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SEPARATING FOURIER AND SCHUR MULTIPLIERS

CÉDRIC ARHANCET, CHRISTOPH KRIEGLER, CHRISTIAN LE MERDY, AND SAFOURA ZADEH

Abstract. Let G be a locally compact unimodular group, let 1 ≤ p < ∞, let ϕ ∈ L∞(G)
and assume that the Fourier multiplier Mϕ associated with ϕ is bounded on the noncom-
mutative Lp-space Lp(V N(G)). Then Mϕ : L

p(V N(G)) → Lp(V N(G)) is separating (that
is, {a∗b = ab∗ = 0} ⇒ {Mϕ(a)

∗Mϕ(b) = Mϕ(a)Mϕ(b)
∗ = 0} for any a, b ∈ Lp(V N(G)))

if and only if there exists c ∈ C and a continuous character ψ : G → C such that ϕ = cψ
locally almost everywhere. This provides a characterization of isometric Fourier multipliers
on Lp(V N(G)), when p ̸= 2. Next, let Ω be a σ-finite measure space, let ϕ ∈ L∞(Ω2)
and assume that the Schur multiplier associated with ϕ is bounded on the Schatten space
Sp(L2(Ω)). We prove that this multiplier is separating if and only if there exist a constant
c ∈ C and two unitaries α, β ∈ L∞(Ω) such that ϕ(s, t) = c α(s)β(t) a.e. on Ω2. This
provides a characterization of isometric Schur multipliers on Sp(L2(Ω)), when p ̸= 2.
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1. Introduction

Let Γ be a locally compact abelian group, let 1 ≤ p ̸= 2 <∞ and let T : Lp(Γ) → Lp(Γ) be
a bounded Fourier multiplier. A classical theorem going back to Parrott [27] and Strichartz
[33] asserts that T is an isometry if and only there exists c ∈ C, with |c| = 1, and u ∈ Γ such
that T = cτu. Here τu : L

p(Γ) → Lp(Γ) is the translation operator defined by τu(f) = f(· −u).
In the last decade, Fourier multipliers on noncommutative Lp-spaces associated with group

von Neumann algebras emerged as a major topic in noncommutative analysis, with applica-
tions to approximation properties of operator algebras, to singular integrals and Calderon-
Zygmund operators, as well as to noncommutative probability and quantum information.
See in particular [2, 9, 16, 17, 20, 25, 26]. It therefore became a natural issue to understand
the structure of isometric Fourier multipliers in the noncommutative framework. Indeed,
the original motivation for this work was to extend the Parrott-Strichartz theorem to this
setting.

To be more specific, let G be a locally compact group, let V N(G) denote its group von
Neumann algebra and let λ : L1(G) → V N(G) be the contractive representation associated
with the left regular representation of G. Assume that G is unimodular. This ensures that
the Plancherel weight τG on V N(G) is actually a normal semifinite faithful trace. For any
1 ≤ p < ∞, let Lp(V N(G)) be the noncommutative Lp-space associated with (V N(G), τG).
A Fourier multiplier T : Lp(V N(G)) → Lp(V N(G)) is an operator of the form

T (λ(f)) = λ(ϕf),
1
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where ϕ is a fixed element of L∞(G) and f lies in a suitable dense subspace of L1(G). We
set T = Tϕ in this case. See the beginning of Section 3 for more details.

We generalize the Parrott-Strichartz theorem by showing the following result, in which
V N(G) plays the role of Γ and T = {z ∈ C : |z| = 1}: If p ̸= 2, a Fourier multiplier
Tϕ : L

p(V N(G)) → Lp(V N(G)) is an isometry if and only if there exists c ∈ T and a
continuous character ψ : G→ T such that ϕ = cψ locally almost everywhere.
We actually consider the more general class of separating Fourier multipliers. Following

[22], we say that an operator T : Lp(M) → Lp(M) acting on some noncommutative Lp-
space Lp(M) is separating if for any disjoint a, b ∈ Lp(M) (that is, a∗b = ab∗ = 0), the
images T (a), T (b) are disjoint as well. It is well-known that if p ̸= 2, any isometry on
Lp(M) → Lp(M) is separating. This follows from Yeadon’s characterization of isometries on
noncommutative Lp spaces [36] (see also [22]). We prove that for any 1 ≤ p <∞ (including
the case p = 2), a Fourier multiplier Tϕ on L

p(V N(G)) is separating if and only if there exists
c ∈ C and a continuous character ψ : G→ T such that ϕ = cψ locally almost everywhere.
The above two characterizations theorems are established in Section 3. Section 4 provides

complements on Fourier multipliers.
Section 5 is devoted to Schur multipliers acting on Schatten classes. Let (Ω, µ) be a σ-finite

measure space, let ϕ ∈ L∞(Ω2) and let Tϕ denote the associated Schur multiplier acting on
the Hilbert-Schmidt space S2(L2(Ω)) (see below for details). Let 1 ≤ p <∞ and assume that
Tϕ is bounded on the Schatten space Sp(L2(Ω)). We show that Tϕ : S

p(L2(Ω)) → Sp(L2(Ω))
is separating if and only if there exist a constant c ∈ C and two unitaries α, β ∈ L∞(Ω) such
that ϕ(s, t) = c α(s)β(t) a.e. on Ω2. In the case when p ̸= 2, this provides a characterization
of isometric Schur multipliers on Sp(L2(Ω)).

2. Preliminaries on separating maps

Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful
trace τ . Assume that M ⊂ B(H) acts on some Hilbert space H. Let L0(M) denote the
∗-algebra of all closed, densely defined (possibly unbounded) operators on H, which are
τ -measurable. For any 1 ≤ p < ∞, the noncommutative Lp-space Lp(M), associated with
(M, τ), can be defined as

Lp(M) :=
{
x ∈ L0(M) : τ(|x|p) <∞

}
.

Let ∥x∥p := τ(|x|p)
1
p for any x ∈ Lp(M). Then Lp(M) equipped with ∥ · ∥p is a Banach

space. We let L∞(M) := M for convenience and we let ∥.∥∞ denote the operator norm.
For any 1 ≤ p < ∞, let p′ = p

p−1
be the conjugate index of p. For any x ∈ Lp(M) and

y ∈ Lp
′
(M), the product xy belongs to L1(M) and |τ(xy)| ≤ ∥x∥p∥y∥p′ . We further have

an isometric identification Lp(M)∗ ≃ Lp
′
(M) for the duality pairing given by

⟨y, x⟩ = τ(xy), x ∈ Lp(M), y ∈ Lp
′
(M).

We let Lp(M)+ denote the cone of positive elements of Lp(M). The reader is referred to [29]
and the references therein for details on the algebraic operations on L0(M), the construction
of Lp(M), and for further properties.
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Wemention that ifM = B(H) for some Hilbert spaceH, then the usual trace tr : B(H)+ →
[0,∞] is a normal semifinite faithful one and the resulting noncommutative Lp-spaces asso-
ciated with (B(H), tr) are the Schatten classes Sp(H).
We say that a, b ∈ L0(M) are disjoint if a∗b = ab∗ = 0. We say that a bounded operator

T : Lp(M) → Lp(M), 1 ≤ p ≤ ∞, is separating if whenever a, b ∈ Lp(M) are disjoint then
T (a) and T (b) are disjoint as well.

A Jordan ∗-homomorphism on a von Neumann algebra M is a linear map J : M → M
that satisfies J(a2) = J(a)2 and J(a∗) = J(a)∗, for every a ∈ M. It is clear that a Jordan
∗-homomorphism is positive, i.e. if a ∈ M+ then J(a) ∈ M+. We warn the reader that
Jordan ∗-homomorphisms are not always ∗-homomorphisms. For example, the transposition
map on matrices is a Jordan ∗-homomorphism.

However we have the following lemma, in which part (1) follows from the identity (a+b)2 =
a2 + b2 + (ab+ ba) and part (2) is given by [18, 10.5.22(iii)].

Lemma 2.1. Let J : M → M be a Jordan ∗-homomorphism.

(1) For all a, b ∈ M, we have J(ab+ ba) = J(a)J(b) + J(b)J(a).
(2) If a, b ∈ M satisfy ab = ba, then we have J(ab) = J(a)J(b).

We also record the following properties for further use. Here a map J : M → M is called
normal if it is weak∗-continuous.

Lemma 2.2. Let J : M → M be a normal Jordan ∗-homomorphism.

(1) The kernel ker(J) is a w∗-closed ideal of M.
(2) If (ei)i is a bounded net of M such that ei → 0 and e∗i → 0 in the strong operator

topology, then J(ei) → 0 in the strong operator topology.

Proof. (1) Let J : M → M be a normal Jordan ∗-homomorphism. A well-known theorem
asserts that there exist two von Neumann algebras M1,M2, a von Neumann algebra em-

bedding M1

∞
⊕ M2 ⊆ M, a normal ∗-homomorphism π : M → M1 and a normal anti

∗-homomorphism σ : M → M2, such that J(a) = π(a) ⊕ σ(a) for all a ∈ M. (See [32,
Theorem 3.3] or [11, Corollary 7.4.9.] for this result.) Then ker(J) = ker(π) ∩ ker(σ), hence
ker(J) is a weak∗-closed ideal.

(2) Let (ei)i be a bounded net of M such that ei → 0 and e∗i → 0 strongly. Writing
(e∗i eiζ|η) = (eiζ|eiη), we see that (e∗i eiζ|η) → 0 for all ζ, η ∈ H. Since (e∗i ei)i is bounded,
this implies that e∗i ei → 0 in the weak∗-topology of M. Consequently, π(e∗i ei) → 0 weakly.
Writing ∥π(ei)ζ∥2 = (π(e∗i ei)ζ|ζ), we deduce that π(ei) → 0 strongly. Likewise, using eie

∗
i

instead of e∗i ei, we have that σ(ei) → 0 strongly. Thus, J(ei) → 0 strongly. □

The next statement plays a fundamental role in the study of separating maps. It was
established independently in [22] and [14].

Proposition 2.3. [22, Remark 3.3 and Proposition 3.11] Let 1 ≤ p < ∞. A bounded
operator T : Lp(M) → Lp(M) is separating if and only if there exist a normal Jordan ∗-
homomorphism J : M → M, a partial isometry w ∈ M, and a positive operator B affiliated
with M, which verify the following conditions:

(a) T (a) = wBJ(a), for all a ∈ M∩ Lp(M);
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(b) w∗w = J(1) = s(B);
(c) every spectral projection of B commutes with J(a), for all a ∈ M.

Here s(B) denotes the support of B. Furthermore, the triple (w,B, J) is unique.

It was shown by Yeadon [36] that all isometries on Lp(M), p ̸= 2, are separating and have
the above mentioned factorisation. For this reason, for T as above, we refer to (w,B, J) as
the Yeadon triple of T .

Lemma 2.4. Let T : Lp(M) → Lp(M) be a separating map and let (w,B, J) denote its
Yeadon triple. If T has dense range, then J(1) = 1 and w is a unitary.

Proof. The proof is an easy modification of [24, Remark 3.2]. □

Lemma 2.5. Let 1 ≤ p, q < ∞. Let T : Lp(M) + Lq(M) → Lp(M) + Lq(M) and assume
that T : Lp(M) → Lp(M) and T : Lq(M) → Lq(M) are bounded. If T : Lp(M) → Lp(M)
is separating, then T : Lq(M) → Lq(M) is separating as well.

Proof. Let E := {e ∈ M : e is a projection with τ(e) <∞}. Suppose that T : Lp(M) →
Lp(M) is separating. Since, E ⊆ Lp(M) ∩ Lq(M), the operator T : Lq(M) → Lq(M) also
preserves disjointness on E . By [22, Remark 3.12 (i)], T : Lq(M) → Lq(M) is separating. □

3. A characterization of separating Fourier multipliers

Let G be a locally compact group with left Haar measure µ defined on the σ-algebra of
Borel sets. We will write ds for dµ(s). Denote by λ the left regular representation of G
defined by

λ : G→ B(L2(G)); [λ(s)f ](t) = f(s−1t).

The left regular representation λ determines a representation of L1(G) also denoted by λ
and defined by

λ : L1(G) → B(L2(G)), λ(g)η = g ∗ η,
for all g ∈ L1(G) and η ∈ L2(G). Here, the convolution is g ∗ η(t) =

∫
G
g(s)η(s−1t)ds. We

have that λ(g) =
∫
G
g(s)λ(s) ds, where the operator integral is understood in the strong

operator sense.
For any function g : G→ C, we let

ǧ(t) = g(t−1) and g∗(t) = g(t−1),

for all t ∈ G.
We denote by e the unit element of G. Also for any Borel set A ⊆ G, we let χA denote

the indicator function of A.
Let V N(G) ⊆ B(L2(G)) be the von Neumann algebra generated by {λ(s) : s ∈ G}. This

coincides with the von Neumann algebra generated by {λ(g) : g ∈ L1(G)}. When G is

abelian, we have V N(G) ≃ L∞(Ĝ), where Ĝ is the dual group of G.
We let ( · | · ) denote the inner product on L2(G). The Fourier algebra of the group G is

defined as

A(G) = {(λ( · )ζ|η) : ζ, η ∈ L2(G)} ⊆ Cb(G).
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This is a Banach algebra for the pointwise product and the norm defined, for any ψ ∈ A(G),
by

∥ψ∥A(G) = inf{∥ζ∥2∥η∥2},
where the infimum runs over all ζ, η ∈ L2(G) such that ψ = (λ( · )ζ|η). We note for further
use that equivalently, we can write A(G) = {ζ ∗ η : ζ, η ∈ L2(G)}.

We recall that A(G)∗ ≃ V N(G) isometrically for the duality pairing given by

(3.1) ⟨λ(s), ψ⟩ = ψ(s), ψ ∈ A(G), s ∈ G.

Assume that G is unimodular. We will use the so-called Plancherel trace

τG : V N(G)+ −→ [0,+∞],

for which we refer to [35, Section VII.3] (see also [3]). We note that τG is a normal semifinite
faithful trace. This allows to consider the noncommutative Lp-spaces Lp(V N(G)) associated
with τG. We recall that if G is discrete then G is unimodular and τG is normalised. Also,

if G is abelian then G is unimodular and Lp(V N(G)) = Lp(Ĝ), where Ĝ denotes the dual
group of G.

It is well-known that for any g ∈ L1(G)∩L2(G), λ(g) ∈ L2(V N(G)) with ∥λ(g)∥2 = ∥g∥2
(see e.g. [3, Section 6.1]). Consequently, the restriction of λ to L1(G) ∩ L2(G) extends to
an isometry from L2(G) into L2(V N(G)). It turns out that the latter is onto, which yields
a unitary identification

(3.2) L2(V N(G)) ≃ L2(G).

Using the notation Uλ : L
2(G) → L2(V N(G)) for the above unitary mapping, we have

(3.3) τG
(
Uλ(ζ)Uλ(η)

)
=

∫
G

ζ(t)η̌(t) dt, ζ, η ∈ L2(G).

Since L1(V N(G))∗ ≃ V N(G), we have an isometric identification

A(G) ≃ L1(V N(G)).

It is not hard to deduce from (3.1) and (3.3) that this identification is given by the mapping
A(G) → L1(V N(G)) taking ζ ∗ η to Uλ(η̌)Uλ(ζ̌), for all ζ, η ∈ L2(G). Details are left to the
reader.

Let Cc(G) denote the space of continuous and compactly supported functions on G. We
let Cc(G) ∗ Cc(G) denote the linear span of f1 ∗ f2, where f1, f2 ∈ Cc(G). It is well-known
that

λ
(
Cc(G) ∗ Cc(G)

)
⊆ L1(V N(G)) ∩ V N(G),

and that λ
(
Cc(G) ∗Cc(G)

)
is dense in Lp(V N(G)), for all 1 ≤ p <∞. For a proof, we refer

to [7, Proposition 3.4] for the case p = 1, and to [5, Proposition 4.7] for the other cases. We
also note that since Cc(G) ∗ Cc(G) is dense in L1(G), λ

(
Cc(G) ∗ Cc(G)

)
is weak∗-dense in

V N(G).

Lemma 3.1. Suppose that K ⊆ G is a compact set. There is a function ψ ∈ A(G) such
that ψ(s) = µ(K), for all s ∈ K.

Proof. For a proof, we refer to [19, Proposition 2.3.2.].
□
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Some of the formulations of the main results in this article are easier when the group G
is σ-compact, meaning that G is the countable union of compact subsets. The following
well-known lemma relates this property with other countability properties that the group G
can have. We provide a proof for the sake of completeness.

Lemma 3.2. Let G be a locally compact group. Then the following implications hold:

G is second countable =⇒ G is σ-compact ⇐⇒ the Haar measure of G is σ-finite.

Moreover, the remaining implication is false. That is, there exists a (σ-)compact group which
is not second countable.

Proof. If G is second countable, then by definition, its topology admits a countable basis.
Since G is locally compact, this basis can be chosen to consist of relatively compact sets
Ok, k ≥ 1. Thus,

G =
⋃
k∈N

Ok =
⋃
k∈N

Ok,

so G is σ-compact.
Next, we show that for the Haar measure µ, σ-compactness and σ-finiteness are equivalent.

Recall [8, Proposition 2.4] that G admits an open, closed, σ-compact subgroup G0. Thus,
G =

⋃
y∈Y yG0 for some subset Y ⊆ G representing the left cosets, where the union is

disjoint. We claim that Y can be chosen at most countable if and only if G is σ-compact,
if and only if the Haar measure is σ-finite. Indeed, if Y is at most countable, as yG0 is σ-
compact for all y ∈ Y , G is σ-compact. If G is σ-compact, say G =

⋃
n∈NKn with compact

Kn, then µ(Kn) <∞ for any n ∈ N, hence G is σ-finite. Finally, suppose that G is σ-finite,
say G =

⋃
n∈NHn with µ(Hn) < ∞ for any n ∈ N. According to [8, Proposition 2.22], the

fact that µ(Hn) is finite implies that Yn := {y ∈ Y : Hn ∩ yG0 ̸= ∅} is at most countable.
Thus, Y ′ := {y ∈ Y : G∩ yG0 =

⋃
n∈N(Hn∩ yG0) ̸= ∅} =

⋃
n∈N Yn is also at most countable.

But clearly, Y ′ = Y .
Finally, for the last statement, it suffices to take the compact non first countable group

G = TR. □

In the sequel we use the space L∞(G). Its definition requires some care. When G is
σ-compact, L∞(G) is defined in the usual way. But when G is not σ-compact, by the above
Lemma 3.2, the left Haar measure µ is not σ-finite. In this case, if we define L∞(G) in the
usual way, the duality of L1(G) and L∞(G) may break down. As it is explained in [8, Section
2.3], it is possible to salvage this duality by modifying the definition of L∞(G) as follows.
A set E ⊆ G is called locally Borel if E ∩ F is Borel whenever F is Borel and µ(F ) < ∞.
A locally Borel set is locally null if µ(E ∩ F ) = 0 whenever F is Borel and µ(F ) < ∞. A
function f : G→ C is locally measurable if f−1(A) is locally Borel for every Borel set A ⊆ C.
A property is true locally almost everywhere if it is true except on a locally null set.

With these definitions in hand, let L∞(G) be the space of all locally measurable functions
ϕ : G→ C that are bounded except on a locally null set, modulo the functions that are zero
locally almost everywhere. Then L∞(G) is a Banach space with the norm

∥ϕ∥∞ = inf
{
c : |ϕ(t)| ≤ c locally almost everywhere

}
.
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We note that for any 1 ≤ p < ∞, any f ∈ Lp(G) has a σ-finite support hence for all
ϕ ∈ L∞(G), ϕf is a well-defined element of Lp(G).

One may therefore define
∫
G
ϕf for all ϕ ∈ L∞(G) and all f ∈ L1(G) and this duality

pairing yields an isometric identification L∞(G) ≃ L1(G)∗. When G is σ-compact, L∞(G)
defined as above coincides with the usual one.

Definition 3.3. For any ϕ ∈ L∞(G), let Mϕ : λ(Cc(G) ∗ Cc(G)) → V N(G) be defined by

Mϕ(λ(f)) := λ(ϕf), f ∈ Cc(G) ∗ Cc(G).

For any 1 ≤ p < ∞, we say that Mϕ is a bounded Fourier multiplier on Lp(V N(G)) if the
above map extends to a bounded operator (still denoted by) Mϕ : L

p(V N(G)) → Lp(V N(G)).
In the sequel we abbreviate this by saying that “Mϕ : L

p(V N(G)) → Lp(V N(G)) is a bounded
Fourier multiplier”.

Likewise, if p = ∞, we say that Mϕ is a bounded Fourier multiplier on V N(G) if the above
map extends to a bounded weak∗-continuous operator Mϕ : V N(G) → V N(G).

Let 1 ≤ p <∞. We recall from [3, Section 6.1] that if Mϕ : L
p(V N(G)) → Lp(V N(G)) is

a bounded Fourier multiplier, then Mϕ : L
p′(V N(G)) → Lp

′
(V N(G)) is a bounded Fourier

multiplier as well, where p′ is the conjugate index of p. Moreover, Mϕ̌ : L
p′(V N(G)) →

Lp
′
(V N(G)) is a bounded Fourier multiplier, and this operator is actually the adjoint of

Mϕ : L
p(V N(G)) → Lp(V N(G)).

Thanks to (3.2), we have that for any ϕ ∈ L∞(G), Mϕ : L
2(V N(G)) → L2(V N(G)) is a

bounded Fourier multiplier, with

(3.4) ∥Mϕ : L
2(V N(G)) −→ L2(V N(G))∥ = ∥ϕ∥L∞(G).

Indeed, let us denote as before by Uλ : L
2(G) → L2(V N(G)) the unitary mapping taking

any f ∈ L1(G) ∩ L2(G) to λ(f), see (3.2). Let π : L∞(G) → B(L2(G)) be defined by
[π(ϕ)](f) = ϕf , for all ϕ ∈ L∞(G) and all f ∈ L2(G). Then π is an isometry. Since for any
ϕ ∈ L∞(G), Uλπ(ϕ)U

∗
λ coincides withMϕ on Cc(G)∗Cc(G), we obtain thatMϕ is a bounded

Fourier multiplier on L2(V N(G)) and that Mϕ : L
2(V N(G)) → L2(V N(G)) coincides with

Uλπ(ϕ)U
∗
λ . Since Uλπ( · )U∗

λ is an isometry, the equality (3.4) follows. (See also [3, Lemma
6.5].) It follows from above that a Fourier multiplierMϕ : L

2(V N(G)) → L2(V N(G)) satisfies

Mϕ(Uλ(f)) = Uλ(ϕf), f ∈ L2(G).

Remark 3.4. If ϕ1, ϕ2 ∈ L∞(G) are such that Mϕ1 and Mϕ2 coincide on λ(Cc(G) ∗ Cc(G)),
then by (3.4), the operator Mϕ1−ϕ2 =Mϕ1 −Mϕ2 : L

2(V N(G)) → L2(V N(G)) is equal to 0,
hence ϕ1 = ϕ2 locally almost everywhere.

For the rest of this section, we fix a net (fi)i∈I in Cc(G) ∗ Cc(G) such that fi ≥ 0 and∫
G
fi(s) ds = 1 for all i ∈ I, the supports of fi’s are contained in some compact neighborhood

Vi of e where the net (Vi)i∈I , is decreasing, and
⋂
i∈I Vi = {e}. We set ei := λ(fi). Then for

all i ∈ I, we have

ei ∈ L1(V N(G)) ∩ V N(G) and ∥ei∥V N(G) ≤ 1.

Lemma 3.5. We both have ei → 1 and e∗i → 1 in the strong operator topology.
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Proof. Let ζ ∈ L2(G). Since each fi is non-negative and L1-normalized, we have

∥ei(ζ)− ζ∥L2(G) =
∥∥∥∫

G

fi(t) (λ(t)ζ − ζ) dt
∥∥∥
L2(G)

≤
∫
G

fi(t) ∥λ(t)ζ − ζ∥
L2(G)

dt.

Since λ(t) → 1 as t → e in the strong operator topology, the assumptions on (fi)i∈I ensure
that the right hand-side tends to 0, when i→ ∞. Hence ∥ei(ζ)− ζ∥L2(G) → 0.
This shows that ei → 1 strongly. Since e∗i = λ(f ∗

i ) and the f ∗
i have the same features as

the fi, we also have that e∗i → 1 strongly. □

We let Cb(G) be the space of bounded and continuous functions on G.
The following lemma shows that the definition of bounded Fourier multipliers V N(G) →

V N(G) considered in this paper coincide with the one in [6].

Lemma 3.6. Let ϕ ∈ L∞(G) and assume thatMϕ is a bounded Fourier multiplier on V N(G).
Then there exists ψ ∈ Cb(G) such that ϕ = ψ locally almost everywhere, and

Mψ(λ(s)) = ψ(s)λ(s), s ∈ G.

Proof. Assume that Mϕ : V N(G) → V N(G) is a bounded Fourier multiplier. Let us show
that for any s ∈ G,

(3.5) Mϕ(λ(s)) ∈ Span{λ(s)}.

Fix s ∈ G. For all i ∈ I, λ(s)ei =
∫
G
fi(t)λ(st)dt, hence Mϕ(λ(s)ei) =

∫
G
ϕ(st)fi(t)λ(st) dt,

where these integrals are defined in the strong operator topology. Therefore, for all φ ∈ A(G),
we have

⟨Mϕ(λ(s)ei), φ⟩ =
∫
G

ϕ(st)fi(t)⟨λ(st), φ⟩ dt

=

∫
G

ϕ(st)fi(t)φ(st) dt.

Let φ ∈ A(G) such that φ(s) = 0. From the above, we have

|⟨Mϕ(λ(s)ei), φ⟩| ≤ ∥ϕ∥∞
∫
G

fi(t)|φ(st)− φ(s)| dt.

Since φ is continuous, the right hand-side of the above inequality tends to zero when i→ ∞.
Moreover by Lemma 3.5, λ(s)ei → λ(s) in the strong operator topology. Since (ei)i∈I is
bounded, this implies that λ(s)ei → λ(s) in the weak∗-topology. Therefore, Mϕ(λ(s)ei) →
Mϕ(λ(s)) in the weak∗-topology. Hence, ⟨Mϕ(λ(s)ei), φ⟩ → ⟨Mϕ(λ(s)), φ⟩. We obtain that
⟨Mϕ(λ(s)), φ⟩ = 0. Hence, Mϕ(λ(s)) ∈ {φ : φ(s) = 0}⊥ in the duality A(G)∗ ≃ V N(G).
Since Span{λ(s)}⊥ = {φ : φ(s) = 0}, we deduce (3.5).
Let ψ : G→ C be the unique function such that for all s ∈ G, Mϕ(λ(s)) = ψ(s)λ(s). The

pre-adjoint A(G) → A(G) of Mϕ is the pointwise multiplication by ψ. According to the
comment following [6, 1.1. Definition], the function ψ is therefore continuous.
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Next, we show that ϕ = ψ locally almost everywhere. For any f ∈ Cc(G)∗Cc(G), we have
λ(f) =

∫
G
f(t)λ(t) dt. This SOT-integral is absolutely convergent in V N(G), hence

Mϕ(λ(f)) =

∫
G

f(t)Mϕ(λ(t)) dt

=

∫
G

f(t)ψ(t)λ(t) dt

=Mψ(λ(f)).

This implies that Mϕ =Mψ on Cc(G) ∗ Cc(G), and the result follows by Remark 3.4.
For the regularity of G needed in the proof of [6, 1.1. Definition], we refer to [19, Theorem

2.3.8 p. 53]. See also the discussion following [3, Definition 6.3]. □

Let T denote the unit circle of C. A homomorphism φ : G → T is called a character. We
let Hom(G,T) denote the collection of all characters on G. There is a natural isomorphism
between Hom(G,T) and Hom( G

[G,G]
,T), where [G,G] denotes the commutator subgroup of

G [13, (23.8) Theorem p. 358-359]. When G is a perfect group, i.e. [G,G] = G, the only
character on G is the trivial one, that is, Hom(G,T) = {1}. Examples of perfect groups
include non-abelian simple groups and the special linear groups SLn(K), for a fixed field K.
The following is the main result of this section. In view of this theorem and the observation

above, we see that there are groups with relatively few separating Fourier multipliers.

Theorem 3.7. Assume that G is a locally compact unimodular σ-compact group, let 1 ≤
p <∞ and let ϕ ∈ L∞(G). The following are equivalent.

(i) The mapping Mϕ is a bounded Fourier multiplier on Lp(V N(G)), and the operator
Mϕ : L

p(V N(G)) → Lp(V N(G)) is separating.
(ii) There exist a constant c ∈ C and a continuous character ψ : G→ T such that ϕ = cψ

almost everywhere.

The proof will be given after a series of intermediate results.

Lemma 3.8. Let M be a semifinite von Neumann algebra. Let (xj)j be a net in M∩L2(M)
with sup ∥xj∥∞ <∞. If ∥xj∥2 → 0, then xj → 0 in the weak∗-topology of M.

Proof. Take y ∈ L1(M) ∩ L2(M). We have that

|⟨y, xj⟩| ≤ ∥y∥2∥xj∥2 → 0,

and therefore ⟨y, xj⟩ → 0. Since L1(M)∩L2(M) is dense in L1(M) and (xj)j is bounded in
M, this implies that ⟨y, xj⟩ → 0, for all y ∈ L1(M). That is, xj → 0 in the weak∗-topology
of M. □

In the following lemma, G is not necessarily σ-compact.

Lemma 3.9. Let ϕ ∈ L∞(G). Assume that the Fourier multiplier Mϕ : L
2(V N(G)) →

L2(V N(G)) is separating and non-zero.

(1) For any compact K ⊆ G, the restriction ϕ|K is non-zero almost everywhere on K.
(2) The operator Mϕ : L

2(V N(G)) → L2(V N(G)) has dense range.
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(3) For any compact K ⊆ G, there exists a continuous function Φ: K → C such that
ϕ|K = Φ almost everywhere on K.

Proof. (1) Let K be a compact subset of G. Set NK(ϕ) := {s ∈ K : ϕ(s) = 0}. We show that
NK(ϕ) has measure zero. Assume on the contrary thatNK(ϕ) has positive measure. We show
that there exists a0 ∈ K such that for any open neighbourhood V of a0, µ(NK(ϕ) ∩ V ) > 0.
Assume on the contrary that for any a ∈ K there is an open neighbourhood of a, Va, such
that µ(NK(ϕ)∩Va) = 0. Since K is compact and {Va}a∈K covers K, there is a finite subcover
{Vaj}nj=1 that covers K as well. Now, note that

µ(NK(ϕ)) = µ(NK(ϕ) ∩ (∪nj=1Vaj)) = µ(∪nj=1(NK(ϕ) ∩ Vaj)) ≤
n∑
j=1

µ(NK(ϕ) ∩ Vaj) = 0,

which contradicts the fact that µ(NK(ϕ)) > 0.
Let (Ui)i∈I be a net of neighbourhoods of e, the unit element of G, directed by inclusion,

with ∩i∈IUi = {e}. Then for all i ∈ I, we have µ(a0Ui ∩NK(ϕ)) > 0 and we may define

hi :=
1

µ(a0Ui ∩NK(ϕ))
χUi

χNK(ϕ)(a0 · ).

For any i ∈ I, we have that hi ≥ 0,
∫
hi = 1, and hi ∈ L1(G) ∩ L2(G). Moreover,

supp(hi) = Ui ∩ a−1
0 NK(ϕ) and therefore,

⋂
i∈I supp(hi) = {e} and ϕhi(a

−1
0 · ) = 0, for all

i ∈ I.
Let (w,B, J) be the Yeadon triple of Mϕ : L

2(V N(G)) → L2(V N(G)). For any i ∈ I,
let εi := λ(hi(a

−1
0 · )). We have that εi ∈ L2(V N(G)) ∩ V N(G) and ∥εi∥V N(G) ≤ 1. By

Proposition 2.3(a), Mϕ(εi) = wBJ(εi). Also, Mϕ(εi) = λ(ϕhi(a
−1
0 · )) = λ(0) = 0. Therefore,

wBJ(εi) = 0. We now apply Proposition 2.3(b). Since w∗w = s(B), we have BJ(εi) =
w∗wBJ(εi), hence BJ(εi) = 0. Further 0 ≤ J(εi) ≤ J(1) = s(B), hence J(εi) is valued in
ker(B)⊥. Hence the equality BJ(εi) = 0 implies that J(εi) = 0, that is εi ∈ ker(J). By
Lemma 2.2(1), this implies that for any g ∈ L1(G) and any i ∈ I, we have λ(g)εi ∈ ker(J).
Now, for any f ∈ L1(G) ∩ L2(G), let g = f(· a0). We have

λ(g)εi = λ(g ∗ hi(a−1
0 · )) = λ(g(· a−1

0 ) ∗ hi) = λ(f ∗ hi).
Since ∥f ∗ hi − f∥2 → 0, we have ∥λ(f ∗ hi)− λ(f)∥L2(V N(G)) → 0, by (3.2). Note that,

∥λ(f ∗ hi)∥∞ ≤ ∥f ∗ hi∥1 ≤ ∥f∥1∥hi∥1 = ∥f∥1.
Hence by Lemma 3.8, λ(f ∗ hi) → λ(f), in the weak∗-topology of V N(G). Since ker(J) is
weak∗-closed, by Lemma 2.2(1), we obtain that λ(f) belongs to ker(J). Finally since the
space {λ(f) : f ∈ L1(G) ∩ L2(G)} is weak∗-dense in V N(G), we deduce that ker(J) =
V N(G). Hence Mϕ = 0, which is a contradiction.

(2) Consider any F ∈ Cc(G)∗Cc(G). This function has compact support, say K ⊆ G. Set
Nδ = {s ∈ K : |ϕ(s)| < δ}, for all δ > 0. By part (1), ϕ ̸= 0 almost everywhere on K, hence
we have limδ→0 µ(Nδ) = 0. For any δ > 0, set gδ := ϕ−1χNc

δ
F . Since ϕ−1χ

Nc
δ
∈ L∞(G), we

have gδ ∈ L1(G) ∩ L2(G). Hence, λ(gδ) is well-defined, λ(gδ) ∈ L2(V N(G)) ∩ V N(G) and

Mϕ(λ(gδ)) =

∫
ϕ(t)gδ(t)λ(t)dt = λ(χNc

δ
F ).
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Therefore, λ(F )−Mϕ(λ(gδ)) = λ(χNδ
F ), and we have that

∥λ(F )−Mϕ(λ(gδ))∥2 = ∥λ(χNδ
F )∥2 = ∥χNδ

F∥2,

by (3.2). Since µ(Nδ) → 0, when δ → 0, this implies that limδ→0 ∥λ(F )−Mϕ(λ(gδ))∥2 = 0.

Hence, λ(F ) ∈ ran(Mϕ). By density of λ(Cc(G) ∗ Cc(G)) in L2(V N(G)), this implies that
the range of Mϕ is dense in L2(V N(G)).

(3) Let w∗Mϕ be the operator taking any a ∈ L2(V N(G)) to w∗Mϕ(a). According to
[23, Remark 4.2], w∗Mϕ is positive, that is, it maps L2(V N(G))+ into itself. We use a
modification of the argument in [3, Lemma 6.10]. For all g ∈ Cc(G), λ(g

∗∗g) ∈ L2(V N(G))+.
Hence, w∗Mϕ(λ(g

∗ ∗ g)) ∈ L2(V N(G))+. Consequently,

(Mϕ(λ(g
∗ ∗ g))ζ|w(ζ)) ≥ 0,

for all ζ ∈ L2(G). The calculation in the proof of [3, Lemma 6.10] shows that

(Mϕ(λ(g
∗ ∗ g))ζ|w(ζ)) =

∫
G

∫
G

g(t)g(s)ϕ(t−1s)
(
λ(t−1s)ζ|w(ζ)

)
dsdt.

This implies that for all ζ ∈ L2(G), the function s 7→ ϕ(s) (λ(s)ζ|w(ζ)) is positive definite
in the sense of [35, Definition VII.3.20].

By polarization, this implies that for all ζ, ζ ′ ∈ L2(G), s 7→ ϕ(s) (λ(s)ζ|w(ζ ′)) is a linear
combination of positive definite functions. By part (2) and Lemma 2.4, w is a unitary. Hence
the above actually shows that for all ζ, η ∈ L2(G), s 7→ ϕ(s) (λ(s)ζ|η) is a linear combination
of positive definite functions. By the definition of A(G), this means that for all ψ ∈ A(G), ϕψ
is a linear combination of positive definite functions. By [35, Corollary 3.22] and its proof,
this implies that for all ψ ∈ A(G), ϕψ is locally almost everywhere equal to a continuous
function.

Let K ⊆ G be a compact set with µ(K) > 0. By Lemma 3.1, there is ψ ∈ A(G) such that
ψ|K > 0. Now, (ϕψ) |K is almost everywhere equal to a continuous function. Hence, ϕ|K is
almost everywhere equal to a continuous function. □

Remark 3.10. Note that if G is σ-compact, the above lemma implies that if ϕ ∈ L∞(G) is
such that Mϕ : L

2(V N(G)) → L2(V N(G)) is separating, then ϕ is almost everywhere equal
to a continuous function.

In the next statement, we use the net (ei)i∈I defined before Lemma 3.5.

Lemma 3.11. Let ϕ ∈ Cb(G) and consider the Fourier multiplier Mϕ : L
2(V N(G)) →

L2(V N(G)). We have the following convergences in the strong operator topology of V N(G).

(1) For all s ∈ G, Mϕ(λ(s)ei) −−−→
i→∞

ϕ(s)λ(s).

(2) For all s ∈ G, Mϕ(λ(s)e
2
i ) −−−→

i→∞
ϕ(s)λ(s).

(3) For all s ∈ G, Mϕ(eiλ(s)ei) −−−→
i→∞

ϕ(s)λ(s).

Proof. (1) By Lemma 3.5, it is enough to show that for all s ∈ G, Mϕ(λ(s)ei) − ϕ(s)λ(s)ei
converges to 0 in V N(G). Using the assumptions on (fi)i∈I , and the fact that ϕ is continuous,
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we have that∥∥Mϕ(λ(s)ei)− ϕ(s)λ(s)ei
∥∥
∞ =

∥∥∥∫
G

(ϕ(st)fi(t)λ(st)− ϕ(s)fi(t)λ(st)) dt
∥∥∥
∞

≤
∫
G

|ϕ(st)− ϕ(s)|fi(t) dt −−−→
i→∞

0.

This proves the result.

(2) For all i ∈ I, we have e2i = λ(fi ∗ fi), fi ∗ fi ≥ 0,
∫
G
(fi ∗ fi)(s) d(s) = 1, and

supp(fi ∗ fi) ⊆ supp(fi) · supp(fi). Hence using fi ∗ fi instead of fi, the convergence in (2)
can be shown exactly in the same way as in (1).

(3) We argue as in (1). Let s ∈ G. Since ei → 1 in the strong operator topology and
(ei)i∈I is bounded, eiλ(s)ei → λ(s) in the strong operator topology. Hence we only need to
show that Mϕ(eiλ(s)ei)− ϕ(s)eiλ(s)ei converges to 0 in V N(G). We have that∥∥Mϕ(eiλ(s)ei)− ϕ(s)eiλ(s)ei

∥∥
∞

=
∥∥∥∫

G

∫
G

ϕ(rst)fi(r)fi(t)λ(rst) drdt−
∫
G

∫
G

ϕ(s)fi(r)fi(t)λ(rst) drdt
∥∥∥
∞

≤
∫
G

∫
G

|ϕ(rst)− ϕ(s)|fi(r)fi(t)drdt −−−→
i→∞

0,

again using the assumptions on (fi)i∈I , and the fact that ϕ is continuous. □

Proof of Theorem 3.7.
(ii) ⇒ (i): We may assume that c = 1 and that ϕ = ψ, i.e. ϕ is a continuous character. Any

character is positive definite and maps e to 1. Hence according to [6, Proposition 4.2] and
[28, Proposition 3.6], Mϕ is a bounded Fourier multiplier on V N(G), with ∥Mϕ : V N(G) →
V N(G)∥ = ∥Mϕ(1)∥∞ = |ϕ(e)| = 1. According to [3, Lemma 6.4 and Lemma 6.6], Mϕ is
therefore a bounded Fourier multiplier on Lp(V N(G)) and

∥Mϕ : L
p(V N(G)) −→ Lp(V N(G))∥ ≤ ∥Mϕ : V N(G) −→ V N(G)∥.

Thus,

(3.6) ∥Mϕ : L
p(V N(G)) −→ Lp(V N(G))∥ ≤ 1.

Since ϕ−1 is also a continuous character, the above argument shows as well that

(3.7) ∥Mϕ−1 : Lp(V N(G)) −→ Lp(V N(G))∥ ≤ 1.

For any f ∈ Cc(G) ∗ Cc(G), we have

Mϕ−1Mϕ(λ(f)) =Mϕ−1(λ(ϕf)) = λ(ϕ−1ϕf) = λ(f).

Similarly,MϕMϕ−1(λ(f)) = λ(f). HenceMϕ andMϕ−1 are inverse to each other. It therefore
follows from (3.6) and (3.7) that Mϕ : L

p(V N(G)) → Lp(V N(G)) is an isometry.
If p ̸= 2, it follows from [36] (see also [22]) that Mϕ : L

p(V N(G)) → Lp(V N(G)) is
separating. If p = 2, consider any 1 < q ̸= 2 < ∞. The above reasoning shows that
Mϕ : L

q(V N(G)) → Lq(V N(G)) is separating. Applying Lemma 2.5, we deduce that the
operator Mϕ : L

2(V N(G)) → L2(V N(G)) is separating.
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(i) ⇒ (ii): We assume that Mϕ : L
p(V N(G)) → Lp(V N(G)) is separating. By Lemma 2.5,

Mϕ : L
2(V N(G)) → L2(V N(G)) is separating as well. Let (w,B, J) be its Yeadon triple. We

may assume that Mϕ is non-zero. Then by Lemma 3.9(2), Mϕ : L
2(V N(G)) → L2(V N(G))

has dense range. It then follows from Lemma 2.4 that w is a unitary and J(1) = 1. According
to Remark 3.10, ϕ is almost everywhere equal to a continuous function. Replacing ϕ by this
function, we may now assume that ϕ ∈ Cb(G).

For any s ∈ G we have, by Lemma 3.11 and Lemma 2.1(1),

ϕ(s) (λ(s) + λ(s)) = lim
j→∞

Mϕ

(
ejλ(s)ej + λ(s)e2j

)
= lim

j→∞
wBJ

(
ejλ(s)ej + λ(s)e2j

)
= lim

j→∞
wB

(
J(ej)J(λ(s)ej) + J(λ(s)ej)J(ej)

)
= lim

j→∞

(
Mϕ(ej)J(λ(s)ej) +Mϕ(λ(s)ej)J(ej)

)
,

where the limit is taken in the strong operator topology.
By Lemma 3.5, λ(s)ej → λ(s) and (λ(s)ej)

∗ → λ(s)∗ strongly. Hence by Lemma
2.2(2), J(λ(s)ej) → J(λ(s)) strongly. By Lemma 3.11(1), Mϕ(ej) → ϕ(e) strongly. Since
(Mϕ(ej))j∈I is bounded, we deduce that Mϕ(ej)J(λ(s)ej) → ϕ(e)J(λ(s)) strongly. Similarly,
Mϕ(λ(s)ej)J(ej) → ϕ(s)λ(s)J(1) = ϕ(s)λ(s) strongly. It therefore follows from the previous
calculation that ϕ(s) (λ(s) + λ(s)) = ϕ(e)J(λ(s))+ϕ(s)λ(s), that is, ϕ(s)λ(s) = ϕ(e)J(λ(s)).

Since ϕ is non-zero, this implies that ϕ(e) ̸= 0. Set ψ := ϕ(e)−1ϕ. It follows from the
above that

(3.8) J(λ(s)) = ψ(s)λ(s), s ∈ G.

We now show that ψ is a character. Let s, t ∈ G and recall that λ(st) = λ(s)λ(t). On
the one hand, we have that J(λ(st)) = ψ(st)λ(st). On the other hand, we have that
J(λ(s))J(λ(t)) = ψ(s)ψ(t)λ(st).

If st = ts, then λ(s)λ(t) = λ(t)λ(s), hence by Lemma 2.1(2), we have that J(λ(st)) =
J(λ(s)λ(t)) = J(λ(s))J(λ(t)). Hence, ψ(st) = ψ(s)ψ(t). Assume now that st ̸= ts. By
Lemma 2.1(1), we have

J(λ(s)λ(t) + λ(t)λ(s)) = J(λ(s))J(λ(t)) + J(λ(t))J(λ(s)).

Therefore,

ψ(st)λ(st) + ψ(ts)λ(ts) = ψ(s)ψ(t)λ(st) + ψ(t)ψ(s)λ(ts).

Since λ(st) and λ(ts) are linearly independent, the above identity implies that ψ(st) =
ψ(s)ψ(t). This proves that ψ is a character and therefore, ϕ = ϕ(e)ψ is a scalar multiple of
a character, as requested. □

Let us now give a variant of Theorem 3.7 in the general case when G is not assumed to
be σ-compact (see also Remark 3.16). We need the following lemma.

Lemma 3.12. Let h1, h2 : G→ C be two locally measurable functions. The functions h1 and
h2 are locally almost everywhere equal if and only if for any compact set K ⊆ G, h1|K = h2|K,
almost everywhere.
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Proof. It is enough to show that if E ⊂ G is locally Borel, then E is locally null if (and
only if) E ∩ K has measure 0 for any compact set K ⊆ G. Assume this property. By [8,
Proposition 2.4], G has an open, closed and σ-compact subgroup, G0. Let Y be a subset of
G that contains exactly one element of each of the left cosets of G0. Set Ey := E ∩ yG0 for
any y ∈ Y . Since G0 is σ-compact, yG0 is σ-compact as well. It then follows that µ(Ey) = 0,
for all y ∈ Y . Recall from the end of [8, Section 2.3] that E is locally null if and only if
µ(Ey) = 0, for every y ∈ Y . Hence, E is locally null. □

Corollary 3.13. Let G be locally compact unimodular. Let 1 ≤ p < ∞ and let ϕ ∈ L∞(G).
The following are equivalent.

(i) The mapping Mϕ is a bounded Fourier multiplier on Lp(V N(G)), and the operator
Mϕ : L

p(V N(G)) → Lp(V N(G)) is separating.
(ii) There exist a constant c0 ∈ C and a continuous character ψ : G → T such that

ϕ = c0ψ locally almost everywhere.

Proof. The proof of the implication “(ii) ⇒ (i)” in Theorem 3.7 applies to the non σ-
compact case, so we only need to prove that (i) implies (ii).

Assume that Mϕ : L
p(V N(G)) → Lp(V N(G)) is separating. As in the proof of Theorem

3.7, we may assume that p = 2 and that Mϕ is non-zero. We claim that

(3.9) ∃φ ∈ Cb(G) such that φ = ϕ, locally almost everywhere.

To prove this, first note that we may assume that the net (fi)i∈I defined prior to Lemma
3.5 has the following property: there exists a compact neighbourhood K0 of the unit e such
that for all i, supp(fi) ⊆ K0. Let L ⊆ G be compact. Let

K = K0LK0K0 = {strq : (s, t, r, q) ∈ K0 × L×K0 ×K0}.
This is a compact set hence by Lemma 3.9(3) there is a continuous function Φ : K → C
such that Φ = ϕ|K almost everywhere. The proof of Lemma 3.11 shows that for all s ∈ L,
we have the following convergences in the strong operator topology:
(3.10)

Mϕ(λ(s)ei) → Φ(s)λ(s), Mϕ(λ(s)e
2
i ) → Φ(s)λ(s), and Mϕ(eiλ(s)ei) → Φ(s)λ(s).

In particular, (take L = {e}) we obtain the existence of c0 ∈ C such that

Mϕ(ei) → c0,

in the strong operator topology.
Let (w,B, J) be the Yeadon triple of Mϕ. The argument in the proof of Theorem 3.7 and

the convergence properties (3.10) show that for any L,K,Φ as above we have

(3.11) c0J(λ(s)) = Φ(s)λ(s), for all s ∈ L.

By Lemma 3.9(1), this implies that c0 ̸= 0.
It follows from the above that for all s ∈ G, J(λ(s)) is proportional to λ(s). We therefore

have a necessarily unique

F : G→ C; J(λ(s)) = F (s)λ(s), for all s ∈ G.

Moreover, for any L,K,Φ as above, we have

F |L = c−1
0 Φ|L.
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This implies that F is continuous. To prove this, fix s0 ∈ G and apply the above with a
compact neighbourhood L of s0. Then the continuity of Φ: K → C implies the continuity
of F |L, and hence the continuity of F at s0.

Set φ := c0F . Again for L,K,Φ as above we obtain that φ|K = ϕ|K , almost everywhere.
By Lemma 3.9, this implies that φ = ϕ, locally almost everywhere. Hence (3.9) is proved.
SinceMφ =Mϕ, the argument at the end of the proof of Theorem 3.7 shows that ψ := c−1

0 φ
is a character. □

Remark 3.14. It follows from the proof of the implication “(ii) ⇒ (i)” in Theorem 3.7
that for any continuous character ψ : G → T and any 1 ≤ p < ∞, the Fourier multiplier
Mψ : L

p(V N(G)) → Lp(V N(G)) is an onto isometry. It therefore follows from Corollary
3.13 that if ϕ ∈ L∞(G) \ {0} is such that Mϕ : L

p(V N(G)) → Lp(V N(G)) is bounded and
separating, then ∥Mϕ∥−1Mϕ is an onto isometry.

Corollary 3.15. Let 1 ≤ p ̸= 2 <∞ and let ϕ ∈ L∞(G). The following are equivalent.

(i) The mapping Mϕ is a bounded Fourier multiplier on Lp(V N(G)), and the operator
Mϕ : L

p(V N(G)) → Lp(V N(G)) is an isometry.
(ii) There exists δ ∈ T such that δϕ is locally almost everywhere equal to a continuous

character.

Proof. It follows from the proof of the implication “(ii) ⇒ (i)” in Theorem 3.7 that for any
continuous character ψ : G → T, Mψ : L

p(V N(G)) → Lp(V N(G)) is an isometry. Thus, (ii)
implies (i). Conversely, assume (i). Since p ̸= 2, any isometry on Lp(V N(G)) is separating,
by [36] (see also [22]). Hence by Corollary 3.13, there exist c ∈ C and a continuous character
ψ : G → T such that ϕ = cψ locally almost everywhere. Then Mϕ = cMψ, hence ∥Mϕ∥ =
|c|∥Mψ∥, hence |c| = 1. This yields (ii), with δ = c−1. □

Note that Corollary 3.15 is not true in the case p = 2. Indeed, let ϕ ∈ L∞(G). It follows
from the discussion following (3.2) that Mϕ : L

2(V N(G)) → L2(V N(G)) is an isometry if
and only if |ϕ| = 1 locally almost everywhere. Yet in general, plenty of these isometric
Fourier multipliers are not separating. See Section 4 for more on this.

Remark 3.16. Corollary 3.13 may be wrong if one replaces “locally almost everywhere” by
“almost everywhere” in (ii). Indeed as in [8, Section 2.3], take G = R × Rdisc, where the
second factor is equipped with the discrete topology. Consider Y = {0} × Rdisc which is a
closed subset of G, hence Borel, and set ϕ = χY . For any compact set K ⊆ G, we have
µ(K ∩ Y ) = 0, by [8, Proposition 2.22]. Hence ϕ|K = 0 almost everywhere. By Lemma
3.12, this implies that ϕ = 0 locally almost everywhere. Thus ϕ satisfies the properties of
Corollary 3.13, with Mϕ = 0.

However by [8, Proposition 2.22] again, {s ∈ G : ϕ(s) ̸= 0} = Y has infinite Haar
measure, hence ϕ is not almost everywhere equal to 0. Consequently, ϕ cannot be almost
everywhere equal to a constant times a continuous character.

Remark 3.17. In the case when G is discrete, continuity on G is automatic and two locally
almost everywhere equal functions are equal. Therefore, in the statement of Corollary 3.13,
we can replace part (ii) by the following slightly simpler statement: there exist c ∈ C and a
character ψ : G→ C such that ϕ = cψ.
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Remark 3.18. De Cannière and Haagerup [6] defined Fourier multipliers on V N(G), in-
cluding the case when G is not unimodular. Let ϕ ∈ Cb(G) and assume that ϕ induces a
Fourier multiplier Mϕ : V N(G) → V N(G) in the sense of [6, Proposition 1.2]. Assume that
Mϕ is separating. If G is unimodular, then Mϕ : L2(V N(G)) → L2(V N(G)) is separating
by [22, Lemma 3.9]. Hence, by Corollary 3.13, ϕ is a multiple of a character.
However, in the general case of a non-unimodular locally compact group, the description

of separating Fourier multipliers on V N(G) is open.

Remark 3.19. Let Γ be a locally compact abelian group. Let G = Γ̂ be its dual group and
recall that L∞(Γ) = V N(G). Let 1 ≤ p < ∞. For any u ∈ Γ, let τu : L

p(Γ) → Lp(Γ) be the
translation operator defined by τu(f) = f(· −u), for all f ∈ Lp(Γ). Note that if we regard
u ∈ Γ as a character u : G → T, then the associated Fourier multiplier Mu : L

p(Γ) → Lp(Γ)
coincides with τu.
Let T : Lp(Γ) → Lp(Γ) be a bounded operator. Then T commutes with translations, that

is, T ◦ τu = τu ◦ T for all u ∈ Γ, if and only if T is a Fourier multiplier (see e.g. [21, Chapter
4]). Hence Corollary 3.15 implies the following:

(*) If p ̸= 2, an isometry T : Lp(Γ) → Lp(Γ) commutes with translations if and only if
there exists c ∈ T and u ∈ Γ such that T = cτu.

This statement is a classical result due to Parrott [27] and Strichartz [33] and Corollary 3.15
should be regarded as a generalization of the latter.

We note that the two papers [27, 33] show (∗) in the case when Γ is not necessarily abelian.
If Γ is non-abelian, the statement (∗) is not related to Corollary 3.15.

4. Completely positive and completely isometric Fourier multipliers

In this section, we complement the characterizations of separating and isometric Lp-Fourier
multipliers from Section 3 with further information. Throughout this section, we assume that
G is a unimodular locally compact group.

Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful
trace τ . For any n ≥ 1, we equip Mn(M) with trn ⊗ τ , where trn is the usual trace on Mn.
For any 1 ≤ p ≤ ∞, the resulting noncommutative Lp-space Lp(Mn(M)) can be naturally
identified (at the algebraic level) with the space of all n×n matrices [xij]1≤i,j≤n with entries
xij belonging to Lp(M).

Let T : Lp(M) → Lp(M) be a bounded operator. For any n ≥ 1, let Tn : L
p(Mn(M)) →

Lp(Mn(M)) be defined by Tn
(
[xij]

)
= [T (xij)], for all [xij]1≤i,j≤n in Lp(Mn(M)). Following

usual terminology, we say that T is completely positive if Tn is positive for all n ≥ 1.
Likewise, we say that T is a complete contraction if ∥Tn∥ ≤ 1 for all n ≥ 1 and that T is a
complete isometry if Tn is an isometry for all n ≥ 1.

Let ψ : G→ T be a continuous character. Then ψ is positive definite hence by [6, Propo-
sition 4.2], the Fourier multiplier Mϕ : V N(G) → V N(G) is completely positive. The proof
of the implication “(ii) ⇒ (i)” in Theorem 3.7 actually shows that Mψ : L

p(V N(G)) →
Lp(V N(G)) is a complete contraction for all 1 ≤ p <∞, and then that Mψ : L

p(V N(G)) →
Lp(V N(G)) is a complete isometry for all 1 ≤ p < ∞. As a consequence of Corollary 3.13,
we therefore obtain the following complement to Remark 3.14.
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Corollary 4.1. Let 1 ≤ p <∞ and let ϕ ∈ L∞(G) \ {0}. Assume that Mϕ : L
p(V N(G)) →

Lp(V N(G)) is bounded and separating. Then ∥Mϕ∥−1Mϕ is a complete isometry.

Remark 4.2. Let 1 ≤ p < ∞ and let ϕ ∈ L∞(G) \ {0} such that Mϕ : L
p(V N(G)) →

Lp(V N(G)) is bounded and separating. Let (w,B, J) be the Yeadon triple of the latter
operator. According to Corollary 4.1 and [15, Theorem 3.2], J is a ∗-homomorphism.
We can make this statement more precise, as follows. Applying Corollary 3.13, let c ∈ C

let ψ : G→ T be the continuous character such that ϕ = cψ locally almost everywhere. Then
J : V N(G) → V N(G) is the L∞-Fourier multiplier associated with ψ, c = ∥Mϕ∥, B = |c|· 1
and w = c|c|−1· 1. The easy verification is left to the reader.

Lemma 4.3. Let 1 ≤ p < ∞ and let ϕ ∈ L∞(G). If Mϕ is a bounded Fourier multiplier on
Lp(V N(G)) and Mϕ : L

p(V N(G)) → Lp(V N(G)) is an isometry, then |ϕ| = 1 locally almost
everywhere.

Proof. The case p = 2 follows from the paragraph preceding Remark 3.16. Assume that
1 ≤ p ̸= 2 <∞. By Corollary 3.13, there exist a constant c ∈ C and a continuous character
ψ : G → T such that ϕ = cψ locally almost everywhere. We noticed before Corollary 4.1
that Mψ is a complete isometry. Since cMψ = Mϕ is also an isometry, we must have that
|c| = 1. Hence, |ϕ| = |cψ| = |ψ| = 1 locally almost everywhere. □

We have the following partial converse of Lemma 4.3.

Proposition 4.4. Let ϕ ∈ L∞(G) such that |ϕ| = 1 locally almost everywhere, let 1 ≤ p <∞
and assume that Mϕ : L

p(V N(G)) → Lp(V N(G)) is a bounded Fourier multiplier. If Mϕ is
completely positive, then ϕ coincides locally almost everywhere with a continuous character
ψ : G→ T.

Proof. Since Mϕ is completely positive, it follows from [3, Proposition 6.11] that ϕ is locally
almost everywhere equal to a continuous positive definite function. Hence, we may assume
that ϕ is continuous (and positive definite). By [35, Proposition VII.3.21], there exist a
unitary representation π : G→ B(H) on a Hilbert space H and a vector ξ ∈ H such that

(4.1) ϕ(s) = ⟨π(s)ξ, ξ⟩, s ∈ G.

Since |ϕ| = 1, we have ϕ(e) = 1. Hence it follows from (4.1) that 1 = ϕ(e) = ⟨π(e)ξ, ξ⟩ =
∥ξ∥2H . Given s ∈ G, applying the Cauchy-Schwarz inequality we obtain

1 = |ϕ(s)| = |⟨π(s)ξ, ξ⟩| ≤ ∥π(s)ξ∥H∥ξ∥H = ∥ξ∥2H = 1.

It follows from the equality condition in the Cauchy-Schwarz inequality that there is ψ(s) ∈ C
such that π(s)ξ = ψ(s)ξ.

Now, for any s, t ∈ G, on the one hand

π(st)ξ = ψ(st)ξ,

and on the other hand,

π(s)π(t)ξ = π(s)ψ(t)ξ = ψ(s)ψ(t)ξ.

Hence, ψ(st) = ψ(s)ψ(t). Finally, ϕ(s) = ⟨π(s)ξ, ξ⟩ = ψ(s)∥ξ∥2H = ψ(s) for all s ∈ G.
Therefore, ϕ = ψ is a character. □
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When p = 1 and G is assumed to be amenable we can change the assumption of complete
positivity in Proposition 4.4 into mere contractivity.

Proposition 4.5. Let G be an amenable unimodular locally compact group. Let ϕ ∈ L∞(G)
and assume that Mϕ : L

1(V N(G)) → L1(V N(G)) is a contractive Fourier multiplier. The
following are equivalent.

(i) Mϕ is an isometry.
(ii) |ϕ| = 1 locally almost everywhere.
(iii) There exist c ∈ T and a continuous character ψ : G → T such that ϕ = cψ locally

almost everywhere.

Proof. The implication “(i) ⇒ (ii)” is established in Lemma 4.3. The implication “(iii) ⇒
(i)” was already discussed several times (see, for example, Remark 3.14). We now show that
“(ii) ⇒ (iii)”. Since Mϕ is a bounded Fourier multiplier on L1(V N(G)), we may assume
that ϕ is continuous, by Lemma 3.6. Further since G is amenable, symbols of Fourier
multipliers on V N(G) coincide with the Fourier-Stieltjes algebra of G. This classical result
is mentioned in [6, p. 456], see also [12, Theorem 1]. Hence by [7, Lemma 2.14], there exist
a unitary representation π : G→ B(H) on a Hilbert space H and vectors ξ, η in H such that

ϕ(s) = ⟨π(s)ξ, η⟩, s ∈ G, and ∥ξ∥H = ∥η∥H = 1.

Assume (ii). Multiplying ϕ by ϕ(e), we may assume that ϕ(e) = 1. This implies that
1 = ⟨π(e)ξ, η⟩ = ⟨ξ, η⟩. Since ∥ξ∥H = ∥η∥H = 1, we deduce that η = ξ. Thus, ϕ satisfies
(4.1). The proof of Proposition 4.4 therefore shows that ϕ is a character. □

5. A characterization of separating Schur multipliers

Let (Ω,Σ, µ) be a σ-finite measure space. For any f ∈ L2(Ω2), let Sf : L
2(Ω) → L2(Ω) be

the bounded operator defined by

[Sf (h)](s) =

∫
Ω

f(s, t)h(t) dt, h ∈ L2(Ω).

We recall that Sf ∈ S2(L2(Ω)) and that the mapping f 7→ Sf is a unitary operator from
L2(Ω2) onto S2(L2(Ω)), see e.g. [30, Theorem VI. 23].
Let ϕ ∈ L∞(Ω2). According to the above identification L2(Ω2) ≃ S2(L2(Ω)), one may

define a bounded operator Tϕ : S
2(L2(Ω)) → S2(L2(Ω)) by

(5.1) Tϕ(Sf ) = Sϕf , f ∈ L2(Ω2).

Moreover the norm of this operator is equal to ∥ϕ∥∞. The operator Tϕ is called a Schur
multiplier.

Let 1 ≤ p < ∞. We say that Tϕ is a bounded Schur multiplier on the Schatten space
Sp(L2(Ω)) if the restriction of Tϕ to Sp(L2(Ω)) ∩ S2(L2(Ω)) extends to a bounded operator
from Sp(L2(Ω)) into itself. Schur multipliers as defined in this section go back at least to
Haagerup [10] and Spronk [31].

For any α ∈ L∞(Ω), we let Multα ∈ B(L2(Ω)) be the multiplication operator taking h to
αh for all h ∈ L2(Ω). Then we let

D(Ω) =
{
Multα : α ∈ L∞(Ω)

}
.
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This is von Neumann sub-algebra of B(L2(Ω)), which is isomorphic (as a von Neumann
algebra) to L∞(Ω). We will use the classical fact that

(5.2) D(Ω)′ = D(Ω),

where D(Ω)′ stands for the commutant of D(Ω). In other words, a bounded operator
V : L2(Ω) → L2(Ω) belongs to D(Ω) if and only if V ◦Multα = Multα ◦V for all α ∈ L∞(Ω).
We note that for any α ∈ L∞(Ω), the mapping x 7→ Multα◦x is a Schur multiplier. Indeed

it coincides with Tϕ, where the symbol ϕ ∈ L∞(Ω2) is given by ϕ(s, t) = α(s). Likewise, for
any β ∈ L∞(Ω), the mapping x 7→ x ◦Multβ is a Schur multiplier, with symbol ϕ given by
ϕ(s, t) = β(t).

Theorem 5.1. Let ϕ ∈ L∞(Ω2) and let 1 ≤ p <∞. The following are equivalent.

(i) The mapping Tϕ is a bounded Schur multiplier on Sp(L2(Ω)), and the resulting oper-
ator Tϕ : S

p(L2(Ω)) → Sp(L2(Ω)) is separating.
(ii) There exist a constant c ∈ C and two unitaries α, β ∈ L∞(Ω) such that

ϕ(s, t) = c α(s)β(t) for almost every (s, t) ∈ Ω2.

(iii) There exist a constant c ∈ C and two unitaries α, β ∈ L∞(Ω) such that

(5.3) Tϕ(x) = cMultα ◦ x ◦Multβ, x ∈ S2(L2(Ω)).

Proof.
(ii) ⇒ (iii): Let c, α, β as in (ii) and let x ∈ S2(L2(Ω)). Let f ∈ L2(Ω2) such that x = Sf .

Then for all h ∈ L2(Ω), we have

[x ◦Multβ(h)](s) =

∫
Ω

f(s, t)β(t)h(t) dµ(t),

hence

[cMultα ◦ x ◦Multβ(h)](s) = cα(s)

∫
Ω

f(s, t)β(t)h(t) dµ(t)

=

∫
Ω

ϕ(s, t)f(s, t)h(t) dµ(t),

for a.e. s ∈ Ω. This shows (5.3).
(iii) ⇒ (i): Assume (5.3) for some unitaries α, β ∈ L∞(Ω). It is plain that Tϕ extends to a

bounded operator on Sp(L2(Ω)) and that the identity (5.3) holds true on Sp(L2(Ω)).
Let x, y ∈ Sp(L2(Ω)) such that x∗y = xy∗ = 0. Then(

Multα ◦ x ◦Multβ
)∗(

Multα ◦ y ◦Multβ
)
= Mult∗β ◦ x∗ ◦Mult∗αMultα ◦ y ◦Multβ.

Since α is a unitary of L∞(Ω), the operator Multα is a unitary of B(L2(Ω)), hence the
right hand-side of the above equality is equal to Mult∗β ◦ x∗y ◦ Multβ, hence to 0. Thus

Tϕ(x)
∗Tϕ(y) = 0. Likewise, Tϕ(x)Tϕ(y)

∗ = 0. This shows that Tϕ : S
p(L2(Ω)) → Sp(L2(Ω))

is separating.

(i) ⇒ (ii): For convenience we let H = L2(Ω) throughout this proof. Owing to Lemma 2.5,

we may suppose that p = 2. We let (w,B, J) denote the Yeadon triple of the separating
map Tϕ : S

2(H) → S2(H).
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We may assume that Tϕ is non-zero. Since B(H) is a factor, it follows from [24, Lemma
4.3] that Tϕ is 1-1. Applying the definition of Tϕ, see (5.1), this implies that ϕ ̸= 0 almost
everywhere. Applying this definition again, we obtain that Tϕ has dense range. By Lemma
2.4, we deduce that w is a unitary and that J(1) = 1.
Let w∗Tϕ denote the operator on S2(H) taking any x ∈ S2(H) to w∗Tϕ(x). According to

[32, Theorem 3.3] (see also [11, Corollary 7.4.9.]), there exists a projection q ∈ B(H) such
that x 7→ qJ(x) is a ∗-homomorphism and x 7→ (1− q)J(x) is an anti-∗-homomorphism. As
explained in [23, Remark 4.3], this implies that w∗Tϕ is valued in

L2
(
qB(H)q

) 2
⊕ L2

(
(1− q)B(H)(1− q)

)
⊂ S2(H).

Since Tϕ has dense range and w is a unitary, w∗Tϕ has dense range as well. This forces q
to be equal either to 0 or 1. Thus J : B(H) → B(H) is either a ∗-homomorphism or an
anti-∗-homomorphism.
Assume first that J is a ∗-homomorphism. Recall that J is normal. According to the

description of normal ∗-homomorphisms (see e.g. [34, Theorem IV.5.5]), there exist a Hilbert

space E and a unitary u : H → H
2
⊗ E such that

J(a) = u∗(a⊗ IE)u, a ∈ B(H).

Here H
2
⊗ E stands for the Hilbertian tensor product of H and E and we regard

B(H)⊗B(E) ⊂ B
(
H

2
⊗ E

)
in the usual way. For all x ∈ S2(H), we have Tϕ(x) = wBJ(x) hence w∗Tϕ(x) = BJ(x).
This implies that

(5.4) u(w∗Tϕ(x))u
∗ = uBu∗(x⊗ IE), x ∈ S2(H).

Since B commutes with the range of J , the operator uBu∗ commutes with x ⊗ IE for all
x ∈ S2(H). Consequently, uBu∗ = IH ⊗ c for some positive operator c acting on E. Then it
follows from (5.4) that c ∈ S2(E) and that

w∗Tϕ(x) = u∗(x⊗ c)u, x ∈ S2(H).

Now recall that w∗Tϕ has dense range. The above identity therefore implies that E = C.
Thus c ∈ C \ {0}, u is a unitary of B(H) and w∗Tϕ(x) = c u∗xu for all x ∈ S2(H). Let
v = wu∗. This is a unitary of B(H) and we obtain that

Tϕ(x) = c vxu, x ∈ S2(H).

Let ( · | · ) denote the inner product on H. For any g, h ∈ H, let g ⊗ h ∈ B(H) denote the

rank one operator taking any ξ ∈ H to (ξ|h) g. Then v(g ⊗ h)u = v(g)⊗ u∗(h).
Schur multipliers commute with each other, hence for any δ ∈ D(Ω), we have

Tϕ
(
δx

)
= δTϕ(x), x ∈ S2(H).

Thus vδxu = δvxu for all δ ∈ D(Ω) and all x ∈ S2(H). Applying this with x = g ⊗ h
and using the identities δ(g ⊗ h) = δ(g) ⊗ h and v(g ⊗ h) = v(g) ⊗ h, we deduce that
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v(δ(g)⊗ h)u = δ(v(g)⊗ h)u and hence

vδ(g)⊗ u∗(h) = δv(g)⊗ u∗(h), g, h ∈ H, δ ∈ D(Ω).

Since u∗ ̸= 0, this implies that vδ = δv for all δ ∈ D(Ω). Thus v commutes with D(Ω).
According to (5.2), this implies that v ∈ D(Ω). Thus there exists a unitary α ∈ L∞(Ω)
such that v = Multα. Likewise there exists a unitary β ∈ L∞(Ω) such that u = Multβ. We
therefore obtain the identity (5.3), from which (ii) follows at once.

Assume now that J is an anti ∗-homomorphism. For any f ∈ L2(Ω2), let f̃ ∈ L2(Ω2) be

defined by f̃(s, t) = f(t, s), for a.e. (s, t) ∈ Ω2. Next, if x = Sf , set
tx = Sf̃ . It is clear that

the mapping x 7→ tx on S2(L2(Ω)) extends to a normal anti ∗-homomorphism

ρ : B(H) −→ B(H).

This mapping is an analog of the transposition map on matrices. Obviously, the compo-
sition map J ◦ ρ : B(H) → B(H) is a normal ∗-homomorphism. Now arguing as in the
∗-homomorphism case, we obtain the existence of a constant c ∈ C\{0} and of two unitaries
α, β ∈ L∞(Ω) such that

Tϕ(x) = cMultα ◦ tx ◦Multβ, x ∈ S2(L2(Ω)).

Since α, β are unitaries, Multα and Multβ are unitaries as well and we have Mult−1
α = Multα

and Mult−1
β = Multβ. Writing tx = c−1Multα◦Tϕ(x)◦Multβ, we therefore deduce that x 7→ tx

is a Schur multiplier.
Let us show that this is impossible, except if L2(Ω) has dimension 1. If x 7→ tx is a Schur

multiplier, then there exists ϕ0 ∈ L∞(Ω2) such that

(5.5) ϕ0(s, t)g(s)h(t) = h(s)g(t) a.e.-(s, t) ∈ Ω2,

for all g, h ∈ L2(Ω). If L2(Ω) has dimension ≥ 2, then there exist F1, F2 ∈ Σ such that
0 < µ(F1) < ∞, 0 < µ(F2) < ∞ and F1 ∩ F2 = ∅. The indicator functions g = χF1 and
h = χF2 belong to L2(Ω). Applying (5.5) to these functions, we obtain that h(s)g(t) = 0 for
almost every (s, t) ∈ F2 × F1. Since h(s)g(t) = 1 for (s, t) ∈ F2 × F1 and

(µ⊗ µ)(F2 × F1) = µ(F2)µ(F1) > 0,

we get a contradiction.
Now if we are in the trivial case when L2(Ω) has dimension 1, then (ii) holds true. □

Remark 5.2. Let ϕ ∈ L∞(Ω2), let 1 ≤ p ̸= 2 < ∞ and assume that Tϕ is a bounded Schur
multiplier on Sp(L2(Ω)). It follows from Theorem 5.1 and [36] that if T is an isometry, then
there exist two unitaries α, β ∈ L∞(Ω) such that ϕ(s, t) = α(s)β(t) for a.e. (s, t) ∈ Ω2. It
is clear that the converse is true. For the discrete case (see the following remark), this has
been proved in [1].

Remark 5.3. Let I be an index set and let (ei)i∈I be the standard basis of ℓ2I . Any x ∈ B(ℓ2I)
can be represented by a matrix [xij]i,j∈I defined by xij = (x(ej)|ei) for all i, j ∈ I. Of course
any finitely supported matrix [xij]i,j∈I represents an element of B(H) (actually a finite rank
one), and we let ∥[xij]∥p denote the Sp(ℓ2I)-norm of this element.
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Let m = {mij}(i,j)∈I2 be a bounded family of complex numbers. If we apply the definitions
of this section to Ω = I equipped with the counting measure, the Schur multiplier Tm is
defined on finitely supported matrices by

Tm
(
[xij]

)
= [mijxij].

It therefore follows from Remark 5.2 that the following are equivalent:

(i) There exists 1 ≤ p ̸= 2 <∞ such that

∥[mijxij]∥p = ∥[xij]∥p
for all finitely supported matrices [xij]i,j∈I .

(ii) There exist two families (αi)i∈I and (βj)j∈I in T such that

mij = αiβj, for all (i, j) ∈ I2.

We conclude with a characterisation of a particular class of Schur multipliers, the separat-
ing Herz-Schur multipliers. Let G be a locally compact σ-compact group (see Lemma 3.2).
Suppose 1 ≤ p < ∞. Let φ ∈ L∞(G) and define ϕ ∈ L∞(G2) by ϕ(s, t) = φ(s−1t). The
Schur multiplier THSφ := Tϕ is called a Herz-Schur multiplier (with symbol φ).

In [4, Proposition 4.5], it is shown that a Herz-Schur multiplier THSφ : B(L2(G)) →
B(L2(G)) with positive definite φ such that φ(e) = 1, is a conjugation with a unitary if
and only if φ is a character.

Corollary 5.4. Let 1 ≤ p < ∞. Let G be a locally compact σ-compact group. Let THSφ be

a bounded Herz-Schur multiplier on Sp(L2(G)). Then THSφ is separating if and only if there
exists a continuous character ψ : G→ T and c ∈ C such that φ = cψ almost everywhere.

Proof. If φ(s) = cψ(s) a.e. s ∈ G for some continuous character ψ, then the symbol ϕ of
the Schur multiplier satisfies ϕ(s, t) = φ(s−1t) = cψ(s−1t) = cψ−1(s)ψ(t) for a.e. (s, t) ∈ G2.
Since ψ−1 and ψ are clearly unitaries of L∞(G), by Theorem 5.1, THSφ = Tϕ is separating.

Conversely, assume THSφ separating. Then by Theorem 5.1, there are unitaries α, β ∈
L∞(G) and some c ∈ C such that φ(s−1t) = cα(s)β(t) for a.e. (s, t) ∈ G2. Let r ∈ G. Then
cα(s)β(t) = φ(s−1t) = φ((rs)−1(rt)) = cα(rs)β(rt) for a.e. (s, t) ∈ G2. Leaving the trivial
case c = 0 aside, we deduce that

(5.6)
β(rt)

β(t)
=

α(s)

α(rs)

for a.e. (s, t) ∈ G2. Thus there is some s ∈ G such that (5.6) holds for a.e. t ∈ G. Defining

ψ(r) as the right hand side of (5.6), we then obtain β(rt)
β(t)

= ψ(r) for a.e. t ∈ G. The function

ψ : G→ C with this property is necessarily unique. From ψ(e) = 1 and

ψ(r1r2) =
β(r1r2t)

β(t)
=
β(r1(r2t))

β(r2t)

β(r2t)

β(t)
= ψ(r1)ψ(r2) (a.e. t ∈ G)

we infer that ψ is a character. Since ψ is measurable, by [13, Corollary 22.19 p. 346], it
is automatically continuous. From β(rt) = β(t)ψ(r) for a.e. t ∈ G, we infer by a Fubini
argument that there exists some t ∈ G such that this equality holds for a.e. r ∈ G. Thus,
β coincides a.e. with a continuous function. Choosing this continuous representative for β,



SEPARATING FOURIER AND SCHUR MULTIPLIERS 23

we obtain that for every r in G, β(rt) = β(t)ψ(r) for a.e. t ∈ G. Since β is continuous, this
implies β(rt) = β(t)ψ(r) for all r, t in G. In particular, we have that β(r) = β(e)ψ(r) for
all r ∈ G. Using (5.6), the same argument as above shows that α(s) = α(e)ψ(s−1) for all s
in G. Hence we deduce that φ(s−1t) = cα(e)β(e)ψ(s−1t) for a.e. (s, t) ∈ G2. Therefore, φ
coincides a.e. with a multiple of a continuous character. □
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