
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/362293584

Improving Neural Architecture Search by Mixing a FireFly algorithm with a

Training Free Evaluation

Conference Paper · July 2022

DOI: 10.1109/IJCNN55064.2022.9892861

CITATIONS

0
READS

101

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Ingredible View project

ANTIMOINE View project

Nassim Mokhtari

École Nationale d'Ingénieurs de Brest

3 PUBLICATIONS 14 CITATIONS

SEE PROFILE

Marlene Gilles

Laboratory of Science and Technology of Information, Communication and Knowled…

15 PUBLICATIONS 34 CITATIONS

SEE PROFILE

Pierre De Loor

Laboratory of Science and Technology of Information, Communication and Knowledge

106 PUBLICATIONS 573 CITATIONS

SEE PROFILE

All content following this page was uploaded by Nassim Mokhtari on 27 July 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/362293584_Improving_Neural_Architecture_Search_by_Mixing_a_FireFly_algorithm_with_a_Training_Free_Evaluation?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/362293584_Improving_Neural_Architecture_Search_by_Mixing_a_FireFly_algorithm_with_a_Training_Free_Evaluation?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Ingredible?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ANTIMOINE?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nassim-Mokhtari?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nassim-Mokhtari?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole-Nationale-dIngenieurs-de-Brest?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nassim-Mokhtari?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marlene-Gilles?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marlene-Gilles?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Laboratory_of_Science_and_Technology_of_Information_Communication_and_Knowledge?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marlene-Gilles?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pierre-De-Loor?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pierre-De-Loor?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Laboratory_of_Science_and_Technology_of_Information_Communication_and_Knowledge?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pierre-De-Loor?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nassim-Mokhtari?enrichId=rgreq-59a771d8ef826ebe20a94d72e32a8bf5-XXX&enrichSource=Y292ZXJQYWdlOzM2MjI5MzU4NDtBUzoxMTgyNTM4NTk2OTE3MjQ4QDE2NTg5NTA1ODAyNzU%3D&el=1_x_10&_esc=publicationCoverPdf

Improving Neural Architecture Search by Mixing a
FireFly algorithm with a Training Free Evaluation

Nassim Mokhtari∗, Alexis Nédélec∗, Marlène Gilles∗ and Pierre De Loor∗
∗Lab-STICC (CNRS UMR 6285) - ENIB

Centre Européen de Réalité Virtuelle
Brest, France

Emails: {nassim.mokhtari; alexis.nedelec; marlene.gilles; pierre.deloor}@enib.fr

Abstract—Neural Architecture Search (NAS) algorithms are
used to automate the design of deep neural networks. Finding the
best architecture for a given dataset can be time consuming since
these algorithms have to explore a large number of networks, and
score them according to their performances to choose the most
appropriate one. In this work, we propose a novel metric that
uses the Intra-Cluster Distance (ICD) score to evaluate the ability
of an untrained model to distinguish between data in order to
approximate its quality. We also use an improved version of the
FireFly algorithm, more robust to the local optimums problem
than the baseline FireFly algorithm, as a search technique to
find the best neural network model adapted to a specific dataset.
Experimental results on the different NAS Benchmarks show that
our metric is valid for either scoring CNNs and RNNs, and that
our proposed FireFly algorithm can improve the result obtained
by the state-of-art training-free methods.

Index Terms—Deep Learning, Neural Architecture Search,
Training-free Score, Intra Cluster Distance, Machine Learning,
Metaheuristics, FireFly algorithm

I. INTRODUCTION

Recent advances in the field of image classification and
speech recognition related to deep learning research, partic-
ularly convolutional neural networks, have demonstrated their
interest in feature extraction and classification and seem to be
best suited to many classification problems [1]–[4].

According to the increasing number of hyperparameters
(hidden layers, hidden units,etc.) used to define Deep Learn-
ing architectures and consequently, the increasing number of
possible network organisations (exponential increase) implied
by these hyperparameters, a new challenge is to find solutions
to design the architecture itself with algorithms rather than
manually [5], [6]. To do that, the deep learning community
introduced Neural Architecture Search (NAS) algorithms, that
are capable of automating the discovery of effective architec-
tures [7]–[12].

In order to compare between NAS algorithms efficiency,
the NAS community designed benchmarks specifically for this
purpose [13]–[16]. Indeed, the choice of the architecture of
a neural network can be seen as a combinatorial problem,
where the goal is to find the combination of hyperparameters

French National Agency for Research (ANR-20-CE26-0014-01)

(number of layers, size of layers, etc.) that offers the best
performances. The benchmarks provide a fixed search space
of possible architectures that can be used to compare between
NAS algorithms. Metaheuristics are often used to solve this
kind of problems, and there are several works that exploit
these methods [17]–[21]. The use of metaheuristics involves
evaluating the solutions (neural network architectures) in order
to score their quality.

One of the main problem is that training a model to
evaluate its performance is time consuming, resulting in a huge
computation time, which can take days even using hundred of
GPUs [22]. Therefore methods exists to bypass this learning
phase and evaluate an architecture from metrics based on the
distribution of cells activation relative to different inputs values
gather in a mini-batch, such as Mellor’s metric [22] and Lopes
et al. [23] proposal.

Our contribution in this work can be summarized as follow:

1) A new training-free metric that can approximate the
quality of a neural network by evaluating its ability
to distinguish between data. This metric can be used
to score more kind of neural networks than previous
metrics can do.

2) An Improved version of the FireFly Algorithm (IFA)
using genetic algorithms operators, allowing our IFA
to be more robust to local optimums than the standard
version.

3) A Combination of the proposed metric and the improved
FireFly algorithm in order to find the most interesting
model in a neural architecture search space.

4) An evaluation of our proposition that show that it
outperform the state of the art in term of performances
to find the better architecture for different training tasks.

The rest of the document is organised as follows: Section
2 introduces a synthesis of the various works carried out in
the neural network evaluation in NAS. Section 3 will present
the FireFly algorithm. In Section 4 we present our proposed
method to evaluate an untrained neural network, and a proposal
to improve the FireFly algorithm. Section 5 will present the
experimental results obtained on 4 NAS benchmarks, showing

978-1-7281-8671-9/22/$31.00 ©2022 IEEE

the efficiency of our proposal (valid and improves the state-
of-art scores). Finally, we will summarize in Section 6 the
results of this work as well as the possible improvements.

II. RELATED WORKS

The search space (the set of all possible networks) being
very large, evaluating the effectiveness of a NAS algorithm can
not be done in an exhaustive way. This has led to the creation
of several benchmarks [13]–[16], that consist of tractable NAS
search spaces, and metadata for the training of networks within
that search space [22].

NAS-Bench-101 is composed of 423,624 neural networks
(CNN) that have been trained exhaustively, with three different
initialisations, on the CIFAR-10 dataset for 4, 12, 36, and 108
epochs (423K * 3 * 4 = 5M total trained models) [13]. NAS-
Bench-201 includes 15,625 networks trained multiple times
on CIFAR-10, CIFAR-100, and ImageNet-16-120 [14]. The
NAS-BENCH-NLP is made of 14K neural networks (RNN)
trained on the Penn Tree Bank dataset and the WikiText-2
dataset [16].

NAS algorithms explore the search space in order to find the
best one. However, training each neural network architecture
to select the most appropriate is a time consuming process.
Therefore, being able to evaluate an architecture quality with-
out training it is an alternative to find the most suitable neural
network without spending days on calculation.

Mellor et al. [22] proposed a way to evaluate a neural
network without previous training by identifying a binary
indicator, focusing only on the rectified linear units of the net-
work (0 for inactive unit, and 1 for active unit). The intuition
behind their approach is that the more similar the binary codes
associated with two inputs are, the more challenging it is for
the network to learn how to discriminate these inputs. A mini-
batch of data X mapped through a neural network (composed
of ReLU and several other units type) as f(xi) to get binary
codes C, where each ci refers to the binary code of xi (output
of the i − th ReLU units). Mellor et al. construct a matrix
Kh, using the Hamming distance, where each component of
the matrix is calculated using the Eq. (1). Then, they use the
Eq. (2) to evaluate the neural network: the higher the score,
the better the network.

Kh[i, j] = NA −Hamming distance(ci, cj) (1)

where NA is the number of rectified linear units.

s = log|Kh| (2)

Lopes et al. [23] proposed another way to evaluate a neural
network without training. Based on Mellor’s et al. work [22],
they proposed to use the binary codes to compute a Jacobian
matrix (J). The objective is to determine if an untrained
network could distinguish local linear operators for each data
point, but also have similar results for similar data points
(belong to the same class in a supervised approach). To
estimate this behavior, they evaluate the correlation of J values
with respect to their class by computing a co-variance matrix

for each class present in J . The correlations are individually
evaluated first, as they may have different sizes due to the
number of data points per class. The final score is the sum of
the individual correlation matrices’ scores.

Exploring all the NAS benchmark in order to find the
best model can be a difficult and time consuming task, even
if we use this kind of metrics to avoid the training of the
network, due to the millions of models included in this search
space. To avoid that, there are several works that exploit
metaheuristics to find the more suitable network for a given
task to avoid performing an exhaustive search. These methods
use a representation, like a genome in the case of the Genetic
Algorithm (GA), of the solutions (neural networks in this
case) that will be transformed according to the metaheuristic’s
operator (like the crossover operation in GA). For example,
Sun et al. [19] used a Genetic Algorithm to automatically
design a convolutional neural network, by using the trained
network accuracy as a fitness function.

Rere et al. [21] proposed several metaheuristics (SA, DE
and HS algorithms). Their fitness score was the standard error
on the training set. Carvalho et al. [20] proposed a fitness
function based on both train and test error, that where used
with VNS, SA, GEO and GA algorithms. Ayumi et al. [18]
used a Microcanonical Annealing Algorithm (MAA) to design
a neural network in their works, using the training loss as
a fitness function. Strumberger et al. [17] preferred to use a
FireFly algorithm to design their CNN, where the used fitness
function was based on the error on the test set. Mellor et
al. [22] proposed to use an Assisted Regularised Evolution
Algorithm (AREA), an improved version of REA proposed
by Rere et al. [21], combined with their proposed metric to
find the best neural network architecture.

In this work, we are interested in the use of an improved
version of the FireFly algorithm, combined with a proposed
model evaluation metric as a fitness function (like done by
Mellor et al. [22] and Rere et al. [21]). Note that this
metric allows to address more general networks than previous
methods, with any kind of cells, in order to design a neural
network suitable for a given task without any train.

Our choice of using the FireFly algorithm comes from
the fact that this method includes several metaheuristics such
as simulated annealing (SA), or particle swarm optimization
(PSO), in addition to its fast convergence towards an optimum
[24].

III. OVERVIEW OF THE FIREFLY ALGORITHM (FA)

Based on the behavior of fireflies, this algorithm initially
was developed by Xin-She Yang in 2018 [24]. The FireFly
Algorithm (FA) is based on three rules which are:

1) Fireflies are unisex, so one firefly is attracted to another
without considering its gender.

2) Attractiveness is proportional to brightness, and both are
inversely proportional to distance (decrease as distance
increases). For any pair of fireflies, the less bright will
be attracted by the brighter one, and therefore will move

towards it; if there is no firefly brighter the latter will
move randomly.

3) The brightness of a firefly (solution) is given by the
objective function.

The movement of a firefly i towards a brighter firefly j is
defined in Eq. (3)

xt+1
i = xt

i + β0e
−γr2ij (xt

j − xt
i) + ατ ti (3)

• β0: attractively at r = 0.
• γ: absorption coefficient, (input parameter).
• r: Distance between two fireflies
• α: Weight of random move
• xt

i: Position of firefly i at time t
• τ ti : Vector of random numbers given by a Gaussian

distribution at time t for the firefly i
The FireFly algorithm is illustrated in algorithm 1.

Algorithm 1 FireFly Algorithm

Randomly generate a population of n fireflies
xi=(i=1,2,...,n).
The light intensity Ii of each firefly xi is given by f(xi)
where f is the objective function
Define the coefficients α, β and γ.
while not Stopping criteria do

for i=1 to n do
for j=1 to n do

if Ii¡ Ij then
Move firefly i to firefly j

end if
Vary the attractiveness according to the distance r.
Evaluate the new solution and update the light
intensity

end for
end for
Determining the best solution

end while

IV. PROPOSED METHOD

In this part, we present our approach based on:
• Network quality evaluation with a training-free metric.
• The use of an improved FireFly algorithms to guide the

choice among the huge amount of possible architectures.

A. Network quality evaluation

We propose a new way to score a neural network without
training it by mapping a mini-batch of data through the
network to be evaluated in order to get the binary code (0
for negative value and 1 for positive one) of each input data.
We follow Mellor’s et al. [22] methodology except that we
use all the units of the network, not only the ReLU ones.

Our intuition is that units using an activation function
other than ReLU (or not even using one) can also be used
to formalize the way the model interprets the data (binary
codes). Since we seek to evaluate the ability of a model to

distinguish between data, we can avoid checking similarities
(by calculating the co-variance as done by Rere el al. [21] for
example) and focus more on the degree of difference between
representations. To do that, we propose to use the Intra-Cluster
Distance (ICD), calculated on the binary codes, as a metric
to score the untrained network. Fig. 1 illustrates our network
scoring process, for a mini-batch of data containing 4 samples.

ICD is usually used to evaluate the quality of a clustering
method where the goal is to find a clustering providing groups
that have a small Intra-Cluster Distance value. The Idea is to
calculate the mean distance between each data point and the
center of the cluster (mean of data).

In our work, we score the network according to the ICD
calculated using Eq. (4).

ICD =

∑N
n=1 d(c̄, ci)

N
(4)

Where d is the euclidean distance, ci is the binary code of
the input xi, c̄ is the center of the binary codes (mean of binary
codes) and N is the total number of binary codes (number of
samples in the mini-batch of data).

A small ICD value means that the cluster is compact
(composed of similar samples), a large one means that the
cluster is stretched (the samples are different). Since we are
looking for a network that can provide different binary codes
for different samples, the cluster composed of these binary
codes should be stretched, giving a high ICD value. The higher
the score, the better the network.

B. Improved FireFly Algorithm

Thanks to the attraction mechanism, the FireFly algorithm
quickly reaches an optimum, increasing the chances of being
stuck in a local optimum, even if the FireFly algorithm
includes a diversification (the random walk). In order to
improve the diversification, we propose to use the operators
of the Genetic Algorithm (selection, crossover and mutation),
which could allow a better exploration of the search space, by
combining the components of the solutions already explored.
More details about how these metaheuristic’s operators are
implemented can be found in the Section 4.C

We propose to run an iteration of the Genetic Algorithm
each time the FireFly algorithm is stuck in a local optimum, to
create a new population, completely different from the old one.
We consider the FireFly algorithm stuck in a local optimum,
if it can not improve the best solution after a given number of
iterations (chances). To do that, before each Genetic Algorithm
execution, the current optimum is stored in a list (candidates).
The final result of the exploration (when stopping criteria is
reached) is the best solution from the candidates list. The
algorithm 2 illustrates the proposed approach.

Using this mechanism give the chance to our proposed algo-
rithm to perform a ”minor” diversification (FireFly’s random
walk), which would allow it to better explore a region of the
search space, before exploring another one (obtained by the
Genetic Algorithm).

Fig. 1: Our proposed network scoring process: each sample xi from the mini-batch of data is used to generate a binary code
ci, using the outputs of the hidden units given by xi as input of the neural network. c̄ is the mean of all binary codes, and is
used to calculate the ICD value.

Algorithm 2 Improved FireFly Algorithm

Randomly generate the population
Define MaxChances
chances = MaxChances
candidates = []
LocalBest = NULL
while not Stopping criteria do

Running an iteration of FireFly
Bestt = current population’s best solution
if LocalBest = NULL then
LocalBest = Bestt

else
if fitness(Bestt) ≥ fitness(Bestt−1) then
LocalBest = Bestt

else
chances–

end if
end if
if chances=0 then

add LocalBest to candidates
LocalBest = NULL
Perform an iteration of the Genetic Algorithm
chances = MaxChances

end if
end while
Determining the best solution from the candidates list

Note that the selection of the best solution from the can-
didates list is done according to the models performances
after training. Since our metric can only approximate model’s
quality and cannot measure it exactly, keeping a list of
candidates increases the chances of finding a good architecture.

C. Implementation

Each solution (firefly) represents a network architecture
contained in the NAS benchmark, since each NAS benchmark
has his own representation of an architecture, we have to create

Fig. 2: Network architecture in the NAS-BENCH-101 [13]:
Left part is the skeleton shared by all models, middle part
is a stack of cells and the right part is an example of a cell
(module)

a dedicated implementation for each one. In the following, we
will describe our choice for representing a solution, and the
implementation of the metaheuristic’s operators.

1) NAS-BENCH-101:

In the NAS-BENCH-101, all the networks share the same
skeleton, which is composed of 3 stacks, each one includes
3 cells, as shown in the left part of the Fig. 2. The networks
are different in the ”module” (cell), which is represented by
directed acyclic graphs (up to 7 vertices and 9 edges). The
valid operations at each vertex are ”3x3 convolution”, ”1x1
convolution”, and ”3x3 max-pooling” [13]. The right part of
the Fig. 2 shows an example of a module in the NAS-BENCH-
101.

In the NAS-BENCH-101, a possible architecture is repre-
sented by the adjacency matrix of the module, and a list con-
taining the operations at each vertex. The example illustrated
in Fig. 2 can be represented using the adjacency matrix shown
in Fig. 3 and following operation list : [INPUT, CONV1X1,
CONV3X3, CONV3X3, CONV3X3, MAXPOOL3X3, OUT-



0 1 1 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0


Fig. 3: adjacency matrix for NAS-BENCH-101

PUT].
In order to represent our solution, we choose to keep the

adjacency matrix, and encode the operation from string to float
numbers (between 0 and 1), in order to make possible the
firefly’s move. The encoding is done as follow :

• MAXPOOL3X3 = 0
• CONV1X1 = 0.33
• CONV3X3 = 0.66
The metaheuristic’s operators are implemented as follow :
• Crossover: after the selection of two solutions (parents),

a new solution is generated by:
– Splitting parents’ matrices horizontally in two parts,

then joining the top part of the first parent with the
bottom part of the second one, in order to create the
new adjacency matrix.

– Splitting parents’ encoded operations lists (at ver-
tices) vertically in two parts, then joining the left part
of the first parent with the right one of the second
parent, to create the new encoded operation list.

• Mutation: randomly select a vertex, and then generate a
new float for its operation (random number between 0
and 1).

• Firefly’s move: the move is done by calculating Eq.(3) at
element wise (for each element of the matrix and each
element of the encoded operation list). After each move,
the values less than 0 are set to 0 and the ones that are
greater than 1 are set to 1.

In order to look for a new architecture (given by the
metaheuristic’s operators) in the NAS-BENCH-101, the value
of vertices (x) operators are decoded as follow:

operator(x) =


MAXPOOL3X3, if x < 0.33

CONV 1X1, if 0.33 ≤ x < 0.66

CONV 3X3, otherwise

2) NAS-BENCH-201:

The architectures of the NAS-BENCH-201 share the same
skeleton, which is initiated with a 3-by-3 convolution and a
batch normalization layer. The body includes three stacks of
cells, connected by a residual block. The skeleton ends up with
a global average pooling layer followed by a classification
layer using softmax [14]. The NAS-BENCH-201 supports 5
operations that are encoded as follow:

• none = 0

Fig. 4: Example of a module (cell) in NAS-BENCH-201
0 0 0 0
3 0 0 0
3 4 0 0
1 3 1 0


Fig. 5: adjacency matrix for NAS-BENCH-201

• skip connection = 1
• 1-by-1 convolution = 2
• 3-by-3 convolution = 3
• 3-by-3 average pooling = 4
In the same way as NAS-BENCH-101, the NAS-BENCH-

201 cells can be represented as a directed acyclic graph [14],
so, they can be represented using an adjacency matrix (M),
where M [i, j] defines the operation existing between the nodes
i and j. The Fig. 5 illustrates the adjacency matrix used to
represent the cell illustrated in Fig. 4.

The metaheuristic’s operators are implemented as follow :
• Crossover: done in the same way as the NAS-BENCH-

101 adjacency matrices crossover.
• Mutation: randomly select an element from the matrix,

and then generate a new integer for its value (random
number between 0 and 4).

• Firefly’s move: done in the same way as the NAS-
BENCH-101 adjacency matrices move. After each move,
the values are first rounded to the nearest integer, then,
the ones less than 0 are set to 0 and the ones greater than
4 are set to 4.

V. EXPERIMENTATION

In this section of the paper, we will present the experimental
results obtained on different benchmarks/dataset. All the tests
were conducted on a Laptop, having an Intel i7-11850H CPU,
32GB of RAM, with a NVIDIA RTX A3000 GPU. Note that in
the following untrained model evaluation, only 100 samples
were used to score the neural networks.

A. Metric validation

In order to validate our proposition (based on ICD) for the
evaluation of a neural network without training, we follow the
same testing protocol as Mellor et al. in [22].

Benchmark Dataset Spearman’s τ p-value
NAS-BENCH-101 CIFAR-10 0.499497 2.212611e-129
NAS-BENCH-201 CIFAR-10 0.798250 0.0
NAS-BENCH-201 CIFAR-100 0.796226 0.0

NDS (DARTS) CIFAR-10 0.624632 7.627274e-217
NDS (Amoeba) CIFAR-10 0.256211 2.408139e-31
NDS (ENAS) CIFAR-10 0.501247 1.031932e-127

NDS (NASNET) CIFAR-10 0.387336 1.369921e-72
NDS (PNAS) CIFAR-10 0.490744 1.044203e-121

NAS-BENCH-NLP Penn TreeBank -0.420435 4.588134e-73

TABLE I: Spearman’s τ and p-value of ICD score on different
benchmarks/dataset

We used 2000 architectures from each of NAS-BENCH-
101, NAS-BENCH-201, NAS-BENCH-NLP and NDS. All of
these benchmarks provide the accuracy and loss for every
architecture after its train, this allows us to evaluate and
validate our metric on a huge number of data in a short time.

We calculated the Spearman’s τ to check if a correlation
exists between the network’s score (without learning) and its
final performance (after training), which is the accuracy in the
case of NAS-BENCH-101, NAS-BENCH-201 and NDS, and
the loss in the case of NAS-BENCH-NLP. The results obtained
on the different benchmark/datasets are illustrated in table I.

According to Spearman’s τ presented in table I, we can say
that there is a correlation in all the benchmarks/datasets tested,
achieving 0.798 and 0.796 in NAS-BENCH-201 for CIFAR-
10 and CIFAR-100 meaning that there is a strong correlation
between our score before training and the final accuracy after
network’s training. The p-value is equals to 0 which means
that the probability that τ value is due to random is equals
to 0. The smallest τ value was 0.256 obtained on the NDS
benchmark (Amoeba) using CIFAR-10 dataset, meaning that
the correlation is poor.

On the NAS-BENCH-NLP, we can notice that the value of
Spearman’s τ is negative (-0.42): there is a correlation between
the score before training and the network’s final result. In this
case, the correlation is negative because the network is scored
using the loss, so the least the loss is, the better the network
is.

Fig. 6 illustrates the correlations between ICD scores (before
training) and the final test accuracy (obtained after training)
using a scatter plot. We can notice that in most cases, the
resulted plot has the shape of a line with a positive slope,
showing that the higher the score before training is, the higher
the final test accuracy is. This shows that our proposed metric
is valid and can be used to score a neural network without
training, whatever the network is a CNN or a RNN.

B. Comparison with Mellor et al. [22]

In this part, we compare the results obtained using our
metric with Mellor’s et al proposition [22]. The comparison
is done on the Kendall’s τ scores calculated on the different
NAS benchmarks. Table II shows the obtained results.

We can notice that the Kendall’s τ obtained by Mellor’s et
al. proposition and the ones obtained by our ICD score are al-
most similar, with some better results for Mellor’s proposition

Benchmark Dataset Our score Mellor et al. score
NAS-BENCH-101 CIFAR-10 0.353 0.285
NAS-BENCH-201 CIFAR-10 0.595 0.574
NAS-BENCH-201 CIFAR-100 0.594 0.611

NDS (DARTS) CIFAR-10 0.457 0.467
NDS (Amoeba) CIFAR-10 0.185 0.223
NDS (ENAS) CIFAR-10 0.362 0.365

NDS (NASNET) CIFAR-10 0.271 0.304
NDS (PNAS) CIFAR-10 0.352 0.382

TABLE II: Kendall’s τ for ICD score and Mellor’s proposition
on different benchmarks/dataset

Parameter Value
of run 10

Stopping Criteria 100 generations
Population size 20

Max chances (for IFA only) 5
β0 0.95
γ 0.15
α 0.5

TABLE III: Experimental parameters

in some cases, and better results for our proposition in other
cases, but no significant difference were observed.

From the different results, we can say that Mellor’s et al.
proposed metric and our ICD proposition are equivalent to
evaluate networks on a classification task. However, using all
the network’s units makes our method more generic, since
it supports RNNs models (valid on the NAS-BENCH-NLP
benchmark).

C. Comparison with other training-free methods

In this part, we compare our proposition: proposed metric
combined with the Improved FireFly Algorithm (IFA), to the
state of art training-free methods, and also the baseline FireFly
algorithm.

All the experiments where done using the parameters
presented in table III.

1) NAS-BENCH-101:

We compared our obtained results (for 10 runs) of the FA,
GA and IFA on the NAS-BENCH-101 benchmark, using the
CIFAR-10 dataset, with the NASWOT and AREA proposed
by Mellor et al. [22]. NASWOT consists of choosing the best
network from the N possibilities generated randomly while
REA is the method proposed by Rere et al. [21]. The mean
search time, mean test accuracy and the std are summarized
in table IV.

Method Search (s) Test Accuracy
NASWOT (N=100) 23 91.77± 0.05

REA 12000 93.87± 0.22
AREA 12000 93.91± 0.29

FA (our) 3260 93.00± 1.44
IFA (our) 3596 94.03 ± 0.12

TABLE IV: Comparison on the NAS-BENCH-101 (CIFAR-
10) between our proposition and state of the art methods.
Performance shown in accuracy with mean±std

(a) NAS-BENCH-101 (CIFAR-10) (b) NAS-BENCH-201 (CIFAR-10) (c) NAS-BENCH-201 (CIFAR-100)

(d) NDS-Amoeba (CIFAR-10) (e) NDS-DARTS (CIFAR-10) (f) NDS-ENAS (CIFAR-10)

(g) NDS-NASNET (CIFAR-10) (h) NDS-PNAS (CIFAR-10)

Fig. 6: Plots of our ICD score for untrained architectures in NAS-Bench-201, NAS-Bench-101 and NDS against test accuracy
when trained. The inputs when computing the score for each plot are from CIFAR-10 except for (c) which use CIFAR-100

First, we can notice that IFA performs better than the
baseline FireFly algorithm, giving a better test accuracy with
a smallest standard deviation (more stable). Then, we can
also notice that our proposal outperforms the other methods,
giving 0.12% more accuracy than the AREA method and
more stability (0.12 for IFA versus 0.22 for AREA). All this
while being more than 3 times faster.

2) NAS-BENCH-201:

We compared our obtained results (for 10 runs) of the FA,
GA and IFA on the NAS-BENCH-201 benchmark, using the
CIFAR-10, CIFAR-100, ImageNet16-120 datasets, with the
NASWOT and EPE-NAS methods. EPE-NAS was introduced
by Lopes et al. [23] to be combined to their proposed metric,
their search algorithm is similar to NASWOT (based on ran-
dom selections). As Lopes et al. [23], we run our proposition
on the CIFAR-10 dataset, the obtained architectures are then
trained on the CIFAR-100 and ImageNet16-120. The mean
test accuracy and the std are summarized in table V.

According to the obtained results, we can notice that
our proposed IFA outperforms the state-of-art training-free
methods, on the three datasets of the NAS-BENCH-201, by
achieving better mean accuracies in all cases.

We can also notice that the baseline FireFly (FA) that is us-
ing our proposed metric outperforms the state-of-art training-
free methods on the CIFAR-10 and ImageNet16-120 datasets,

Method CIFAR-10 CIFAR-100 ImageNet16-120
NAS-WOT (N=10) 92.47 ± 0.04 69.20 ± 1.05 42.20 ± 1.37
EPE-NAS (N=10) 92.63 ± 0.32 70.10 ± 1.71 41.92 ± 4.25

NAS-WOT (N=100) 91.41 ± 2.24 67.18 ± 4.14 41.42 ± 1.53
EPE-NAS (N=100) 91.59 ± 0.87 67.19 ± 3.82 38.80 ± 5.41
NAS-WOT (N=500) 91.71 ± 1.37 67.54 ± 2.23 39.84 ± 3.68
EPE-NAS (N=500) 92.27 ± 1.75 69.33 ± 0.66 42.05 ± 3.09

NAS-WOT (N=1000) 91.20 ± 2.04 68.95 ± 0.72 38.08 ± 1.58
EPE-NAS (N=1000) 91.31 ± 1.69 69.58 ± 0.83 41.84 ± 2.06

FA (our) 92.90 ± 1.07 70.10 ± 1.56 43.38 ± 1.80
IFA (our) 93.58 ± 0.15 70.27 ± 0.75 44.53 ± 1.54

TABLE V: Comparison on the NAS-BENCH-201 between our
proposition and state of the art methods. Performance shown
in accuracy with mean±std

and gets the same mean accuracy as EPE-NAS proposed by
Lopes et al. [23] on CIFAR-100 dataset, but has a smaller std
value, meaning that FA is more stable than EPE-NAS.

When comparing FA and IFA, we can notice that IFA
achieves better results with an increased accuracy and smaller
sdt. As excepted using the genetic operations makes our
proposed method more robust to the local optimums problem.

D. Comparison with the top performing state of the art NAS
methods

In the following, we will compare between our proposed
method and the top performing state of the art NAS methods
(based on training), according to the test accuracy.

Benchmark(Dataset) Method score our score
NAS-BENCH-101(CIFAR-10) GA-NAS [26] 94.23 94.03
NAS-BENCH-201(CIFAR-10) β-DARTS [25] 94.36 93.58

NAS-BENCH-201(CIFAR-100) β-DARTS [25] 73.51 70.27
NAS-BENCH-201(ImageNet) β-DARTS-RS [25] 46.71 44.53

TABLE VI: Comparison on different benchmarks/dataset be-
tween our proposition and the top performing state of the art
NAS methods according to the test accuracy

Table VI includes the comparison with GA-NAS proposed
by Rezaei el al. [26] on the NAS-BENCH-101, and also, the
comparison with β-DARTS and β-DARTS-RS proposed by
Peng et al. [25]. We can notice that even if our proposed
training free method does not reach the same performances as
the ones using training, the gap between them is small.

VI. CONCLUSION

The NAS algorithms are able to automate the discovery
of effective architectures for the search space. Finding the
most interesting model can be time consuming since NAS
algorithms have to score the networks according to their
performances to choose the most adapted one.

In order to avoid training models when performing a NAS,
we proposed a novel metric, that approximates the quality of
a model without any training. The latter is based on the use of
the IntraCluster Distance score. The obtained results on differ-
ent NAS Benchmarks (NAS-BENCH-101, NAS-BENCH-201,
NDS and NAS-BENCH-NLP) show that our metric is valid
for scoring either CNNs and RNNs.

We proposed to use an Improved Firefly algorithm (IFA),
that uses Genetic Algorithm’s operators, allowing it to be
more robust than the baseline FireFly algorithm to the local
optimums problem, as a search technique to find the best
architecture for a given dataset. Experimental results on the
NAS-BENCH-101 and NAS-BENCH-201 benchmarks show
that our IFA combined to our proposed metric outperform
the state-of-art training-free methods and the baseline FireFly
algorithm.

As a future work, we expect to find a generic way to
represent the hyperparameters of a neural network architecture
(layer’s count, number of unit, cell type, etc.) in order to use
our improved FireFly algorithm associated to the proposed
metric to find the most suitable model for a given dataset.

ACKNOWLEDGEMENTS
This work has been carried out within the French-Canadian

project DOMAID which is funded by the National Agency for
Research (ANR-20-CE26-0014-01) and the FRQSC

REFERENCES

[1] Cao, X., Yao, J., Xu, Z., and Meng, D. : Hyperspec-tral image classi-
fication with convolutional neural net-work and active learning.IEEE
Transactions on Geo-science and Remote Sensing, 58(7):4604–4616,
2020.

[2] Martins, V., Kaleita, A., Gelder, B., Silveira, H., and Abe,C. : Exploring
multiscale object-based convo-lutional neural network (multi-ocnn) for
remote sens-ing image classification at high spatial resolution.IS-PRS
Journal of Photogrammetry and Remote Sensing,168:56–73,2020.

[3] Mustaqeem and Kwon, S.: Mlt-dnet: Speech emo-tion recognition using
1d dilated cnn based on multi-learning trick approach.Expert Systems
with Applica-tions, 167, 2020.

[4] Zhang, N., Wang, J., Wei, W., Qu, X., Cheng, N., and Xiao,J. :
Cacnet: Cube attentional cnn for automaticspeech recognition. In2021
International Joint Con-ference on Neural Networks (IJCNN), pages
1–7, 2021.

[5] Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture search: A
survey. Journal of Machine Learning Research, 20(55):1–21, 2019.

[6] Wistuba, M., Rawat, A., and Pedapati, T. A survey on neural architecture
search. arXiv preprint arXiv:1905.01392, 2019.

[7] Zoph, B. and Le, Q. V. Neural architecture search with reinforcement
learning. In International Conference on Learning Representations, 2017.

[8] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning transferable
architectures for scalable image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018.

[9] Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. Efficient neural
architecture search via parameter sharing. In International Conference
on Machine Learning, 2018.

[10] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard,
A., and Le, Q. V. MnasNet: Platform-aware neural architecture search
for mobile. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

[11] Liu, H., Simonyan, K., and Yang, Y. DARTS: Differentiable architecture
search. In International Conference on Learning Representations, 2019.

[12] Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regularized evolution
for image classifier architecture search. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2019.

[13] Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K. & Hutter,
F. : NAS-Bench-101: Towards Reproducible Neural Architecture Search.
Proceedings of the 36th International Conference on Machine Learning,
in Proceedings of Machine Learning Research, 2019.

[14] Dong, X. and Yang, Y., “NAS-Bench-201: Extending the Scope of
Reproducible Neural Architecture Search”, arXiv e-prints, 2020.

[15] Radosavovic, Ilija & Johnson, Justin & Xie, Saining & Lo, Wan-Yen &
Dollár, Piotr : On Network Design Spaces for Visual Recognition, 2019.

[16] Klyuchnikov, Nikita & Trofimov, Ilya & Artemova, Ekaterina & Sal-
nikov, Mikhail & Fedorov, Maxim & Burnaev, Evgeny. NAS-Bench-
NLP: Neural Architecture Search Benchmark for Natural Language
Processing, 2020.

[17] I. Strumberger, E. Tuba, N. Bacanin,M. Zivkovic, M. Beko, and M.
Tuba. Designing convolutional neural network architecture by the firefly
algorithm. In2019 International Young Engineers Forum (YEF-ECE),
pages 59–65, 2019.

[18] Vina Ayumi, L.M. Rere, Mohamad IvanFanany, and Aniati Arymurthy.
Optimization of convolutional neural network using microcanonical
annealing algorithm. 102016.

[19] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary Yen. Automatically
designing cnn architectures using Genetic Algorithm for image classifi-
cation, 08 2018.

[20] Adenilson Carvalho, Fernando Ramos, and Antonio Chaves. Metaheuris-
tics for the feed forward artificial neural network (ann)architecture
optimization problem.Neural Computing and Applications, 20, 10 2010.

[21] L.M. Rere, Mohamad Ivan Fanany,and Aniati Arymurthy.Metaheuristic
algorithms for convolution neural network.Computational Intelligence
and Neuroscience, 2016.

[22] Mellor, J., Turner, J., Storkey, A. Crowley, E.J. : Neural Architecture
Search without Training. Proceedings of the 38th International Con-
ference on Machine Learning, in Proceedings of Machine Learning
Research,2021

[23] Lopes, Vasco et al. “EPE-NAS: Efficient Performance Estimation With-
out Training for Neural Architecture Search.” ICANN (2021).

[24] Jianbo Yang, Minh Nhut Nguyen,Phyo Phyo San, Xiao Li Li, and
Shonali Krishnaswamy. Deep convolutional neural networks on mul-
tichannel time series for human activity recognition, IJCAI, 2015

[25] Ye, Peng and Li, Baopu and Li, Yikang and Chen, Tao and Fan,
Jiayuan and Ouyang, Wanli. β-DARTS: Beta-Decay Regularization for
Differentiable Architecture Search,2022

[26] Rezaei, Seyed Saeed Changiz and Han, Fred X and Niu, Di and
Salameh, Mohammad and Mills, Keith and Lian, Shuo and Lu,
Wei and Jui, Shangling. Generative Adversarial Neural Architecture
Search,arXiv,2021

View publication stats

https://www.researchgate.net/publication/362293584

