosophila larvae, heterologous expression of ABCC2 from Bombix mori or Plutella 
xylostella, or Aminopeptidases N from Manduca sexta was sufficient to induce Cry1A-dependent 
death (Gill and Ellar, 2002; Obata et al., 2015). Conversely, heterologous expression of the Bombix 
mori Cadherin Bt-R receptor in Drosophila is not sufficient to induce death upon exposure to Cry1A 
but strongly enhances death when co-expressed with BmABCC2 (Obata et al., 2015). Together, these 
data suggest that, in Drosophila, in the absence of a Cadherin receptor displaying a high affinity to 
Cry1A toxin, endogenous Cadherins with reduced affinity toward Cry1A could step in to enhance the 
death potential of Cry1A toxins in the context of heterologous expression of a secondary receptor 
from susceptible Lepidoptera. In agreement, it has been previously demonstrated in Drosophila 
larvae that increasing the dose of ingested Btk spores and crystals could ultimately lead to death 
(Babin et al., 2020; Cossentine et al., 2016), arguing that the receptors (i.e. the Cadherins and the 
secondary receptors) present in the Drosophila midgut have lower affinities for Cry1A toxins.

Cry toxin activities in susceptible organisms rely not only on the presence of specific host recep-
tors in the midgut, but also on the extreme midgut pH and reducing environment allowing crystal 
solubilization, as well as the enzymatic capacity of digestive proteins, both of which are involved in 
the conversion of protoxins into active toxins (Fiuza et al., 2017; Mendoza-Almanza et al., 2020; 
Pardo-López et al., 2013; Shao et al., 2013). Nevertheless, our data along with another recent study 
(Stevens et al., 2017) suggest that crystals can be solubilized and then protoxins activated in the 
Drosophila midgut. Therefore, more investigations will be necessary to understand how crystals are 

detecting both the protoxins and the activated forms of Cry1A family of toxins.(D) (left lane) 0 h corresponds to BtkSA11 spores extemporaneously 
resuspended in water. (Right part of the blot) BtkSA11 spores incubated ex vivo (control) in water at 25 °C for the period of the experiment. We mainly 
detect the protoxin forms of Cry1A at 130 kDa (arrowhead). (Left part of the blot). Proteins extract from midguts of flies fed by the same BtkSA11 
preparation (T 0 h) at 4 hr and 1, 3, and 6 days PI. The 130 kDa protoxins are still visible. The 67 kDa activated form appears as early as 4 hr (arrow). 
6 days PI no more toxins are detected in the midgut. (E) Flies fed 2 days with water (Ctrl, left part) or with purified crystals (right part). Protoxins (130 kDa) 
are present in the insoluble fraction (Mb) in both the anterior (ant) and the posterior (post) midgut. The 67 kDa activated forms are present in the 
insoluble fraction of both the anterior and posterior midgut and in the soluble fraction (Cyto) of the posterior midgut. Actin was used as western blot 
loading control, especially for the insoluble fraction.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Counting of cell types.

Figure supplement 1. Cry1A toxins mimic Btk crystal effects.

Figure supplement 1—source data 1. The uncropped images of Western blots.

Figure 6 continued

https://doi.org/10.7554/eLife.80179
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Figure 7. Cry1A toxins likely cross the intestinal barrier through EC transcytosis. (A) Schema of the experimental 
design for the myo1A-GAL4 UAS-GFP tub-GAL80ts (myo1Ats >GFP) overexpression in ECs used in this entire 
figure. (B–N) R4 region of midguts of flies fed with water (Ctrl, B, E, H, K and blue in N), BtkSA11 spores (C, F, I, 
L and green in N) and crystals (D, G, J,M and beige in N) and labelled for Pros. ×40 magnification. Scale bar = 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.80179


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology

Jneid et al. eLife 2023;12:e80179. DOI: https://doi.org/10.7554/eLife.80179 � 19 of 34

processed and protoxins activated in the intestine of non-susceptible organisms. What makes the 
difference between Cry-susceptible and non-susceptible organisms is likely the affinity of Cry toxins 
for midgut host receptors. The higher the affinity of the toxins, the greater the cellular damage/death 
and the greater the risk of death. In addition, the capacity of regeneration of the midgut epithelium 
also plays an important role to overcome Bt pathogenicity (Castagnola and Jurat-Fuentes, 2016). 
If the regeneration of the intestinal epithelium is more efficient than the destructive capacity of Cry 
toxins, the host will survive. However, whatever the host is (susceptible or non-susceptible), Bt uses a 
three-pronged strategy to improve its degree of virulence. First, it tries to disrupt the epithelial barrier 
function by damaging or killing ECs. Second, it diverts the behavior of the progenitor cells toward 
the wrong fate, thus limiting the amount of ECs produced that are necessary to replace the damaged 
ones and to maintain the midgut integrity. Third, killing ECs also reduces the capacity of these cells 
to produce reactive oxygen species and antimicrobial peptides known to be involved in antimicrobial 
defenses (Allaire et al., 2018; Capo et al., 2016; Kim and Lee, 2014).

The Bt subspecies kurstaki and aizawai are widely used as microbial pesticide to fight lepidopteran 
pests worldwide (Casida and Bryant, 2017), both subspecies partially producing the same Cry1A 
toxins (Caballero et al., 2020). Likewise, 180 millions of hectares of genetically modified crops express 

20 µm. (B–D) myo1Ats >GFP midguts. (E–G) myo1Ats >GFP midguts overexpressing DE-Cad. (H–J) myo1Ats >GFP 
midguts overexpressing Connectin (Con). (K–L) myo1Ats >GFP midguts overexpressing the anti-apoptotic p35 
factor. (N) Counting of EEPs/EEs (Pros + cells) in the different conditions described in (B–M). Data is reported as 
mean ± SEM. ** (p≤0.01), *** (p≤0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Counting of Prospero positive cells.

Figure supplement 1. Cry1A toxins likely cross the intestinal barrier through EC transcytosis.

Figure 7 continued

Figure 8. Cry1A toxins interfere with progenitor fate behavior. Notch ON: in Drosophila, 90% of ISC daughter cells 
commit to the EB/EC fate owing to the strong activation of the Notch signaling pathway in the EBs. The adherens 
junction DE-Cadherin (DE-Cad)-dependent are required to permit the interaction between the Delta ligand in ISC 
and the Notch receptor in EB. Notch OFF: Ingestion of Cry1A toxins impedes the DE-Cad homophilic interaction 
between the ISCs and their progenitor daughter cells, reducing the activation of Notch signaling in progenitors. 
Consequently, progenitors adopt an EEP/EE fate.

https://doi.org/10.7554/eLife.80179
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Cry1A toxins. Consequently, Cry1A toxins are present in the food, the feed and in the environment, 
implying that many organisms might be affected. As the mechanisms of intestinal progenitor fate 
choice are conserved in the animal kingdom (Guo et al., 2021; Joly and Rousset, 2020; Zwick et al., 
2019), it would be interesting to investigate whether Cry1A toxins can also promote an increased 
number of EEs in other organisms (vertebrates and invertebrates). EEs, through the production of 
neuropeptides and hormones, are involved in the regulation of many physiological functions such as 
feeding behavior, metabolism and immune response (Guo et al., 2021; Nässel and Zandawala, 2019; 
Watnick and Jugder, 2019). Consequences of this increase in EE number could be, for example, 
metabolic dysfunctions or inflammatory pathologies. More studies are needed to understand the 
physiological impacts of this change in intestinal cellular composition on organismal health.

Materials and methods
Bacterial strains
Btk∆Cry (identified under the code 4D22, González et al., 1982), BtkCry1Ac (identified under the code 
4D4), and the E. coli strains producing Cry1Ac (identified under the code ECE53), Cry1Ab (identified 
under the code ECE54) and Cry2Aa (identified under the code ECE126) were obtained from the 
Bacillus Genetic Stock Center (https://bgsc.org/). The strain Btk SA-11 (BtkSA11) was isolated from the 
commercial product Delfin.

Generation of BtkCry1Ab

The mutant BtkCry1Ab producing only Cry1Ab as crystal toxin was obtained from the WT strain BtkSA11, 
by a procedure of plasmid curing, as follows. After isolation on TSA-YE agar (Biomérieux, 18 hr culture 
at 30  °C), the strain BtkSA11 was sub-cultured successively 3 times in 10 mL of brain heart Infusion 
(BHI, Oxoid) broth at 42 °C with agitation, for 64, 48, and 36 hr, respectively. The first BHI culture was 
inoculated from an isolated colony, and the subsequent cultures were inoculated with 100 µl of the 
previous ones. Clones from the last culture were isolated on TSA-YE agar after serial dilution, then 
subcultured on the sporulating medium hydrolysate of casein tryptone (HCT) + 0.3% Glc, in order to 
verify the absence of crystal production, using phase-contrast microscopy (NF EN ISO 7932/Amd1). 
A panel of crystal-negative isolates were then subjected to whole genome sequencing as described 
hereafter. The genomic DNA of BtkCry1Ab and BtkSA11 was extracted using the KingFisher cell and Tissue 
DNA kit (ThermoFisher) and sequenced using Illumina technology at the Institut du Cerveau et de la 
Moelle Epinière (ICM) platform, as previously described (Bonis et al., 2021), (NCBI accession numbers 
SAMN23436140 and SAMN23455549, respectively). The mutant BtkCry1Ab was selected for the single 
presence of cry1Ab as cry toxin plasmid gene. The absence of cry genes in BtkCry1Ab, with the excep-
tion of cry1Ab, was confirmed from raw reads using KMA (Clausen et al., 2018).

Spore production
From isolated colonies on LB agar Petri dish, 4x5 mL of Bt pre-culture was carried out. The pre-culture 
was used for sowing 4x500 mL of PGSM medium (0.75% casamino acids, 0.34% KH2PO4, 0.435% 
K2HPO4, 0.75% glucose, 1.25  mM CaCl2, 0.123% MgSO4, 0.002% MnSO4, 0.014% ZnSO4, 0.02% 
FeSO4) and allowed to grow and sporulate in an incubator shaker at 30 °C, 180 rpm for 2 weeks. 
In order to eliminate vegetative cells, culture was heated 1 hr at 70 °C and then centrifuged 15 min 
at 7500  g. The pellet was resuspended with a Dounce homogenizer in 1  L of 150  mM NaCl and 
placed for 30 min on roller agitation at room temperature. After centrifugation (15 min, 7500 g), the 
pellet was washed twice with sterile water. The final pellet was resuspended in 30 mL of sterile water, 
dispatched in 1 mL weighed tubes and lyophilized for 24–48 hr. The spore mass was determined by 
the difference between the full and the empty tubes weights.

Spore titer
The lyophilized spores were resuspended in sterile water to obtain a concentration of 50 mg/mL. This 
solution was diluted serially (100 µL in 900 µL of sterile water) to obtain 10–1 to 10–9 dilutions. 100 µL 
of dilutions 10–5 to 10–9 were plated on LB agar and incubated at 30 °C overnight. The number of 
colonies was counted for each dilution and reported to the mass of spores plated. The experience 

https://doi.org/10.7554/eLife.80179
https://bgsc.org/
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was renewed three times. The mean of these ratios allows us to determine the titer of spores in CFU 
(colony forming unit)/g.

Crystal purification
A total of 2x1 g of BtkSA11 lyophilized spores were resuspended in 2x30 mL of sterile water and placed 
on roller agitation at 4 °C for 5 hr. Then, the solution was sonicated for 4 cycles of 15 s/15 s with 
a frequency of 50% (Fisherbrand Model 505 Sonic Dismembrator). 6x10 mL were deposited on a 
discontinuous sucrose gradient (67%/72%/79%) and centrifuged overnight in SW28 swinging buckets 
at 100,000 g at 4 °C (ultracentrifuge Thermo-Sorval WX Ultra 80). The crystals were collected at the 
72%/79% and 72% /67% interfaces with a micropipette and dispatched by 10 mL in centrifuge tubes 
(Beckman Avanti JE, rotor JA 25.50). A total of 25 mL of sterile water were added in each tube, 
vortexed and centrifuged at 4 °C at 16,000 g for 15 min. Each pellet was resuspended with 20 mL of 
sterile water and centrifuged again in the same conditions. Each final pellet was resuspended in 2 mL 
of sterile water, aliquoted by 1 mL in weighed microtubes and lyophilized 24 hr-48hr. The crystal mass 
was determined by the difference between the full and the empty tubes’ weights.

Cry protoxin production
2x15  mL of LB ampicillin (50  mg/mL) were inoculated with two colonies of E. coli expressing the 
desired Cry toxin, and allowed to grow at 37 °C, 220 rpm overnight. 4x5 mL of the overnight precul-
ture were added to 4x500 mL of LB ampicillin (50 mg/mL) and allowed to grow at 37 °C and 200 rpm 
until DO600=0.6–0.7. Cry protein expression was induced by adding 500 µL of 1 M IPTG (isopropyl 
β-D-1-thiogalactopyranoside) in each culture. The cultures were left at 37 °C and 200 rpm overnight 
and then centrifuged at 6500 g, 15 min at 22 °C. Pellets were pooled in two batches and resuspended 
100 mL of cold WASH buffer (20 mM Tris, 10 mM EDTA, 1% Triton X-100, pH 7.5) and incubated 5 min 
at 4 °C. 500 µL of lysozyme (20 mg/mL) were added in each solution and incubated 15 min at 30 °C and 
then 5 min at 4 °C. The solutions were sonicated for 6 cycles of 15 s/15 s at 40% (Fisherbrand Model 
505 Sonic Dismembrator) and centrifuged 10 min at 10,000 g, at 4 °C. The pellets were washed twice 
with 100 ml of WASH buffer and centrifuged in the same conditions. The last pellets were weighed, 
resuspended in CAPS buffer (50 mM CAPS, 0.3% lauroyl-sarcosine, 1 mM DTT pH11) to obtain a 
final concentration of 100 mg/mL, placed for 30 min under roller agitation at room temperature and 
centrifuged 10 min at 10,000 g, 4 °C. The supernatant was dialyzed twice against 50 volume of PBS1x, 
0.1 mM DTT and twice against 50 volume of PBS1X at 4 °C and centrifuged 10 min at 20,000 g at 
4 °C. The supernatant was conserved at –20 °C until purification or digestion (activation) by trypsin.

Cry toxin activation
Half of the produced supernatant (see above) was dosed by the Bradford method (Protein Assay Dye 
Reagent Concentrate, Biorad #500–0006) and digested with 1% trypsin (weight/weight) (trypsin from 
bovine pancreas, Sigma #T1005) at 37 °C for 72 hr. The Cry toxins were then purified by FPLC (after 
72 hr, the trypsin is fully degraded).

Cry toxin purification
The Cry toxins produced from E. coli (activated or not) were purified by FPLC (Äkta, UPC900/P920/
INV907/FRAC950) on a 1 mL benzamidine column (HiTrap Benzamidine FF (high sub), GE Health-
care #17-5143-01) with PBS1X as charge buffer, PBS1X, 1 M NaCl as buffer for non-specific link and 
100 mM glycin pH 3 as elution buffer.

Fly stocks and genetics
The following stocks are listed at the Bloomington Drosophila Stock Center (https://bdsc.indiana.​
edu/): WT canton S (#64349). w; Sco/CyO; tub-GAL80ts/TM6b (#7018). w; tub-GAL80ts; TM2/TM6b 
(#7019). w; esg-GAL4NP5130 (#67054). w; UAS-GFP/TM3 Sb (#5430). w; UAS-shg-R (DE-Cadherin)
(#58494); y w, shg::Tomato (#58789).

Other stocks
w;; Dl-GAL4/TM6b (Zeng et  al., 2010). w; tub-GAL80ts; Dl-GAL4 UAS-GFP/TM6b (this study). w; 
esg-GAL4NP5130 UAS-GFP (Shaw et al., 2010). w; esg-GAL4NP5130 UAS-GFP; tubGAL80ts (Apidianakis 

https://doi.org/10.7554/eLife.80179
https://bdsc.indiana.edu/
https://bdsc.indiana.edu/
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et al., 2009). w; Su(H)GBE-GAL4, UAS-CD8::GFP (Zeng et al., 2010). w; Su(H)GBE-GAL4/SM6β; tub-
GAL80ts UAS-GFP/TM6b (this study). w; myo1A-GAL4 and w; myo1A-Gal4; tubGal80ts UAS-GFP/
TM6b (Shaw et  al., 2010). w; myo1A-GAL4 UAS-GFP/CyO (Apidianakis et  al., 2009). w; UAS-
GFP::CD8; UAS-H2B::RFP/TM2 (Antonello et  al., 2015). w; UAS-CD8::GFP; UAS-H2B::RFP, tub-
GAL80ts/TM2 (Antonello et  al., 2015). w; esg-GAL4, UAS-CD8::GFP; UAS-H2B::RFP, tub-GAL80ts/
TM6b (Antonello et al., 2015). w; UAS-CD8::GFP; Dl-GAL4, UAS-H2B::RFP/TM6b (this study). w;; 
UAS-GC3AiG7S (UAS-Casp::GFP) (Schott et al., 2017). w; UAS-connectin (Zhai et al., 2017). UAS-p35 
(Amcheslavsky et al., 2009).

Cell lineage
Dl-ReDDM experiments
w; tub-GAL80ts; Dl-GAL4 UAS-GFP/TM6b females were crossed to w; UAS-GFP::CD8; UAS-H2B::RFP/
TM6 males at 18 °C. Progeny were kept at 18 °C until emergence. Flies were transferred at 25 °C for 
5 days before infection, and then transferred at 29 °C for 2 days (Figure 1—figure supplement 1C).

esg-ReDDM experiments
w; esg-GAL4 UAS-GFP; UAS-H2B::RFP, tub-GAL80ts/TM6b females were crossed to WT males at 
18 °C. Progeny were kept at 18 °C until emergence. Flies were transferred at 25 °C for 5 days before 
infection, and then transferred at 29 °C for 3 days (Figure 3).

Su(H)-ReDDM experiments
w; Su(H)-GAL4/SM6β; tub-GAL80ts UAS-GFP/TM6b females were crossed to w; UAS-GFP::CD8; UAS-
H2B::RFP/TM6 males at 18 °C. Progeny were kept at 18 °C until emergence. Flies were transferred at 
25 °C for 5 days before infection, and then transferred at 29 °C for 3 days (Figure S3).

DE-Cadherin and Connectin overexpression
w; esg-Gal4 UAS-GFP; UAS-H2B::RFP, tub-GAL80ts/TM6b females were crossed to UAS-DE-Cadherin 
males. Progeny were kept at 18 °C until emergence. Flies were transferred at 25 °C for 5 days before 
infection, and then transferred at 29 °C for 3 days (Figure 5 Figure 5—figure supplement 1 and 
Figure 5—figure supplement 2).

Drosophila rearing and oral infection
Drosophila were reared on standard medium (0.8% Agar, 2.5% sugar, 8% corn flour, 2% yeast) at 
25 °C with a 12 hr light/12 hr dark cycle. For oral infection, after 2 hr of starvation to synchronize 
the food intake, 5- to 6-day-old non-virgin females were transferred onto a fly medium vial covered 
with a filter disk soaked with water (control) or a suspension of spores (corresponding to 106 CFU of 
spores per 4 cm² and per individual female; Loudhaief et al., 2017; Nawrot-Esposito et al., 2020), 
crystals, protoxins, or activated toxins. The quantity of crystals, protoxin, or activated toxins deposited 
on the filter disc corresponded to 30% of the spore weight, Btk crystals representing between 25% 
and 30% of the total weight of the 1:1 spore/crystal mix (Agaisse and Lereclus, 1995 Monro, 1961 
; Murty et al., 1994). Flies were kept feeding on the contaminated media until dissection in all the 
experiments.

Dissection, immunostaining and microscopy
Dissection, fixation and immunostaining were performed as described by Micchelli, 2014. Dilutions 
of the various antibodies were: mouse anti-Armadillo N27A1 at 1:50 (DSHB), mouse anti-Connectin-
C1-427 at 1/200 (DSHB), mouse anti-Prospero MR1A at 1:200 (DSHB), rabbit anti-PH3 at 1:1000 
(Millipore, 06–570), Rabbit anti-Cleaved Caspase-3 at 1/600 (Cell Signalling Asp175 #9661), Goat 
anti-mouse AlexaFluor-647 at 1/500 (Molecular Probes Cat# A-21235), Goat anti-mouse AlexaFlu-
or-546 at 1/500 (Molecular Probes Cat# A-11003), Goat anti-rabbit AlexaFluor-647 at 1/500 (Thermo 
Fisher Scientific Cat# A32733), Goat anti-rabbit AlexaFluor-546 at 1/500 (Thermo Fisher Scientific 
Cat# A-11010). For microscopy, guts were mounted in Fluoroshield DAPI medium (Sigma, # F6057) 
and immediately observed on a Zeiss Axioplan Z1 with Apotome 2 microscope. Images were analyzed 

https://doi.org/10.7554/eLife.80179
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using ZEN (Zeiss), ImageJ and Photoshop software. Image acquisition was performed at the micros-
copy platform of the Sophia Agrobiotech Institute (INRAE1355-UCA-CNRS7254 – Sophia Antipolis).

DNA constructs
The full-length expression construct of DE-cadherin Full Length fused to GFP (DEFL) was introduced 
into pUAST as previously described (Oda and Tsukita, 1999).

Cell aggregation assay
Drosophila Schneider S2 cells (S2-DRSC, DGRC Stock 181; https://dgrc.bio.indiana.edu//stock/181) 
were obtained from DGRC (Drosophila Genomics Resource). We tested this cell line for contamination 
of mycoplasma (MycoFluor Mycoplasma Detection Kit, Invitrogen). We have not tested cell line iden-
tity because (1) S2 is the only cell line used in our lab and in a dedicated culture cell room, (2) this is the 
only Drosophila cell line present at the institute, (3) all experiments were conducted using the same 
batch of initial frozen ampoule received from the DGRC, and (4) transfection results were compared 
with control data experiment conducted in the same culture passage at the same time. S2 cells were 
cultured in Schneider’s medium supplemented with 10% heat-inactivated fetal bovine serum (FBS) at 
25 °C in a non-humidified ambient air-regulated incubator (Gallet et al., 2006). For S2 aggregation 
assay, 2.2 106 cells were plated in 25 cm2 flask for each condition. After 6 hr, transient transfection was 
performed by mixing transfection reagent (TransIT–2020; Mirus Bio) with a reagent-to-DNA ratio of 
3:1. A total of 3 µg plasmid DNA per T25 was used, corresponding to a 5:1 mixture of pUAST-DEFL 
and pWA-GAL4. Approximately 46 hr after transfection, the cells were collected into 15 mL tubes and 
centrifuged for 5 min at 400 g. The pellet was resuspended in 2 mL of fresh medium supplemented in 
CaCl2 to obtain a final concentration of 7.4 mM and separated into single cells by repeated pipetting. 
Of this cell suspension, 500 µL were added to a well of a 24-well microplate. To allow cell-cell adhesion 
(aggregation), the microplate was placed under constant agitation on a rotary platform at 150 rpm 
at 25 °C for the indicated time (1 hr, 2 hr, and 3 h) with or without protoxins (at a final concentration 
35 µg/mL). Cell aggregates formed in the wells were observed using an inverted Fluorescent micro-
scope (Nikon, Eclipse TE2000-U). Images for the florescence of GFP was acquired using a CCD camera 
(ORCA ER, Hamamatsu Photonics). The same parameter settings were used to acquire images (objec-
tives, gain, exposure time …). The area of fluorescent aggregates and individual cells were measured 
using Fiji software (Schindelin et al., 2012). The average area of a S2 cell in our condition is about 15.5 
µm2. Hence, quantification of the aggregates area was performed excluding all objects smaller than 
15 µm2. The mean area of aggregates were calculated after background subtraction. Three indepen-
dent experiments were performed for each condition. Values in µm2 were represented in GraphPad 
Prism 7 software as scatter-plot view. Statistical analysis was conducted using GraphPad Prism 7 soft-
ware. The significance of the difference between CTR and exposed conditions was assessed using 
one-way ANOVA and Tukey’s post hoc tests. Statistical parameters for each experiment can be found 
within the corresponding figure legends.

Western blot
Figure 6D Twenty Drosophila (5–6 day-old non-virgin females) were orally infected with spores and 
reared at 25 °C with a 12 hr/12 hr day/night cycle for the indicated time. At the same time, 107 CFU 
of spores in 50 µL of sterile water were incubated in the same conditions. After 4, 24, 72, or 144 hr, 
Drosophila midguts were dissected in PBS1x with anti-proteases (cOmplete Tablets EDTA free EASY 
Pack, Roche #04693132001). Then midguts were transferred on ice into a 2 ml microtube containing 
200 µL of PBS1X with anti-proteases and crushed one minute at 30 Hz with a Tissue Lyser (Qiagen, 
Tissue Lyser LT).

Figure 6E Twenty Drosophila (5–6 day-old non-virgin females) were orally infected with water or 
purified crystals and reared at 25 °C with a 12 hr/12 hr day/night cycle for the indicated time. Flies 
were dissected and anterior and posterior regions of midguts were separated and lysed in a hypo-
tonic buffer (25 mM HEPES, pH7.5, 5 mM MgCl2, 5 mM EDTA, 5 mM DTT, 2 mM PMSF, 10 µg/mL 
leupeptin, 10 µg/mL pepstatin A) on ice. Midguts were crushed one minute at 30 Hz with the Tissue 
Lyser. Homogenates were centrifuged at 20,000 g for 45 min at 4 °C. The supernatant was the soluble 
fraction (considered as cytosol-enriched fraction) and the pellet was the insoluble fraction (containing 
membranes).

https://doi.org/10.7554/eLife.80179
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Proteins were dosed by Bradford method (Protein Assay Dye Reagent Concentrate, Biorad 
#500–0006). Twenty  µg of midgut proteins and 2.104  CFU of spores were deposited on a 8.5% 
SDS-polyacrylamide gel. After migration at 100 V for 1h30, proteins were transferred onto a PVDF 
membrane (Immobilon-P Membrane, Millipore #IPVH00010) (120mA/gel, 1 hr) in a semi-dried transfer 
system with a transfer buffer (200 mM glycine, 25 mM Tris base, 0.1% SDS, pH7.4, 20% methanol). 
Membranes were saturated with 5% milk in TBS-T (140 mM NaCl, 10 mM Tris base, 0.1% Tween 20, 
pH 7.4) for 1 hr and incubated overnight at 4 °C with a homemade anti-Cry1A antibody (Babin et al., 
2020) or anti-actin monoclonal antibody (ACTN05, C4, Thermo Fisher Scientific) diluted at 1/7500 in 
TBS-T 3% BSA. After three washes of 10 min each with TBS-T, membranes were incubated with an 
anti-rabbit antibody coupled with HRP (Goat Anti-Rabbit (IgG), Invitrogen #G21234) diluted 1/7500 
in TBS-T 2% milk for 1  hr at room temperature. Membranes were rinsed three times with TBS-T 
and once with TBS. Western blots were revealed with enhanced chemiluminescence (luminol and 
hydrogen peroxide, homemade) on an autoradiographic film (Amersham Hyperfilm ECL, GE Health-
care #28906837).

Measurement, counting, and statistical analysis
In all the data presented, the pictures and counting were always performed in the posterior part of 
the R4 region (http://flygut.epfl.ch/) named R4bc in the flygut site (see also Buchon et  al., 2013; 
Marianes and Spradling, 2013; Figure 1—figure supplement 1A). Experiments were independently 
repeated at least three times.

Cell type counting
midgut images were taken at ×40 magnification within the R4bc region with same microscope settings. 
A region of interest (ROI) of about 20,000 μm² were applied in which all cells were DAPI labelled. We 
utilized the Zeiss ZEN 2 (blue edition) to quantify cell number positive for a given marker. Data were 
represented as cell density (e.g. number of cells/20,000 μm²) except in Figure 1—figure supplement 
2 where ratio of each cell type was represented over total cell number. For a given cell type, when 
we noticed changes (increase or decrease) in both cell density and ratio, we assumed that this corre-
sponded to global changes in the so-called cell type number.

Cell junction intensity measurement
For both Arm or Tomato::DE-Cad labelling, we compared the average staining intensity at the junc-
tion between neighboring progenitors with the average intensity around the rest of cell membrane 
and then calculate the ratio between both values (see Figure 4—figure supplement 1F, G). Only 
junctions between individual paired cells were analyzed (we excluded clusters containing more than 
two cells). To assess junction strengths, we fixed the following scale: a weak junction when the ratio 
of staining intensity was <1.4, a mild junction when the ratio was between 1.4 and 1.6 and a strong 
junction when the ratio was >1.6.

Statistics
Effects of treatments were analyzed using Kyplot or GraphPad Prism 7. When ‘n’ was equal or superior 
to 30, statistical analysis was performed using a parametric t-test. An F-test was systematically done 
before applying the t-test to verify the homogeneity of variances. When ‘n’ was inferior to 30, we used 
the non-parametric pairwise comparisons of the Mann-Whitney test. Differences were considered 
significant when *p≤0.05, **p≤0.01, ***p≤0.001. Error bars in all the graphics correspond to standard 
error of the mean (SEM).
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Appendix 1

Appendix 1—key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers

Additional 
information

strain, strain 
background (B. 
thuringiensis) Btk SA-11

Isolated from 
commercial product Delfin

strain, strain 
background (B. 
thuringiensis) Btk∆Cry BGSC #4D22

strain, strain 
background (B. 
thuringiensis) Btk producing Cry1Ac BGSC #4D4

strain, strain 
background (B. 
thuringiensis) Btk producing Cry1Ab This study

Materials and 
Methods: 
Generation of 
BtkCry1Ab

strain, strain 
background 
(Escherichia coli) producing Cry1Ab BGSC #ECE54

strain, strain 
background 
(Escherichia coli) producing Cry1Ac BGSC #ECE53

strain, strain 
background 
(Escherichia coli) producing Cry2Aa BGSC #ECE126

genetic reagent 
(D. melanogaster) WT canton S

https://​bdsc.​indiana.​
edu/ #64349

genetic reagent 
(D. melanogaster)

w; Sco/CyO; tub-GAL80ts/
TM6b

https://​bdsc.​indiana.​
edu/ M. Vidal #7018

genetic reagent 
(D. melanogaster) w; tub-GAL80ts; TM2/TM6b

https://​bdsc.​indiana.​
edu/ #7019

genetic reagent 
(D. melanogaster) w;; Dl-GAL4/TM6b

S. Hou and X. Zeng; 
Zeng et al., 2010

genetic reagent 
(D. melanogaster)

w; tub-GAL80ts; Dl-GAL4 UAS-
GFP/TM6b This study

Can be obtained 
from Gallet's lab

genetic reagent 
(D. melanogaster) w; esg-GAL4NP5130

https://​bdsc.​indiana.​
edu/ N. Tapon #67054

genetic reagent 
(D. melanogaster) w; esg-GAL4NP5130 UAS-GFP

N. Tapon; Shaw 
et al., 2010

genetic reagent 
(D. melanogaster)

w; esg-GAL4NP5130 UAS-GFP; 
tubGAL80ts

Y. Apidianakis; 
Apidianakis et al., 
2009

genetic reagent 
(D. melanogaster)

w; Su(H)GBE-GAL4, UAS-
CD8::GFP

M. Vidal; Zeng 
et al., 2010

genetic reagent 
(D. melanogaster)

w; Su(H)GBE-GAL4/SM6; tub-
GAL80ts UAS-GFP/TM6b This study

Can be obtained 
from Gallet's lab

genetic reagent 
(D. melanogaster) w; myo1A-GAL4

N. Tapon; Shaw 
et al., 2010

genetic reagent 
(D. melanogaster)

w; myo1A-GAL4 UAS-GFP/
CyO

Y. Apidianakis; 
Apidianakis et al., 
2009
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers

Additional 
information

genetic reagent 
(D. melanogaster) w; UAS-GFP/TM3 Sb

https://​bdsc.​indiana.​
edu/ #5430

genetic reagent 
(D. melanogaster)

w; UAS-GFP::CD8; UAS-
H2B::RFP/TM2

T. Reiff and M. 
Dominguez; 
Antonello et al., 
2015

genetic reagent 
(D. melanogaster)

w; UAS-CD8::GFP; UAS-
H2B::RFP, tub-GAL80ts/TM2

T. Reiff and M. 
Dominguez; 
Antonello et al., 
2015

genetic reagent 
(D. melanogaster)

w; esg-GAL4, UAS-CD8::GFP/
CyO; UAS-H2B::RFP, tub-
GAL80ts/TM6b

T. Reiff and M. 
Dominguez; 
Antonello et al., 
2015

genetic reagent 
(D. melanogaster)

w; UAS-CD8::GFP; Dl-GAL4, 
UAS-H2B::RFP/TM6b This study

Can be obtained 
from Gallet's lab

genetic reagent 
(D. melanogaster)

w;; UAS-GC3AiG7S (UAS-
Casp::GFP)

M. Suzanne; Schott 
et al., 2017

genetic reagent 
(D. melanogaster) w; UAS-shg-R (DE-Cadherin)

https://​bdsc.​indiana.​
edu/ #58494

genetic reagent 
(D. melanogaster) w; UAS-connectin

JP Boquete and B. 
Lemaitre; Zhai et al., 
2017

genetic reagent 
(D. melanogaster) y w, shg::Tomato

https://​bdsc.​indiana.​
edu/ #58789.

genetic reagent 
(D. melanogaster) w;UAS-p35

Tony Ip; 
Amcheslavsky 
et al., 2009

genetic reagent 
(D. melanogaster)

Dl-ReDDM (w/w; UAS-
CD8::GFP/UAS-CD8::GFP; 
Dl-GAL4, UAS-H2B::RFP/UAS-
H2B::RFP, tub-GAL80ts) This study

Can be obtained 
from Gallet's lab

genetic reagent 
(D. melanogaster)

esg-ReDDM (w/w+; esg-GAL4, 
UAS-CD8::GFP/+; UAS-
H2B::RFP, tub-GAL80ts/+) This study

Can be obtained 
from Gallet's lab

genetic reagent 
(D. melanogaster)

Su(H)-ReDDM (w/w; Su(H)-
GAL4/UAS-GFP::CD8; 
tub-GAL80ts UAS-GFP/UAS-
H2B:RFP) This study

Can be obtained 
from Gallet's lab

cell line (D. 
melanogaster)

Drosophila melanogaster 
Schneider 2 (S2) cells S2-DGRC Stock 181 RRID:CVCL_Z992

antibody
Mouse monoclonal anti-
Armadillo (ß-catenin) antibody DSHB

Cat# N27A1 
RRID:AB_528089 1/50

antibody
Mouse monoclonal anti-
Connectin antibody DSHB

Cat# Connectin 
C1.427, 
RRID:AB_1066083 1/200

antibody
Mouse monoclonal anti-
Prospero antibody DSHB

Cat# MR1A 
RRID:AB_528440 1/200

antibody
Rabbit polyclonal anti-Cleaved 
Caspase-3 (Asp175) antibody Cell Signalling

Cat# 9661 
RRID:AB_2341188 1/600
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers

Additional 
information

antibody Rabbit polyclonal anti-
phospho-Histone H3 (Ser10) 
antibody

Millipore Cat# 06–570 
RRID:AB_31017

1/1000

antibody
Rabbit polyclonal anti-Cry1A 
antibody Babin et al., 2020 WB: 1/7500 i

antibody

Mouse monoclonal anti-
actin antibody (ACTN05, C4) 
antibody Invitrogen

Thermo Fisher 
Scientific Cat# 
MA5-11866, 
RRID:AB_10985365 WB: 1/2000

antibody Goat anti mouse IgG 
(H+L) secondary antibody, 
AlexaFluor-647

Invitrogen Molecular Probes 
Cat# A-21235, 
RRID:AB_2535804

1/500

antibody

Goat polyclonal anti mouse 
IgG (H+L) secondary antibody, 
AlexaFluor-546 Invitrogen

Molecular Probes 
Cat# A-11003, 
RRID:AB_141370 1/500

antibody

Goat polyclonal anti-rabbit 
IgG (H+L) secondary antibody, 
AlexaFluor-647 Invitrogen

Thermo Fisher 
Scientific 
Cat# A32733, 
RRID:AB_2633282 1/500

antibody

Goat polyclonal anti-rabbit 
IgG (H+L) secondary antibody, 
AlexaFluor-546 Invitrogen

Thermo Fisher 
Scientific 
Cat# A-11010, 
RRID:AB_253407 1/500

recombinant 
DNA reagent

pUAST-DECadherintagged 
with GFP (DEFL)

Oda and Tsukita, 
1999

Materials and 
Methods: Cell 
aggregation assay

recombinant 
DNA reagent pWA-Gal4 Gift from L. Ruel

Software, 
algorithm Image J http://​imagej.​nih.​gov RRID:SCR_003070

Software, 
algorithm Fiji http://​fiji.​sc RRID:SCR_002285

Software, 
algorithm ZEN 2 (blue edition) Zeiss

Software, 
algorithm Photoshop CS2 Adobe

Software, 
algorithm GraphPad Software GraphPad Prism RRID:SCR_002798

GraphPad Prism 
7.0

Chemical 
compound, drug PBS 10 x Euromedex ET330

Chemical 
compound, drug

Formaldehyde 16% Thermo Fisher 
Scientific

Cat# 28908

Chemical 
compound, drug Fluoroshield-DAPI Sigma Cat# F6057

Chemical 
compound, drug Tween 20 VWR Cat# 28829.296

Chemical 
compound, drug Acrylamide/Bis-acrylamide Sigma Cat# A3699

Commercial 
assay, kit

Invitrogen MycoFluor 
Mycoplasma Detection Kit

Thermo Fisher 
Scientific Cat# 10063202
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers

Additional 
information

Other Amersham Hyperfilm GE Healthcare Cat# 28906837
Commercial 
product

Other Bovin Serum Albumin Sigma Cat# A9647
Commercial 
product

Other Schneider’s insect medium Sigma-Aldrich Cat# S0146
Commercial 
product

Other TransIT–2020 Mirus Bio Cat# MIR5400
Commercial 
product

other
Zeiss Axioplan Z1 with 
Apotome 2 microscope Zeiss Microscope

other Zeiss Confocal LSM 810 Zeiss Microscope
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