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Single contagion processes are known to display a continuous transition from an epidemic-free state to an
epidemic one, for contagion rates above a critical threshold. This transition can become discontinuous when two
simple contagion processes are coupled in a bi-directional symmetric way. However, in many cases, the coupling
is not symmetric and the nature of the processes can differ. For example, risky social behaviors—such as not
wearing masks or engaging in large gatherings—can affect the spread of a disease, and their adoption dynamics
via social reinforcement mechanisms are better described by complex contagion models rather than by simple
contagions, more appropriate for disease spreading. Here, we consider a simplicial contagion (describing the
adoption of a behavior) that uni-directionally drives a simple contagion (describing a disease propagation). We
show, both analytically and numerically, that, above a critical driving strength, such a driven simple contagion
can exhibit both discontinuous transitions and bi-stability, absent otherwise. Our results provide a novel route
for a simple contagion process to display the phenomenology of a higher-order contagion, through a driving
mechanism that may be hidden or unobservable in practical instances.

I. INTRODUCTION

Contagion processes have been widely studied using com-
plex networks as the underlying structure supporting the prop-
agation of diseases, innovation, and opinions [1–4]. The most
studied examples include simple contagion models (where
a contagion event can be caused by a single contact), such
as the paradigmatic Susceptible-Infectious-Susceptible (SIS),
widely used to describe the diffusion of a single pathogen in a
population [5, 6].

In reality, however, contagion processes often co-exist and
affect each other [7]. Infectious diseases can indeed display
complex comorbidity interactions, in which the presence of
a pathogen impacts the individual susceptibility towards an-
other [8], like HIV increasing susceptibility to other sexually
transmitted diseases [9]. Modeling efforts in this direction
include both cooperation [10–12] and competition [13–15]
between diseases. However, to date, models of interacting con-
tagion processes have been developed under two main assump-
tions: (i) the processes are simple contagions, and (ii) their
interaction is symmetric, that is, bi-directional and of equal
strength. Within these restrictions, cooperative models can dis-
play a discontinuous transition to the epidemic state [11], and
become indistinguishable at the mean-field level from complex
contagion models describing social reinforcement [16] (where
exposure to multiple sources presenting the same stimulus is
needed for the contagion to occur [17]).

Interactions between spreading processes are naturally
not restricted to infectious diseases: a social behavior can
also dramatically impact the spread of a disease [18–22]. A
current and cogent example is the impact of the adoption of
risky behaviors (no hand washing, no masks, no self-isolation
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or reduction of face-to-face contacts) during the COVID
pandemic [22]. Motivated by this example, we challenge
both restrictions described above. First, it is known that
reinforcement mechanisms influence social behavior so
that models of simple contagion—that assume independent
pairwise exposures—do not offer the most adequate descrip-
tion [17]. Simplicial contagion has been proposed as an
alternative approach to account for simultaneous exposures via
group-contagion events [23, 24]. Such group (“higher-order”)
contributions induce discontinuous transitions, bi-stability and
critical mass phenomena even for single processes [25–29].
Second, most contagion processes do not interact in a
symmetric way. This can happen, e.g., for diseases with very
different time scales [30], or when considering interactions
between a disease and the adoption of prudent behaviors
[21], which is instead driven by a phenomenologically and
analytically different social contagion process.

Here, we show that a simple contagion (describing infectious
disease spreading) can exhibit the characteristics of a simpli-
cial contagion when it is cooperatively driven by a simplicial
contagion (describing the spread of a risky social behavior).
Namely, a simple contagion in the epidemic-free regime can
exhibit an abrupt transition to the epidemic regime, as well as
bi-stability, if the cooperative driving by the social process is
stronger than a critical value. In particular, in the asymmetri-
cally driven case, discontinuous transitions can only take place
when the driving process is simplicial, contrary to the case of
symmetric interactions. We describe the phase diagram of the
system through a mean-field (MF) approach, complemented by
the numerical integration of coupled Markov-chain equations,
and provide an analytical expression for the critical value of
the cooperation. Finally, we identify effective infectivities as
markers of the abrupt driven transition by rewriting the MF
equations as a simple contagion with effective parameters.

ar
X

iv
:2

20
6.

07
64

5v
2 

 [
ph

ys
ic

s.
so

c-
ph

] 
 2

6 
Ja

n 
20

23



2

S

A

AB

(a) (b) (c) (d)

(e) (f) (g)

FIG. 1. The model of interacting simplicial contagions. (a) Transi-
tion probabilities between the compartments: susceptible (S, gray),
infected exclusively by one disease (A or B, respectively blue/red)
or by both (AB, black). (b)-(d) A susceptible node i can acquire
A after a contact with an infectious k-hyperedge (this also includes
AB individuals). In (d), since i is part of a 2-simplex composed by
two other infectious nodes, the infection can come both from each
of the two 1-hyperedges (links) with probability βA and from the
2-hyperedge with probability β4A . (e)-(g) If i is already infected with
B, the probability of getting A for each contact is affected by the cou-
pling factor εBA. The same rules symmetrically apply to B instead
of A.

II. RESULTS

A. Model for interacting simplicial contagion processes

We consider a model for two interacting spreading pro-
cesses, denoted as A and B, which also include simplicial
contagions [23, 25]. Individuals are represented by a set of N
nodes that can each be in one of four compartments, follow-
ing the standard SIS framework [6]: those susceptible to both
diseases (S), infected exclusively by one of the two diseases
(either A or B), or by both (AB) [see Fig. 1(a)]. The compart-
ment membership of each node i is encoded in three binary
variables xγi ∈ {0, 1}, where γ ∈ {A,B,AB}. If node i is in
state γ then xγi = 1, otherwise it is zero: each node has either
one non-zero or all zero variables. The density of nodes in
state γ is given, at each time t, by ργ(t) = 1

N

∑N
i=1 x

γ
i (t). The

densities ~ρ(t) = {ρA(t), ρB(t), ρAB(t)} serve as macroscopic
order parameters (with ρS(t) = 1− ρA(t)− ρB(t)− ρAB(t)
the density of susceptible individuals).

Nodes can interact in pairs or larger groups, so that con-
tagion events, which cause nodes to change compartment,
take place on top of a contact structure that allows for higher-
order (non-pairwise) interactions [24, 31–33]. We mathemat-
ically represent a group encounter as a k-hyperedge, a set of
k + 1 interacting nodes [34]. For simplicity, we allow for
interactions up to dimension k = 2, i.e., on 1-hyperedges
(links) and 2-hyperedges (triangles). Six parameters—three
for each disease—yield contagion and recovery probabilities
(Fig. 1). The infectivity of disease x ∈ {A,B} at order k = 1,
βx,1 ≡ βx, is the probability per unit time for a node i sus-
ceptible to pathogen x to acquire x from an “infectious” 1-
hyperedge it is part of [Fig. 1(b)-(d)]. Similarly, βx,2 ≡ β4x
control infections coming from 2-hyperedges [Fig. 1(d)]. Note
that all other nodes in the hyperedge need to be infectious for
the hyperedge to be considered so. Finally, µx ∈ [0, 1] denotes
the standard spontaneous recovery probability (from x) per
unit time.

The interaction between the two contagion processes is con-
trolled via two additional non-negative parameters, the cou-
pling factors εAB and εBA that multiply the transition probabili-
ties to a double infection (AB) from a single infection (A orB).
For example, the transition B → AB occurs with probability
εBAβA from a pairwise contact with A [see Fig. 1(e)-(g)]. The
two processes cooperate if εxx′ > 1 and compete if εxx′ < 1,
while they are independent if εxx′ = 1. Note that the symme-
try εAB = εBA does not need to hold. Furthermore, although
the model is defined on a generic higher-order structure, we
focus here on simplicial complexes, a particular class of hyper-
graphs [24]. In a simplicial complex K, by definition, groups
of nodes are called simplices and respect downward closure:
each sub-simplex ν ⊂ σ built from subsets of a simplex σ ⊂ K
is also part of the complex K [in an infectious 2-simplex thus,
contagion can occur both through the 1-hyperedges contained
and through the 2-hyperedge itself, see Fig. 1(d),(g)]. We make
this choice for coherence with previous work [23], but it can
be relaxed to more general hypergraphs [25–27, 29] without
affecting the MF results.

B. Mean-field description

We consider the MF description of the model, obtained
under a homogeneous mixing hypothesis [35]. For simplicity,
we assume identical recovery rates for the two processes, that
is µA = µB = µ. In fact, for µA 6= µB the equations can
be simply refactored in term of a new parameter δ = µA/µB
leaving the asymptotic dynamics unchanged (see Sup. Mat. I).
We also introduce the rescaled infectivity parameters λx =
βx 〈k〉 /µ and λ4x = β4x 〈k4〉 /µ, for x ∈ {A,B}, where 〈k〉
and 〈k4〉 respectively denote the average numbers of 1- and
2-hyperedges incident on a node. After rescaling time by µ,
the general mean-field equations describing the evolution of
the densities are:

ρ̇A =− ρA + λAρS(ρA + ρAB) + λ4A ρS(ρA + ρAB)2

+ ρAB − εABλBρA(ρB + ρAB)

− εABλ4B ρA(ρB + ρAB)2 (1a)

ρ̇B =− ρB + λBρS(ρB + ρAB) + λ4B ρS(ρB + ρAB)2

+ ρAB − εBAλAρB(ρA + ρAB)

− εBAλ4A ρB(ρA + ρAB)2 (1b)
ρ̇AB =− 2ρAB + εABλBρA(ρB + ρAB)

+ εABλ
4
B ρA(ρB + ρAB)2

+ εBAλAρB(ρA + ρAB)

+ εBAλ
4
A ρB(ρA + ρAB)2 (1c)

with the additional condition that

ρS = 1− ρA − ρB − ρAB . (2)

In the following, we focus on a simplicial contagion A
(representing a risky social behavior) that cooperatively and
uni-directionally drives a simple contagion B (representing
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a disease). We thus set λ4A > 0, λ4B = 0, εAB > 1 and
εBA = 1.

In this scenario, it is convenient to consider the total den-
sity of infectious individuals for each contagion, regardless
of whether they are also infected by the other one. For-
mally, we introduce two new variables ρAtot = ρA + ρAB
and ρBtot = ρB + ρAB . In other words, ρAtot is the total den-
sity of people with a risky behaviour, having been infected by
B (ρAB), or not (ρA). Similarly, ρBtot is the total density of
people infected by disease B, having a risky behavior (ρAB),
or not (ρB). After introducing these two variables, we end up
with the system of coupled equations (see Appendix A):

ρ̇Atot = ρAtot [−1 + λA(1− ρAtot)

+ λ4A ρAtot(1− ρAtot)], (3a)
ρ̇Btot = ρBtot [−1 + λB(1− ρBtot)

+λB(εAB − 1)(ρAtot − ρAB)] , (3b)
ρ̇AB = −2ρAB + εABλB(ρAtot − ρAB)ρBtot

+ λA(ρBtot − ρAB)ρAtot + λ4A (ρBtot − ρAB)ρ2
Atot
. (3c)

Equations (3) include two known specific cases. First, with-
out any interaction between the processes (εAB = εBA = 1),
ρBtot and ρAtot evolve independently as a simple and simpli-
cial contagion [23], respectively. Second, by considering only
pairwise interactions, λ4A = 0 = λ4B , A and B evolve as inter-
acting simple contagions [8]. In the general case we consider
(εBA = 1), the dynamics of ρAtot is decoupled from the other
two variables and drives them.

We first study the non-equilibrium stationary state (NESS)
reached by the system of Eqs. (3) at large times ρ∗Btot

=
limt→∞ ρBtot(t), by numerical integration. Figure 2 shows
the resulting ρ∗Btot

values and their transitions. The most inter-
esting case is given by λB < 1 as, without a driving process
A, the simple contagion process B would be in the epidemic-
free absorbing state (ρ∗Btot

= 0). We thus illustrate how the B
NESS ρ∗Btot

depends on the parameters of the driver A, on the
coupling εAB , and how it can transition to the epidemic active
state, despite λB < 1.

For λ4A ≤ 1, we always obtain a continuous transition
for ρ∗Btot

[see Fig. 2(a,b)]. On the other hand, if λ4A > 1,
the driven process can exhibit a discontinuous transition [see
Fig. 2(c,d)]. More precisely, the transition changes from con-
tinuous to discontinuous when the coupling parameter εAB
becomes larger than a critical value εcAB . Above this threshold
[εAB > εcAB , black circles in Fig. 2(c)], there is a discon-
tinuous transition at a critical value λcA that does not depend
on εAB . For weaker cooperation [εAB < εcAB , white and
gray symbols in Fig. 2(c)], a continuous transition occurs from
ρ∗Btot

= 0 to the epidemic state ρ∗Btot
> 0 when λA crosses

another critical value λ
′c
A ≥ λcA. In other words, λ

′c
A is the

critical value of λA at which the continuous transition occurs,
for εAB < εcAB , and its value decreases as εAB increases—e.g.
from λ

′c
A ≈ 1.1 (white symbols) to λ

′c
A ≈ 0.7 (gray symbols).

On the contrary, λcA (yellow label) is where the discontinuous
transition occurs, for εAB > εcAB , and does not depend on
εAB . Note that λ

′c
A → λcA in the limit εAB → εcAB .
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FIG. 2. Abrupt transition induced by a simplicial driver. A sim-
plicial driver process for A, with λ4A = 2.5, can induce a discontin-
uous transition (c,d), contrary to a simple driver (a,b), with λ4A = 0

[λB = 0.8, λ4B = 0]. Note the different scales on the horizontal
axes. (a,c) Stationary solutions ρ∗Btot of the MF Eqs. (3) plotted as a
function of the rescaled pairwise infectivity λA for three values of
the driving strength εAB . In (c), the transition of the simple conta-
gion B becomes discontinuous above a critical value of cooperation
εcAB . (b,d) Heatmaps of ρ∗Btot as a function of λA and εAB . Dashed
horizontal lines correspond to the selected εAB values shown in (a)
and (c) respectively. The blue dot in (d) highlights the critical point
(λc

A, ε
c
AB). The blue and red crosses represent a visual hint to locate

the results within the full phase diagram of Fig. 3.

It is important to note that the epidemic-free absorbing state
ρ∗Btot

= 0 remains stable as long as λA < 1. As a consequence,
there is a region of bi-stability λcA < λA < 1 (region shaded
with yellow background) for εAB > εcAB . Bi-stability can also
be observed when εAB < εcAB in the region λ

′c
A < λA < 1

(gray symbols) as long as λ
′c
A < 1. For λ

′c
A ≥ 1 (white sym-

bols), the continuous transition occurs for values larger than
one and there is no region of bi-stability. Finally, when λ

′c
A < 1,

the stability of the absorbing state implies the existence of a for-
ward discontinuous transition at λ

′c
A = 1 (upward arrows). In

conclusion, the simple contagion B exhibits characteristics of
a simplicial contagion—an abrupt transition and bi-stability—
due to the driving of the simplicial contagion A.

To analytically explain this behavior, we need to find the
NESS by setting ρ̇x = 0 (see Appendix B for additional de-
tails). Solving ρ̇Atot = 0, as Eq. (3a) exactly maps back to the
single simplicial contagion analyzed in Ref. [23], leads to a
trivial solution ρ∗Atot

= 0 and two other NESS ρ∗,±Atot
. Similarly,

solving the full two-dimensional system (ρBtot , ρAB) leads to
the absorbing state (0, 0) and the implicit solutions for ρ∗Btot

:

ρ∗,±Btot
= 1− 1

λB
+ (ρ∗,±Atot

− ρ∗,±AB)(εAB − 1). (4)

Equation (4) implicitly contains two solutions ± from ρ∗,±Atot

and ρ∗,±AB .
Using the implicit solutions Eqs. (4), we can understand the

behavior shown in Fig. 2. If λ4A < 1 [Figs. 2(a,b)], ρ∗Atot
ex-

hibits a continuous transition at λA = 1, below which it is zero
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FIG. 3. Phase diagram of the system. The (λB , λ
4
A ) parameter

space exhibits four regions. In region I (λB ≤ 1, λ4A > 1), ρ∗Btot

undergoes an abrupt transition if the driving cooperation is strong
enough, εAB > εcAB . The value of εcAB is represented by shades of
green. For visual clarity, the green scale is truncated at a maximum
value of 5, so that larger values are represented by the same color as 5.
The red cross corresponds to the case shown in Figs. 2(c,d). In region
II (λB > 1, λ4A > 1), εcAB = 1 and the transition is discontinuous
for all εAB > 1. For λ4A ≤ 1, that is regions III and IV, the transition
is always continuous. The blue cross indicates the case shown in
Figs. 2(a,b).

(see [23]). This implies that ρAB also goes to the absorbing
state if λA < 1: if nobody is infected by A, nobody can be
infected by both A and B. As a consequence, the term com-
ing from the cooperation vanishes: ρ∗,±Atot

− ρ∗,±AB = 0. Hence,
from Eq. (4), we have limλA→1− ρ

∗,±
Btot

= 1− 1
λB
≤ 0 (recall

λB < 1). If negative, it is not a valid solution and only the
absorbing state is. As λA increases above 1, ρ∗,+Atot

increases
continuously [23], leading ρ∗,±Btot

to also cross continuously 0

at a certain λA ≥ 1. For λ4A ≥ 1 instead, ρ∗Atot
has a dis-

continuous transition at λA = λcA which implies that ρ∗AB
has one too. Consequently, from Eq. (4), since λB < 1, we
have limλA→λc,−

A
ρ∗Btot

= 0, but limλA→λc,+
A

ρ∗,±Btot
> 0 above

a certain value εAB > εcAB . Hence, this critical value εcAB
can be derived analytically by solving ρ∗,+Btot

= 0 at λcA. In
other words, we find the critical driving strength εcAB by find-
ing the curve ρ∗,+Btot

, between the gray and black curves in Fig.
2(c), such that it reaches zero at λcA. This corresponds to the
case λB ≤ 1, λ4A > 1 which we denoted region I in Fig.
3. Similarly, if λB > 1 instead (with λ4A > 1, region II), it
suffices solving ρ∗,+Btot

= 1 − 1/λB at λcA because 1 − 1/λB
is now the pre-transition NESS. In summary, the discontinu-
ity is controlled by the term coming from the cooperation,
(ρ∗,±Atot

− ρ∗,±AB)(εAB − 1) which will be discontinuous if A has
a discontinuous transition.

In short, the nature of the transition depends on the new
second term induced by the driving in Eq. (4) and, in partic-
ular, on the λA value at which it becomes positive. This fact,
allow us to obtain the critical εcAB at which the discontinuous

transition in B becomes possible (Fig. 3):

εcAB =


√
λ4A−λB(√
λ4A−1

)
λB

in region I (λB ≤ 1, λ4A > 1),

1 in region II (λB > 1, λ4A > 1).
(5)

In region I, increasing λ4A or λB makes εcAB decrease, so that
discontinuous transitions are obtained for smaller values of
the driving strength εAB . In fact, εcAB → +∞ as λ4A → 1
or λB → 0. In region II, all values of cooperation εAB > 1
yield a discontinuous transition. Finally, no critical value of
cooperation can be defined in regions III and IV (λ4A ≤ 1),
where transitions are always continuous.

C. Effective formalism

In this section, we devise an effective contagion theory to
highlight the origins of the observed transitions. In particu-
lar, we saw that, for εAB > εcAB—that is, when simplicial
behavior is possible for B—the driven process B will exhibit
discontinuous transitions as a function of λA. We illustrate
how this phenomenology emerges by rewriting the dynamics
of B as an effective simple contagion following Ref. [16].

First, note that we can rewrite the MF equation of the single
simplicial ρAtot from Eq. (3a) as a simple contagion

ρ̇Atot = −ρAtot + λ̃A ρAtot [1− ρAtot ], (6)

with effective infectivity λ̃A = λA+λ4A ρAtot . As expected, the
effective infectivity depends on both the simple and simplicial
infectivities. Since Eq. (6) is written as a simple contagion,
its well known stationary solutions given by 1− 1/λ̃A and the
effective infectivity also has a critical value of 1.

Similarly, we can also rewrite Eq. (3b) of the driven ρBtot as
a simple contagion

ρ̇Btot = −ρBtot + λ̃B ρBtot [1− ρBtot ], (7)

with effective infectivity

λ̃B = λB + λB(εAB − 1)
1

1− ρBtot

ρA. (8)

Since we observed characteristics of the driver A in the driven
contagion B, we may want to further cast its effective infec-
tivity into a form similar to that of A: λ̃B = λB + λ4B ρBtot .
This is achieved by defining an effective simplicial infectivity

λ̃4B = λB(εAB − 1)
ρA

ρBtot(1− ρBtot)
, (9)

which implicitly depends on λA and λ4A through ρA.
If there is no interaction (εAB = 1), we recover λ̃B = λB

because the effective simplicial infectivity vanishes, λ̃4B = 0,
as expected. More importantly, since ρBtot evolves according
to the effectively simple contagion of Eq. (7), its stationary
solution is given by 1 − 1/λ̃B which yields a critical value
λ̃B = 1. This can help distinguish between the transitions
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1.40

FIG. 4. The discontinuous nature of the driven contagion B can
be determined from its effective infectivity λ̃B . (a) We show λ̃B

against the infectivity λA for several values of cooperation εAB , cor-
responding to the curves in Fig. 2(c). The full phase diagram as a
function of both λA and εAB is shown as a heatmap in panel (b),
where the dot corresponds to the critical point (λc

A, ε
c
AB). The back-

ground color in (a) corresponds to the colorbar in (b). It corresponds
to the values of the vertical axis and highlight visually the critical
value λ̃B = 1

observed in Fig. 2. Indeed, below the critical value, λ̃B <
1, the only stable NESS of ρBtot is 0, and above it there is
also a positive solution. Thus, the driven contagion B has a
transition to an epidemic state if and only if λ̃B crosses 1 as
λA increases. Finally and most importantly, this transition is
discontinuous if and only if the transition of λ̃B across the
values one is discontinuous. This can be seen by comparing
the three curves in Fig. 4(a)—crossing the value one (white
background) discontinuously (black) or continuously (gray and
white)—with the corresponding curves for ρ∗Btot

in Fig. 2(c).

D. Temporal properties

So far, we lack information about the temporal trajectories,
which, in practical settings, are often the only data available.
Consider observing the spread of B via ρBtot(t), while the
driving social contagion process A remains unobservable. In-
terestingly, the observed B evolves differently depending on
the initial conditions of the hidden process A.

We show the phenomenology described beyond the homo-
geneous mixing hypothesis, by shifting to a Markov-chain
formalism [36, 37]. With this microscopic approach we can
encode any interaction structure between nodes—contrary
to MF approaches that assume homogeneous mixing of the
population—while keeping the computational cost lower than
the one required for Monte Carlo simulations. The complete
Markov-chain description of our model can be found in Ap-
pendix C. We build a synthetic random simplicial complex up
to dimension 2 by means of the generative model introduced in
Ref. [23]. This model, a direct extension of Erdös-Rényi-like
models for graphs, allows to generate a simplicial complex
starting from a number of nodes that get randomly connected
to form simplices. We here generate a simplicial complex with
N = 2000 nodes having 〈k〉 = 20 and 〈k4〉 = 6 and inte-
grate the associated Markov equations to follow the temporal
evolution of the system.

We consider the scenario of the black curve (εAB = 1.75)
of Fig. 2(b), that is, with a simplicial driver A (λ4A = 2.5).
We fix all other parameters, including the initial condition
ρBtot(0), but vary the initial condition of the driver, ρAtot(0). As

0 500 1000
Time, t

0.0

0.1

0.2

B t
ot
(t)

(a)
0 500 1000

Time, t

0.0

0.1

(b)

FIG. 5. The temporal evolution of the simple contagion B is
affected by the initial conditions of the (hidden) simplicial driver
A. We show ρBtot over time, resulting from the numerical integration
of the Markov-chain equations for a simplicial complex with N =
2000 nodes, 〈k〉 = 20 and 〈k4〉 = 6, forA in (a) the endemic region,
λA = 1.2, and (b) the bi-stable region, λA = 0.7. Shades of red from
dark to light represent a range of initial conditions of the driver ρA(0)
from 0.001 to 0.35 [see Sup. Mat. Fig. S1 for the temporal evolution
of ρA(t)]. In (b), the simple contagion process B can reach one of
two stationary states, depending on the initial conditions of the driver
A. Other parameters are set to λB = 0.8, λ4B = 0, εAB = 1.75, and
λ4A = 2.5.

shown in Fig. 5, if the driver contagion A is in the endemic
regime but not in the bi-stability region (e.g., λA = 1.2),
ρBtot reaches the same NESS for all values of ρAtot(0), but
with different transient dynamics and even non-monotonic
evolutions [Fig. 5(a)]. Moreover, if the simplicial driver is in
the bi-stability region (λA = 0.7), it induces bi-stability in B:
ρBtot(t) can reach two different states, depending on the driving
initial condition, even though all “visible” B parameters are
fixed [Fig. 5(b)]. Note that this bi-stability emerges only if the
driving is simplicial with λ4A > 1 (see also Sup. Mat. Fig. S1).

III. DISCUSSION

In conclusion, our results highlight that an abrupt transi-
tion in the observed process can occur as a function of the
control parameter of a second—potentially hidden—driver
process. Consider an observer of an epidemic process of un-
known nature. A natural intervention would try to reduce the
intrinsic infectivity of the spreading pathogen, e.g. through
pharmaceutical interventions or reduction of social contacts
(sanitary lockdowns): this would however lead only to a con-
tinuous change in the incidence. However, if the spread is
driven by an underlying complex contagion, then acting on
the hidden driver process (e.g. trying to reduce the social
adoption of risky behaviors) could more effectively lead to an
abrupt transition to the epidemic-free state (if the interaction
is strong enough εAB > εcAB). Finally, different populations
could be characterised by different properties of the hidden
behavioral contagion process (different values of λA and λ∆

A
values), thus leading to a large diversity of temporal evolutions,
and—potentially—of final outcomes of the pathogen’s spread,
without the need for different intrinsic infectivity properties of
the pathogen across these populations.

Results also suggest that other driving spreading processes
could yield a similar phenomenology if they exhibit a dis-
continuous transition (e.g. [38]), inducing a change from a
continuous to a discontinuous transition in the driven process.
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We note in this context that the framework of Ref. [39] suggests
a universal route to abrupt transitions, achieved through the
addition of a control parameter to a process that displays a con-
tinuous phase transition. However, the situation that we have
explored here broadens the picture. Indeed, if both spreading
processes are simple contagions, it appears that a bi-directional
interaction (leading to a feedback loop) is an additional neces-
sary condition for a discontinuous transition to emerge. In the
case of a uni-directional coupling, instead, the driving process
needs to be itself simplicial with bi-stability. Our results thus
provide a different route to the emergence of abrupt transitions
in epidemic-like processes due to the asymmetric coupling
of the contagion dynamics, as opposed to the addition of a
control parameter [39]. This resonates with recent results in
synchronization phenomena [40]. The exact conditions under
which these routes apply to coupled systems in general would
be an interesting direction for future work. Another interesting
perspective would consist in the analysis of real-world data
and the development of tools to detect the footprints of sim-
ple, complex, or coupled processes from observed time series
[41] in order to discriminate them or, potentially, perform full
reconstruction [42].
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Appendix A: Derivation of MF description

As explained in the main text, we focus on the case εBA = 1,
λ4B = 0, so that Eqs. (1) becomes

ρ̇A =− ρA + λAρS(ρA + ρAB) + λ4A ρS(ρA + ρAB)2

+ ρAB − εABλBρA(ρB + ρAB), (A1a)
ρ̇B =− ρB + λBρS(ρB + ρAB) + ρAB

− λAρB(ρA + ρAB)− λ4A ρB(ρA + ρAB)2, (A1b)
ρ̇AB =− 2ρAB + εABλBρA(ρB + ρAB)

+ λAρB(ρA + ρAB) + λ4A ρB(ρA + ρAB)2. (A1c)

Then, we apply the following change of variables: ρAtot =
ρA + ρAB , ρBtot = ρB + ρAB . This yields

ρ̇Atot = (−ρA − ρAB) + λAρAtot [1− ρBtot − ρA + ρB ]

+ λ4A ρ
2
Atot

[1− ρBtot − ρA + ρB ], (A2a)

ρ̇Btot = (−ρB − ρAB) + λBρBtot [1− ρAtot − ρB + εABρA],
(A2b)

ρ̇AB = − 2ρAB + εABλBρAρBtot + λAρBρAtot + λ4A ρBρ
2
Atot
.

(A2c)

We further rewrite this by replacing all remaining ρA and ρB ,
and using the identity 1− ρBtot − ρA + ρB = 1− ρAtot ,

ρ̇Atot = − ρAtot + λAρAtot [1− ρAtot ] + λ4A ρ
2
Atot

[1− ρAtot ],

(A3a)

ρ̇Btot = − ρBtot + λBρBtot [1− ρAtot − ρBtot + ρAB

+ εAB(ρAtot − ρAB)], (A3b)
ρ̇AB = − 2ρAB + εABλB(ρAtot − ρAB)ρBtot

+ λA(ρBtot − ρAB)ρAtot + λ4A (ρBtot − ρAB)ρ2
Atot
,

(A3c)

which can be refactored to obtain Eqs. (3) from the main text.

Appendix B: Derivation of the MF fixed points

Equation (3a) is the same as the simplicial contagion from
Ref. [23], and its non-trivial solutions are

ρ∗,±Atot
=

(λ4A − λA)±
√

(λA − λ4A )2 + 4λ4A (λA − 1)

2λ4A
.

(B1)
For this isolated case, we know that λ4A controls the type of
transition to the epidemic state [23]. That is, for λ4A ≤ 1,
the bifurcation diagram has a continuous transition at λA = 1
from ρ∗Atot

= 0 to the epidemic state ρ∗,+Atot
. When instead

λ4A > 1, a discontinuous transition to ρ∗,+Atot
occurs at λcA =

−λ4A +2
√
λ4A ≤ 1. The epidemic-free state remains stable for

λA ≤ 1, but becomes unstable above: This leads to bi-stability
in the parameter region {λ4A > 1, λcA ≤ λA ≤ 1}. The
discontinuous transition is therefore the direct consequence of
a sufficiently strong three-body (higher-order) interaction in A
(λ4A > 1).

The remaining two-dimensional system (ρBtot , ρAB) can be
solved analytically by hand or with the help of software such
as Mathematica [43]. As discussed, the implicit solution for
Eq. (3b) is given by Eq. (4).

To solve for ρAB , we rewrite Eq. (3c) by factorizing and

https://github.com/iaciac/interacting-simplagions
https://github.com/iaciac/interacting-simplagions
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setting the left-hand side to zero:

0 =− 2ρAB + εABλB(ρAtot − ρAB)ρBtot

+ λA(ρBtot − ρAB)ρAtot + λ4A (ρBtot − ρAB)ρ2
Atot
, (B2)

=ρAB

[
−2− εABλBρBtot − λAρAtot − λ

4
A ρ

2
Atot

]
(B3)

+ρAtotρBtot

[
εABλB + λA + λ4A ρAtot

]
,

from which we already see that ρ∗AB = 0 if ρAtot = 0 or
ρBtot = 0. Now, we inject the expression of ρ∗Btot

from Eq. (4)
and cast the equation into quadratic form in ρAB :

0 = Aρ2
AB +BρAB + C, (B4)

where

A = + εABλBE
−
AB , (B5)

B = − 2− εABλB(Λ−B + E−ABρ
∗
Atot

) (B6)

− (λA + E−ABK)ρ∗Atot
− λ4A ρ

∗2
Atot
,

C = ρ∗Atot
K(Λ−B + E−ABρ

∗
Atot

). (B7)

To shorten the notation, we have also defined

E−AB = εAB − 1, (B8)

Λ−i = 1− 1/λi, (B9)

K = εABλB + λA + λ4A ρ
∗
Atot
. (B10)

The non-zero solutions for ρAB is the standard quadratic solu-
tion

ρ∗,±AB =
−B ±

√
B2 − 4AC

2A
, (B11)

which, unfolded, is an expression in terms of the parameters
of the system only. These together with ρ∗Atot

can be reinjected
into Eq. (4) for ρ∗Btot

to close the system.

Appendix C: Markov-chain approach

Here, we write a system of coupled Markov-chain equations
which govern the microscopic evolution of our model [36, 37].

More precisely, we can write down the conditional prob-
ability P (xγi (t + 1) = 1|x(t), θ,A) ≡ piγ(t) of finding
each node i in state γ = {S,A,B,AB} at time t + 1
given the probability vector representing the status of all
nodes at time t x(t) = xγi (t), the model parameters θ =

{βA, β4A , βB , β
4
B , µA, µB , εAB , εBA}, and the structure A.

Using the simplified notation piγ(t), we impose that, at each
time,

piS(t) = 1− piA(t)− piB(t)− piAB(t). (C1)

The Markov-chain equations for the three states are the follow-
ing:

piAB(t+ 1) = + pB
i(t)(1− µB)(1− qiA(t))

+ piA(t)(1− µA)(1− qiB(t))

+ piAB(t)(1− µA)(1− µB), (C2a)

piA(t+ 1) = + piAB(t)µB(1− µA)

+ piA(t)(1− µA)qiB(t)

+ piB(t)µB(1− qiA(t))

+ piS(t)(1− qiAB(t))f iA(t), (C2b)

piB(t+ 1) = + piAB(t)µA(1− µB)

+ piB(t)(1− µB)qiA(t)

+ piA(t)µA(1− qiB(t))

+ piS(t)(1− qiAB(t))f iB(t). (C2c)

The different qix(t) denote the probability of node i not being
infected by disease x by any of the simplices it participates in.
Considering again only contributions up to D = 2, we have:
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qiA(t) =
∏
j∈V

{
1− aijεBAβA[pjA(t) + pjAB(t)]

} ∏
j,l∈V

[
1− aijlεBAβ4A [pjA(t) + pjAB(t)][plA(t) + plAB(t)]

]
, (C3a)

qiB(t) =
∏
j∈V

{
1− aijεABβB [pjB(t) + pjAB(t)]

} ∏
j,l∈V

[
1− aijlεABβ4B [pjB(t) + pjAB(t)][plB(t) + plAB(t)]

]
, (C3b)

qiAB(t) =
∏
j∈V

{
1− aij

[
βAp

j
A(t) + βBp

j
B(t) + [βA(1− βB) + βB(1− βA) + βAβB ]pjAB(t)

]}
∏
j,l∈V

{
1− aijl

[
β4A [pjA(t)plA(t) + pjA(t)plAB(t) + pjAB(t)plA(t)] + β4B [pjB(t)plB(t) + pjB(t)plAB(t) + pjAB(t)plB(t)]

+ [β4A (1− β4B ) + β4B (1− β4A ) + β4A β
4
B p

j
AB(t)plAB(t)]

]}
=

∏
j∈V

{
1− aij

[
βA[pjA(t) + pjAB(t)] + βB [pjB(t) + pjAB(t)]− βAβB [pjAB(t)]

]}
∏
j,l∈V

{
1− aijl

[
β4A [pjA(t) + pjAB(t)][plA(t) + plAB(t)] + β4B [pjB(t) + pjAB(t)][plB(t) + plAB(t)]−β4A β

4
B p

j
AB(t)plAB(t)

]}
,

(C3c)

where the first product of each equation accounts for the con-
tagion through the links of the simplicial complex K. These
links are fully specified by means of the standard adjacency
matrix {aij}, whose elements aij = 0, 1 denote the absence
or presence of a link (i, j). Similarly, the second product ac-
counts for the contagion of i through the 2-simplices of K
(triangles), which are analogously specified by the elements of
the adjacency tensor {aijl}. This tensor is the 3-dimensional
version of the adjacency matrix, in which a non-zero element
denotes the presence of a 2-simplex (i, j, l).

Finally, the factors f iA(t) and f iB(t) in Eq. (C2) denote the
probability of transitioning from state S to one of the states
A or B when exposed simultaneously to both pathogens. As-

suming an equal probability for both diseases [37], we can
write:

f iA(t) =
q̄iA(t)(1− 0.5q̄iB(t))

q̄iA(t)(1− 0.5q̄iB(t)) + q̄iB(t)(1− 0.5q̄iA(t))
(C4a)

f iB(t) =
q̄iB(t)(1− 0.5q̄iA(t))

q̄iA(t)(1− 0.5q̄iB(t)) + q̄iB(t)(1− 0.5q̄iA(t))
(C4b)

where q̄iA(t) and q̄iB(t) correspond to 1− qiA(t) and 1− qiB(t),
as given by Eqs. (C3), after setting εAB = εBA = 1.
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Supplementary Material: Simplicially driven simple contagion

I. CASE OF DIFFERENT RECOVERY RATES: µA 6= µB

In the main text we assumed identical recovery rates. Here, we remove this constraint and allow them to be potentially different,
so that µA 6= µB . By rescaling all equations by µA (instead of µ), we have the following—instead of Eqs. (A1):

ρ̇A =− 1ρA + λAρS(ρA + ρAB) + λ4A ρS(ρA + ρAB)2 +
µB
µA

ρAB − εABλB
µB
µA

ρA(ρB + ρAB) (S1a)

ρ̇B =− µB
µA

ρB + λB
µB
µA

ρS(ρB + ρAB) + 1ρAB − λAρB(ρA + ρAB)− λ4A ρB(ρA + ρAB)2 (S1b)

ρ̇AB =− (1 +
µB
µA

)ρAB + εABλB
µB
µA

ρA(ρB + ρAB) + λAρB(ρA + ρAB) + λ4A ρB(ρA + ρAB)2 (S1c)

which, introducing the total densities, becomes

ρ̇Atot = (−ρA − ρAB) + λAρAtot [1− ρBtot − ρA + ρB ] + λ4A ρ
2
Atot

[1− ρBtot − ρA + ρB ] (S2a)

ρ̇Btot =(−ρB − ρAB)
µB
µA

+ λB
µB
µA

ρBtot [1− ρAtot − ρB + εABρA] (S2b)

ρ̇AB = − (1 +
µB
µA

)ρAB + εABλB
µB
µA

ρAρBtot + λAρBρAtot + λ4A ρBρ
2
Atot
. (S2c)

and then

ρ̇Atot = − ρAtot1 + λAρAtot [1− ρAtot ] + λ4A ρ
2
Atot

[1− ρAtot ] (S3a)

ρ̇Btot =− ρBtot

µB
µA

+ λB
µB
µA

ρBtot [1− ρAtot − ρBtot + ρAB + εAB(ρAtot − ρAB)] (S3b)

ρ̇AB = − (1 +
µB
µA

)ρAB + εABλB
µB
µA

(ρAtot − ρAB)ρBtot + λA(ρBtot − ρAB)ρAtot + λ4A (ρBtot − ρAB)ρ2
Atot

(S3c)

which, compared to the case of identical recovery rates, contain the additional µB

µA
factors. We denote that dimensionless ratio

δ = µB

µA
and the equations become, after refactoring:

ρ̇Atot = ρAtot [−1 + λA(1− ρAtot) + λ4A ρAtot(1− ρAtot)], (S4a)
ρ̇Btot = ρBtotδ [−1 + λB(1− ρBtot) +λB(εAB − 1)(ρAtot − ρAB)] , (S4b)

ρ̇AB = −(1 + δ)ρAB + εABλBδ(ρAtot − ρAB)ρBtot + λA(ρBtot − ρAB)ρAtot + λ4A (ρBtot − ρAB)ρ2
Atot
. (S4c)

So, the equation for ρAtot (simplagion) is unchanged, as expected. For ρBtot , we notice a temporal rescaling by a factor δ, but the
implicit solution is unchanged,

ρ∗,±Btot
= 1− 1

λB
+ (ρ∗,±Atot

− ρ∗,±AB)(εAB − 1). (S5)

We can consider two limits where the timescales for A and B are of different orders. First, in the limit δ � 1, which means
that B heals much slower than A, ρ̇Btot ≈ 0, that is process B is quasi-static compared to the timescale of process A. Thus, ρAtot

converges fast to its NESS and ρBtot is driven by that NESS. Second, in the limit δ � 1, B heals much faster than A, it is the
opposite. It is possible then to rescale time by δ to see that process A now appears quasi-static compared to the timescale of B.
So, ρBtot converges fast to its NESS which is in fact adiabatically moving towards its asymptotic NESS, driven by ρAtot that slowly
converges to its own NESS.
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FIG. S1. The temporal evolution of the simple contagion B is affected by the initial conditions of the hidden driver process A. As for Fig. 5 of
the main text, we show ρBtot over time (a-c), but together with the temporal dynamics of the driver process, as given by ρAtot (d-f). In (a,d) a
simple driver process is used (λ4A = 0.8), while in (b,e) and (c,f) the driver process A is truly simplicial (λ4A = 2.5). The process A is placed
either in the endemic region, λA = 1.2 [(a,d) and (b,e)] or in the bi-stable region (λA = 0.7). Different curves correspond to different initial
conditions of the driver process, ρA(0). The other parameters are set to λB = 0.8, λ4B = 0, and εAB = 2.
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FIG. S2. Effective triangle infectivity λ̃4B of simple contagion B as a function of λA, for several values of the interaction εAB (indicated on the
curves). The dashed grey curve indicates the value λc

A, where diverge λ̃4B diverges.
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