Reply to Ben-Dor and Barkai: A low Zn isotope ratio is not equal to a low Zn content

Klervia Jaouen, Thomas Tütken, Nicolas Bourgon, Tina Lüdecke, Geoff M Smith, Domingo C Salazar-García, Jean-Jacques Hublin, Vanessa Villalba-Mouco, Pauline Méjean

To cite this version:
Klervia Jaouen, Thomas Tütken, Nicolas Bourgon, Tina Lüdecke, Geoff M Smith, et al.. Reply to Ben-Dor and Barkai: A low Zn isotope ratio is not equal to a low Zn content. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120 (6), 10.1073/pnas.2218491120. hal-04043282

HAL Id: hal-04043282
https://hal.science/hal-04043282
Submitted on 23 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Reply to Ben-Dor and Barkai: A low Zn isotope ratio is not equal to a low Zn content

Klervia Jaouen a,b, Thomas Tütken b,c, Nicolas Bourgon b,c,d, Tina Lüdecke d, Geoff M. Smith e, Domingo C. Salazar-García f,g, Jean-Jacques Hublin h, Vanessa Villalba-Mouco d,i, and Pauline Méjean a,d

We are grateful to Miki Ben-Dor and Ran Barkai for their interest in our study (1). We acknowledge that a high-fat diet should have been discussed in our hypothesis as an additional dietary option.

However, we are afraid that there was a misunderstanding in the interpretation of our data. Ben-Dor and Barkai (2) wrote that “One explanation presented in the [our] paper was that Neandertals may have consumed body parts and animals that were relatively poor in zinc, like the liver or deer.” This sentence is not reflecting our conclusions: We discussed Zn isotope ratios (i.e., $\delta^{66}\text{Zn}$/64Zn ratio expressed as a $\delta^{66}\text{Zn}$ value) and not Zn concentrations. To explain low $\delta^{66}\text{Zn}$ values of the Neandertal tooth, we propose that Neandertals ate food items depleted in heavy Zn isotopes (and therefore enriched in light Zn isotopes), but those foods can have variable Zn contents, independent of the Zn isotope composition as such. A large fraction of Zn with low $\delta^{66}\text{Zn}$ needs to be ingested with the diet to shift Neandertal enamel mineralizing to low $\delta^{66}\text{Zn}$ values. Thus, the proposition of Ben-Dor and Barkai (2) that “a high animal fat consumption with zero Zn content as a probable explanation for the extremely low $\delta^{66}\text{Zn}$ in the Gabasa Neandertal” does not work as the Zn content of fat is too low to contribute to the enamel $\delta^{66}\text{Zn}$. Furthermore, fat and bone marrow do not even have low $\delta^{66}\text{Zn}$ values (3, 4).

To support this statement, we here give an example based on the numbers suggested by Ben-Dor and Barkai (2). Assuming 1) a concentration of Zn in fat of 0.06 mg/100 g and a concentration of Zn in meat (0% fat) of 4 mg/100 g (5), 2) a consumption of 1 kg meat with 20% of protein and 15% of fat per day, 3) Zn isotope compositions of meat ($\delta^{66}\text{Zn} = 0.15\%$) and of fat ($\delta^{66}\text{Zn} = 0.4\%$) (3, 4) and that proteins contribute to 4 kcal/g and fat to 9 kcal/g in the diet (6), we obtain a $\delta^{66}\text{Zn}$ of 0.1506% (Table 1). Thus, compared with a fat-free meat diet, the $\delta^{66}\text{Zn}$ value is only increasing by 0.0006%, which is two orders of magnitude lower than the analytical error of $\delta^{66}\text{Zn}$ measurement (<0.05%, 1 SD) and therefore not significant.

The consumption of bone grease has been reported in Pyrenean Mousterian sites as described by the work of Costamagno (7, 8) in the nearby location of the Noisetter Cave and Blasco (9) through the exploitation of bone marrow for the very site of Gabasa. Hence, the consumption of fat could potentially be substantial at these sites, but at this stage, zinc isotope ratios do not allow us to quantify it. As shown by our mass balance, a high-fat diet cannot explain the low $\delta^{66}\text{Zn}$ values that we observe in the Neandertal tooth of Gabasa as it would have a very small impact on the $\delta^{66}\text{Zn}$ bulk value of the diet.

Table 1. Contribution of fat to the Zn isotope composition of 1 kg meat (see text for references)

<table>
<thead>
<tr>
<th></th>
<th>Mass in g</th>
<th>Contribution in kcal</th>
<th>% in the diet</th>
<th>Amount of Zn (mg)</th>
<th>$\delta^{66}\text{Zn}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins</td>
<td>200</td>
<td>800</td>
<td>37%</td>
<td>0.09</td>
<td>0.4</td>
</tr>
<tr>
<td>Lipids</td>
<td>150</td>
<td>1,350</td>
<td>63%</td>
<td>34</td>
<td>0.15</td>
</tr>
<tr>
<td>Total</td>
<td>1,000</td>
<td>2,150</td>
<td>100%</td>
<td>34.09</td>
<td>0.1506</td>
</tr>
</tbody>
</table>

Author affiliations: aGeosciences Environment Toulouse/CNRS, Observatoire Midi Pyrénées, Toulouse 31400, France; bApplied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz 55122, Germany; cDepartment of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany; dEmmy Noether Group for Hominin Meat Consumption, Max Planck Institute for Chemistry, Mainz 55128, Germany; eSchool of Anthropology and Conservation, University of Kent, Canterbury CT2 7NH, United Kingdom; fDepartment de Prehistoria, Arqueologia i Història Antiga, Universitat de València, València 46010, Spain; gDepartment of Geological Sciences, University of Cape Town, Cape Town 7700, South Africa; hChaire internationale de Paléontologie, Collège de France, Paris 75005, France; iInstitute of Evolutionary Biology, Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra, Barcelona 08003, Spain; and jResearch Group “Primeros Pobladores y Patrimonio Arqueológico del Valle del Ebro” Department of Sciences of Antiquity-Prehistory, University of Zaragoza, Zaragoza 50009, Spain

The authors declare no competing interest.

Copyright © 2023 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: Klervia.jaouen@get.omp.eu.

Published January 31, 2023.
4. V. Baller et al., Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5, 1470-1482 (2013).