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Temperature dependent model for the quasi-static stick-

slip process on a soft substrate

Stefano Giordano,a

The classical Prandtl-Tomlinson model is the most famous and e�cient method to describe the

stick-slip phenomenon and the resulting friction between a slider and a corrugated substrate. It is

widely used in all studies of frictional physics and notably in nanotribology. However, it considers

a rigid or undeformable substrate and therefore is hardly applicable for investigating the physics of

soft matter and in particular biophysics. For this reason, we introduce here a modi�ed model that

is capable of taking into consideration a soft or deformable substrate. It is realized by a sequence

of elastically bound quadratic energy wells, which represent the corrugated substrate. We study the

quasi-static behavior of the system through the equilibrium statistical mechanics. We thus determine

the static friction and the deformation of the substrate as a function of temperature and substrate

sti�ness. The results are of interest for the study of cell motion in biophysics and for haptic and

tactile systems in microtechnology.

1 Introduction

The friction between two contacting surfaces is often controlled
by the stick-slip phenomenon, which has been observed and stud-
ied over a very wide range of scales.1–5 Although the deep un-
derstanding of the underlying mechanisms is still incomplete, im-
portant progress has been made in the study of the nanoscale
friction,6–8 and the stick-slip effect in biological and soft struc-
tures,9 including molecular motors,10 cells spreading,11 and ar-
ticular joints motion,12,13 just to name a few.

From the experimental point of view, a strong momentum
for understanding the nanoscale friction and the stick-slip phe-
nomenon has been provided by the introduction of the atomic
force microscope,14 and the surface force apparatus.15 In par-
allel, computational investigations have been made possible by
the development of efficient molecular dynamics algorithms and
multiscale approaches.16–18

These experimental and numerical devices allowed the obser-
vation and the study of the characteristic stick-slip motion of a
slider, interacting with a corrugated substrate. The latter can
be thought of as a periodic potential composed of a sequence of
energy wells (a sinusoidal potential is typically adopted). This
conceptual scheme exactly corresponds to the so-called Prandtl-
Tomlinson model,19,20 pioneered in the early 20th century. De-
spite its age, it is still currently the most efficient model to de-
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scribe stick-slip motion and nanoscale friction. It has therefore
been studied intensively and its outcomes have often been com-
pared with experiments and simulations.21,22 A careful analysis
of this model led to the discovery of different operating regimes of
temperature and velocity and these theoretical conclusions have
contributed to the interpretation of many atomic force microscope
experiments.23–33 Since the Prandtl-Tomlinson model considers
only one particle sliding on the substrate, its natural generaliza-
tion is to take into account a one-dimensional elastic chain of in-
teracting particles moving over the periodic potential mimicking
the substrate. This scheme, originally introduced to study the dis-
locations motion and explain the plastic deformation in crystals,
is known as Frenkel-Kontorova model and perfectly describes the
mutual sliding of two different crystalline surfaces.34,35

All earlier approaches based on the Prandtl-Tomlinson or
Frenkel-Kontorova models have mostly considered a rigid or un-
deformable substrate and therefore are hardly applicable to soft
matter systems or biological structures. To fill this gap, we
develop here a theory for the rate-independent stick-slip phe-
nomenon on a soft substrate, based on equilibrium statistical
mechanics. It represents a sort of generalization of the Prandtl-
Tomlinson model, able to take into consideration both the temper-
ature effect and the influence of the deformable substrate stiff-
ness. The model is developed here for a single sliding particle
but can be easily generalized to the case of a Frenkel-Kontorova
chain.

The possibility of determining the effects of substrate deforma-
bility on the properties of stick-slip motion and friction with a
simple theoretical model is particularly important for studying the
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Fig. 1 Scheme of the soft corrugated substrate with a moving slider placed at x, pulled by a traction device placed at ℓ and with an intrinsic sti�ness

kD. The deformable substrate is composed of a sequence of quadratic energy potential wells with sti�ness kW and separated by an energy barrier

W = kW d2/8 ≫ KBT . The positions of the centers of these potential wells are identi�ed by the variables y j with −N ≤ j ≤ +N, which can be shifted

with respect to their equilibrium positions jd for −N ≤ j ≤ +N, being d the lattice constant of the substrate. The deformability of the substrate is

controlled by an elastic ladder network composed of longitudinal springs kL and shear springs kS. As an example, in this plot the slider is placed within

the well centered in y1 and therefore we have the value s = 1 for the discrete spin variable.

collective motion of cells. Understanding this phenomenon is es-
sential to elucidate the mechanisms involved in wound healing,
cancerous metastases evolution, and tissues development.36,37

These processes are extremely complex and therefore knowing
the effects of the substrate stiffness in an oversimplified configu-
ration can help to understand the contribution of the many factors
involved in the real problems (intracellular adhesion and signal-
ing, cell polarization, and so on). It is first important to note that
the movement of cells on a substrate is actually characterized by
stick-slip motion, as recently observed.38–40 Then, frictional phe-
nomena between cells and substrate are essential to regulate cells
motion and related mechanosensitive processes.41 It has been ob-
served that isolated cells exhibit a direction of migration aligned
with the gradient of the substrate stiffness (durotaxis),42–44 and
groups of interacting cells also follow the same principle (collec-
tive durotaxis).45 This is consistent with the fact that the trac-
tion force increases with the stiffness of the substrate.41,46 Cor-
respondingly, evidence has been provided that the friction experi-
enced by cells is an increasing function of substrate stiffness.47–49

Interestingly, this observation is in perfect agreement with the re-
sults obtained by means of the model here proposed for the stick-
slip phenomenon on soft substrate, as discussed below. Anyway,
a complete view on the motion of cells is not yet available, and
many points remain to be clarified: cells propagate faster with
increasing stiffness only up to optimal stiffness,50 there are dif-
ferent cells migration modes to investigate,51 wrinkles appear in
bacterial biofilms growing on soft substrates,52 and the cells mo-
tion shows a biphasic relation with substrate stiffness and fric-
tion.53 It is interesting to remember that, from the experimental
point of view, ad-hoc soft substrates are used to measure the field
of forces applied on the substrate itself by cells. This is done
through the so-called Traction Force Microscopy54, which is par-
ticularly useful to correlate the mechanical features of cancer cells
to metastatic phenomena, which are, in turn, strongly influenced
by temperature.55 The stick-slip phenomenon is also artificially
induced in several bioinspired micro- and nano-structured ma-
terials in order to mimic, for example, the remarkable mechan-
ical properties of gecko’s feet.56–58 At a larger scale, stick-slip
and wear are largely studied, by means of the Surface Forces Ap-

paratus,15 in articular cartilage, with the aim of detecting and
tracking the progression of articular joints diseases.59 These ap-
proaches proved that prolonged stick-slip sliding of cartilage can
increase the surface roughness, eventually inducing damage.60

Although our model is extremely simple with respect to these
complex systems, it represents a first step in modeling thermal ef-
fects on friction phenomena with soft substrates and can provide
the first general insights into stick-slip behavior in these struc-
tures. Of course, in the near future it can be generalized to take
into account all the more realistic elements that are neglected
here.

In a rather different field of study, the modeling of the stick-slip
processes on soft substrate is important to better understand the
friction behavior on artificial elastomeric wrinkled or micropat-
terned surfaces with applications to haptic technologies, aug-
mented reality and tactile robotics.61–65

The proposed model is based on equilibrium statistical me-
chanics and it is implemented by means of the spin variable ap-
proach, useful to deal with arbitrarily nonconvex potential en-
ergies.66 This method has been largely applied to several sit-
uations including the physics of muscles,67,68 the folding of
macromolecules,69–73 the adhesion/deadhesion processes,74,75

the phase transformations in solids,76,77 and the stick-slip on
rigid substrate.78 Essentially, this technique made it possible to
complement the methods typically used to study the behavior of
physical systems with multiple stable and metastable states.79–82

In this study, we consider a moving slider in contact with a sub-
strate described by a sequence of elastically bound quadratic en-
ergy wells (see Fig.1). The spin variables approach is particularly
useful since allows a direct calculation of the partition function
for our system with soft substrate. We can therefore efficiently
determine all thermodynamic variables of interest (when the en-
ergy barrier between the wells is sufficiently larger than KBT ).
The method is based on the introduction of a discrete or spin
variable, able to identify the energy well explored by the sliding
particle. Firstly, a finite length substrate is considered and the sta-
tistical behavior of the system is investigated. Then, the obtained
results have been simplified from the mathematical point of view,
enabling an efficient implementation of the model. The underly-
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ing physics has been taken into consideration by discussing the
average spin variable (average position of the slider), the average
stick-slip or static friction force, the average substrate deforma-
tion, and the probability density of the variable slider position.
These quantities have been studied for a variable temperature and
substrate stiffness. To conclude, the limiting case of an infinitely
long soft substrate has been analyzed, eventually obtaining closed
form expressions for all relevant thermodynamic quantities. In-
terestingly, these expressions were written in terms of a Jacoby’s
Theta function. The most striking results represent the increase in
stick-slip force with substrate stiffness (relevant for the cells mo-
tion understanding), and its decrease with temperature (relevant
for thermolubricity applications).

The paper is organized as follows. In Section 2, we introduce
the thermal model for the stick-slip phenomenon on soft sub-
strate. Then, in Section 3, we describe a mathematical simplifi-
cation allowing for an efficient implementation of the model. We
discuss here the physics underlyng the behavior of the system. In
the following Section 4, we perform the limit of the theory with
an infinite long substrate. Finally, the Conclusions and two Ap-
pendixes close the manuscript.

2 Thermal model for stick-slip on soft substrate

We consider a particle identified with the position x, sliding over
a one-dimensional soft or deformable corrugated substrate (see
Fig.1). This substrate is characterized by a sequence of quadratic
potential wells centered at positions y j with −N ≤ j ≤ +N, and
having an elastic coefficient equal to kW . When the substrate
is in equilibrium, i.e. there is no action of the sliding particle,
the wells centers are equispaced (on the x-axis) with y j = jd for
−N ≤ j ≤ +N, being d the lattice constant of the substrate. In
this condition, we have the energy barrier W = kW d2/8 between
adjacent wells. This is reminiscent of the periodic substrate of
the Prandtl-Tomlinson model19–22. However, when the particle
slides on the substrate, the wells centers y j show a displacement
y j − jd ̸= 0 induced by the interaction between slider and sub-
strate. The soft substrate is modeled by means of a springs ladder
network composed of longitudinal springs of elastic constant kL

and shear springs with elastic constant kS (see Fig.1). It means
that a spring kL (with equilibrium length d) links all pairs of ad-
jacent wells centers, placed at y j and y j−1. Moreover, each well
center at y j is linked to the fixed position jd through a spring kS

(with zero equilibrium length). While kL controls the spatial ex-
tent of the displacement perturbation as the particle slides on the
substrate, kS controls the stiffness of the substrate itself. In addi-
tion, the particle is moved by a traction device placed at position
ℓ (which is variable) and with elastic constant kD. Eventually, the
total potential energy of the system can be written as

U(x,s, y⃗) =
1
2

kW (x− ys)
2 +

1
2

kD(ℓ− x)2 (1)

+
1
2

kL

+N

∑
j=−N+1

(y j − y j−1 −d)2 +
1
2

kS

+N

∑
j=−N

(y j − jd)2

+
1
2

kL(y−N +Nd)2 +
1
2

kL(Nd − y+N)
2,

where the discrete or spin variable −N ≤ s ≤ +N represents
the potential well explored by the slider and y⃗ is the vector of
wells centers positions y−N , ...,y+N . The last two terms repre-
sent the energy contributions of the two outermost longitudinal
springs kL that connect y−N with the fixed position −(N + 1)d,
and y+N with the fixed position (N+1)d. Here, the elastic springs
are named following the identifications: W→well, D→device,
L→longitudinal, and S→shear.

We suppose that the system is in contact with a thermal bath at
temperature T and that the velocity of the sliding particle is low
enough to be able to neglect dynamical effects. It means that we
study the thermal behavior of the static or quasi-static stick-slip
phenomenon on a soft substrate. To approach the problem, we
can therefore apply the equilibrium statistical mechanics charac-
terized by the classical canonical distribution. In order to calcu-
late the corresponding partition function, we can sum over the
spins variables and integrate over the continuous variables inde-
pendently. This allows the partition function to be written in the
following form

Z =
+N

∑
s=−N

∫
R2N+1

∫ +∞

−∞

e−
U(x,s,⃗y)

KBT dxd⃗y, (2)

where KB is the Boltzmann constant and T is the temperature.
Of course, the application of the spins method introduces an ap-
proximation and therefore there are physical limitations to the
use of the model. In fact, each continuous variable is integrated
over the whole span of real values and not only over the range
it would be allowed in the exact model. This introduces an er-
ror in the regions where the tails of the Gaussian functions over-
lap. However, this error is negligible when the energy barrier W
between the elastic substrate wells is sufficiently larger than the
thermal energy KBT . This means that we are led to assume that
W = kW d2/8 ≫ KBT .

The partition function defined in Eq.(2) can be elaborated as
follows, by first performing the integral on x and then on y⃗. To
begin with, in order to separate the terms depending on x from
the others, the total energy U can be rewritten as follows

U(x,s, y⃗) =
1
2
(kW + kD)x2 − (kW ys + kDℓ)x+Θ(s, y⃗), (3)

where Θ is independent of x and reads

Θ(s, y⃗) =
1
2

kW y2
s +

1
2

kDℓ
2 (4)

+
1
2

kL

N

∑
j=−N

(y j − y j−1 −d)2 +
1
2

kS

N

∑
j=−N

(y j − jd)2

+
1
2

kL(y−N +Nd)2 +
1
2

kL(Nd − y+N)
2.

Hence, this separation allows to write the partition function in
the form

Z =
+N

∑
s=−N

∫
R2N+1

e−
Θ(s,⃗y)
KBT

∫ +∞

−∞

e−
kW +kD
2KBT x2+

kW ys+kDℓ
KBT xdxd⃗y, (5)

where the integration over x can be performed in closed form by
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means of the well-known expression∫ +∞

−∞

e−αx2
eβxdx =

√
π

α
e

β2
4α (α > 0). (6)

Then, we get

Z =

√
2πKBT
kW + kD

+N

∑
s=−N

∫
R2N+1

e−
Θ(s,⃗y)
KBT e

(kW ys+kDℓ)2

2(kW +kD)KBT d⃗y

=

√
2πKBT
kW + kD

+N

∑
s=−N

∫
R2N+1

e−
Ω(s,⃗y)
KBT d⃗y, (7)

where we introduced the quantity

Ω(s, y⃗) = Θ(s, y⃗)− (kW ys + kDℓ)
2

2(kW + kD)
. (8)

This is a quadratic function in the variable y⃗ that can be devel-
oped by means of a long but straightforward calculation based on
Eq.(4). The result is

Ω(s, y⃗) =
1
2
ℓ2 kW kD

kW + kD
+N(N +1)kLd2 +

1
6

N(N +1)(2N +1)kSd2

+ kLℓ⃗ξs · y⃗+
1
2

kL⃗y ·As⃗y, (9)

where we used the relation ∑
+N
j=−N j2 = N(N + 1)(2N + 1)/3. In

this expression, the tridiagonal matrix As is defined as

As =



a−N −1 0 . . . 0

−1 a−N+1 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . aN−1 −1

0 . . . 0 −1 aN


∈ M2N+1,2N+1(R), (10)

with all the subdiagonal and superdiagonal elements equal to -1
and the diagonal elements given by

a j = 2+
kS

kL
+δ j,s

kW kD

kL(kW + kD)
, (11)

with −N ≤ j ≤+N, −N ≤ s ≤+N, and where δa,b is the Kronecker
delta, assuming the value 1 when a = b, and the value zero when
a ̸= b. It means that the term kW kD

kL(kW+kD)
is added to the element

as of the diagonal of As. In particular, if s = −N, it is added to
the first element and, if s = +N, to the last one. This means that
the matrix As is dependent on s since this term shifts as s varies.
Moreover, the vector ξ⃗s ∈ R2N+1 in Eq.(9) is defined as

ξ⃗s = (ξs,−N ,ξs,−N+1, ...,ξs,N−1,ξs,N), (12)

where

ξs, j =
(N +1)d

ℓ

(
δ j,−N −δ j,+N

)
− j

d
ℓ

kS

kL
−δ j,s

kW kD

kL(kW + kD)
, (13)

again with −N ≤ j ≤ +N, −N ≤ s ≤ +N. In this case, the term
kW kD

kL(kW+kD)
is subtracted from the element ξs,s of the vector ξ⃗s.

Again, the vector ξ⃗s depends on s because of the shift of this term

as s varies.

At the end of this development, we observe that Ω(s, y⃗) is writ-
ten in Eq.(9) as a quadratic function in the vector y⃗, composed of
three contributions: a constant term with respect to y⃗ (first line
of Eq.(9)), a term of first degree in y⃗ (controlled by the vector
ξ⃗s), and a term of second degree in y⃗ (controlled by the matrix
As). We can substitute this expression of Ω(s, y⃗) into the partition
function defined in Eq.(7). Importantly, the integral can now be
performed by using the gaussian property

∫
RM

e−
1
2 y⃗·By⃗eb⃗·⃗yd⃗y =

√
(2π)M

detB
e

1
2 b⃗·B−1⃗b, (14)

holding for any symmetric and positive definite matrix B ∈
MM,M(R) and for any vector b⃗ ∈ RM . The explicit form of the
partition function is then delivered as follows

Z =

√
(2πKBT )2N+2

(kW + kD)k2N+1
L

e−
N(N+1)kLd2

KBT e−
N(N+1)(2N+1)kSd2

6KBT

×
+N

∑
s=−N

1√
detAs

e
kLℓ

2

2KBT

[
ξ⃗s·A −1

s ξ⃗s−
kW kD

kL(kW +kD)

]
. (15)

Therefore, the joint probability density of all the variables be-
longing to the phase space of the system is readily written in the
canonical form

ρ(x,s, y⃗) =
1
Z

e−
U(x,s,⃗y)

KBT , (16)

with the normalization property

+N

∑
s=−N

∫
R2N+1

∫ +∞

−∞

ρ(x,s, y⃗)dxd⃗y = 1. (17)

In particular, the knowledge of the partition function allows us to
obtain the average value of the static or quasi-static friction force,
or stick-slip force, by means of the thermodynamic relation

⟨ f ⟩=−KBT
∂ logZ

∂ℓ
=−KBT

1
Z

∂Z
∂ℓ

. (18)

This is true within the Helmholtz statistical ensemble of the statis-
tical mechanics.83,84 Moreover, this can be easily seen by deriving
Z in Eq.(2) with respect to ℓ, by considering the total energy in
Eq.(1), and by observing that ⟨ f ⟩= kD(ℓ−⟨x⟩). A straightforward
development of the derivative yields the following explicit result

⟨ f ⟩= ℓ
kW kD

kW + kD

+N

∑
s=−N

1√
detAs

e
kLℓ

2

2KBT ξ⃗s·A −1
s ξ⃗s

(
1+ e⃗s ·A −1

s ξ⃗s

)
+N

∑
s=−N

1√
detAs

e
kLℓ

2

2KBT ξ⃗s·A −1
s ξ⃗s

, (19)

where e⃗s is the (s+N + 1)-th element of the canonical basis of
the space R2N+1, i.e. e⃗s = (0,0, ...,1, ...,0,0) where the one is at
position s + N + 1 with −N ≤ s ≤ +N. Importantly, this value
of the rate-independent stick-slip force takes into consideration
the deformation of the substrate and indeed depends on the elas-
tic properties of the substrate itself. We will thoroughly explore
the effect of the substrate deformability on the rate-independent
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stick-slip force force. Of course, since ⟨ f ⟩= kD(ℓ−⟨x⟩), the knowl-
edge of ⟨ f ⟩ also makes it easy to determine the value of ⟨x⟩. We
do not report formulas and graphs for ⟨x⟩ so as not to lengthen
the article further.

Another important macroscopic observable is given by the av-
erage value of the spin variable s. It has a similar meaning as ⟨x⟩
but allows for better identification of jumps between wells. It can
be simply determined through the following expression, directly
derived from the probability density in Eq.(16)

⟨s⟩=
+N

∑
s=−N

s
∫
R2N+1

∫ +∞

−∞

ρ(x,s, y⃗)dxd⃗y. (20)

A not difficult elaboration leads to the explicit result

⟨s⟩=

+N

∑
s=−N

s√
detAs

e
kLℓ

2

2KBT ξ⃗s·A −1
s ξ⃗s

+N

∑
s=−N

1√
detAs

e
kLℓ

2

2KBT ξ⃗s·A −1
s ξ⃗s

, (21)

representing the average value of the discrete variable identifying
the energy well locally explored by the moving slider. It is useful
to determine the average number ⟨s⟩ corresponding to the energy
well in which the slider is located in terms of the position ℓ of the
traction device.

The most original quantity obtained in this work represents the
deformation induced in the corrugated substrate by the sliding
particle. It is quantified by the average value of position vector y⃗,
which can be calculated as

⟨⃗y⟩=
+N

∑
s=−N

∫
R2N+1

∫ +∞

−∞

ρ(x,s, y⃗)⃗ydxd⃗y. (22)

The integration can be performed by means of a generalization of
Eq.(14), given by

∫
RM

e−
1
2 y⃗·By⃗eb⃗·⃗y⃗yd⃗y =

√
(2π)M

detB
e

1
2 b⃗·B−1⃗bB−1⃗b, (23)

holding again for any symmetric and positive definite matrix B ∈
MM,M(R) and for any vector b⃗ ∈ RM . With the application of
Eq.(23), the definition in Eq.(22) eventually delivers the explicit
expression

⟨⃗y⟩=−ℓ

+N

∑
s=−N

1√
detAs

e
kLℓ

2

2KBT ξ⃗s·A −1
s ξ⃗sA −1

s ξ⃗s

+N

∑
s=−N

1√
detAs

e
kLℓ

2

2KBT ξ⃗s·A −1
s ξ⃗s

. (24)

This result represents the positions (on the x-axis) of the cen-
ters of the energy wells (constituting the deformable substrate)
as function of the position ℓ of the moving slider.

An additional quantity, which will be useful to better under-
stand the behavior of the system, consists in the probability den-
sity ρ(x) of the single variable x. Of course, it is defined as

ρ(x) =
+N

∑
s=−N

∫
R2N+1

ρ(x,s, y⃗)d⃗y =
1
Z

+N

∑
s=−N

∫
R2N+1

e−
U(x,s,⃗y)

KBT d⃗y, (25)

and it is subjected to the normalization condition∫ +∞

−∞

ρ(x)dx = 1. (26)

We use the same symbol for ρ(x) and for ρ(x,s, y⃗) but always in-
dicate the variables to avoid any ambiguity. In order to perform
the calculation of ρ(x), we need to rewrite the total energy U by
identifying the terms independent of y⃗, and those representing a
quadratic function in y⃗. So doing, we obtain the expression

U(x,s, y⃗) =
1
2

kW x2 +
1
2

kDx2 − kDℓx+
1
2

kDℓ
2

+ N(N +1)kLd2 +
1
6

N(N +1)(2N +1)kSd2

+
1
2

kL⃗y ·Cs⃗y+ kLℓ⃗ζs · y⃗, (27)

where the last two terms represent the second order contribution
in y⃗ (controlled by Cs ∈ M2N+1,2N+1(R)) and the first order con-
tribution (controlled by ζ⃗s ∈R2N+1). Here, the tridiagonal matrix
Cs is given by

Cs =



c−N −1 0 . . . 0

−1 c−N+1 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . cN−1 −1

0 . . . 0 −1 cN


∈ M2N+1,2N+1(R), (28)

with all the subdiagonal and superdiagonal elements equal to -1
and the diagonal elements given by

c j = 2+
kS

kL
+δ j,s

kW

kL
. (29)

The last term in Eq.(29) means that the quantity kW
kL

is added only
to the element cs of the main diagonal of Cs. Similarly, we find
that the vector ζ⃗s is defined as

ζ⃗s = (ζs,−N ,ζs,−N+1, ...,ζs,N−1,ζs,N), (30)

where one must consider the following components

ζs, j =
(N +1)d

ℓ

(
δ j,−N −δ j,+N

)
− j

d
ℓ

kS

kL
−δ j,s

kW

kL

x
ℓ
, (31)

always with −N ≤ j ≤+N, −N ≤ s ≤+N. As before, the last term
means that the quantity kW

kL

x
ℓ is subtracted only from the element

ζs,s of the vector ζ⃗s. To conclude, the substitution of the total
energy written as in Eq.(27) into Eq.(25), and the application of
the property stated in Eq.(14), yields the probability density ρ(x)
in the form

ρ(x) =

e
− kW +kD

2KBT

(
x− kDℓ

kW +kD

)2 +N

∑
s=−N

1√
detCs

e
kLℓ

2

2KBT ζ⃗s·C −1
s ζ⃗s

√
2πKBT
kW + kD

+N

∑
s=−N

1√
detAs

e
kLℓ

2

2KBT ξ⃗s·A −1
s ξ⃗s

, (32)

where all the quantities As, ξ⃗s, Cs, and ζ⃗s have been previously
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defined, see Eqs.(10),(13),(28), and (31). It is possible to prove
that the obtained form for ρ(x) in Eq.(32) exactly satisfies the nor-
malization condition in Eq.(26). This concludes the mathematical
analysis of the system. We obtained the average stick-slip force in
Eq.(19), the expectation value of the spin variable in Eq.(21), the
average value of the substrate displacement in Eq.(24), and the
density of probability of x in Eq.(32). However, it is important to
remark that the sums indicated in all these results are quite costly
from the numerical point of view since we need to determine the
determinant and the inverse matrix of As and Cs for any value
of s in the range −N ≤ s ≤ +N. If the number 2N + 1 of binding
sites of the corrugated substrate is large, the procedure is rather
demanding especially if we are interested in performing a para-
metric analysis of the system behavior. For this reason, we show
in the next Section a further simplification of these results, based
on specific matrix properties.

3 E�cient implementation of the model

All results obtained in the previous Section can be further sim-
plified (without approximations) in view of an efficient numeri-
cal implementation. To this aim, we can prove the two follow-
ing mathematical properties. First of all, we define the Kro-
necker product of two vectors v⃗ ∈ RM and w⃗ ∈ RM such that
v⃗ ⊗ w⃗ ∈ MM,M(R) and (⃗v ⊗ w⃗)i j = viw j. Then, we introduce a
matrix B ∈ MM,M(R) and a vector b⃗ ∈ RM such that B−1 and(
B+ x⃗b⊗ b⃗

)−1
exist for some x ∈ R. Under these assumptions,

the two following relations can be proved (see Appendix A)(
B+ x⃗b⊗ b⃗

)−1
= B−1 − x

B−1⃗b⊗ b⃗B−1

1+ x⃗b ·B−1⃗b
, (33)

det
(
B+ x⃗b⊗ b⃗

)
= detB

(
1+ x⃗b ·B−1⃗b

)
. (34)

These results allow the determination of the inverse and the de-
terminant of B+ x⃗b⊗ b⃗ by means of the calculation of B−1 and
detB. So, B−1 and detB can be calculated once and for all re-
gardless of the value of x. Interestingly, these properties can be
directly applied to our previous formulas by observing that

As = N +αγ e⃗s ⊗ e⃗s, (35)

Cs = N +α e⃗s ⊗ e⃗s, (36)

ξ⃗s = η⃗ −αγ e⃗s, (37)

ζ⃗s = η⃗ −α e⃗s
x
ℓ
, (38)

γ =
kD

kW + kD
, (39)

α =
kW

kL
. (40)

For the sake of clarity, we underline that Eq.(35) comes from
Eqs.(10) and (11), Eq.(36) comes from Eqs.(28) and (29),
Eq.(37) comes from Eqs.(12) and (13), and finally Eq.(38) comes

from Eqs.(30) and (31). Here, the matrix N is defined as

N =



n−N −1 0 . . . 0

−1 n−N+1 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . nN−1 −1

0 . . . 0 −1 nN


∈ M2N+1,2N+1(R), (41)

with all the subdiagonal and superdiagonal elements equal to -1
and the diagonal elements given by

n j = 2+
kS

kL
= 2+λ ∀ j, (42)

where λ = kS/kL. Hence, N is a tridiagonal matrix with all ele-
ments on the main diagonal assuming the same value 2+kS/kL =

2+λ . Moreover, the vector η⃗ is defined as

η⃗ = (η−N ,η−N+1, ...,ηN−1,ηN), (43)

and has the following components

η j =
(N +1)d

ℓ

(
δ j,−N −δ j,+N

)
− j

d
ℓ

kS

kL
. (44)

for −N ≤ j ≤ +N. The important result is that neither N nor η⃗

are dependent on s. Then we can use Eqs.(33) and (34) in or-
der to further elaborate the main results of the previous Section.
A straightforward algebraic development yields the following ex-
pressions

ξ⃗s ·A −1
s ξ⃗s = η⃗ ·N −1

η⃗ +αγ −αγ
(1+ zs)

2

1+αγN −1
ss

, (45)

A −1
s ξ⃗s = N −1

η⃗ −αγN −1⃗es
1+ zs

1+αγN −1
ss

, (46)

1+ e⃗s ·A −1
s ξ⃗s =

1+ zs

1+αγN −1
ss

, (47)

ζ⃗s ·C−1
s ζ⃗s = η⃗ ·N −1

η⃗ +α
x2

ℓ2 −α

( x
ℓ + zs

)2

1+αN −1
ss

, (48)

detAs = detN
(

1+αγN −1
ss

)
, (49)

detCs = detN
(

1+αN −1
ss

)
, (50)

where N −1
ss = e⃗s ·N −1⃗es, i.e. it is the (s+N + 1)-th element on

the main diagonal of the matrix N −1, and zs = e⃗s ·N −1η⃗ . We re-
member that e⃗s is the (s+N+1)-th element of the canonical basis
of the space R2N+1, i.e. e⃗s = (0,0, ...,1, ...,0,0) where the one is at
position s+N +1 with −N ≤ s ≤+N. In conclusion, these expres-
sions, easily derived by the properties in Eqs.(33) and (34), allow
us to implement all results obtained in previous Section by calcu-
lating only one inverse matrix, namely of N ∈ M2N+1,2N+1(R).

All these results can be written by introducing the following
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Fig. 2 E�ect of the temperature on the stick-slip process. We show the average value of the spin variable ⟨s⟩, the average value of the normalized

stick-slip force ⟨ f ⟩/(kwd), and the substrate positions vector ⟨⃗y⟩/d as function of ℓ/d for a chain with N = 5 and for di�erent values of β . We adopted

the parameters kL = 4, kS = 3, kW = 8, kD = 5, d = 1, KBT = 2/5,1/5,1/10,1/20,1/50 in arbitrary units, corresponding to the following adimensional

quantities: γ = 5/13, λ = 3/4, α = 2, β = 10,20,40,80,200. In order to better visualize the behavior of the normalized positions ⟨y j⟩/d, −N ≤ j ≤+N,

we plotted the curves (⟨y j⟩/d − j)A + j, −N ≤ j ≤+N, where we adopted the ampli�cation factor A = 5.

parameter

β =
kW d2

2KBT
, (51)

which perfectly describes the compromise between the depth of
the energy wells of the soft corrugated substrate and the ther-
mal fluctuations. For the spin variable approach considered to
work properly, the barrier W = kW d2/8 between two adjacent
wells must be sufficiently larger than the thermal energy KBT ,
as previously discussed. It means that we will consider β ≫ 4.
Anyway, the previous results can be rewritten in a more effec-
tive form. Concerning the rate-independent stick-slip force, from
Eq.(19), we get

⟨ f ⟩
kwd

=
ℓ

d

+N

∑
s=−N

γ(1+ zs)(
1+αγN −1

ss

)3/2
e
−βγ

ℓ2

d2
(1+zs)2

1+αγN −1
ss

+N

∑
s=−N

1(
1+αγN −1

ss

)1/2
e
−βγ

ℓ2

d2
(1+zs)2

1+αγN −1
ss

. (52)

The average value of the spin variable, from Eq.(21), assumes the
form

⟨s⟩=

+N

∑
s=−N

s(
1+αγN −1

ss

)1/2
e
−βγ

ℓ2

d2
(1+zs)2

1+αγN −1
ss

+N

∑
s=−N

1(
1+αγN −1

ss

)1/2
e
−βγ

ℓ2

d2
(1+zs)2

1+αγN −1
ss

. (53)

The positions of the moving substrate wells, from Eq.(24), are
given by

⟨⃗y⟩
d

=
ℓ

d

+N

∑
s=−N

αγ(1+ zs)N −1⃗es(
1+αγN −1

ss

)3/2
e
−βγ

ℓ2

d2
(1+zs)2

1+αγN −1
ss

+N

∑
s=−N

1(
1+αγN −1

ss

)1/2
e
−βγ

ℓ2

d2
(1+zs)2

1+αγN −1
ss

− ℓ

d
N −1

η⃗ . (54)

And finally, the probability density of the slider position is derived
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Fig. 3 E�ect of the temperature on the substrate deformation and the probability density of x. We show the average substrate position ⟨y0⟩/d as

function of ℓ/d for a chain with N = 5 and for di�erent values of β . Moreover, dρ(x) is plotted versus x/d for ℓ = d/2 (bimodal distribution) and

ℓ= d (monomodal distribution). We used the abscissa x/d and the ordinate dρ(x) in order to show a normalized curve with adimensional quantities.

We adopted the parameters kL = 4, kS = 3, kW = 8, kD = 5, d = 1, KBT = 2/5,1/5,1/10,1/20,1/50 in arbitrary units, corresponding to the following

adimensional quantities: γ = 5/13, λ = 3/4, α = 2, β = 10,20,40,80,200.

from Eq.(32) and is written as

ρ(x) =
1
d

√
β

π(1− γ)
e−β

γ

1−γ

ℓ2

d2 (1− x
ℓ )

2

×

+N

∑
s=−N

1(
1+αN −1

ss

)1/2
e
−β

ℓ2

d2
( x
ℓ +zs)

2

1+αN −1
ss

+N

∑
s=−N

1(
1+αγN −1

ss

)1/2
e
−βγ

ℓ2

d2
(1+zs)2

1+αγN −1
ss

. (55)

As already mentioned, these formulas are particularly effective
because they can be implemented by means of a single inverse
matrix. This means that the sums appearing in these results are
performed on terms that are immediately available and do not
require any further computational cost.

Examples of applications of these results can be found in Figs.2-
5. We consider a system with N = 5, thus composed of 2N+1 = 11
potential wells in the corrugated substrate, and we move the
slider from ℓ/d = −N to ℓ/d = N. We are interested in explor-

ing the behavior of the system in terms of temperature and sub-
strate stiffness. On the one hand, in Figs.2 and 3, we analyse
the system with a varying temperature, i.e. with a parameter
β = kW d2/(2KBT ) variable in the range from 10 to 200. On the
other hand, in Figs.4 and 5, we analyse the system with a varying
substrate stiffness, i.e. with a parameter λ = kS/kL variable in the
range from 0.083 to 7.5.

In Fig.2, one finds the average value of the spin variable ⟨s⟩,
the average value of the normalized stick-slip force ⟨ f ⟩/(kwd),
and the substrate positions vector ⟨⃗y⟩/d. The behavior of ⟨s⟩ sim-
ply shows that, as ℓ increases, the cursor hops from one energy
well to the next. Due to thermal fluctuations, these transitions
are sharper at low temperatures and smoother at high temper-
atures. Moreover, the plot of ⟨ f ⟩/(kwd) represents the stick-slip
force versus the device position ℓ. We clearly see that the max-
imum of the force is increasing with β and therefore decreasing
with the temperature T . This behavior explains the thermolubric-
ity phenomenon as follows: the thermal fluctuations promote the
crossing of energy barriers between wells and ultimately reduce
static friction. Concerning ⟨⃗y⟩/d, we observe that the motion of
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Fig. 4 E�ect of the substrate sti�ness on the stick-slip process. We show the average value of the spin variable ⟨s⟩, the average value of the normalized

stick-slip force ⟨ f ⟩/(kwd), and the substrate positions vector ⟨⃗y⟩/d as function of ℓ/d for a chain with N = 5 and for di�erent values of λ . We adopted

the parameters kL = 4, kS = 1/3,1,3,10,30, kW = 8, kD = 5, d = 1, KBT = 1/10 in arbitrary units, corresponding to the following adimensional quantities:

γ = 5/13, λ = 1/12,1/4,3/4,5/2,15/2, α = 2, β = 40. In order to better visualize the behavior of the normalized positions ⟨y j⟩/d, −N ≤ j ≤ +N, we

plotted the curves (⟨y j⟩/d − j)A + j, −N ≤ j ≤+N, where we adopted the ampli�cation factor A = 5.

the slider affects the positions of the substrate wells and therefore
generates a substrate deformation. The effect of this deformation
is stronger for sites close to the moving cursor and negligible in
distant areas. The extent of the deformed area depends on the
longitudinal elastic constant kL whereas the intensity of the de-
formation depends on the shear elastic constant kS. Furthermore,
this deformation is very small when the slider is in the center
of the potential wells or on top of the barriers. Concerning the
temperature effects, we observe that the substrate deformation is
reduced with an increasing temperature since the thermal fluctu-
ations facilitate the crossing of barriers reducing the interaction
force between slider and substrate (coherently with the reduction
of the static friction).

The average normalized position ⟨y0⟩/d of the central energy
well is plotted versus ℓ/d in Fig.3 in order to better discuss some
details. We suppose to start the sliding process with the device at
ℓ/d = 0 and we move it rightwards. For 0 ≤ ℓ/d < 1/2, we observe
a positive value for ⟨y0⟩/d, which is justified by the fact that to try
to exit the central energy well we apply a positive force that tends

to move the well itself to the right: this is at the origin of the de-
formation of the substrate. When we reach the potential barrier
with the device at ℓ/d = 1/2, we observe a rather complex phe-
nomenon. The quantity ⟨y0⟩/d is not zero as one might expect but
takes on a positive value. A zero deformation should be expected
as the maximum of the potential barrier is an unstable but sta-
tionary point with presumed zero interaction force between slider
and substrate. Nevertheless, we must consider that the position
ℓ of the device is deterministic but the position x of the slider is
random and described by statistical mechanics as seen above. We
know in fact its probability density given in Eq.(55), and repre-
sented in Fig.3 for ℓ = d/2 (the first energy barrier on the right
of the central well) and for ℓ = d (the center of the first energy
well after the central one). It is important to observe that the in-
stability corresponding to the energy barrier at ℓ= d/2 generates
a bimodal density for the variable x. It means that the slider is
statistically split into two equivalent sliders, each residing in one
of two adjacent wells centered at x = 0 and x = d. These two vir-
tual sliders apply two opposite forces to the centers of the wells
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Fig. 5 E�ect of the substrate sti�ness on the substrate deformation and the probability density of x. We show the average substrate position ⟨y0⟩/d as

function of ℓ/d for a chain with N = 5 and for di�erent values of λ . Moreover, dρ(x) is plotted versus x/d for ℓ= d/2 (bimodal distribution) and ℓ= d
(monomodal distribution). We used the abscissa x/d and the ordinate dρ(x) in order to show a normalized curve with adimensional quantities. We

adopted the parameters kL = 4, kS = 1/3,1,3,10,30, kW = 8, kD = 5, d = 1, KBT = 1/10 in arbitrary units, corresponding to the following adimensional

quantities: γ = 5/13, λ = 1/12,1/4,3/4,5/2,15/2, α = 2, β = 40.

centered at x = 0 and x = d. Then, the bimodal distribution in-
duces a decrease in the distance of the two centers and thus an
increase of ⟨y0⟩/d and a decrease of ⟨y1⟩/d, for ℓ= d/2. This phe-
nomenon is larger when the temperature is larger (see the case
with β = 10 in Fig.3) since the two virtual sliders are closer to
the barrier for higher temperature. Therefore, they apply a larger
force that brings the two wells closer together, sensibly increasing
⟨y0⟩/d. The same process can be also observed for the successive
energy barriers placed at ℓ= 3d/2,5d/2, ... and so on. Indeed, we
see a positive value of ⟨y0⟩/d for these values of ℓ.

If we now look at the probability density of x for ℓ= d, i.e. when
the position of the traction device corresponds to the center of
first potential well after the central one, we observe a monomodal
distribution. However, for large temperatures, this density can be
sensibly different from zero outside the region of the first poten-
tial well, representing a statistical dispersion of the slider over
more than one potential well (in Fig.3, it is true for the case with
β = 10). It means that we can have ⟨y0⟩/d > 0 at ℓ/d = 1,2,3, ...
for large values of the temperature. This particular effect, giv-

ing ⟨y0⟩/d > 0 for ℓ = d/2,3d/2,5d/2, ... and ℓ = d,2d,3d, ..., has
been carefully checked and confirmed also without taking into
consideration the approximation introduced by the spin variable
approach. In fact, a numerical approach to the problem provided
the same results. For the sake of brevity we do not report here
the details of this calculation.

In Fig.4, we can observe the effect of the substrate stiffness,
quantified by λ = kS/kL, on the average value of the spin vari-
able ⟨s⟩, on the average value of the normalized stick-slip force
⟨ f ⟩/(kwd), and on the substrate positions vector ⟨⃗y⟩/d. We con-
sidered here a fixed value for the temperature. We can see that
the substrate stiffness slightly modifies the hopping among the
potential wells described by ⟨s⟩. Instead, the stick-slip force and
the substrate deformation are sensibly influenced by the substrate
stiffness. We observe that with an increasing substrate stiffness,
we have an increasing stick-slip force and a decreasing substrate
deformation. We emphasize the fact that the behavior with a
variable temperature was different. Indeed, as the temperature
increased, both stick-slip force and substrate deformation were
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found to decrease.
In Fig.5, we show the zoom of the normalized position ⟨y0⟩/d

versus the slider position ℓ/d. As before, we can observe the os-
cillatory variation of ⟨y0⟩/d with a decrease of its intensity as
the distance from the central point increases. Moreover, we see
that ⟨y0⟩/d is slightly larger than zero for ℓ = d/2,3d/2,5d/2, ...
and it is explained by the probability density of the variable x,
which is bimodal in correspondance to the energy barriers, as
one can find in Fig.5. In the plot of ⟨y0⟩/d, we observe that for
ℓ = d/2,3d/2,5d/2, ... the value of ⟨y0⟩/d increases with the de-
crease of λ . This exactly corresponds to the increasing distance
between the two peaks in the probability density of x as the stiff-
ness λ of the substrate increases. In fact if the two peaks are very
close, they correspond to points with a high slope of the potential
energy and apply a high force that produces a strong approaching
of the energy wells. On the contrary, if the peaks are farther apart,
they correspond to points having a lower slope of the potential en-
ergy and apply a lower force that tends to bring the energy wells
closer to each other. Concerning the probability density of x for
ℓ = d, we observe that its value is nearly zero outside the energy
well and therefore we see that ⟨y0⟩/d = 0 for ℓ= d,2d,3d, .... This
value can be increased only for larger values of the temperature.

Our model is based on equilibrium statistical mechanics and
therefore we neglected frictional memory induced by finite speed,
thermodynamic non-reversibility and substrate plasticity. For this
reason, we cannot observe hysteresis in our frictional behaviour,
an important feature present in several applications.85,86 In ad-
dition, we completely neglected any nonlinear and/or nonlocal
behaviour of the soft substrate in order to simplify the application
of statistical mechanics. Some theoretical work in this direction
can be found in the literature.87,88

4 The limit of the theory with an in�nitely long

substrate

We want to study here the behavior of the system with an in-
finitely long substrate (N → ∞). To do this, we use some spe-
cific properties of tridiagonal matrices,89,90 fully discussed in Ap-
pendix B. There, one can find an algorithm giving the closed form
expressions for the elements of N −1. In particular, by means
of this result, we can write the explicit expressions for the ele-
ments N −1

ss , representing the main diagonal of N −1. Indeed,
by using Eqs.(106), (110) and (112) of Appendix B, we easily get
N −1

ii = G (i)G (M+1− i)/G (M+1) with 1 ≤ i ≤ M. By substituting
M = 2N +1 and i = s+N +1 we obtain

N −1
ss =

G (s+N +1)G (N +1− s)
G (2N +2)

, (56)

where −N ≤ s ≤ +N. Here, the function G is defined as follows
(see Eq.(111) in Appendix B)

G (z) =
1√
∆

(
2+λ +

√
∆

2

)z

− 1√
∆

(
2+λ −

√
∆

2

)z

, (57)

where ∆ = λ 2 +4λ (see Appendix B) and λ = kS/kL. We observe
that in this function, the two fractions raised to the power z have
the following properties: the first is larger than one, and the sec-

ond is between zero and one. Since z is a function that grows
linearly with N in the three G functions used in Eq.(56), if N is
large, in Eq.(57) we can neglect the second power that tends to
zero (the base is between zero and one) and we can keep only
the first one (the base is larger than one). From Eq.(56), these
premises deliver

lim
N→∞

N −1
ss =

1√
∆
=

1√
λ 2 +4λ

, (58)

showing that the diagonal of the inverse matrix of N is homo-
geneous in the limit of N → ∞ (N −1

ss does not depend on s).
This is the first important result, which strongly simplifies the
structures of previous results for large values of N. Second, we
search for an explicit expression for zs. By definition, it is given
by zs = e⃗s ·N −1η⃗ . Hence, since (⃗es)i = δs+N+1,i, we can write

zs =
2N+1

∑
j=1

N −1
s+N+1, jη j =

s+N

∑
j=1

N −1
s+N+1, jη j

+N −1
s+N+1,s+N+1ηs+N+1 +

2N+1

∑
j=s+N+2

N −1
s+N+1, jη j, (59)

where the first sum is split into three parts, consistent with the ex-
pression of the inverse matrix given in Eq.(106) of the Appendix
B. Therefore, in the first term we can substitute the values

N −1
s+N+1, j =

G ( j)G (N +1− s)
G (2N +2)

, (s+N +1 > j), (60)

in the second one the following

N −1
s+N+1,s+N+1 =

G (s+N +1)G (N +1− s)
G (2N +2)

, (61)

and in the third one

N −1
s+N+1, j =

G (s+N +1)G (2N +2− j)
G (2N +2)

, (s+N +1 < j). (62)

To sum up, we obtain the expression

zs =
s+N

∑
j=1

G ( j)G (N +1− s)
G (2N +2)

η j

+
G (s+N +1)G (N +1− s)

G (2N +2)
ηs+N+1

+
2N+1

∑
j=s+N+2

G (s+N +1)G (2N +2− j)
G (2N +2)

η j, (63)

where we must consider the components of the vector η⃗

η j = (N +1)
d
ℓ

(
δ j,1 −δ j,N+1

)
− ( j−N −1)

d
ℓ

λ . (64)

Developing Eq.(63) with a long but straightforward calculation,
we eventually obtain the following asymptotic behavior

lim
N→∞

zs =−s
d
ℓ
, (65)
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where −∞ ≤ s ≤ +∞. It means that zs depends linearly on s
through the simple coefficient −d/ℓ when N → ∞. The two results
in Eqs.(58) and (65) are essential to obtain the explicit solutions
describing the behaviour of the model with an infinitely long soft
substrate.

We start from Eq.(53) giving the average value of the spin vari-
able and we perform the limit for N → ∞. By using Eqs. (58) and
(65), we can rewrite Eq.(53) as follows

⟨s⟩=

+∞

∑
s=−∞

se−µ( ℓ
d −s)

2

+∞

∑
s=−∞

e−µ( ℓ
d −s)

2
, (66)

where we introduced

µ =
βγ

1+αγ
1√

λ 2+4λ

=
βγ

√
λ 2 +4λ

αγ +
√

λ 2 +4λ
> 0. (67)

The sum in the denominator can be easily written in the following
closed form

+∞

∑
s=−∞

e−µ( ℓ
d −s)

2

= e−µ
ℓ2

d2 ϑ3

(
−iµ

ℓ

d
, i

µ

π

)
, (68)

by using the third Jacobi theta function ϑ3 (z,τ) defined below

ϑ3 (z,τ) =
+∞

∑
n=−∞

eπin2τ e2inz = 1+2
+∞

∑
n=1

eπin2τ cos(2nz). (69)

Here z =−iµℓ/d ∈C is the argument, and τ = iµ/π ∈C is the so-
called lattice parameter satisfying the condition ℑm(τ) > 0.91–95

Sometimes, also the nome q = eiπτ = e−µ is introduced with the
assumption |q|< 1, assuring the series convergence. This function
satisfies the two relations

ϑ3 (z+π,τ) = ϑ3 (z,τ) , (70)

ϑ3 (z+πτ,τ) =
e−2iz

q
ϑ3 (z,τ) , (71)

stating that it is determined in the entire complex plane by the
values it assumes in the parallelogram identified by the four
points z0,z0 +πτ,z0 +π +πτ and z0 +π ∀z0 ∈ C (the fundamen-
tal domain).91–95 To write Eq.(68) in a more useful form, we
can also introduce the following Jacobi functional identity for the
third Jacobi theta function94,95

ϑ3 (z,τ) =
1√
−iτ

e
z2
πiτ ϑ3

(
z
τ
,−1

τ

)
, (72)

where the square root is to be interpreted as the principal
value.94,95 If we apply this identity to Eq.(68), we easily obtain

+∞

∑
s=−∞

e−µ( ℓ
d −s)

2

=

√
π

µ
ϑ3

(
−π

ℓ

d
, i

π

µ

)
. (73)

Returning to Eq.(66), we note that the sum in the numerator can

be written as function of the sum in the denominator as

+∞

∑
s=−∞

se−µ( ℓ
d −s)

2

=
d

2µ

∂

∂ℓ

+∞

∑
s=−∞

e−µ( ℓ
d −s)

2

+
ℓ

d

+∞

∑
s=−∞

e−µ( ℓ
d −s)

2

, (74)

and therefore we eventually obtain

⟨s⟩= ℓ

d
− π

2µ

ϑ ′
3

(
−π

ℓ
d , i

π

µ

)
ϑ3

(
−π

ℓ
d , i

π

µ

) , (75)

where ϑ ′
3 = ∂ϑ3

∂ z . By using the following relation giving the loga-
rithmic derivative of the third theta function91–95

ϑ ′
3 (z,τ)

ϑ3 (z,τ)
= 4

+∞

∑
n=1

(−1)n qn

1−q2n sin(2nz), (76)

which is valid for |ℑm(z)|< π

2 ℑm(τ) and where q= eiπτ , we finally
obtain

⟨s⟩= ℓ

d
+

2π

µ

+∞

∑
n=1

(−1)n e−
nπ2

µ

1− e−
2nπ2

µ

sin
(

2πn
ℓ

d

)
. (77)

This relationship is particularly clear from a physical point of view
as the first term, linear in ℓ, represents the movement of the slider
and the second term, described by a Fourier series, represents the
periodicity of the infinite substrate. The resulting stepped curve
is easily interpreted as a succession of jumps between the poten-
tial wells of the substrate. Interestingly enough, this process is
controlled by only one parameter, namely µ defined in Eq.(67),
taking into account the compromise between temperature (i.e.
β), substrate elasticity (i.e. λ) and device elasticity (i.e. γ). In
the case with λ → ∞, we obtain an infinite rigid substrate. Un-
der this condition, µ → βγ and Eq.(77) becomes coincident with
recent results obtained for undeformable substrates.78 This com-
parison confers even more meaning to the expression of µ given
in Eq.(67), which takes a modified form for finite values of sub-
strate elasticity with respect to the value µ = βγ, already known
for rigid substrates.78

Concerning the stick-slip force on the soft substrate, by using
Eqs. (58) and (65), we can rewrite Eq.(52) as follows

⟨ f ⟩
kwd

=
γ

1+αγ
1√

λ 2+4λ

+∞

∑
s=−∞

(
ℓ

d
− s
)

e−µ( ℓ
d −s)

2

+∞

∑
s=−∞

e−µ( ℓ
d −s)

2
, (78)

which can be simply written as

⟨ f ⟩
kwd

=
γ

1+αγ
1√

λ 2+4λ

(
ℓ

d
−⟨s⟩

)
=

π

2β

ϑ ′
3

(
−π

ℓ
d , i

π

µ

)
ϑ3

(
−π

ℓ
d , i

π

µ

)

=
2π

β

+∞

∑
n=1

(−1)n+1 e−
nπ2

µ

1− e−
2nπ2

µ

sin
(

2πn
ℓ

d

)
, (79)

which is a Fourier series representing the periodic rate-
independent stick-slip force on the infinitely long soft substrate.
This result, too, has an explicit physical significance in that the
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Fourier series makes it possible to evaluate the exact profile of the
static friction force during the motion of the slider, and in partic-
ular its maximum value, which represents the threshold of force
to be overcome in order to allow motion. The force shape during
the slider motion is completely controlled by the two parameters
β and µ. The important issue is that the force is highly dependent
on the deformability of the substrate and on the system tempera-
ture. This can be easily seen for low values of the temperatures.
Indeed, Eq.(79) allows a simple analysis for T → 0. Indeed, by
using the limit limz→0 z/(1− e−az) = 1/a, Eq.(79) delivers

lim
T→0

⟨ f ⟩
kwd

=
1

2π

γ
√

λ 2 +4λ

αγ +
√

λ 2 +4λ

+∞

∑
n=1

(−1)n+1 2
n

sin
(

2πn
ℓ

d

)
, (80)

where we can recognize the Fourier series of a sawtooth wave

r =
+∞

∑
n=1

(−1)n+1 2
n

sinnr, r ∈ (−π,+π), (81)

thus obtaining

lim
T→0

⟨ f ⟩
kwd

=
γ
√

λ 2 +4λ

αγ +
√

λ 2 +4λ

ℓ

d
=

kD
kW+kD

√
k2

S
k2

L
+4 kS

kL

kW
kL

kD
kW+kD

+

√
k2

S
k2

L
+4 kS

kL

ℓ

d
, (82)

or

lim
T→0

⟨ f ⟩=
kW kD

kW+kD

√
k2

S +4kSkL

kW kD
kW+kD

+
√

k2
S +4kSkL

ℓ=
1

1
kD

+ 1
kW

+ 1√
k2

S+4kSkL

ℓ, (83)

for any ℓ such that −1/2 < ℓ/d < 1/2, i.e. in the central energy
well with undeformed position at x = 0. This result represents
the purely mechanical force (without temperature effects) neces-
sary to maintain the particle at position ℓ when it is pulled by the
device with elastic constant kD and attracted by the central well
(elastic constant kW ) placed within the corrugated substrate with
elastic properties kS (shear) and kL (longitudinal). From Eq.(83)
we can deduce that the stick-slip force increases with an increas-
ing device stiffness, with an increasing well stiffness, and with an
increasing substrate stiffness. If the substrate is non-deformable
(i.e. kS/kL → ∞), we get

lim
kS/kL→∞

lim
T→0

⟨ f ⟩
kwd

= γ
ℓ

d
=

kD

kW + kD

ℓ

d
, (84)

which exactly corresponds to the purely mechanical force neces-
sary to maintain the particle at position ℓ in the well with elastic
constant k0 and pulled by the spring with constant k. The the-
ory is therefore perfectly consistent with the pure mechanics at
T = 0. Moreover, if we consider a rigid substrate in Eq.(79), i.e.
with λ → ∞ or µ → βγ, we obtain the stick-slip force for a slider
on an infinite undeformable substrate, as obtained in recent liter-
ature.78

We can now study the deformation of the infinite substrate in-
duced by the slider motion. To do this, we use Eq.(54) and we can
only focus on y0 (coordinate of the central particle in Fig.1) since
all components yi have the same behaviour when the substrate is
infinitely long. In order to develop Eq.(54) for y0, we observe

that the contribution of N −1η⃗ is zero (last term of Eq.(54)),
and then we only need to evaluate N −1⃗es (in the numerator of
Eq.(54)). We note that the central component of N −1⃗es is given
by N −1

N+1, j with 1 ≤ j ≤ 2N +1. Hence, through Eq.(106), we cal-

culate N −1
N+1, j for large values of N as follows

N −1
N+1, j =

G ( j)G (N +1)
G (2N +2)

≃ 1√
∆

(
2+λ +

√
∆

2

)N+1− j

,∀ j ≤ N +1, (85)

N −1
N+1, j =

G (N +1)G (2N +2− j)
G (2N +2)

≃ 1√
∆

(
2+λ +

√
∆

2

) j−N−1

,∀ j > N +1, (86)

or, equivalently,

lim
N→∞

N −1
N+1, j =

1√
∆

(
2+λ +

√
∆

2

)−| j−N−1|

,∀1 ≤ j ≤ 2N +1. (87)

Therefore, we have that N −1⃗es simply provides a contribution
equal to 1√

∆
[(2+λ +

√
∆)/2]−|s| for the position y0 in Eq.(54) (here

−N ≤ s ≤+N). Then, we obtain

⟨y0⟩
d

=
αγ

αγ +
√

∆

+∞

∑
s=−∞

(
ℓ

d
− s
)(

2+λ +
√

∆

2

)−|s|

e−µ( ℓ
d −s)

2

+∞

∑
s=−∞

e−µ( ℓ
d −s)

2
. (88)

While the sum in the denominator has been already calculated in
Eq.(68) or in Eq.(73), to evaluate the sum in the numerator we
need to introduce the so-called partial theta function

ϑ
P
3 (z,τ) =

+∞

∑
n=0

eπin2τ e2inz, (89)

where the exponent P means partial. As there are many rather
heterogeneous notations for this function,96–98 we prefer to de-
fine it as the complete theta function given in Eq.(69) but sum-
ming only over values of n greater than or equal to zero (n ≥ 0).
A long but straightforward elaboration of Eq.(88) leads to the ex-
plicit result

⟨y0⟩
d

=
αγ

αγ +
√

λ 2 +4λ

M

ϑ3

(
−iµ ℓ

d , i
µ

π

) , (90)
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Fig. 6 E�ect of the substrate sti�ness on the stick-slip force, represented by max⟨ f ⟩/(kW d), and on the substrate deformation, represented by

max⟨y0⟩/d. We considered an in�nitely long substrate described by Eqs.(77), (79), (90), and (94). We adopted the parameters kL = 4, kS ∈ (0.8,60),
kW = 8, kD = 5, d = 1, KBT = 1/5,1/10,1/20,1/40,1/80 in arbitrary units, corresponding to the following adimensional quantities: γ = 5/13, α = 2,
β = 20,40,80,160,320, λ ∈ (0.2,15).

where

M =
ℓ

d
ϑ

P
3

i

log

√
2+λ +

√
∆

2
−µ

ℓ

d

 , i
µ

π

 (91)

+
ℓ

d
ϑ

P
3

i

log

√
2+λ +

√
∆

2
+µ

ℓ

d

 , i
µ

π



− 1
2i

(
ϑ

P
3

)′i

log

√
2+λ +

√
∆

2
−µ

ℓ

d

 , i
µ

π



+
1
2i

(
ϑ

P
3

)′i

log

√
2+λ +

√
∆

2
+µ

ℓ

d

 , i
µ

π

− ℓ

d
,

with
(
ϑ P

3
)′
(z,τ) = ∂

∂ z ϑ P
3 (z,τ). Unfortunately, no particular prop-

erties of the partial theta function are available to further simplify
the structure of this result.

To conclude, we can evaluate the probability density ρ(x) for
a system with an infinitely long substrate. We use Eq.(55) where
we apply Eqs. (58) and (65) and we obtain

ρ(x) =
1
d

√
β

π(1− γ)
e−β

γ

1−γ
( ℓ

d −
x
d )

2

×

√
αγ +

√
λ 2 +4λ

α +
√

λ 2 +4λ

+∞

∑
s=−∞

e−ν( x
d −s)

2

+∞

∑
s=−∞

e−µ( ℓ
d −s)

2
, (92)

where ν is defined as follows

ν =
β

1+α
1√

λ 2+4λ

=
β
√

λ 2 +4λ

α +
√

λ 2 +4λ
> 0, (93)

in a similar way to what we did with µ in Eq.(67). Now, we can
use the sum calculated in Eq.(73), finally obtaining the probabil-
ity density

ρ(x) =
1
d

√
γβ

π(1− γ)
e−β

γ

1−γ
( ℓ

d −
x
d )

2 ϑ3

(
−π

x
d , i

π

ν

)
ϑ3

(
−π

ℓ
d , i

π

µ

) . (94)

Interestingly enough, we can check the normalization condition
stated in Eq.(26). To do this, it is possible to prove by a direct
calculation the following property∫ +∞

−∞

e−ε( ℓ
d −

x
d )

2

ϑ3

(
−π

x
d
, i

π

ν

)
dx

= d
√

π

g
ϑ3

[
−π

ℓ

d
, iπ
(

1
ν
+

1
ε

)]
, (95)

which is valid for any value of ε. If we suppose that ε = γβ/(1−γ),
we simply have that 1/ν + 1/ε = 1/µ (it is sufficient to use
Eqs.(67) and (93)), and then Eq.(95) immediately proves the nor-
malization condition for Eq.(94), stated in Eq.(26).

To conclude, the infinitely long substrate is described by the so-
lutions given in Eqs.(77), (79), (90), and (94), representing the
average spin variable, the average stick-slip force, the average
substrate deformation, and the probability density of the x vari-
able, respectively. These results, in addition to being particularly
elegant in that they disclose a connection between the stick-slip
problem with the third Jacobi theta function ϑ3 (z,τ) theory, are
useful for obtaining a summary of the behavior of the system com-
posed of slider and soft substrate. In Fig.6, we show the infinite
system behavior with a varying substrate stiffness, and in Fig.7
its behavior with a varying device stiffness. It can be seen from
Fig.6 that while the average static friction force increases with
increasing substrate stiffness, the deformation of the substrate it-
self decreases with its stiffness. This corresponds with what is ob-
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Fig. 7 E�ect of the device sti�ness on the stick-slip force, represented by max⟨ f ⟩/(kW d), and on the substrate deformation, represented by max⟨y0⟩/d.
We considered an in�nitely long substrate described by Eqs.(77), (79), (90), and (94). We adopted the parameters kL = 4, kS = 3, kW = 8, kD ∈
(8/9,72), d = 1, KBT = 1/5,1/10,1/20,1/40,1/80 in arbitrary units, corresponding to the following adimensional quantities: γ ∈ (0.1,0.9), α = 2,
β = 20,40,80,160,320, λ = 3/4.

served in Fig.4, and this is also in good agreement with the recent
results obtained for the stochastic sliding friction (for low veloci-
ties of the slider).47 Moreover, we also see that the average static
friction force and the deformation of the substrate decrease as
temperature increases, as already observed in Fig.2. Similarly, we
see in Fig.7 the effect of the device stiffness. We directly deduce
that both the average static friction force and the deformation of
the substrate increase with the parameter γ and decrease with the
temperature.

We observed that the temperature is always able to reduce the
stick-slip force or, equivalently, the static friction. This behaviour
falls into the class of superlubricity phenomena, and is tipically
referred to as thermolubricity.99,100 Of course, the decrease of
friction with temperature is also predicted in the original Prandtl-
Tomlinson model with rigid substrate since thermal energy fosters
the crossing of energy barriers.23–33 Interestingly, this behavior
has been confirmed by experiments conducted on various materi-
als using the atomic force microscope.101,102

To conclude the discussion concerning the infinitely long sub-
strate, we show in Fig.8 some plots of the probability density of
the variable x. More specifically, one can see the surface repre-
senting dρ(x) in terms of the variable x/d and of the parame-
ter ℓ/d. Of course, the curve of dρ(x) versus x/d is normalized
(the underlying area is unitary) for any value of ℓ/d, as stated in
Eq.(26). We considered different values of the temperature and of
the substrate stiffness, in order to better show the system behav-
ior. First of all, we remark that the character of the curve dρ(x)
versus x/d is monomodal for ℓ/d = 0 or ℓ/d = 1, where the slider
is in a stable configuration placed at the center of the quadratic
wells of the corrugated substrate. Differently, the curve dρ(x) ver-
sus x/d is bimodal for ℓ/d = 1/2, when the slider is in the unstable
position at the top of the energy barrier between two adjacent po-
tential wells. Hence, the three-dimensional plots in Fig.8 explain
two peculiar behaviors of the system. Firstly, the bimodal charac-

ter of the density for ℓ/d = 1/2 induces a positive value of the sub-
strate deformation, i.e. ⟨y0⟩> 0 for ℓ/d = 1/2. Indeed, the slider is
statistically equivalent to a couple of virtual sliders placed at the
sides of the barrier and therefore these ones try to bring the two
potential wells closer together (⟨y0⟩ > 0 and ⟨y1⟩ < 0). Secondly,
the monomodal character of the density, say for ℓ/d = 1, explains
the positive value of ⟨y0⟩ for ℓ/d = 1 and for large values of the
temperature. Indeed, if the temperature is sufficiently high, the
tails of the probability density are non-negligible in the side wells
centered in x/d = 0 and x/d = 2. These tails correspond to two vir-
tual sliders that try to compress the central well, inducing ⟨y0⟩> 0
and ⟨y2⟩< 0. Of course, these phenomena are controlled by tem-
perature and substrate stiffness, as one can appreciate from Fig.8.

We finally remark that the solutions given in Eqs.(77), (79),
(90), and (94) fully describe the behavior of an infinitely long
soft substrate and they represent the direct generalization of the
results recently obtained for a rigid substrate,78 performed by
simlply substituting the product βγ with the parameter µ defined
in Eq.(67).

5 Conclusions

In this work we elaborated a modified Prandtl-Tomlinson model
for describing the stick-slip phenomenon on a soft or deformable
substrate. Instead of considering a sinusoidal corrugated sub-
strate as in the original model, we introduced here a sequence of
quadratic energy wells, which represent a more appropriate struc-
ture for the analytical development of the model. Importantly,
we introduced the substrate elasticity by means of a spring lad-
der network, enabling the displacement of the substrate energy
wells. On the one hand, the quadratic wells allow us to consider
this structure to mimic the elasticity of the substrate, and on the
other hand, they allow us to use the spin variable technique that
enables us to work with complex, nonconcave potential energy.
Indeed, we analyzed the quasi-static behavior of the stick-slip by
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Fig. 8 Evolution of the probability density of the variable x with di�erent values of the temperature and of the substrate sti�ness. We used the

abscissae x/d and ℓ/d and the ordinate dρ(x) in order to show a normalized curve on the plane (x/d,dρ), with adimensional quantities. We adopted the

parameters kL = 4, kS = 1/3,48, kW = 8, kD = 5, d = 1, KBT = 2/5,1/10,1/50 in arbitrary units, corresponding to the following adimensional quantities:

γ = 5/13, α = 2, β = 10,40,200, λ = 1/12,12.

means of the equilibrium statistical mechanics. It means that we
suppose the system in contact with a thermal bath at a given tem-
perature and we coherently use the canonical distribution of the
statistical mechanics. As discussed, its partition function can be
evaluated in closed for for our system. Hence, the model permits
the determination of the static friction and the deformation of
the substrate in terms of the thermal fluctuations and of the sub-
strate stiffness. Moreover, we also analyze the average value of
the spin variable representing the energy well explored during the
slider motion, and the probability density of the slider position,
which is useful to better understand the system behavior. Firstly,
we proved that the stick-slip force (or quasi-static friction force)
increases with the substrate stiffness and decreases with the tem-
perature. Secondly, we provided evidence that the deformation of
the substrate decreases with both substrate stiffness and tempera-
ture. These results briefly summarize the behavior of the stick-slip
on a soft substrate. However, we show that refined phenomena
can be noticed when the slider passes to the unstable position
corresponding to the top of the barrier or to the stable position
in the middle of the wells. Indeed, especially for nanoscopic sys-
tems, one must consider the probability density of the slider po-
sition, which can be nonnegligible in a spatial region of the same
order as the extent of each energy well. Thus, this leads to ob-
servable effects on substrate deformation, which can be different
from zero both with the slider at the tops of the barriers and with
the slider in the potential minima. This again explains the com-
plexity of the stick-slip phenomenon at the nanoscale where the
effects of thermal fluctuations can be crucial.

While being a paradigmatic model for the description of the
stick-slip process on a soft substrate, our structure should be im-

proved to better represent more realistic situations. One draw-
back concerns the particular shape of the corrugated substrate.
Although the sequence of parabolas is qualitatively similar to the
Prandtl-Tomlinson model, other geometries can be imagined to
achieve greater similarity with the original sinusoidal profile. For
example, one could consider two or more energy levels for the
intercalated wells. Another improvement concerns the dynamics
of the frictional processes, which should be studied in the con-
text of the out-of-equilibrium statistical mechanics.103,104 There
is in fact a complex interplay between the traction speed applied
to the slider, the characteristic times induced by the stiffness of
each well of the potential energy, and the times induced by the
transition rates between the adjacent wells, which depend on
the energy barrier as classically described by the Kramers the-
ory.105,106 In order to introduce non-equilibrium thermodynam-
ics and irreversibility we can add to the conservative potential
energy two terms (as done by Langevin for a single particle in
a thermal bath): a dissipative term which can be considered as
a viscous force (opposite and proportional to the velocity) and a
noise term (with white gaussian behaviour for simplicity). This
scheme converges to the equilibrium solution for long time but
is able to reproduce all the out-of-equilibrium thermodynamics in
an arbitrary time regime.107,108

To conclude, we can affirm that our proposed method to take
into account the temperature effect and the soft substrate in stick-
slip and frictional phenomena can be adopted for several prob-
lems, including the study of the cells motion and the development
of new haptic and tactile technologies.
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Appendix A: The inverse and the determinant of the

matrix B+ x⃗b⊗ b⃗

We consider a matrix B ∈ MM,M(R) and a vector b⃗ ∈ RM such

that B−1 and
(
B+ x⃗b⊗ b⃗

)−1
exist for some x ∈R. First of all, we

prove Eq.(33) of the main text. To do this, we develop the matrix
product

(
B+ x⃗b⊗ b⃗

)(
B−1 − x

B−1⃗b⊗ b⃗B−1

1+ x⃗b ·B−1⃗b

)

= I − x
b⃗⊗ b⃗B−1

1+ x⃗b ·B−1⃗b
+ x⃗b⊗ b⃗B−1 − x2 b⃗⊗ b⃗B−1⃗b⊗ b⃗B−1

1+ x⃗b ·B−1⃗b

= I − x
b⃗⊗ b⃗B−1

1+ xy
+ x⃗b⊗ b⃗B−1 − x2y

b⃗⊗ b⃗B−1

1+ xy
, (96)

where y = b⃗ ·B−1⃗b. By simplifying the last sum, we obtain the
result coinciding with the identical matrix I , finally proving the
first property stated in Eq.(33). Concerning the second property,
we use the following theorem

d
dx

detA = detA tr
(

A −1 dA

dx

)
, (97)

which is valid for any non-singular x-dependent matrix A ∈
MM,M(R). We suppose now that A = B+ x⃗b⊗ b⃗ and we obtain

d
dx

log
[
det
(
B+ x⃗b⊗ b⃗

)]
= tr

[(
B+ x⃗b⊗ b⃗

)−1
b⃗⊗ b⃗

]
. (98)

From the first property just demonstrated we easily obtain

d
dx

log
[
det
(
B+ x⃗b⊗ b⃗

)]
=

y
1+ xy

, (99)

where y = b⃗ ·B−1⃗b, as before. By integrating this relation over x,
we get

log
[
det
(
B+ x⃗b⊗ b⃗

)]
− log [det(B)] = log(1+ xy). (100)

To conclude, applying the exponential function we prove the re-
lation

det
(
B+ x⃗b⊗ b⃗

)
= detB

(
1+ x⃗b ·B−1⃗b

)
, (101)

corresponding to Eq.(34) of the main text.

Appendix B: Properties of the matrix N

We prove here some properties concerning the tridiagonal ma-
trices. To begin, we consider the following arbitrary tridiagonal
matrix T

T =



a1 b1 0 · · · 0

c1 a2 b2
. . .

...

0 c2
. . .

. . . 0
...

. . .
. . . aM−1 bM−1

0 · · · 0 cM−1 aM


∈ MM,M(R), (102)

where the diagonal is composed by the elements (a1, ...,aM),
the superdiagonal by (b1, ...,bM−1) and the subdiagonal by
(c1, ...,cM−1). It has been proved89,90 that the elements of the
inverse matrix T −1 can be represented as

[
T −1

]
i j
=



1
ϑM

(−1)i+ jbi × ...×b j−1ϑi−1ϕ j+1, i < j

1
ϑM

ϑi−1ϕi+1, i = j

1
ϑM

(−1)i+ jc j × ...× ci−1ϑ j−1ϕi+1, i > j

(103)

where the sequences ϑi and ϕi are given by the recursive laws{
ϑi = aiϑi−1 −bi−1ci−1ϑi−2, ∀i = 1, ...,M,

ϑ−1 = 0,ϑ0 = 1,(ϑ1 = a1),
(104)

and {
ϕi = aiϕi+1 −biciϕi+2, ∀i = M, ...,1,
ϕM+2 = 0,ϕM+1 = 1,(ϕM = aM).

(105)

While Eq.(104) is an increasing recursive law going from i = 1 to
i = M, Eq.(105) is a decreasing recursive law going from i = M
to i = 1. We also remember that detT = ϑM

89,90. In the case
of the matrix N , we have that bi = −1∀i, ci = −1∀i, and ai =

2+λ∀i. Under this hypothesis, the general result can be simplified
as follows

[
T −1

]
i j
=



1
ϑM

ϑi−1ϕ j+1, i < j

1
ϑM

ϑi−1ϕi+1, i = j

1
ϑM

ϑ j−1ϕi+1, i > j

(106)

where the sequences ϑi and ϕi are given by the reduced recursive
laws {

ϑi = (2+λ )ϑi−1 −ϑi−2, ∀i = 1, ...,M
ϑ−1 = 0,ϑ0 = 1,

(107)

and {
ϕi = (2+λ )ϕi+1 −ϕi+2, ∀i = M, ...,1
ϕM+2 = 0,ϕM+1 = 1.

(108)

To begin, we consider Eq.(107) whose general solution can be
written as

ϑi = p

(
2+λ +

√
∆

2

)i

+q

(
2+λ −

√
∆

2

)i

, (109)

with ∆ = λ 2+4λ and where the coefficients p and q must be fixed
through the conditions ϑ−1 = 0 and ϑ0 = 1. A straightforward
calculation leads to the explicit solution

ϑi = G (i+1), (110)
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where the function G (z) is defined as follows

G (z) =
1√
∆

(
2+λ +

√
∆

2

)z

− 1√
∆

(
2+λ −

√
∆

2

)z

. (111)

A similar calculation leads to the solution of Eq.(108) in the form

ϕi = G (M+2− i). (112)

Finally, Eqs.(110) and (112) allow for the calculation of the in-
verse matrix when combined with Eq.(106).
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