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The elasticity of disordered and polydisperse polymer networks is a fundamental

problem of soft matter physics that is still open. Here, we self-assemble polymer

networks via simulations of a mixture of bivalent and tri- or tetravalent patchy

particles, which result in an exponential strand length distribution analogous to

that of experimental randomly crosslinked systems. After assembly, the network

connectivity and topology are frozen and the resulting system is characterized. We

find that the fractal structure of the network depends on the number density at

which the assembly has been carried out, but that systems with the same mean

valence and same assembly density have the same structural properties. Moreover,

we compute the long-time limit of the mean-squared displacement, also known as

the (squared) localization length, of the crosslinks and of the middle monomers of

the strands, showing that the dynamics of long strands is well described by the tube

model. Finally, we find a relation connecting these two localization lengths at high
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density, and connect the crosslink localization length to the shear modulus of the

system.

I. INTRODUCTION

Polymer networks are solids that can be obtained by crosslinking polymeric chains [1].

From rubbers [2] to hydrogels [3] to biological networks [4, 5], these systems have countless

industrial [6] and biomedical [7] applications. Understanding how the macroscopic properties

of polymer networks, and in particular their elasticity, depend on their structure, chemistry

and topology is still a largely open problem [8–13]. To unravel these questions, numerical

simulations [12–34] are an invaluable tool, as they allow a control on the structure and

topology of the network that is impossible to achieve in experiments, making it possible to

disentangle the effects of different microscopic contributions.

Since crosslinked polymer networks are systems with quenched (frozen-in) disorder, their

properties depend on the way the network is formed. Therefore, when simulating a model

polymer network, the first step is to choose an assembly protocol. One possibility is start-

ing with a system of precursor polymers, which can be mono- or poly-disperse, linear or

branched, which are then crosslinked via some procedure. The crosslinking can be allowed

to occur only between chain ends (end-linking) [13–20, 25] or between any pair of monomers

(random crosslinking) [12, 21–24]. Random crosslinking, however, is only efficient at melt

densities, whereas end-linking suffers from kinetic limitations, as reaching a perfect (fully-

bonded) configuration requires a time that grows quickly as the length of chains grows

[14–16]. Ad hoc methods can be used to increase the number of bonded sites [15, 16]. Using

these methods is however not completely satisfactory, since the final structure in principle

depends on the exact method that was used to force the formation of the bonds. Another

option is to impose some lattice connectivity, like the diamond lattice [26–31]. Several of

these “lattice networks” can then be randomly superimposed in order to obtain a disordered

structure [27, 29, 31]. These systems, however, present an underlying ordered topology and

monodisperse strand length, contrary to most experimental systems.

Here we study a model of disordered, polydisperse and defect-free (i.e., fully bonded)
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networks, which has originally been developed for the study of microgels [35–40] and later

applied to the study of phantom [32], double [33] and hyper-auxetic networks [34]. This

model has been previously validated against experiments of microgels [35, 40] and we there-

fore consider it as a viable computational counterpart of experimentally realizable hydrogel

networks. The macroscopic properties of these networks, which are self-assembled via equi-

librium simulations, depend only on a very small number of parameters. Moreover, the

self-assembly procedure naturally gives rise to a disordered topology with a well-defined ex-

ponential chain length distribution, similar to that of randomly crosslinked networks [21, 41]

or resulting from step-growth polymerization [42]. Here, we use molecular dynamics sim-

ulations to characterize the structure and elasticity of these systems, and show how these

properties are related to each other.

In Sec. II, we give a detailed description of the simulation model and of the self-assembly

procedure. In Sec. III, we study the structural properties of these networks, such as strand

length distribution, radius of gyration of the chains, bond angle distribution and structure

factor. In Sec. IV, we analyze their elastic properties, connecting them to static observables.

We conclude in Sec. V with a discussion of our results and of future perspectives.

II. MODEL AND METHODS

We generate a polydisperse network via the method described in Ref. [35]. This method

was originally developed for MD simulations of microgels [35–40], but can be generalized

to the case of bulk systems [32–34]. In contrast to network-generation approaches using

direct simulations of cross-linking dynamics [12–25] or based on compenetrating lattices

[27, 29, 31], this method allows for an efficient generation of fully-bonded networks by using

a bottom-up self-assembly approach [43] based on a bond-swapping potential, as detailed

below.

A. Network assembly using patchy particles

The starting point is a mixture of two different species of patchy particles, i.e., spheres of

identical size and mass decorated by a certain number of interaction sites (the “patches”)

arranged in a regular configuration. The number of patches per particle is called the valence.
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We consider systems of volume Vinit containing Mtot = M2 + Mf particles, or monomers,

with M2 bivalent particles and Mf f -valent particles. Two patchy particles are reversibly

attached to each other when at least two of their respective patches are overlapping. Only

pairs formed by two bivalent particles or by a bivalent particle and an f -valent particle can

be attached to each other, so that crosslinks can be connected only through chains made of

bivalent particles to form branched structures. In the following we consider the cases f = 3

and f = 4.

The interaction potential between a pair of particles i and j is

U(rij, {pi}, {pj}) = UWCA(rij) +
∑

Rµ∈{pi}

∑
Rν∈{pj}

Upatch(Rµν), (1)

where rij = ri − rj is the particle-particle distance, rij ≡ |rij|, {pi}, {pj} are the sets of

unit vectors identifying the patches of particles i and j, respectively, Rµ and Rν are the

positions of patch µ on particle i and patch ν on particle j and Rµν = |rij +Rµ−Rν | is their

distance. The potential UWCA is a Lennard-Jones potential cut and shifted at the minimum

to be purely repulsive [44]:

UWCA(rij) =


4ε

[(
σ
rij

)12

−
(
σ
rij

)6

+ 1
4

]
rij ≤ 21/6σ

0 otherwise.

(2)

In the following, all quantities are given in reduced units, with the units of energy, length

and mass are thus, respectively, ε, σ and m, where m is the mass of a monomer. The

units of temperature and time are, respectively, T ∗ = ε/kB and τ ∗ =
√
mσ2/ε, where kB is

Boltzmann’s constant, which we set equal to 1. The patch potential takes the form

Upatch(Rµν) =

2εµν

(
σ4
p

2R4
µν
− 1
)

exp
(

σp
Rµν−rc + 2

)
Rµν < rc

0 otherwise,
(3)

where rc = 1.5σp (and therefore rc is the distance at which Upatch(rc) = 0) and σp is the

position of the minimum of the attractive well of depth εµν , which we set to σp = 0.4. The

resulting interaction potential is shown in Fig. 1A. The interaction energy εµν is εµν = 1

for all pairs of patches, except for pairs of f -valent particles, for which εµν = 0, so that the
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bonding between two f -valent particles (crosslinks) is forbidden. The patches are arranged

on the poles, equidistant on the equator, and on a tetrahedron for bi-, tri- and tetravalent

particles, respectively (see for instance Fig. 1B). In all cases, the distance between the patch

and the center of the particle is 1/2. The pair potential given in Eq. (3) is complemented

by a three-body potential Utriplet acting on triplets of nearby patches [45]:

Utriplet = w
∑
λ,µ,ν

εµνU3(rλ,µ)U3(rλ,ν), (4)

where U3(r) has the following form, also shown in Fig. 1A:

U3(r) =

1 r < rmin

−Upatch(r)/εµν rmin < r < rc.
(5)

The term (4) has a twofold effect: On one hand it enforces the single-bond-per-patch con-

dition: a given patch cannot be involved in more than one bond at a time. On the other

hand, the three-body term also allows to introduce an efficient bond-swapping mechanism

that makes it possible to easily equilibrate the system at extremely low temperatures. The

parameter w appearing in Eq. (4) can be used to tune the amplitude of Utriplet, in order to

favor (w ' 1) or hamper (w � 1) bond swapping [45].

The assembly is performed via molecular dynamics simulations (GPU implementation

of the oxDNA software [46]) run in the NV T ensemble at T = Tassembly = 0.05. At this

low temperature, the system approaches the fully-bonded ground state. Since the bonds can

break and reform with an efficiency that is greatly improved by the bond-swapping potential,

Eq. (4), the system can quickly reach equilibrium. Thus, for a given Tassembly, the properties

of the final state are uniquely determined by only three parameters, as it will be shown

below: the fraction of crosslinks c = Mf/Mtot, the crosslink valence f , and the number

density ρinit = Mtot/Vinit at which the assembly has been carried out. We note that the

variation of the latter parameter can be regarded as a crude way for tuning solvent quality.

In fact, from a mean-field-like perspective an increase in the assembly density corresponds

to a stronger effective monomer-monomer interaction.

Once the majority of the bonds (> 99.8%) are formed, the simulation is stopped and

the particles which do not belong to the percolating cluster (at most 4% of the total in all
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FIG. 1. (A) Patch potential, Eq. (3), and U3 potential, Eq. (5). (B) Schematics of a tetravalent

(f = 4, orange) patchy particle attached to a bivalent (f = 2, blue) particle. The grey spheres

represent the patches. (C) Snapshot of one of the simulated networks (f = 3, c = 1%, ρinit = 0.1,

ρ = 0.97). Bivalent particles are shown in blue, while crosslinks are shown in orange. Note that

some of the particles look detached from the network because of periodic-boundary conditions.

the simulated systems) are removed. Although we chose for practical reasons to stop the

reaction before reaching the fully-bonded ground state of the system, reaching this state is

in principle possible with a greater computational effort.

The so-obtained networks still contain a few dangling ends. As only a very small fraction

of particles is part of these loose strands, we do not expect them to have a significant effect

on the elastic properties of the network. However, due to their very long relaxation times,

which are known to grow exponentially with the length of the strands [47, 48], they could lead

to a slow relaxation of the monomer mean-squared displacement, which is analyzed below.

To avoid these long relaxation times, we decide to remove all the (simple and branched)

dangling ends in the system, obtaining a perfect fully-bonded network. We note that for

systems with tetravalent crosslinks the removal of the dangling ends has the side effect

of introducing some trivalent crosslinks in the system, since when a dangling end is cut

a crosslink loses a bond. In this case, the crosslink fraction should be calculated as c =

(M3 +M4)/(M2 +M3 +M4). However, for all the systems considered, with the exception of

c = 1%, where the number of dangling ends can become comparable to that of crosslinkers,

we have M3 � M4 and therefore the presence of the trivalent crosslinks is negligible. By

contrast, in the case of trivalent crosslinks the removal of dangling ends transforms crosslinks

into regular bifunctional particles. Regardless, in all cases at the end of the procedure we
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obtain a network which is naturally disordered and almost fully-bonded [32, 34].

B. NPT simulations with frozen topology and connectivity

Once the dangling ends are removed, the interaction potential of Eq. (1) is replaced by

the Kremer-Grest potential [49, 50]: The excluded volume interaction is still given by the

WCA potential, Eq. (2), but the reversible bonds of the patchy system are replaced by

permanent FENE bonds, with interaction potential

UFENE(rij) = −kr
2
0

2
ln
[
1− (rij/r0)2] , (6)

where k = 30ε/σ2 and r0 = 1.5σ. The combined effect of the FENE and the WCA potentials

prevents chain crossing at the thermodynamic conditions considered here, so that both the

topology and connectivity of the system are frozen [50].

We consider systems containing an initial number of particles (before the assembly of

the network) Mtot = 5 · 104, with initial crosslink fractions c = 1%, 5%, and 10%, and two

different crosslink valences, f = 3 (trivalent) and f = 4. For c = 5% and 10%, we build

the network starting from initial number densities ρinit = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.85

(the latter is chosen to mimic typical melt concentrations [50], and thus an elastomer-like

system), whereas for c = 1% we only considered ρinit = 0.05, 0.1 and 0.2, as the network

phase separates at higher densities (see discussion below). For each system, we consider

two independent realizations to make sure that their properties do not depend in a relevant

manner from the initial conditions. Moreover, for c = 5%, 10% and ρinit = 0.1, 0.2 we have

also considered systems of 4 · 105 particles in order to check for the presence of significant

finite size effects, which were found to be absent for the structural and dynamic quantities

considered in this work. We note that not all combinations of f , c and ρinit will generate

a homogeneous percolating network. This is because the thermodynamics of systems of

limited-valence particles like those used here to generate the networks is controlled by the

mean valence [51–56], defined as [57]

F ≡ 2M2 + fMf

M2 +Mf

= 2 + (f − 2)c. (7)
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The larger the value of F , the larger the density at which the system undergoes a liquid-gas

phase separation. Moreover, upon approaching the phase separation boundary, the self-

assembled networks becomes increasingly heterogeneous and thus we make sure to be far

enough from this boundary by looking at structural quantities such as the structure factor

(see below). The compositions and densities of all the systems studied are reported in detail

in the Appendix (Tables I and II).

Molecular dynamics simulations of the network with frozen topology and connectivity are

run using the LAMMPS package [58]. The system is initially allowed to relax to pressure

P = 0 at constant temperature T = 1.0; then, NPT simulations are run at these T, P values.

An equilibration run of 107 time steps is followed by a production run of 2 · 108 time steps.

Temperature and pressure are kept constant by Nosé-Hoover chains (three thermostats and

barostats) [59–61], insuring a correct sampling of the NPT ensemble. The integration time

step is δt = 0.003 for all the simulations, and the relaxation time for the thermostat is chosen

to be δt · Tdamp = 0.3, whereas the relaxation time for the barostat is δt · Pdamp = 3 [59].

The three dimensions of the box, Lx, Ly and Lz, are allowed to fluctuate independently, so

that we have access to both volume and shape fluctuations, which are used to estimate the

shear and bulk moduli G and K, respectively [39]. The total density ρ is thus defined as

ρ ≡ Mtot/〈V 〉, where V = LxLyLz and 〈·〉 denotes an average over all configurations. We

note that here Mtot refers to the number of particles after all the dangling ends have been

removed (see Tables I and II).

III. STRUCTURE

In this Section we study the topological and structural properties of the networks.

A. Density and strand length distribution

After the relaxation at P = 0, the final mean density of the system, ρ ≡Mtot/〈V 〉, will in

general be different from the assembly density ρinit. In Fig. 2A, we show ρ as a function of

ρinit for different values of c and f . One can see that for most of the systems with ρinit < 0.85,

we have ρ > ρinit, i.e., the network contracts after switching the interaction from patchy to

Kremer-Grest and letting the system relax to P = 0. This is due to the fact that the chains
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B

FIG. 2. (A) Average density, ρ ≡ Mtot/〈V 〉, as a function of the assembly density of the system,

for different values of f and c. F is the mean valence. The f = 3, c = 10% and f = 4, c = 5%

curves, which have the same F , overlap almost perfectly. (B) Number of strands of length n,

mn, normalized by the number of strands of unitary length, m1. Points are simulation data, with

different colors corresponding to different f and c values and different symbols corresponding to

different densities. Lines are the predictions of Eq. (8).

are stiffer with the patchy potential, due to the directionality of the bonds, which is absent

with the Kremer-Grest potential. The only exceptions are f = 3, c = 5%, ρinit = 0.5 and

f = 3, c = 1%, ρinit = 0.2, for which the network expands slightly (ρ < ρinit). For ρinit = 0.85,

on the other hand, all the systems expand, as discussed below. Finally, we note that the

curves for f = 4, c = 5% and f = 3, c = 10% superimpose perfectly, implying that the

parameter controlling ρ is the mean valence F (Eq. (7)). Indeed, it can be verified that both

these systems have F = 2.1 (see also Tabs. I and II). This is expected for systems of patchy

particles, where the mean valence F is known to control the equilibrium thermodynamic

properties of the system [53–56].

One of the most relevant properties of the network is the strand length distribution,

where a strand is a segment of bivalent particles between two crosslinks. Here we define

the strand length n as the average number of bivalent particles contained in such segment,

so that a strand of length n will comprise of n beads and n + 1 bonds. We recall that,

since two crosslinks cannot bind to each other in our system, the minimum chain length

is n = 1, corresponding to 2 bonds. Defining mn as the number of network strands of

length n, we can compute the normalized distribution of the chemical lengths n of the

chains, mn/m1, which is shown in Fig. 2B for systems with different f, c and ρ. For all
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systems, the distribution is exponentially decaying, consistent with the behavior found for

random-crosslinking from a melt of precursor chains [21, 41], and divalent self-assemblying

systems [42, 62, 63]. Moreover, mn is idependent of density, as one expects given the

equilibrium nature of the assembly protocol. The distribution is given by the well-known

formula of Flory [64]:

mn

m1

=

(
1− 1

Ns

)n−1

, (8)

where Ns is the mean strand length, defined as

Ns ≡ 〈n〉n =
1

Ms

∞∑
n=1

mnn =
2

f

(
c−1 − 1

)
. (9)

In Eq. (9), 〈·〉n denotes over the configurations and over the strands and Ms the total number

of strands. The theoretical probability distribution is shown in Fig. 2B by continuous lines,

and reproduces well the simulation data.

B. Strand conformation and entanglements

In order to study the spatial conformation of the strands, we consider the mean radius

of gyration of single strands of length n, Rg(n). To calculate Rg, we consider as part of the

strand only the bivalent particles and the bonds that connect them, excluding the crosslinks.

Thus, Rg(1) = 0, since for n = 1 we only have a single bead, and for n = 2 (two beads)

we have Rg(2) = lb/2, with lb the bond length. In Fig. 3A we show Rg(n)/Rg(2) for all the

simulated systems. As a consequence of Eqs. (8) and (9), networks with low c contain on

average longer strands. In particular, for c = 1% we observe chain lengths n up to ' 500.

Fitting Rg(n) for all c values to the power law (n − 1)ν in the range n − 1 ≥ 10, yields

ν = 0.59± 0.02 for f = 3 and ν = 0.60± 0.02 for f = 4 (see Fig. 3A). Within the accuracy

of the data, these values are compatible with the Flory exponent for self-avoiding walks, i.e.,

ν = 0.59 [1], suggesting that in the considered range of n, the strands adopt conformations

akin to those of linear chains in a good solvent. The inverse of the above metric exponent

yields the fractal dimension of the individual strands, 1/ν = 1.7. Note that this fractal

dimension is, in general, different from that of the whole network, and that for randomly
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FIG. 3. (A) Normalized mean radius of gyration of the strands of length n as a function of n− 1.

Points are simulation data, with different colors corresponding to different f and c values and

different symbols corresponding to different densities. Solid lines are power-law fits in the range

n − 1 ≥ 10. The data for f = 4 have been shifted up by a factor 3 in order to aid visualization.

Note that for each pair of f, c values, all the densities ρ considered are included in the plot, and

the vertical arrows denote the direction in which ρ increases. (B) Mean-squared strand radius of

gyration R2
g ≡ 〈R2

g(n)〉n, normalized by 〈(n − 1)2ν〉n, as a function of density, for different values

of f and c.

branched polymers this is predicted to be df = 2 [65]. We also note that at fixed n, Rg(n)

is basically independent of the crosslink concentration c and of the crosslink valence f , and

depends only weakly on the density of the system. This is shown in Fig. 3B, where we plot

the quantity 〈R2
g(n)〉n/〈(n − 1)2ν〉n, which is proportional to the effective Kuhn length [1]

of the chains. For all systems considered here, this is a monotonically increasing function

of ρ and, discounting the numerical noise, a monotonically decreasing function of c. From

Fig. 3B, we also see that in the systems f = 4, c = 5% and f = 3, c = 10%, which have

the same mean valence F , the strands have the same conformation. The same qualitative

behavior is observed when considering the end-to-end distance Re (not shown).

The fact that Rg increases with density might surprise, since in polymeric systems with

free chains, Rg usually decreases with increasing ρ [1]. This behavior, however, can be

understood qualitatively by analyzing the bond angle distribution of the strands, P (θ),

where θ is the angle between bonded triplets of monomers. In Fig. 4 we report with solid

lines P (θ) for c = 5% and f = 3 (A) and f = 4 (B) (the other systems show the same

qualitative behavior). These are compared with the distribution obtained before changing
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FIG. 4. Bond angle distribution P (θ) for f = 3, c = 5% (A) and f = 4, c = 5% (B). The dotted

lines are bond angle distributions before the system is allowed to relax to zero pressure. Dashed

lines: data for a polymer solution of 50 chains of length 1000 for ρ = 0.11 (data from Ref. [66]).

the interaction potential from patchy to Kremer-Grest and allowing the system to relax to

P = 0 (dotted lines). Before the system is brought to P = 0, P (θ) displays a peak at

θ ' 142◦, which originates from the the patchy potential. Moreover, P (θ) drops to zero

for θ . 60◦, which is the minimum allowed angle considering the excluded volume (WCA)

interaction.

We note that before relaxation P (θ) only depends on f and c and not on ρinit. As the

bonding potential is switched to the directional patchy one to the non-directional FENE one

and the system relaxes to P = 0, the curve becomes broader, and the peak shifts to lower

values of θ. At low ρ the system can completely relax and P (θ) assumes a form identical

to that of chains in a dilute solution (dashed lines; data from Ref. [66]). By contrast, for

high ρ, P (θ) retains a shape which is quite similar to the shape it had before relaxation,

signaling the presence of strong topological constraints, i.e., entanglements [1], resulting

from the non-crossability of the strands. These constraints prevent the bond angle from

fully relaxing, as signaled by the survival of the θ ' 142◦ peak. We can see that for both

systems, the average bond angle 〈θ〉 increases with increasing density: This results in an

increase of the effective persistence length [1] of the strands, and therefore an increase of

Rg(n), as shown in Fig. 3B. This phenomenon is reminiscent of topological rigidification, for

which the system’s rigidity increases with increasing topological complexity as observed in

knotted rings and star polymers [67], although the limited range of strand lengths available

here does not allow to confirm the exact nature of this rigidification. We note that the
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number of monomers Mtot, as a function of monomer density ρ, for different values of f and c.

Dashed line: power law with slope 1.5. Dash-dotted lines: the three crosslink fractions investigated

(c = 1%, 5%, and 10%).

persistence length of chains of patchy particles in solution decreases with ρinit, but only

weakly (see Appendix AI); thus, this ρinit-dependence cannot, by itself, explain the effect

observed in P (θ).

The increase of the number of entanglements with increasing density can be more directly

quantified using the method of primitive path analysis [68, 69]. The procedure is as follows:

(1) The crosslinks are fixed in space, then (2) the intra-chain excluded volume interactions

are turned off, while the inter-chain interactions are kept, and finally (3) the system is

cooled to T = 0. Since intra-chain excluded volume interactions are turned off, the chains

are straightened; however, the inter-chain interaction still prevents the chains from passing

through each other, and thus the topology is conserved. The network is thus reduced to a

mesh of primitive paths. We then count the number of contacts between any two primitive

paths, and refer to it as the the number of kinks, Mk. Under the assumption that two

strands do not entangle more than once, Mk is proportional to the number of entanglements

Me, i.e., Mk ∝ Me ' Mtot/4Ne, where Ne is the entanglement length [1, 68]. One can see

from Fig. 5 that the fraction of kinks Mk/Mtot increases with ρ and f and decreases with

c. The ρ-dependence at high-density seems to be compatible with a power-law of exponent

1.5, although the limited density range does not allow to draw any definite conclusion (see

the dashed line reported in Fig. 5 as reference). It is important to stress that in our systems

an increase in ρ is not equivalent to that which one would obtain by simply compressing the
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system (i.e., by collapsing the network), since the degree of entanglement of the network

strongly depends on the assembly density ρinit.

The results of the primitive path analysis presented above is important for several reasons:

First of all, from the methodology point of view it is clear that in the protocol we employ to

build disordered networks the number of topological kinks (and therefore of entanglements)

can be controlled, in a statistical sense, by varying ρinit. Leveraging this feature will make

it possible to investigate fully-entangled, polydisperse, disordered networks. Secondly, for

the particular choice of parameters we made here, these results show that the investigated

systems are at most lightly entangled, as the order of magnitude of the number of entan-

glements (which is smaller than Mk) never exceeds that of the number of crosslinks (also

shown in Fig 5). Finally, the increase of the number of entanglements with density may

explain the apparent topological rigidification discussed above.

C. Structure factor

To gain insight into the global structure of the network, it is useful to study the structure

factor S(q) [70]. We report the total structure factor S(q) in Fig. 6A and the structure factor

of the crosslinks Sf (q) in Fig. 6B for f = 3, c = 5% and different values of the monomer

density ρ. The structure factors of the other systems display the same qualitative features.

All the systems have rather large isothermal compressibility κT = S(0)/ρkBT [70], which

increases with decreasing density. In a finite range of small wave-vectors q, the behavior of

S(q) is compatible with a power law, S(q) ∝ q−α. This behavior results from the fractal

structure and inherent (strand-)polidispersity of the network, and also from the presence of

holes with a wide size range, clearly visible in Fig.1 [71–73]. The value of α decreases with

increasing monomer density; for the systems studied here, it was found that 0.5 . α . 1.3.

For larger q, S(q) behaves similarly to that of a liquid, with a contact peak at q ' 8 ' 2π/σ,

followed by periodic oscillations.

In Fig. 6B, we show the structure factor of the crosslinks, Sf (q), for the same systems.

The qualitative behavior of Sf (q) is very similar to that of S(q), with power-law decrease at

small q, followed at larger q by a liquid-like oscillatory behavior (inset). However, the height

of Sf (q) in the small-q limit is much lower than that of S(q), and also the oscillations have

much smaller amplitude, showing that the location of the crosslinks is more random than
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FIG. 6. (A) Structure factor of all the particles for the system with f = 3, c = 5%. At low

density, the behavior of S(q) is consistent with a power law with exponent −α, consistent with

the fractal and polydisperse nature of the network (slope with α = 1.3 reported for comparison).

(B) Structure factor of the crosslinks (same systems as in A). Inset : Sf (q) on linear scale. (C)

Comparison between the structure factor S(q) of the f = 3, c = 10% system and that of the

f = 4, c = 5% system for different densities. Note that these systems have the same mean valence

F and the same density ρ. (D) Comparison between the structure factor of two selected systems

which have the same density ρ = 0.25, but different F (continuous lines). Dashed lines: data for a

polymer solution of 50 chains of length 1000 for ρ = 0.20 and 0.26 (data from Ref. [66]).

the one of the monomers. Note that since two f -valent particles cannot bind, the distance

of closest approach between two crosslinks is ' 2σ and therefore the contact peak of Sf (q)

is found at q ' π/σ.

In Fig. 6C we compare the total structure factors S(q) of the systems f = 4, c = 5%

and f = 3, c = 10% for different values of the total density ρ. As noted above, these

two systems have approximately the same mean valence F and therefore also same ratio
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line). Dashed line: power law with slope 2 (ballistic regime). (B) Squared localization length of all

the particles as a function of ρ for all investigated systems. Dashed line: power law with slope −1.

ρ/ρinit (Fig. 2A). One can see that curves corresponding to similar densities superimpose

almost perfectly, suggesting that S(q) is controlled either by ρ alone or by ρ and F . In

Fig. 6D we compare S(q) for two systems with very similar densities but rather different

F (2.05 and 2.20): The two curves are quite different, suggesting that the behavior of S(q)

is determined by both F and ρ. These two structure factors are also compared with the

S(q) of a solution of 50 chains of length 1000 at similar densities (dashed lines; data from

Ref. [66]), evidencing a rather different low-q behavior. The power-law behavior of the

network’s S(q) at small q suggests that the structure of the network is significantly more

heterogeneous than that of the solution at sufficiently large length scales or, equivalently,

the inhomogeneities caused by the crosslinks make the networks much more compressible

than their chain-only counterparts.

IV. ELASTICITY

In this Section we investigate the long-time limit of the mean-squared displacement of

the particles and connect it to the shear modulus of the networks.
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A. Localization length

To probe the dynamics of the system, we consider the mean-squared displacement (MSD)

of the particles, defined as [70]

〈r2(t)〉 ≡ 〈|r(t)− r(0)|2〉, (10)

where r(t) is the particle’s position vector. Since we run simulations, the simulation box

experiences an affine motion due to the change of length of its edges. When computing

the MSD we remove this motion (which is almost negligible due to the large system size).

In Fig. 7A we show the MSD of all the particles for some selected systems, which are

representative of the general behavior. After the initial ballistic regime, 〈r2(t)〉 ∝ t2 (dashed

line), the MSD crosses over towards a plateau, a behavior which is typical of crosslinked

networks and characterizes the system as an elastic solid [15, 53, 74, 75]. At high density,

this crossover is almost immediate, whereas at low density an intermediate superdiffusive

regime, 〈r2(t)〉 ∝ tβ, with 1 < β < 2 is observed, resulting from the free motion of chains

with different lengths. The square root of the MSD in the plateau region,

λ ≡
[

lim
t→∞
〈r2(t)〉

]1/2

, (11)

is a static property of the system that is known as the localization length, which is an

important quantity in many systems [53, 76, 77] and corresponds to the typical length scale

of the motion the particles perform around their equilibrium positions. One sees that λ

increases with decreasing ρ, going from λ ' 1 for ρ = 0.29 to λ ' 20 for ρ = 0.04. These

values can be compared with those typical of glass-forming liquids, where λ ' 0.1 due to the

localization being mainly determined by local packing constraints [78, 79]. By contrast, here

the localization stems from topological constraints, namely the connectivity of the network

and the non-crossability of the chains, and the observed plateau is not transient, but linked

to the rubbery modulus. Therefore, the localization length we study is different from the

one typical of glassy segmental dynamics [25]. The topology of the system is fixed, but the

particles can still participate in large amplitude oscillations involving substantial parts of

the network [53, 74, 80]. We note that at low densities the approach to the plateau occurs
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length of the central monomers of the strands λmid(n), multiplied by the monomer density ρ, as a

function of the strand length.

at very long time scales, since even in the absence of dangling ends these networks can have

extremely long relaxation times, due to the long time it takes the longest strands to explore

the whole configuration space. Despite this, it is possible to estimate λ with good accuracy

for all the studied systems.

In Fig. 7B we show the localization length as a function of the monomer density ρ.

In the density we studied, the dependence of λ on ρ is roughly compatible with a power

law with exponent −1, i.e., λ ∝ ρ−1 although the curves display a steeper decrease at

the highest densities, where local packing starts to play a more significant role. The same

behavior is observed when considering the localization length of the crosslinks or that of the

bivalent particles, see Fig. 12 in the Appendix. We note that also in this case the curves

for f = 4, c = 5% and f = 3, c = 10%, which have the same mean valence F , superimpose

almost perfectly, confirming once more that the static properties of the system are controlled

by F alone, as also shown in Sec. III. As the strand length distribution is independent of

density, we ascribe the decrease of λ with ρ to topological constraints stemming from the

non-crossability of the chains, and possibly to a difference in the overall network topology.

To better understand how the entanglements affect strands of different lengths, we con-

sider the MSD of the central monomers of odd-length strands, 〈r2
mid(n, t)〉, shown in Fig. 8A

for f = 3, c = 10%, ρ = 0.25. In order to improve the statistics, we show here the data

for systems of 4 · 105 particles instead of those of 5 · 104. We observe that the localization
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length λmid(n) of the central monomers, which for n = 1 is very similar to that of the

crosslinks (dashed line), increases monotonically with the strand length n, reaching for large

n values much larger than the mean localization length λ (dash-dotted line). From the tube

model, we expect strands of length n > Ne to be confined in a tube-like region of diameter

d ∝ N
1/2
e [1]. After a brief transient, during which entanglements are not yet constraining

the strands’ dynamics, the strand monomers will fluctuate around their equilibrium posi-

tions. For monomers that are part of short strands and are thus close to crosslinks, the

fluctuations will be rather isotropic, whereas monomers which are in the middle of long

strands will perform the largest excursions along the tube [19, 24]. Since the tube itself

can be considered as a random walk, this motion is a “random walk on a random walk”,

so that 〈r2
mid〉 ' d2(t/τe)

1/4, with τe ∝ N2
e the entanglement time. For a free chain, this

regime will come to an end at the Rouse time τR ' τe(n/Ne)
2, when all the monomers start

to move coherently and the chain diffuses along the tube, i.e., 〈r2
mid〉 ∝ t1/2. Our strands,

however, are constrained at their ends by the crosslinks, so that instead the mean-squared

displacement of the monomers reaches a pleateau with localization length [15, 24]

λmid(n) ' d

(
n

Ne

)1/4

(n > Ne). (12)

The simulation data agree with the predicted scaling λmid ∝ n1/4, as shown in Fig. 8B,

where we report ρλmid(n) as a function of n for the systems of 4 · 105 particles (here the

ρ prefactor accounts for the empirical observation that λ ∝∼ ρ−1). One clearly sees that,

whereas the small-n behavior of ρλmid(n) depends on f (and, to a lesser extent, on c), the

large-n behavior is basically independent of f and ρλmid(n) ∝ n1/4, confirming that the

behavior of the longer strands is compatible with the tube model.

Fig. 8A also shows that, with the exception of the middle monomers of strands of length

n ≤ 3, the crosslinks are more constrained than the bivalent particles, as one may expect. In

order to better compare the dynamics of these two types of particles, we compare the MSD

of the crosslinks, 〈r2
f (t)〉, to the average MSD of the middle monomers belonging to odd-

length strands, 〈r2
mid(t)〉n and their long-time limits 〈λmid〉n and λf , respectively (we recall

that 〈·〉n denotes an average over the configurations and over the strands). We start by

computing the ratio 〈λ2
mid〉n/λ2

f in the framework of the phantom network model [1, 81, 82]

(PNM). In the PNM model, it is assumed that the network is composed by identical chains
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FIG. 9. (A) Ratio between the localization lengths of middle monomers and that of the crosslinks

rescaled according to Eq. (15). (B) Comparison between the MSD of the crosslinks, 〈r2
f (t)〉, and

that of the middle monomers rescaled by Eq. (17), 2〈r2
mid(t)〉/3, for systems with f = 3, c = 5%

and different ρ. (C) Ratio between the localization lengths of middle monomers and that of the

crosslinks rescaled according to Eq. (17). The dashed line is the expected behaviour according to

Eq. 17.

of size N and each crosslink is connected to a fixed background through f effective springs

of constant Kf = K(f − 2)/(f − 1), where K = 3kBT/b
2N is the ideal entropic spring

constant of each chain and b is the Kuhn length. From the equipartition theorem [83], one

obtains λ2
f (N) = 3kBT/(fKf ) = b2N(f−1)/[f(f−2)] which, averaged over the exponential

chain-size distribution that characterizes our networks (see Fig. 2B), becomes

λ2
f = b2Ns

f − 1

f(f − 2)
. (13)

Under the same approximation, the middle monomer of a strand of size Ns is connected

to two crosslinks by chains of length Ns/2, which behave as entropic springs of constant
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2K = 6kBT/b
2Ns. In turn, each crosslink is connected to the fixed background through

(f − 1) springs of constant Kf . Therefore, recalling that the effective constant of a set

of springs is the sum of the constants if the springs are connected in parallel, and the

reciprocal of the sum of the reciprocal constants if the springs are connected in series, a

middle monomer is connected to the fixed background through two springs of constant

2K(f − 2)/2 or, equivalently, through a single spring of constant 4K(f − 2)/f . As a result,

the PNM model predicts for the localization length of middle monomers (averaged over the

exponential chain-size distribution as done above):

〈λ2
mid〉n = b2Ns

f

4(f − 2)
. (14)

Dividing Eq. (14) by Eq. (13) yields

〈λ2
mid〉n
λ2
f

=
f 2

4(f − 1)
. (15)

Figure 9A shows that rescaling the numerical data for 〈λ2
mid〉n/λf by Eq. (15) yields values

that at low density are close to 1, and hence to the PNM prediction, for all the systems.

However, all curves retain a dependence on c and a significant dependence on the density as

ρ→ 0 that are not captured by the simplistic PNM approach.

As the density increases, excluded volume effects and the non-crossability of the strands

become important, leading to a monotonic increase of 〈λ2
mid〉n/λ2

f . We attempt to ratio-

nalize this behavior by hypothesizing that, at high density, the large number of topological

constraints increases the effective spring constant through which a particle is connected to

the fixed background to a value Keff that is the same for every particle, be it a monomer or

a crosslink. Under this assumption, the localization length of a particle is given by

λ2
N =

3kBT

NKeff

, (16)

where N is the effective number of chains to which it is connected. Therefore, with this

ansatz, the high-density limit of the ratio between the localization lengths is simply given

by
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FIG. 10. (A) The Poisson ratio νP and (B) the shear modulus G of the network as functions

of monomer density ρ for different values of f and c. Inset : bulk modulus K. The dashed line

corresponds to a ρ3 behaviour.

〈λ2
mid〉n
λ2
f

=
f

2
. (17)

Fig. 9B shows that the MSD of the middle monomers multiplied by a factor 2/f overlaps

well with the MSD of the crosslinks at high density, with the agreement getting worse as ρ

decreases. We also note that values in agreement with Eq. (17) have been found in other

simulation studies of similar systems [16, 75]. Finally, in Fig. 9C we rescale 〈λ2
mid〉n/λ2

f by

f/2 for all the investigated systems, finding that all curves tend towards 1 as ρ increases,

supporting the hypotheses underlying Eq. (17). To test the more general applicability of

Eq. (17) for different values of f , we also include in Fig. 9C results for networks with

pentavalent (f = 5) crosslinks, finding results in agreement with those observed for f = 3

and 4. We note that in both the low- and high-density limit the theoretical arguments we

put forward are not sufficient to explain the c-dependence exhibited by the numerical data.

B. Poisson ratio and elastic moduli

The elasticity of polymer networks is usually characterised by the shear modulus, G [1].

Since polymer gels are, in general, compressible, they possess a finite bulk modulus, K, and

a Poisson ratio νP that is smaller than 1/2 [84]. Here we use the method of Ref. [39] to

estimate G and K from the fluctuations of the box size in the three spatial dimensions,

making it possible to compute ν through the relation
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νP =
3K − 2G

6K + 2G
. (18)

Using theoretical arguments building on the Flory-Huggins theory and the elasticity of the

phantom network it has been shown that the Poisson ratio of gels goes from νP ' 0.25

for swollen samples to νP ' 1/2 for rubbers and melts, which are essentially incompressible

[84, 85]. Figure 10A shows that the polymer networks we investigate have a Poisson ratio that

is between ' 0.20 and ' 0.25 in the maximally swollen state and then, within the numerical

noise, increases monotonically as density increases, therefore comparing favourably, at least

on a semi-quantitative level, with the theoretical figures reported above. Interestingly, the

dependence on c and f is rather weak and mostly masked by the statistical uncertainties.

The ρ-dependence of the shear modulus G, shown in Fig. 10B, is much stronger than

that of ν. Indeed, the relation G ∝ ρ3 approximately holds in the whole density range,

but in particular at high density. Unraveling the different contributions that make up the

shear modulus of a polymer network is a long-standing open problem in polymer physics

[8–13], especially when short chains are present, as it is the case here. Indeed, previous

simulations of polydisperse and disordered phantom networks (i.e., networks where excluded

volume interactions are turned off), have established that classical elasticity theory [86]

fails to describe the elastic behavior of the system when short chains are abundant [32].

Moreover, the structures of the networks varies with density, a fact that prevents using

classical elasticity theory to extrapolate the shear modulus G from small to large densities,

or vice versa. As a result, in these cases both the phantom and affine network models fail

to capture even the qualitative behaviour of the network elastic moduli. In light of this, we

can nonetheless attempt rationalize the ρ3 dependence of the shear modulus by attempting

to connect it with the behavior of the localization length as follows: We start by recalling

that in the simulated systems, the localization length of the crosslinks behaves, similarly

to the total localization length (Fig. 7B), as λf ∝∼ ρ−1 (see Fig. 12 in the Appendix). In

line with the results shown in Sec. IV A (in particular Eq. (16)), we then assume that the

squared localization length of the particles is inversely proportional to an effective spring

constant that depends on the density, λ2
f ∝ K−1

el (ρ), so that Kel(ρ) ∝∼ ρ2. By interpreting

Kel as the entropic spring constant of a chain of length Nel ∝ K−1
el and assuming that the

shear modulus is proportional to the density ρ/Nel of these effective chains [1], we find
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G(ρ) ∝ ρ

Nel

∝∼ ρ3, (19)

in agreement with the observed ρ-dependence and the deviations at small ρ observed in

Fig. 9C. In the inset of Fig. 10B, we also report the bulk modulus K, which behaves roughly

as G. This is expected, as νP only changes slightly in the density range studied, and from

Eq. (18) one has K/G = 2(1+νP )/[3(1−2νP )]. We recall that scaling arguments [1] predict

K ∝ ρ3/(3−df ), df being the fractal dimension of the network. Recent simulations of compact

nanogel particles [73] and bottle-brush polyelectrolytes [72] yielded df = 2. This fractal

dimension is consistent with that theoretically predicted for randomly branched polymers

with excluded volume interactions [65], and further implies K ∝ ρ3, which is indeed the

density scaling observed here. We note that a different behaviour, compatible with df = 1.7

(the fractal dimension of linear chains in good solvent), was recently reported for tetra-PEG

gels [87]. Altogether, the results indicate that the nature of the system and of its assembly

process can affect the observed fractal dimension and, by extension, the scaling of the elastic

modulus too.

V. DISCUSSION AND CONCLUSIONS

Up to the present day most simulation studies of polymer networks considered structures

that are either ordered, monodisperse (with a unique strand length) or both [26–31]. Even

in the case of networks produced through random crosslinking of precursor chains, it is very

difficult, due to the slow chain dynamics, to reach a fully-bonded state in which dangling

ends are absent[13–18, 20]. By contrast, here we used a method to generate disordered,

polydisperse networks which are almost defect-free from the assembly of bivalent and f -

valent (crosslinks) patchy particles [32, 34, 35]. In the present study, all the networks satisfied

more than 99.8% of all possible bonds and no more than 4% of the monomers were part of

dangling ends, but it is in principle possible, with a larger computational effort, to obtain

disordered fully-bonded networks (100% of bonds formed) with no dangling ends. Moreover,

the assembly process is an equilibrium one: as a result, the final structure of the network

depends only on the percentage c of crosslinks, on their valence f and on the assembly

density ρinit. Another interesting property of these networks is that the distribution mn of
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strand lengths is independent of density, and only depends on f and c. However, we showed

that the number of topological kinks depends rather strongly on density, and increases

approximately as a power law: This makes it possible to tune the entanglement length by

changing the assembly density, while keeping the average strand length Ns constant. We

further note that the same model considered here can be used to study the influence that f

and c have on the local network structure, e.g., ring statistics. Likewise, the model can be

used to investigate how short-range attractions that mimic the solvent quality during the

assembly will impact the final network.

By analysing the dynamical properties of the networks on the level of the strands, we

found that the dynamics of long strands is qualitatively consistent with the tube model.

Moreover, we rationalised the behavior of the ratio between the localization length of the

crosslinks, limt→∞〈r2
f (t)〉, and the localization length of the middle monomers of the strands,

limt→∞〈r2
mid(t)〉, finding a crossover between a phantom network model-like behavior at low

density and a mean-field-like regime at high density where each particle can be described as

being connected via an effective spring. Finally, we discussed the elasticity of the networks,

showing that the values of the Poisson ratio we observe are in line with experimental values,

and that the peculiar ρ-dependence of the network shear modulus we observe, G ∝ ρ3, can

be interpreted in light of the behavior of the localization length of the particles discussed

above. We mention that the study of how the localization length and its relation to the

shear modulus change when the network is subject to deformations is a promising direction

for future work. Overall, the results presented here show that the assembly method we

have used yields polymer networks that display realistic properties, and thus can be used to

model interesting phenomena where the polydisperse and disordered nature of the networks

become important, such as polymer-nanoparticle composites [88] or double networks [89].

However, the peculiar scaling (or apparent scaling) behaviour we found here cannot be

straightforwardly understood by using classic polymer theories in view of the presence of

short chains that are abundant in the systems investigated [32]. Therefore, the results we

have shown here should be taken as motivation for future theoretical efforts attempting to

describe the behaviour of realistic disordered polymer networks.
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APPENDIX

AI. ADDITIONAL DETAILS ON THE SIMULATED SYSTEMS

In Tabs. I and II we report the details of the simulated networks, respectively with

trivalent (f = 3) and tetravalent (f = 4) crosslinks. Mtot: Total number of particles

(M2 + Mf ). M4: Number of tetravalent particles. M3: Number of trivalent particles. M2:

Number of bivalent particles. c ≡ (M4 + M3)/Mtot: crosslink concentration. F : mean

valence, Eq. (7). ρ ≡ Mtot/〈V 〉: average density (〈V 〉 = configuration-averaged volume).

All the values are averaged over two independent realizations of the system.

To characterize the persistence length of the patchy particle model, we started from a

monomer solution and used the step-growth polymerization [42] to assemble chains of patchy

particles. For the latter, we next calculated the bond-bond orientational correlation function

〈cos(θs)〉, defined as [90]
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Mtot M3 M2 c F ρ

48773.0 4845.0 43928.0 0.0993 2.099 0.1270

49388.5 4907.0 44481.5 0.0994 2.099 0.1929

49636.0 4940.0 44696.0 0.0995 2.100 0.2908

49731.5 4953.5 44778.0 0.0996 2.100 0.3758

49803.0 4966.0 44837.0 0.0997 2.100 0.4630

49797.5 4968.5 44829.0 0.0998 2.100 0.5398

49714.0 4961.5 44752.5 0.0998 2.100 0.6976

47023.0 2346.0 44677.0 0.0499 2.050 0.0936

48508.0 2394.0 46114.0 0.0494 2.049 0.1498

48976.0 2434.0 46542.0 0.0497 2.050 0.2469

49243.5 2454.0 46789.5 0.0498 2.050 0.3327

49439.0 2465.0 46974.0 0.0499 2.050 0.4141

49469.0 2465.0 47004.0 0.0498 2.050 0.4812

49231.5 2457.0 46774.5 0.0499 2.050 0.6317

36368.5 352.0 36016.5 0.0097 2.010 0.0425

41791.0 405.0 41386.0 0.0097 2.010 0.0872

46047.5 441.0 45606.5 0.0096 2.010 0.1789

TABLE I. Properties of the networks with trivalent (f = 3) crosslinks.

〈cos(θs)〉 ≡
〈

bk · bk+s

|bk| |bk+s|

〉
, (A1)

where bk ≡ rk+1 − rk is the k-th bond vector, 〈〉 denote ensemble averages taken over all

bond vectors separated by a chemical distance s (i.e. over all those pairs of bond vectors

belonging to the same chain and with sequence separation s). The results are shown in

Figure 11. At all considered values of ρinit, the bond-bond correlation function has an

approximate exponential decay for 1 ≤ s ≤ 6, which we exploited to extract the persistence

length, Lp, from the best fit of the data to the functional form
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Mtot M4 M3 M2 c F ρ

48952.0 4821.5 176.0 43954.5 0.1021 2.201 0.1593

49568.5 4901.5 98.5 44569.0 0.1009 2.200 0.2487

49748.0 4924.5 75.0 44748.5 0.1005 2.199 0.3563

49792.5 4948.0 52.0 44792.5 0.1004 2.200 0.4472

49804.5 4958.0 42.0 44804.5 0.1004 2.200 0.5255

49888.0 4970.0 29.0 44889.0 0.1002 2.200 0.6123

49718.5 4998.5 71.5 44720.0 0.1005 2.200 0.7694

47464.5 2319.5 163.0 44982.0 0.0523 2.101 0.1258

48946.5 2408.5 91.0 46447.0 0.0511 2.100 0.1924

49469.0 2441 58.5 46969.5 0.0505 2.100 0.2908

49439.0 2450.5 49.0 46939.5 0.0506 2.100 0.3750

49620.0 2462.0 37.5 47120.0 0.0504 2.100 0.4617

49700.5 2466.0 34.0 47200.5 0.0503 2.100 0.5399

49494.5 2500.0 55.5 46994.5 0.0505 2.100 0.6868

39123.5 373.5 105.0 38645.0 0.0122 2.022 0.0597

44301.5 419.0 72.0 43810.5 0.0111 2.021 0.1137

46274.5 438.0 58.0 45778.5 0.0107 2.020 0.1977

TABLE II. Properties of the networks with tetravalent (f = 4) crosslinks.

〈cos(θs)〉 ∝ e−sb/Lp , (A2)

where b is the bond length and Lp is the persistence length. The bond length depends

weakly on ρinit: it takes the value b = 1.2 for ρinit = 0.05 and decreases by only ' 5% when

ρinit is increased to 0.85. The best fit procedure yields a persistence length that decreases

monotonically with density, ranging between 2.7 for ρinit = 0.05 and 1.8 for ρinit = 0.85, as

shown in the inset of Fig. 11.
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FIG. 11. Bond-bond orientational correlation function for systems of di-valent patchy particles

assembled at different densities ρinit. Inset: persistence length Lp obtained by fitting the first 5

points of each curve to Eq. A2.

AII. LOCALIZATION LENGTH

In Fig. 12, we report the localization length of the bivalent particles (λ2, panel A) of the

the crosslinks (λf , panel B), and of the middle monomers of the odd-length strands (〈λmid〉n,

panel C). We note that the total localization length λ is given by λ2 = cλ2
f + (1− c)λ2

2, and

that since c is small in the simulated systems, we have λ ' λ2, i.e., the total localization

length is approximately equal to the localization length of the bifunctional particles.
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