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The fracture behavior of brittle and ductile materials can be strongly influenced by thermal fluctuations,
especially in micro- and nano-devices as well as in rubberlike and biological materials. However, temperature
effects, in particular on the brittle-to-ductile transition, still require a deeper theoretical investigation. As a
step in this direction we propose a theory, based on equilibrium statistical mechanics, able to describe the
temperature dependent brittle fracture and brittle-to-ductile transition in prototypical discrete systems consisting
in a lattice with breakable elements. Concerning the brittle behavior, we obtain closed form expressions for
the temperature-dependent fracture stress and strain, representing a generalized Griffith criterion, ultimately
describing the fracture as a genuine phase transition. With regard to the brittle-to-ductile transition, we obtain
a complex critical scenario characterized by a threshold temperature between the two fracture regimes (brittle
and ductile), an upper and a lower yield strength, and a critical temperature corresponding to the complete
breakdown. To show the effectiveness of the proposed models in describing thermal fracture behaviors at small
scales, we successfully compare our theoretical results with molecular dynamics simulations of Si and GaN
nanowires.

I. INTRODUCTION

The mechanical degradation of a material typically results
from the insurgence of cracks, from their geometric arrange-
ment and interactions and, finally, from temperature. The
classical Griffith energetic approach in fracture mechanics
deduces that, under a homogeneous stress σ , a single slit
crack with half-length L grows if σ >

√
2γsE ′/(πL), while

if σ <
√

2γsE ′/(πL), it remains stable [1, 2]. Here, E ′ is
the equivalent elastic modulus, equal to the Young modulus E
in plane stress condition, and equal to E/(1− ν2) in plane
strain condition, where ν is the Poisson ratio of the mate-
rial. Moreover, γs is the surface energy density, that is, the
energy expended to debond a unit length crack. This stabil-
ity criterion measures an energy competition between the free
surface energy created by the fracture and the elastic energy
stored in the deformable solid. The latter has been evaluated
within the linear elasticity theory by Inglis [3] and Kolosoff
[4] and used by Griffith to develop his criterion. The inge-
nious approach proposed by Griffith in his celebrated crite-
rion has been largely and successfully tested in glass and other
brittle materials containing cracks of controlled length [5, 6],
and also validated by atomistic simulations in ideal mono-
crystalline systems [7, 8]. Its main limiting hypothesis is that
the overall fracture energy coincides with the surface energy,
i.e. with the energy needed to break the bonds between the
two crack faces. Since Griffith’s theory fails to apply to duc-
tile materials (where fracture energy is much higher than the
only surface energy [9, 10]) it was generalized by Irwin to
include plastic dissipation [11, 12]. More advanced models
for ductile fracture, taking into account an explicit description
of the ‘cohesive zone’ where the plastic processes localize,
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have then been proposed by Dugdale and Barenblatt [13, 14].
The theoretical relationship between the Griffith’s theory, its
Irwin modification, and the Dugdale-Barenblatt models was
initially studied by Willis [15] and further investigated by Rice
through the concept of J-integral [16]. In addition to the sin-
gle fracture study, an important topic in linear elastic fracture
mechanics is represented by the collective degradation mech-
anism induced by populations of cracks that interact depend-
ing on their geometric arrangement [17–27]. Due to the wide
scientific and technological interest, the theoretical and exper-
imental studies of fracture phenomena have been extremely
extensive. Therefore, its history is long and complicated and,
here, we refer the reader to the relevant literature [28–32]. We
simply mention that current advanced researches concern the
traction-separation relation in cohesive models [33, 34], the
instability in dynamic fracture [35, 36], and the variational
approach to fracture [37, 38]. Computational techniques for
cracks propagation include the phase field method and the
dual-horizon peridynamics formulation [39–42].

Previously described investigations are predominantly
based on deterministic assumptions and theories. Of course,
also statistical approaches have been widely applied to rup-
ture phenomena [43–48], and among others those based on the
so-called fiber bundle model are particularly significant [49–
52]. Importantly, the statistical analysis plays a crucial role
for understanding the effect of disorder in failure processes
[53–60]. Despite the wide diffusion of statistical techniques,
the approaches that allow to study the effects of thermal fluc-
tuations on the fracture are rather limited [61–69]. In particu-
lar, the temperature dependence of crack stability criteria has
not been studied explicitly. For this reason, we propose here
two paradigmatic models able to evaluate the effects of ther-
mal fluctuations on the quasi-static brittle fracture and on the
brittle-to-ductile transition. These approaches make it possi-
ble to study how fracture stability is influenced by temperature
changes and to determine the transition temperature between
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brittle and ductile behaviors. The proposed fracture models
are based on equilibrium statistical mechanics and they are
implemented by means of the spin variable approach, use-
ful to deal with arbitrarily non-convex potential energies [70].
This method has been largely applied to several situations in-
cluding the physics of muscles [71, 72], the folding of macro-
molecules [73–77], the adhesion or peeling processes [78, 79],
the phase transformations in solids [80, 81], and the stick-slip
on rigid substrate [82]. This technique complements the more
classical methods used to study the behaviour of physical sys-
tems with multiple stable and metastable states [83–86]. In
the context of fracture, the prototypical models here proposed
are discrete and based on quasi-one-dimensional lattices com-
posed of breakable and unbreakable bonds. While the un-
breakable springs serve to distribute the forces in the system,
thus describing material elastic energy, the breakable springs
are useful in mimicking the fracture propagation. It is impor-
tant to note in this context that the role of discreteness in frac-
ture models has already been highlighted in different studies
[87–90].

In the first model proposed here (elasto-fragile model),
developed to describe temperature effects in brittle fracture,
each breakable spring can be in one of two states, intact or
broken, depending on its extension. Conversely, in the sec-
ond proposed model (softening-fracture model), useful to de-
scribe temperature effects in brittle-to-ductile transitions, each
breakable spring can be in one of three states, intact, softened
or broken, depending again from the spring extension. In our
model, the softened state represents an intermediate configu-
ration where the elastic constant of the spring is smaller than
that of the intact spring, but it is still not zero as instead as-
sumed for the broken configuration. This intermediate state
represents here the counterpart of the material behavior of the
cohesive zone introduced in the Dugdale-Barenblatt model,
having also the role of introducing an internal length scale.
Both proposed models are approached by calculating the ex-
act partition function, by an approximation obtained for large
values of the number N of breakable springs, and, finally by
the analysis of the thermodynamic limit. This multifaceted
treatment allows us to state that both models exhibit a critical
behavior with an associated phase transition, whose mechani-
cal implications are thoroughly discussed. In our opinion the
results are particularly useful for the interpretation of failure
processes in micro- and nano-systems, where the effect of
temperature is typically studied experimentally and through
molecular dynamics simulations [91–102]. We want to em-
phasize that our models, being discrete and addressed to the
study of thermal fluctuations, neglect important aspects re-
lated to the distribution of elastic fields around the fracture.
This is consistent with the fact that they are not developed to
replace classical models of continuum mechanics but rather to
provide new elements to improve and complement them.

The paper is structured as follows. In Section II, we in-
troduce the first model for the brittle fracture and we apply
the tools of statistical mechanics to eventually obtain exact
results. Then, in Section III, we obtain an approximate an-
alytic solution for systems with a large number N of break-
able springs, and in Section IV, we study the thermodynamic
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FIG. 1. Panel (a): scheme of a crack propagating within an arbi-
trary crystal lattice. Panel (b): reduced scheme of the elasto-fragile
model, based on symmetry assumption. The central horizontal chain
(colored in black) is composed of N+1 linear elastic springs of elas-
tic constant k. The nodes of this chain are connected to the top layer
of the system (at y =Y ) with N vertical linear elastic springs of elas-
tic constant l (colored in yellow or light gray). Moreover, the first
η nodes (i = 1, . . . ,η) are also linked to the bottom layer (at y = 0)
through η vertical breakable springs of elastic constant h (intact in
blue or dark gray; broken in orange or intermediate gray). We under-
line that the first node (i= 0) and the last one (i=N+1) are anchored
to the bottom and the top layer, respectively. Hence, the first and the
last shear springs fix the direction of the crack propagation from the
right to the left of the system.

limit with N → ∞. This allows for a generalization of Grif-
fith’s criterion that takes temperature into account by means
of a critical behavior. Concerning the model with the soften-
ing mechanism, we introduce its structure and we elaborate
its formalism in Section V. Further, we obtain its asymptotic
behavior for large values of N in Section VI, and we study
the thermodynamic limit with N → ∞ in Section VII. Here
we obtain the closed form expression for the brittle-to-ductile
transition temperature and describe the corresponding com-
plex critical scenario.

II. ELASTO-FRAGILE MODEL

We introduce here a discrete model that helps us to bet-
ter understand the effect of thermal fluctuations on the brittle
fracture processes in solid materials. As shown in Fig.1, the
model consists in a network of springs with different elastic
constants arranged in a quasi-one-dimensional lattice, aimed
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at reproducing a mode I fracture geometry [24]. Based on
symmetry assumptions, we reduce the scheme in Fig.1(a) to
the one in Fig.1(b). The structure in Fig.1(b) connects a fixed
substrate, at y = 0, with a rigid top layer that can be placed
at different heights y = Y (isometric conditions within the
Helmholtz ensemble). More in detail, see Fig.1(b), this struc-
ture is composed of a series of N+1 springs, with elastic con-
stant k, linked together to form an horizontal chain (colored
in black). The left end-side of the chain, at i = 0, is attached
to the bottom fixed substrate at y = 0 while the other end, lo-
cated at i = N + 1, is attached to the top layer at y = Y . The
inner points of the chain, identified by i = 1, . . . ,N, are indi-
vidually linked to the top layer through N vertical springs with
elastic constant l (colored in yellow or light gray), mimicking
the elasticity of the upper half plane. Moreover, the first ones
(i = 1, . . . ,η), are linked to the bottom layer through η break-
able springs (intact in blue or dark gray; broken in orange
or intermediate gray). We assume that it exists an elonga-
tion threshold YM after which the potential energy for a break-
able spring is constant and the resulting elastic force is zero
(broken state), see Fig.2. The behavior of a single breakable
spring corresponds to an elastic constant h when its elonga-
tion yi does not exceed the threshold YM (see Fig.2). When
|yi| > YM the potential energy is constant and then the result-
ing force is zero (see Fig.2).

We remark that we adopted here simple piecewise linear
constitutive equations for the springs of the system. We wish
to mention that several important results have been obtained
for the crack propagation in nonlinear materials described by
power-law stress-strain behavior [103–105]. However, from
one side it is difficult to combine the thermal analysis with
nonlinear materials, and from the other side the nonlinear phe-
nomena are rather limited in nanoscopic systems [93, 94]. It
is also worth mentioning that due to the discrete quasi-one-
dimensional structure of our model, it is not possible to find
here the results concerning the stress singularities at the crack
tip and the calculation of the corresponding stress intensity
factor (this is true for both the elasto-fragile model and the
softening-fracture model) [21, 24].

We analyze the fracture behavior of the proposed model in
the framework of equilibrium statistical mechanics, introduc-
ing a temperature T of an embedding thermal bath. As pre-
viously anticipated, we investigate its behavior by adopting
isometric conditions corresponding to the Helmholtz ensem-
ble [106–108]. We make the assumption that, during the sys-
tem extension (i.e., increasing Y ), the system is composed of a
segment with ξ intact elements on the left side of the system,
and of a segment with η −ξ broken elements on the right. As
a result, the system evolution is characterized by the propaga-
tion of a single interface between intact and broken springs,
regulated by the assigned traction conditions and by the tem-
perature. This hypothesis (known as single domain wall as-
sumption) simplifies the calculations and makes it possible to
analytically derive the partition function and, thus, the impor-
tant macroscopic physical quantities. The same hypothesis is
considered in the classical continuum fracture models recalled
in the introduction. The configurations previously described
can be summarized by the relation 1 ≤ ξ ≤ η ≤ N, where ξ

FIG. 2. Potential energy of a single breakable spring with elastic
constant h (top panel) and corresponding force (bottom panel). The
quantity YM is the elongation after which the spring breaks, resulting
in a force equal to zero.

represents the domain wall or interface position. We remark
that the last N −η sites of the chain are always considered
disconnected from the bottom layer in order to simulate a pos-
sible existing initial fractured domain. This is coherent with
the assumption of an initial crack extension in the classical
Griffith criterion, which is the milestone of the linear elastic
fracture mechanics [1, 2].

Based on previous key premises, the total energy of the sys-
tem is

ΦH(y1, ...,yN ,ξ ) =
N

∑
i=0

k
2
(yi+1 − yi)

2 +
N

∑
i=1

l
2
(Y − yi)

2

+
ξ

∑
i=1

h
2

y2
i +

η

∑
i=ξ+1

h
2

Y 2
M, (1)

with the boundary conditions y0 = 0 and yN+1 = Y . Here,
the variables yi represent the vertical coordinates of the lattice
points while ξ assignes the discrete interface position. Ob-
serve that the first addend of Eq.(1), proportional to the elastic
constant k, is the energetic contribution of the shear unbreak-
able springs. We remark that the use of the shear springs with
elastic constant k is an approximation valid under the small
deformation assumption (in our models the central nodes can
only move vertically). The second addend, proportional to the
elastic constant l, is the contribution of the vertical unbreak-
able springs that connect the upper layer to the inner lattice
points. Finally, the energetic contribution proportional to the
elastic constant h, regarding the breakable springs, is split into
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two addends: the first one corresponds to the unbroken springs
(going from i = 1 to i = ξ ) and the second one corresponds to
the broken ones (from i = ξ + 1 to i = η). Again, the as-
sumption of linear elastic springs, as typical in linear elastic
fracture mechanics, allow for a proper description of fracture
effects under the hypothesis of small strains. Such a simpli-
fication is crucial for the following analytical treatment. The
energy contribution associated with broken bonds corresponds
to the surface energy of the two exposed sides of the fracture,
originally introduced by Griffith in the overall energy balance
and eventually yielding his classical stability criterion [1].

The energy in Eq.(1) can be rewritten as

ΦH =
k
2

[
N

∑
i=1

(
2+

l
k

)
y2

i +
ξ

∑
i=1

h
k

y2
i −

N−1

∑
i=1

yi+1yi −
N−1

∑
i=1

yiyi+1

]

+kY

[
−

N

∑
i=1

l
k

yi − yN

]
+

1
2

kY 2 +
1
2

lNY 2 +
1
2

hY 2
M(η −ξ ).

(2)
We can introduce the following N-component vectors

y⃗ = (y1,y2, . . . ,yN) , (3)
v⃗ = (β , . . . ,β ,1+β ) , (4)

and the tridiagonal matrix

A =



a1 −1 0 · · · 0

−1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . −1

0 · · · 0 −1 aN


, (5)

where the diagonal components ai are defined as follows

ai =

{
2+α, if 1 ≤ i ≤ ξ ,

2+β , if ξ +1 ≤ i ≤ N,
(6)

with

α =
l +h

k
, β =

l
k
, (7)

measuring extension versus shear springs stiffness of the lat-
tice. Adopting the matrix A and the vectors y⃗ and v⃗, we can
write Eq.(2) as

ΦH =
1
2

k⃗y ·A y⃗− kY v⃗ · y⃗+ 1
2

kY 2 +
1
2

lNY 2 +
1
2

hY 2
M(η −ξ ).

(8)
This new compact expression is more suitable to evaluate the
partition function of the system, defined by

ZH(Y ) =
η

∑
ξ=0

∫
RN

e−
ΦH
KBT d⃗y. (9)

Here, we have integrated the continuous coordinates yi and we
have summed over the discrete or spin variable ξ identifying

the interface position. We have

ZH(Y ) =
η

∑
ξ=0

exp
[
− kY 2

2KBT
− lNY 2

2KBT
− hY 2

M(η −ξ )

2KBT

]
Iξ ,

(10)
where

Iξ =
∫
RN

exp
(
− k

2KBT
y⃗ ·A y⃗+

kY
KBT

v⃗ · y⃗
)

d⃗y. (11)

By using the classical Gaussian integral,∫
RN

e−⃗y·M y⃗ew⃗·⃗yd⃗y =

√
πN

detM
e

1
4 w⃗·M−1w⃗, (12)

which is valid for a positive definite symmetric matrix M (as
can be shown for the tridiagonal matrix A ) and for any vector
w⃗, we get

Iξ =

√
(2πKBT )N

kN detA
exp
(

kY 2

2KBT
v⃗ ·A −1⃗v

)
. (13)

Thus, the partition function can be written as

ZH(Y ) =
η

∑
ξ=0

exp
[
− kY 2

2KBT
− lNY 2

2KBT
− hY 2

M(η −ξ )

2KBT

]

×
√

(2πKBT )N

kN detA
exp
(

kY 2

2KBT
v⃗ ·A −1⃗v

)
.

(14)

Since A depends on ξ , see Eqs.(5) and (6), both A −1 and
detA depend on ξ in the sum of Eq.(14). In Appendix A,
we discuss an efficient method to determine A −1 and detA
for a tridiagonal matrix. This method will be used to obtain
asymptotic expressions, useful to study the system behavior
for large values of N (and for the thermodynamic limit). By
introducing the quantity

q = 1+βN − v⃗ ·A −1⃗v, (15)

we can write the partition function in the form

ZH(Y ) =
η

∑
ξ=0

√
(2πKBT )N

kN detA
exp
[
−hY 2

M(η −ξ )− kY 2q
2KBT

]
.

(16)
We can now evaluate the expected values of macroscopic

quantities. For example, expectation value of the force applied
to the system is [106–108]

⟨ f ⟩=−KBT
1

ZH

∂ZH

∂Y
, (17)

resulting in

⟨ f ⟩=
∑

η

ξ=0(detA )−
1
2 exp

[
−hY 2

M(η−ξ )−kY 2q
2KBT

]
q

∑
η

ξ=0(detA )−
1
2 exp

[
−hY 2

M(η−ξ )−kY 2q
2KBT

] kY. (18)

This expression gives a physical interpretation to the expecta-
tion value ⟨q⟩ of the variable q. Since ⟨ f ⟩= k⟨q⟩Y , the quan-
tity k⟨q⟩ represents the effective stiffness ⟨ f ⟩/Y of the system.
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FIG. 3. Behavior of the brittle-fracture model with a variable num-
ber of units (N = {50,125,200} as indicated by arrows) and a vari-
able thermal to elastic energy ratio KBT/(hY 2

M) = 0.5 (blue or dark
gray), and KBT/(hY 2

M) = 2 (orange or light gray). The dimension-
less quantities ⟨ f ⟩/(NhYM) (top panel) and ⟨ξ ⟩/N (bottom panel)
are represented versus the dimensionless parameter Y/YM , where, in
both cases, l/h = k/h = 1. We also fixed η = N, which means there
are no missing or broken elements in the initial configuration.

Using a similar analysis, it is possible to obtain the average
value of the number of unbroken bonds, which is given by

⟨ξ ⟩=
∑

η

ξ=0(detA )−
1
2 exp

[
−hY 2

M(η−ξ )−kY 2q
2KBT

]
ξ

∑
η

ξ=0(detA )−
1
2 exp

[
−hY 2

M(η−ξ )−kY 2q
2KBT

] . (19)

In Fig.3, we show the main effects on the fracture behav-
ior of both temperature T and discreteness parameter N. The
main effect that can be observed is related to temperature,
which is able to shift the value of the extension corresponding
to the fracture of the system. In particular, we may observe
that, as typically experimentally observed, the higher the tem-
perature, the lower the force and the extension required to in-
duce fracture. The model then predicts a thermally activated
fracture phenomenon. As described in the following, in the
thermodynamic limit (i.e., for N → ∞), this behavior can be
theoretically interpreted as a phase transition. We can observe
since now (see Fig.3) that, as the discreteness parameter N
increases, the force-displacements curves become sharper, in-
creasing the brittleness of the system. In summary, the model

FIG. 4. Comparison between the approximated quantities given by
Eqs.(28) and (31) (dashed lines) and the corresponding exact results
in Eqs.(18) and (19) (continuous lines) for ⟨ f ⟩/(NhYM) (top panel)
and ⟨ξ ⟩/N (bottom panel) versus the dimensionless extension Y/YM .
The thermal to elastic energy ratio KBT/(hY 2

M) is set to 0.5 (blue
or dark gray curves) and 2 (orange or light gray curves). The total
number of units is set to N = 50 and N = 200 (see arrows). The
dimensionless quantities are set to l/h = 1 and k/h = 1. We also
considered η = N.

exhibits a temperature dependent brittle behavior, which can
be thoroughly described by analytic expressions for large val-
ues of N, obtained in the following Section.

III. ASYMPTOTIC BEHAVIOR OF THE
ELASTO-FRAGILE MODEL

Eqs.(18) and (19) determine the expected value of ⟨ f ⟩, the
force applied to the system, and the average value ⟨ξ ⟩ of the
number of intact bonds as functions of both the assigned dis-
placement Y and of the temperature T . Here, to give a clearer
physical interpretation of such results, we obtain analytical
approximated relations, effective in the case of large values of
N. In particular, for large values of N, we have (see Appendix
B)

q ∼ lh
l +h

ξ

k
+ ε, (20)
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where

ε =

√
β 2 +4β −β

2
> 0 (21)

and

detA ∼ τ
ξ

α τ
N−ξ

β
, (22)

with

τs =
2+ s+

√
s2 +4s

2
, s = α,β . (23)

By using Eq.(18), we obtain the following asymptotic expres-
sion of the force-extension relation

⟨ f ⟩ ∼
∑

η

ξ=0 exp
(
− ξ

2 lnδ +
hY 2

Mξ

2KBT − Y 2

2KBT
lh

l+h ξ

)
q

∑
η

ξ=0 exp
(
− ξ

2 lnδ +
hY 2

Mξ

2KBT − Y 2

2KBT
lh

l+h ξ

) kY, (24)

where we introduced δ = τα/τβ . After defining

z = exp
(
−1

2
lnδ +

hY 2
M

2KBT
− Y 2

2KBT
lh

l +h

)
, (25)

and adopting similar considerations for the quantity ⟨ξ ⟩, we
may easily deduce

⟨ f ⟩ ∼

(
kε +

lh
l +h

∑
η

ξ=0 ξ zξ

∑
η

ξ=0 zξ

)
Y, (26)

⟨ξ ⟩ ∼
∑

η

ξ=0 ξ zξ

∑
η

ξ=0 zξ
, (27)

for large values of N. Combining Eqs.(26) and (27), we find

⟨ f ⟩ ∼
(

kε +
lh

l +h
⟨ξ ⟩
)

Y. (28)

So, if we calculate the expectation value of intact elements
⟨ξ ⟩, we also deduce the force-extension relation ⟨ f ⟩-Y . To do
this in explicit form, we have to evaluate the sums that appear
in the expression of ⟨ξ ⟩, i.e.

η

∑
ξ=0

ξ zξ =
z
[
1− (η +1)zη +ηzη+1

]
(1− z)2 , (29)

η

∑
ξ=0

zξ =
1− zη+1

1− z
, (30)

where we adopted the variable z defined in Eq.(25). To con-
clude, we write

⟨ξ ⟩ ∼ 1− (η +1)zη +ηzη+1

1− zη+1
z

1− z
, (31)

These results represent the approximated expressions for
the response of the system under isometric condition for large
values of N. As shown in Fig.4 (for η = N), we can observe

that the approximations given in Eqs.(28) and (31) (dashed
lines in the figure) are in perfect agreement with the exact re-
sults (continuous lines), previously obtained in Eqs.(18) and
(19). We remark that the agreement is very good for differ-
ent temperatures and for different (large) values of N. These
approximated results are particularly useful to study the ther-
modynamic limit or, equivalently, to study the limiting case
for N → ∞, as discussed below.

IV. THERMODYNAMIC LIMIT OF THE
ELASTO-FRAGILE MODEL

We perform now the limit for N → ∞. Since previous
asymptotic results in Eqs.(28) and (31) depend on powers of
z, we study the inequality z > 1. To verify this condition we
need to set the argument of the exponential in Eq.(25) larger
than zero, obtaining the following condition on Y

|Y | ≤
√

l +h
lh

[
hY 2

M −KBT lnδ
]
≜ Ys, (32)

where we introduced the critical extension Ys, the physical in-
terpretation of which will be given below. We also define a
critical temperature Tc for the system through the condition
hY 2

M − KBTc lnδ = 0 (see Eq.(32)) that, once solved for Tc,
gives

Tc =
hY 2

M

KB ln

2+ l+h
k +

√( l+h
k

)2
+4 l+h

k

2+ l
k +

√( l
k

)2
+4 l

k


, (33)

where we used δ = τα/τβ . This is a specific value of the tem-
perature, depending on the main material parameters of the
system, which corresponds to a phase transition, as discussed
below. For the moment, we can write

z > 1 ⇐⇒ |Y | ≤

√
l +h

l
Y 2

M

(
1− T

Tc

)
≜ Ys (34)

so that Ys = 0 when T = Tc.
We first analyze the limit for N → ∞ of the average fraction

of intact elements

⟨ξ ⟩
N

=
1− (η +1)zη +ηzη+1

1− zη+1
z

1− z
1
N

=
1− zη+1 +(η +1)(zη+1 − zη)

1− zη+1
z

1− z
1
N

=

(
1
N
+

η +1
N

1− z
z− z−η

)
z

1− z
.

(35)

Now, we consider η = N −M, where M = φN is the number
of initially absent breakable springs (initial fractured domain).
Here, φ is the percentage of initially absent breakable springs
over the total number N of elements. The fraction of intact
elements is determined as follows

lim
N→∞

⟨ξ ⟩
N

=

{
1−φ if z > 1 or |Y |< Ys,

0 if z < 1 or |Y |> Ys.
(36)
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FIG. 5. Comparison between the thermodynamic limit obtained for
N → ∞ and the approximations obtained with large values of N (see
arrows). We plotted ⟨ f ⟩/(NhYM) (top panel) and ⟨ξ ⟩/N (bottom
panel) versus the dimensionless extension Y/YM . The thermal to
elastic energy ratio is set to KBT/(hY 2

M) = 0.5 (in blue or dark gray)
and to KBT/(hY 2

M) = 2 (in orange or light gray) while the total num-
ber of units for the large N approximation is set to N = 500. The
dimensionless quantities are set to l/h = 1 and k/h = 1. Moreover,
we adopted η = N corresponding to φ = 0.

This means that all elements are broken simultaneously (brit-
tle fracture) when Y = Ys.

For the stress ⟨ f ⟩/N (density of force over the number of
bonds), we get

lim
N→∞

⟨ f ⟩
N

=

{
lh

l+h (1−φ)Y if z > 1 or |Y |< Ys,

0 if z < 1 or |Y |> Ys.
(37)

Thus (see Fig.5), after an initial linear behavior, the stress col-
lapses to zero at the extension threshold Ys. Together with the
extension threshold Ys, we can therefore introduce the stress
threshold σs as follows

Ys =YM

√
l +h

l

(
1− T

Tc

)
, (38)

σs =hYM(1−φ)

√
l

l +h

(
1− T

Tc

)
. (39)

In other words, σs is the value of ⟨ f ⟩/N in correspondence of

FIG. 6. Fracture extension Ys/YM (in orange or light gray) and frac-
ture strength σs/(hYM) (in blue or dark gray) versus the reduced
temperature T/Tc. All quantities are written in dimensionless form.
We can observe that both quantities present a critical behavior cor-
responding to a phase transition for T = Tc. We adopted l/h = 1,
k/h = 1, and φ = 0.

Y = Ys. We can say that Ys is the fracture extension while σs
is the fracture strength inducing the breaking process.

The behavior of the system is shown in Fig.5, where the
dimensionless quantities ⟨ f ⟩/(NhYM) and ⟨ξ ⟩/N are repre-
sented versus the dimensionless extension Y/YM . We com-
pared here the response for a large value of N and the thermo-
dynamic limit. In this limit, the breaking is fully brittle with
temperature dependent fracture extension and stress. Thus,
as typical in collective phenomena of complex systems, al-
though each breakable spring has a temperature-independent
breakage threshold, the overall system exhibits a temperature-
dependent fracture point due to the interactions between the
springs and the thermal bath. In particular, the system under-
goes a phase transition for T = Tc, with both fracture exten-
sion and stress decreasing to zero at T = Tc when the sys-
tem breaks without any external mechanical actions. This
is described in Fig.6, where we plot the dimensionless frac-
ture extension Ys/YM and the dimensionless fracture strength
σs/(hYM) versus the temperature ratio T/Tc. This critical be-
havior corresponds to a classical second order phase transi-
tion. We also remark that Eq.(39) represents an extension of
the Griffith criterion of the linear elastic fracture mechanics,
accounting for the additional effects of temperature. From
Fig.2, we see that the energy necessary to break an element
is given by hY 2

M/2 and then the Griffith surface energy den-
sity γs is proportional to hY 2

M/2. Equivalently, YM is propor-
tional to

√
γs and therefore it is easily seen that the fracture

strength given in Eq.(39) is proportional to
√

γs, exactly as in
Griffith’s criterion [1]. Moreover, at constant temperature it is
well seen that the breaking strength decreases if φ increases,
which is exactly what the Griffith’s criterion states [1]. This
means that, if the initial system is degraded, a smaller force
is required to continue its mechanical degradation. Of course,
our version is quantitatively different from the original one
because of the simplified geometry we used. In particular, we
do not consider the exact elastic energy distributed over the
deformed continuum due to fracture. Our model, however, in-
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FIG. 7. Tensile strength of [110]-oriented silicon nanowires as a
function of temperature for wires with different diameters: compari-
son between molecular dynamics simulations results [94] (symbols)
and our theory given by Eq.(39) (continuous lines). The parameters
used are reported in the main text.

troduces thermal effects in brittle fracture and, in particular,
shows the phase transition at the critical temperature Tc given
in Eq.(33).

To show the effectiveness of the obtained results, we an-
alyze the temperature dependent fracture behavior of [110]-
oriented silicon nanowires [94]. In Fig.7, we compare the
theoretical fracture force given by Eq.(39) with the molecu-
lar dynamics results discussed in Ref.[94]. We observe that
the theory well predicts the brittle fracture behavior of the
nanowires both temperature- and diameter-wise (see Fig.4(b)
of Ref.[94]). In the figure the theoretical force in Eq.(39)
has been divided by the area S pertaining to each breakable
spring in order to obtain the stress σ = ⟨ f ⟩/(NS) =σs/S. The
strain has been determined as ε = Y/ℓ, where ℓ is the charac-
teristic lengthscale induced by the crystal structure. For all
curves we adopted the parameters YM = 1.78× 10−11m, S =
2.27×10−21m2, ℓ= 1.82×10−10m, k = 88.4N/m, and KB =
1.38× 10−23J/K. Moreover, for the blue curve (or dark gray,
D = 5nm) we used l = 9.07N/m and h = 2.00N/m; for the
yellow curve (or light gray, D = 6nm) we used l = 9.54N/m
and h = 2.05N/m; for the orange curve (or intermediate gray,
D = 7nm) we used l = 9.94N/m and h = 2.08N/m. While
most of geometrical parameters were available in the original
paper dealing with molecular dynamics simulations, the other
physical parameters (in particular the elastic constants), were
fitted to correctly reproduce the results. The elastic constants
take effective values pertinent to the springs of our lattices and
therefore cannot be directly obtained from the data available
in the above papers. Interestingly, all the obtained (fitted) val-
ues are reasonable and consistent with the underlying physics
of the system. In particular, the fact that h and l increase with
the diameter is consistent with the results of Ref.[94], provid-
ing evidence that the nanowires Young modulus E increases
with diameter (scale effect). This coherence is also quantita-
tive since in our case we have E = ℓ/[(1/l+1/h)S], which as-
sumes the values 130GPa, 135GPa and 138GPa, for the three
diameters 5nm, 6nm and 7nm, in agreement with Fig.4(a) of

1 ξ + 1 χ χ+ 1 N

intact softened absent

ξ η η + 1

broken

Y

0

h

l

p

y

k

FIG. 8. Scheme of the fracture model with the softening mechanism.
The central horizontal chain (colored in black) is composed by N+1
linear springs with elastic constant k. The nodes of this chain are
connected to the top layer (at y = Y ) by N vertical linear springs
with elastic constant l (colored in yellow or light gray). The first
η nodes (i = 1, . . . ,η) are also linked to the bottom layer (at y = 0)
by η vertical softenable and breakable springs with elastic constant
h when intact (colored in blue or dark gray), or p when softened
(colored in green, springs with less coils). The broken elements are
represented in orange and identified by a rupture in the springs. We
remark that the first node (i = 0) and the last one (i = N + 1) are
anchored to the bottom and the top layers, respectively.

Ref.[94]. The good agreement between theory and simula-
tions makes us confident on the applicability of our theory to
micro- and nanoscopic systems.

V. SOFTENING-FRACTURE MODEL

The previous model, useful to describe brittle fracture, is
further generalized here to introduce a material ductile behav-
ior of the elements possibly resulting in a brittle-to-ductile
transition. Specifically, in the same spirit of the Dugdale-
Barenblatt model [13, 14], we introduce a cohesive zone
between the elastic and fractured domains of the breakable
springs, characterized by two different states before the bro-
ken configuration, depending on their extension yi (see Fig.8).
More precisely, each breakable spring presents an elastic con-
stant h when its extension is less than the softening point Yp
and a lower elastic constant p < h for larger extensions, un-
til the breaking point corresponding to the extension Yb is at-
tained and the link is broken (see Fig.9). As we can see, each
breakable element behaves as a spring of elastic constant h
when −Yp ≤ yi ≤ Yp. Then, the spring is softened with an
elastic constant p < h when Yp ≤ |yi| ≤Yb. After the breaking
point Yb, the potential energy is constant and therefore the re-
sulting force is zero. Thus, the potential energy of a breakable
spring is

U(yi) =


1
2 hy2

i if |yi| ≤ Yp,
1
2 py2

i +∆E if Yp ≤ |yi| ≤ Yb,
1
2 pY 2

b +∆E if |yi| ≥ Yb.

(40)
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FIG. 9. Potential energy of a single softenable and breakable spring
of elastic constants h and p (top panel) and corresponding force (bot-
tom panel). We see that Yp is the elongation after which the spring is
weakened or softened, and Yb is the elongation after which the spring
is broken.

Given the two elastic moduli h and p (with p < h) and the
energy gap ∆E > 0 , we obtain the softening point

Yp =

√
2∆E
h− p

, (41)

which must always satisfy the condition Yp < Yb. Thus
∆E + pY 2

p /2 = hY 2
p /2 is the energy necessary to weaken one

breakable element of the system, and ∆E + pY 2
b /2 = hY 2

p /2+
p(Y 2

b −Y 2
p )/2 is the energy necessary to break the element.

This reproduces in the discrete context considered here the Ir-
win generalization of the Griffith’s criterion [11, 12].

The total energy ΦH(y1, ...,yN ,ξ ,χ) of the system is

ΦH =
N

∑
i=0

k
2
(yi+1 − yi)

2 +
N

∑
i=1

l
2
(Y − yi)

2 +
ξ

∑
i=1

h
2

y2
i

+
χ

∑
i=ξ+1

( p
2

y2
i +∆E

)
+

η

∑
i=χ+1

( p
2

Y 2
b +∆E

)
.

(42)

Here we introduced the position ξ of the interface between
intact and softened elements, the position χ of the interface
between softened and fully broken elements and, finally, the
position η of the interface between fully broken and initially
absent elements. The value of η corresponds to the initial
state of the system and is therefore fixed. The two interfaces
at ξ and χ can move as a function of temperature and mechan-
ical actions on the system. The aim of this section is to study

the (quasi-static) evolution of these interfaces determining the
fracture propagation phenomenon. The region between ξ and
χ , characterized by softened elements, identifies the cohesive
zone of the rupture phenomenon. When the cohesive zone is
absent or negligible, the fracture is brittle; on the other hand,
when the cohesive zone is not negligible, the fracture becomes
ductile. Therefore, as we show in the following, this model
allows to describe the brittle-to-ductile transitions. As in Sec-
tion II, we remark that the use of the shear springs with elastic
constant k is an approximation valid under the small defor-
mation assumption (in our models the central nodes can only
move vertically).

We can rewrite Eq.(42) as

ΦH =
k
2

[
N

∑
i=1

(
2+

l
k

)
y2

i +
ξ

∑
i=1

h
k

y2
i +

χ

∑
i=ξ+1

p
k

y2
i −2

N−1

∑
i=1

yi+1yi

]

+ kY

[
−

N

∑
i=1

l
k

yi − yN

]
+

1
2

kY 2 +
1
2

lNY 2

+
( p

2
Y 2

b +∆E
)
(η −χ)+(χ −ξ )∆E.

(43)
As before, to simplify the mathematical structure of the en-
ergy function, we introduce the vectors in Eqs.(3) and (4), and
the tridigonal matrix in Eq.(5), where the diagonal elements
ai are now defined as follows

ai =


2+α if 1 ≤ i ≤ ξ ,

2+ γ if ξ +1 ≤ i ≤ χ,

2+β if χ +1 ≤ i ≤ N,

(44)

with the parameters

α =
l +h

k
, β =

l
k
, γ =

l + p
k

, (45)

satisfying the condition β < γ < α . By introducing the matrix
A and the vectors y⃗ and v⃗, we are able to write the total energy
as

ΦH =
k
2

y⃗ ·A y⃗− kY v⃗ · y⃗+ k
2

Y 2 +
l
2

NY 2

+
p
2

Y 2
b (η −χ)+(η −ξ )∆E. (46)

We suppose to embed the system in a thermal bath at temper-
ature T and, assuming to be not far from the thermodynamic
equilibrium, we can evaluate the partition function

ZH(Y ) =
η

∑
χ=0

χ

∑
ξ=0

∫
RN

e−
ΦH
KBT d⃗y. (47)

By using Eq.(46), it can be evaluated as

ZH(Y ) =
η

∑
χ=0

χ

∑
ξ=0

Iξ ,χ eλξ ,χ , (48)

where

λξ ,χ =− kY 2

2KBT
− lNY 2

2KBT
− ∆E

KBT
(η −ξ )−

pY 2
b

2KBT
(η −χ),

(49)
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and

Iξ ,χ =
∫
RN

exp
(
− k

2KBT
y⃗ ·A y⃗+

kY
KBT

v⃗ · y⃗
)

d⃗y. (50)

Using Eq.(12) we get

Iξ ,χ =

√
(2πKBT )N

kN detA
exp
(

kY 2

2KBT
v⃗ ·A −1⃗v

)
. (51)

Summing up, we obtain the partition function as

ZH(Y ) =
η

∑
χ=0

χ

∑
ξ=0

√
(2πKBT )N

kN detA
e−

kY 2
2KBT (1+βN−⃗v·A −1⃗v)

× exp
[
− ∆E

KBT
(η −ξ )−

pY 2
b

2KBT
(η −χ)

]
.

(52)

In this case, by using Eq.(17), we get that the expected value
of the applied force is

⟨ f ⟩=

η

∑
χ=0

χ

∑
ξ=0

(detA )−
1
2 exp

(
2∆Eξ + pY 2

b χ − kY 2q
2KBT

)
q

η

∑
χ=0

χ

∑
ξ=0

(detA )−
1
2 exp

(
2∆Eξ + pY 2

b χ − kY 2q
2KBT

) kY,

(53)
where we used the definition of q in Eq.(15). This is the ex-
pression for the average value of the force necessary to impose
the extension Y to the system. Similarly, we obtain the inter-
faces positions

⟨ξ ⟩=

η

∑
χ=0

χ

∑
ξ=0

(detA )−
1
2 exp

(
2∆Eξ + pY 2

b χ − kY 2q
2KBT

)
ξ

η

∑
χ=0

χ

∑
ξ=0

(detA )−
1
2 exp

(
2∆Eξ + pY 2

b χ − kY 2q
2KBT

) ,

(54)

⟨χ⟩=

η

∑
χ=0

χ

∑
ξ=0

(detA )−
1
2 exp

(
2∆Eξ + pY 2

b χ − kY 2q
2KBT

)
χ

η

∑
χ=0

χ

∑
ξ=0

(detA )−
1
2 exp

(
2∆Eξ + pY 2

b χ − kY 2q
2KBT

) .

(55)

These results allow us to fully describe the fracture behavior
for a ductile material. In particular, based on Eqs.(54) and
(55), we are able to determine when the fracture is brittle,
without the region of softened elements, or when the fracture
is ductile, i.e., with a non negligible fraction of softened ele-
ments, representing the cohesive region.

We mentioned the Dugdale and Barenblatt models since
historically they are the most important approaches to in-
troduce a process zone in fracture phenomena. It is useful
to remember that the original Dugdale model has been de-
veloped for plane strain conditions. Other approaches have
been developed successively to consider plane stress condi-
tions [109, 110]. However, our model is composed of a quasi

one-dimensional lattice of springs that does not allow the ac-
cess to realistic elastic fields in the structure. Hence, it is dif-
ficult to quantitatively compare our results with elastic mod-
els in both plane stress and plane strain. Moreover, Dugdale
model does not account for hardening phenomena, such as our
approach, which is completely linear. In spite of these limita-
tions, Dugdale model has been generalized for strain harden-
ing materials [111, 112]. It is also important to remember that
the process zone in real situations extends beyond the frac-
ture growth plane, a point neglected in both Dugdale’s orig-
inal model and ours. In real fractures, the actual deforma-
tion is represented by a complicated three-dimensional field,
completely disregarded in our one-dimensional analysis. To
conclude, the purpose of our models is not to improve aspects
related to continuous elastic fields but rather to introduce the
effects of temperature into a simplified model. With this in
mind, our approaches are not created to replace classical ones
but only to inform them of how temperature acts in fracture
phenomena.

It is also important to discuss the physical meaning of the
softened state of breakable springs. The ductility in metallic
materials is related to a population of dislocations originated
by the moving crack, generating a damaged zone near the
crack tip with degraded elastic properties [113–116]. Since,
we do not have the possibility to consider realistic dislocations
in our model, we introduced the weakened state for the break-
able springs, corresponding to the degraded elastic properties
of the damaged zone. In the realistic case, the brittle-to-ductile
transition is controlled by the competition between continu-
ing the fracture (as in the brittle case) or using an amount
of energy to generate dislocations that degrade the material.
In our model, we have similar competition between the in-
tact/broken switching (brittle regime) or the intact/softened
switching (ductile regime). This competition is strongly in-
fluenced by temperature and our model explains this effect in
detail. Besides metals, a similar damaged zone, describing the
physical state of the material between the intact and the fully
broken conditions, has been also observed in different systems
including concrete [117], soft materials [118, 119], polymeric
networks [120, 121], bones [122].

VI. ASYMPTOTIC BEHAVIOR OF THE
SOFTENING-FRACTURE MODEL

Once again to obtain clearer analytic results, we consider
the behavior of systems with large values of N. We have (see
Appendix B)

q ∼ β
2
(

ξ

γ
− ξ

α
− χ

γ
+

χ

β

)
+ ε, (56)

where ε is given in Eq.(21), and

lndetA
N

∼ lnτβ +
ξ

N
ln

τα

τγ

+
χ

N
ln

τγ

τβ

, (57)

where τα ,τβ and τγ are given in Eq.(23), for s=α,β ,γ . Thus,
we can write the expressions for the average force and the



11

average interface positions as it follows

⟨ f ⟩ ∼
∑

η

χ=0 ∑
χ

ξ=0

[
β 2
(

ξ

γ
− ξ

α
− χ

γ
+ χ

β

)
+ ε

]
eqξ ξ+qχ χ

∑
η

χ=0 ∑
χ

ξ=0 eqξ ξ+qχ χ
kY,

(58)

⟨ξ ⟩ ∼
∑

η

χ=0 ∑
χ

ξ=0 ξ eqξ ξ+qχ χ

∑
η

χ=0 ∑
χ

ξ=0 eqξ ξ+qχ χ
, (59)

⟨χ⟩ ∼
∑

η

χ=0 ∑
χ

ξ=0 χeqξ ξ+qχ χ

∑
η

χ=0 ∑
χ

ξ=0 eqξ ξ+qχ χ
, (60)

where we introduced the quantities

qξ =−1
2

ln
τα

τγ

− kY 2β 2

2KBT

(
1
γ
− 1

α

)
+

∆E
KBT

, (61)

qχ =−1
2

ln
τγ

τβ

− kY 2β 2

2KBT

(
1
β
− 1

γ

)
+

pY 2
b

2KBT
. (62)

Using the expressions for ⟨ξ ⟩ and ⟨χ⟩, we can rewrite ⟨ f ⟩ in
the simpler form

⟨ f ⟩∼
(

ε +β
2
(

1
γ
− 1

α

)
⟨ξ ⟩+β

2
(

1
β
− 1

γ

)
⟨χ⟩
)

kY. (63)

Hence, once we know the expected values ⟨ξ ⟩ and ⟨χ⟩ of the
interfaces positions, we also know the force required to im-
pose the extension Y . To simplify the notation, we introduce

w = eqξ , (64)
z = eqχ . (65)

By Eqs.(59) and (60), using Eqs.(29) and (30),after long but
straightforward calculations, we obtain

⟨ξ ⟩=
Nξ

D
, (66)

⟨χ⟩=
Nχ

D
, (67)

where, for the sake of readability, we introduced

Nξ =
w

1−w

{
1− zη+1

1− z
− 1− (wz)η+1

1−wz

− (1−w)wz
(1−wz)2

[
1− (wz)η(1+η)+η(wz)η+1]}, (68)

Nχ =
z

(1− z)2

(
1− zη(1+η)+ηzη+1)

− w2z
(1−wz)2

[
1− (wz)η(1+η)+η(wz)η+1] , (69)

D =
1− zη+1

1− z
−w

1− (wz)η+1

1−wz
. (70)

These results approximate the behavior of the fracture process
in the presence of the softening phenomenon for large values
of N. In particular, we can determine the limit for N → ∞ of

FIG. 10. Behavior of the dimensionless extension thresholds Yξ /Yb,
Yχ/Yb and Yξ χ/Yb versus the dimensionless temperature KBT/(hY 2

b )
of the system. From the physical point of view, Yξ χ (yellow or
light gray curve) describes the brittle fracture below the transition
temperature T ∗, and the couple Yξ (blue or dark gray), Yχ (orange
or intermediate gray) describes the ductile fracture above the tem-
perature T ∗. The three curves Yξ /Yb, Yχ/Yb and Yξ χ/Yb versus
KBT/(hY 2

b ) intersect at the bifurcation black point, characterized by
T ∗. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10, and
∆E/(hY 2

b ) = 1/10.

the main observables, in order to provide a precise physical
interpretation of the brittle-to-ductile transition. The obtained
expressions depend on wη , zη and (wz)η and, since in our
model η = N(1−φ) where φ is the fraction of initially absent
breakable springs, they present an exponent going to infinity
when N → ∞. We know that, when N → ∞, a generic power
xN tends to infinity if x > 1 and tends to zero if |x|< 1, hence
we study the three inequalities w > 1, z > 1 and wz > 1, which
will be useful to better understand the system behavior. These
inequalities are equivalent to study the positive character of
their exponents qξ , qχ , and qξ +qχ .

We start by setting the exponent of w larger than zero

qξ =−1
2

ln
τα

τγ

− kY 2β 2

2KBT

(
1
γ
− 1

α

)
+

∆E
KBT

> 0. (71)

In terms of Y , this inequality gives

|Y |<

√√√√ 1

kβ 2
(

1
γ
− 1

α

) [(h− p)Y 2
p −KBT ln

τα

τγ

]
≜ Yξ , (72)

where we introduced a first extension threshold Yξ . We ob-

serve that kβ 2
(

1
γ
− 1

α

)
is always positive because p < h by

definition and, then, the argument of the square root is posi-
tive when the temperature T is smaller than the critical tem-
perature Tξ defined as

Tξ =
(h− p)Y 2

p

KB ln τα

τγ

. (73)

The meaning of Yξ and Tξ will be clarified later. By setting
the exponent of z greater than zero, we define the inequality

qχ =−1
2

ln
τγ

τβ

− kY 2β 2

2KBT

(
1
β
− 1

γ

)
+

pY 2
b

2KBT
> 0. (74)
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FIG. 11. Brittle response of the fracture phenomenon (0 < T < T ∗). Left panel: dimensionless force versus dimensionless extension for
different values of N = 100, 250, 500 (as indicated by the arrow). Right panel: fraction of intact, softened and broken elements for different
values of N = 100, 250, 500 (as indicated by arrows). Inset: same plot as Fig.10, where the temperature used here is indicated by the black
point. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10, ∆E/(hY 2

b ) = 1/10, φ = 0 (i.e., η = N), and KBT/(hY 2
b ) = 3/10.

It can be solved with respect to Y , eventually giving the result

|Y |<

√√√√ 1

kβ 2
(

1
β
− 1

γ

) [pY 2
b −KBT ln

τγ

τβ

]
≜ Yχ , (75)

where we introduced a second extension threshold Yχ . As be-

fore, the quantity kβ 2
(

1
β
− 1

γ

)
is always positive and there-

fore the whole square root argument is positive for values of
the temperature below the critical temperature Tχ defined as

Tχ =
pY 2

b

KB ln τγ

τβ

. (76)

As before, Yχ and Tχ will be physically interpreted in the fol-
lowing. Finally, we set the exponent of wz greater than zero,
which corresponds to qξ +qχ > 0. We obtain the inequality

|Y |<

√√√√ 1

kβ 2
(

1
β
− 1

α

) [pY 2
b +(h− p)Y 2

p −KBT ln
τα

τβ

]
≜Yξ χ ,

(77)
where we introduced a third extension threshold Yξ χ . Being

kβ 2
(

1
β
− 1

α

)
always positive, the square root has a positive

argument when T < Tξ χ , where

Tξ χ =
pY 2

b +(h− p)Y 2
p

KB ln τα

τβ

. (78)

Again, we will discuss in the following the physical meaning

of Yξ χ and Tξ χ . Summarizing these results, we can write

{
w > 1
qξ > 0

⇔ |Y |<

√
(l + p)(l +h)Y 2

p

l2

(
1− T

Tξ

)
, (79){

z > 1
qχ > 0

⇔ |Y |<

√
(l + p)Y 2

b
l

(
1− T

Tχ

)
, (80)

{
wz > 1
qξ +qχ > 0

⇔ |Y |<

√√√√ pY 2
b +(h− p)Y 2

p
lh

l+h

(
1− T

Tξ χ

)
,

(81)

where we used the definition for the critical temperatures Tξ ,
Tχ and Tξ χ previously introduced.

The three dimensionless extension thresholds Yξ/Yb, Yχ/Yb
and Yξ χ/Yb are plotted versus the dimensionless temperature
KBT/(hY 2

b ) in Fig.10. We can already anticipate that brittle
or ductile behavior depends on the sign of Yχ −Yξ . Indeed,
we have a brittle fracture if Yχ < Yξ , and a ductile fracture if
Yχ >Yξ (see Fig.10). In the first brittle case, the rupture occurs
for Y = Yξ χ . In the second ductile case, the softening occurs
for Y = Yξ and rupture for Y = Yχ . We observe therefore that
it exists a brittle-to-ductile transition temperature T ∗ that sep-
arates the brittle behavior from the ductile one (see the yellow
point in Fig.10). This temperature is defined by equating Yξ

and Yχ , as follows

√√√√ (h− p)Y 2
p

kβ 2
(

1
γ
− 1

α

) (1− T ∗

Tξ

)
=

√√√√ pY 2
b

kβ 2
(

1
β
− 1

γ

) (1− T ∗

Tχ

)
.

(82)
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FIG. 12. Ductile response of the fracture phenomenon (T ∗ < T < Tξ ). Left panel: dimensionless force versus dimensionless extension for
different values of N = 500, 1000, 1500 (as indicated by the arrow). Right panel: fraction of intact, softened and broken elements for different
values of N = 500, 1000, 1500 (as indicated by arrows). Inset: same plot as Fig.10, where the temperature used here is indicated by the black
points. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10, ∆E/(hY 2

b ) = 1/10, φ = 0 (i.e., η = N), and KBT/(hY 2
b ) = 4/5.

When solved, this equation gives the value of T ∗ as

KBT ∗

hY 2
b

=

(
1

α−β

)[
α

(
Yp
Yb

)2
−β

]
(

α

α−γ

)
ln τα

τγ
−
(

β

γ−β

)
ln τγ

τβ

. (83)

Interestingly, this quantity can be also explicitly written in
terms of the elastic constants of the system

T ∗ =
(l +h)Y 2

p − lY 2
b

KB

(
l+h
h−p ln τα

τγ
− l

p ln τγ

τβ

) . (84)

To justify the introduction of all these quantities and nota-
tions, we use now Eqs.(63), (66) and (67) to observe the be-
havior of the system with different values of N and tempera-
ture T . In particular, we consider Fig.10 and we show the sys-
tem behavior for three values of the temperature belonging to
the regions 0< T < T ∗ (brittle response, Fig.11), T ∗ < T < Tξ

(ductile response, Fig.12), and Tξ < T < Tχ (over-ductile re-
sponse, Fig.13). We do not consider values of the temperature
larger than Tχ since, in this case, all elements are broken due
to the only thermal effects, without the application of mechan-
ical actions.

In Fig.11, we can find the dimensionless force given by
Eq.(63) in the first panel, and the three quantities ⟨ξ ⟩/N,
⟨χ − ξ ⟩/N and ⟨N(1− φ)− χ⟩/N representing the fraction
of intact, softened and broken elements, calculated through
Eqs.(66) and (67), respectively, in the second panel. For sim-
plicity, we always considered φ = 0. Note that the dimen-
sionless force is divided by N so as to be consistent with the
definition of mechanical stress. We can see that, with a tem-
perature in the range 0 < T < T ∗, the force drops to zero in
correspondence to the extension threshold Yξ χ , describing the
simultaneous rupture of all elements. Indeed, it can be seen in

the second panel that the elements change almost completely
from the intact to the broken state, with a fraction of softened
elements that is negligible. The response becomes increas-
ingly sharp as the value of N increases. In particular, the frac-
tion of softened elements decreases to zero for N growing. A
direct transition from intact to broken elements without an in-
termediate phase is therefore observed. This confirms that the
response is brittle for T < T ∗ and the rupture of the system
occurs in this case at the applied extension Yξ χ .

In Fig.12, we represent the same functions for a temper-
ature in the range T ∗ < T < Tξ . In this case, we observe
an almost simultaneous transition of all breakable elements
from the intact to the softened state at the extension Yξ and
a subsequent transition from the softened to the broken state
at the threshold Yχ . This behavior reproduces a ductile frac-
ture, and the intermediate phase, characterized by the soft-
ened elements, mimics the cohesive phase of the fracture phe-
nomenon. Also, in the force-extension diagram we see a first
peak in correspondence to the softening of the elements, and
a second peak describing the actual rupture. This curve is
sharper for high values of N and smoother for low values. The
comparison of Figs.11 and 12 shows the transition from a brit-
tle to a ductile fracture as temperature increases, T ∗ being the
threshold temperature between the two regimes. This transi-
tion is described by the bifurcation at T ∗ exhibited in Fig.10
(see the yellow point), which gives rise to the intermediate
region with softened elements.

To complete the picture on the system behavior, we also
show in Fig.13 the extreme situation when temperature is in
the range Tξ < T < Tχ (over-ductile response). Since the tem-
perature is larger than Tξ , at the beginning of the traction al-
most all elements are already in the softened state even with-
out an applied mechanical action. As a result, we can ob-
serve only one transition between the softened state and the



14

FIG. 13. Over-ductile response of the fracture phenomenon (Tξ < T < Tχ ). Left panel: dimensionless force versus dimensionless extension for
different values of N = 500, 1000, 1500 (as indicated by the arrow). Right panel: fraction of intact, softened and broken elements for different
values of N = 500, 1000, 1500 (as indicated by arrows). Inset: same plot as Fig.10, where the temperature used here is indicated by the black
point. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10, ∆E/(hY 2

b ) = 1/10, φ = 0 (i.e., η = N), and KBT/(hY 2
b ) = 6/5.

FIG. 14. Dimensionless force versus dimensionless extension for
different values of the thermal to elastic energy ratio KBT/(hY 2

b ) =
{0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} (as indicated by the arrow). We ob-
serve that the behavior of the model changes from brittle, at low
values of temperature, ductile for intermediate temperatures, to over
ductile at high temperatures. We adopted the parameters N = 1000,
α = 7/5, β = 2/5, γ = 9/10, φ = 0, and ∆E/(hY 2

b ) = 1/10.

broken state at the extension threshold Yχ . Consequently, in
this temperature range, we observe a brittle transition between
thermally-softened and broken elements. Since this response
is observed only after the classical ductile behavior, we called
it over-ductile response.

To better visualize the transitions between the different
fracture regimes, we show in Fig.14 some force-extension
curves corresponding to different temperatures, spanning over
brittle, ductile, and over-ductile regimes. It is interesting to
remark that, within the ductile fracture, the shape of the force-
extension curve is smoother in correspondence to the system

softening/breaking since the cohesive phase is able to absorb
an amount of energy before the final rupture. We also note
that, within the ductile regime, the softening stress is higher
than the failure stress for lower temperatures and conversely
the softening stress becomes lower than the failure stress for
higher temperatures. This point will be further discussed be-
low. It is important to underline that all curves seen in Figs.11,
12, 13, and 14 have been obtained through Eqs.(63), (66) and
(67) with a large, but finite value of N. In the following we
also describe the thermodynamic limit N → ∞.

What has been described so far represents the modeling
of brittle-to-ductile transition induced by thermal fluctuations.
Our model also allows us to describe a parametric brittle-to-
ductile transition, i.e., intrinsic to the structure of the system.
This means that there can be systems that exhibit only brit-
tle or ductile behavior, regardless of temperature. On the
one hand, an example of always brittle system is shown in
Fig.15, left panel, where we represent the three dimension-
less extension thresholds Yξ/Yb, Yχ/Yb and Yξ χ/Yb versus
the dimensionless temperature KBT/(hY 2

b ). We can see that
Yχ < Yξ χ < Yξ for any value of the temperature. This means
that there is no temperature high enough to induce a ductile
fracture (T ∗ > Tξ ). On the other hand, an example of al-
ways ductile system is shown in Fig.15, right panel. In this
case, Yχ > Yξ χ > Yξ for any value of the temperature so that
there is no temperature low enough to induce a brittle frac-
ture (T ∗ < 0). These two situations describe materials that are
always brittle or always ductile, regardless of the considered
temperature.

To conclude, we obtained two types of brittle-to-ductile
transitions: a thermal transition, induced by the effects of ther-
mal fluctuations, and a parametric transition, induced by the
values of the elastic parameters. It is worth to point out that
this rather rich fracture behavior has been obtained based on a
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FIG. 15. Behavior of the dimensionless extension thresholds Yξ /Yb, Yχ/Yb and Yξ χ/Yb versus the dimensionless temperature KBT/(hY 2
b ) for

a system always brittle (left panel), and for a system always ductile (right panel). In the left panel we have Yχ < Yξ χ < Yξ and we adopted the
parameters α = 13/10, β = 3/10, γ = 4/5, and ∆E/(hY 2

b ) = 1/5. In the right panel we have Yχ > Yξ χ > Yξ and we adopted the parameters
α = 9/5, β = 4/5, γ = 13/10, and ∆E/(hY 2

b ) = 1/10.

minimal system depending on the competition between elas-
tic, entropic and fracture energy terms, regulated by the tem-
perature and material parameters.

VII. THERMODYNAMIC LIMIT OF THE
SOFTENING-FRACTURE MODEL

To give an even clearer physical description, we deduce
here analytic results in the thermodynamic limit, N → ∞. We
start the analysis by examining the average value of the num-
ber of intact, softened and broken elements of the system. If
we consider the brittle behavior, with 0 < T < T ∗, the ther-
modynamic limit gives

lim
N→∞

⟨ξ ⟩
N

=

{
1−φ if Y < Yξ χ ,

0 if Y > Yξ χ ,
(85)

lim
N→∞

⟨χ −ξ ⟩
N

= 0 for all Y, (86)

lim
N→∞

⟨N(1−φ)−χ⟩
N

=

{
0 if Y < Yξ χ ,

1−φ if Y > Yξ χ .
(87)

In this case, we observe a direct transition between intact and
broken elements without going through the softened state.
However, if we take into account the ductile behavior with

T ∗ < T < Tξ , we obtain for N → ∞

lim
N→∞

⟨ξ ⟩
N

=

{
1−φ if Y < Yξ ,

0 if Y > Yξ ,
(88)

lim
N→∞

⟨χ −ξ ⟩
N

=

 0 if Y < Yξ ,
1−φ if Yξ < Y < Yχ ,

0 if Y > Yχ ,
(89)

lim
N→∞

⟨N(1−φ)−χ⟩
N

=

{
0 if Y < Yχ ,

1−φ if Y > Yχ .
(90)

In this case, we observe the emergence of a region with soft-
ened elements, corresponding to the cohesive zone. Finally,
the over-ductile regime, characterized by Tξ < T < Tχ , for
N → ∞ leads to

lim
N→∞

⟨ξ ⟩
N

= 0 for all Y, (91)

lim
N→∞

⟨χ −ξ ⟩
N

=

{
1−φ if Y < Yχ ,

0 if Y > Yχ ,
(92)

lim
N→∞

⟨N(1−φ)−χ⟩
N

=

{
0 if Y < Yχ ,

1−φ if Y > Yχ .
(93)

In this regime, all elements are initially softened and therefore
the single transition corresponds to their complete breaking.

Concerning the expected value of the force, from Eq.(63),
we can write

lim
N→∞

⟨ f ⟩
N

=

(
β

2
(

1
γ
− 1

α

)
⟨ξ ⟩
N

+β
2
(

1
β
− 1

γ

)
⟨χ⟩
N

)
kY,

(94)
where we can substitute the values of ⟨ξ ⟩/N and ⟨χ⟩/N per-
tinent to each fracture regime. We remark that in Eq.(94),
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we have canceled out the first term shown in Eq.(63) since
N → ∞. For the brittle behavior (0 < T < T ∗), we have

lim
N→∞

⟨ f ⟩
N

=

{
β 2(1−φ)

(
1
β
− 1

α

)
kY if Y < Yξ χ ,

0 if Y > Yξ χ .
(95)

For the ductile behavior (T ∗ < T < Tξ ), we have

lim
N→∞

⟨ f ⟩
N

=


β 2(1−φ)

(
1
β
− 1

α

)
kY if Y < Yξ ,

β 2(1−φ)
(

1
β
− 1

γ

)
kY if Yξ < Y < Yχ ,

0 if Y > Yχ .

(96)

Finally, for the over-ductile behavior (Tξ < T < Tχ ), we get

lim
N→∞

⟨ f ⟩
N

=

{
β 2(1−φ)

(
1
β
− 1

γ

)
kY if Y < Yχ ,

0 if Y > Yχ .
(97)

The thermodynamic limit behavior (N → ∞) of the intact,
softened and broken elements together with the value of the
stress ⟨ f ⟩/N is exhibited in Fig.16, where all the three frac-
ture regimes brittle, ductile and over-ductile are considered.
We remark that the resulting overall picture is coherent with
the plots in Figs.11, 12, 13, where the same quantities were
represented for large, but finite values of N.

These results allow us to identify the values of stress cor-
responding to the behavioral transitions. In the brittle regime
(0 < T < T ∗) we identify the fracture or breaking stress corre-
sponding to σB = limN→∞ ⟨ f ⟩/N, for Y =Yξ χ , which assumes
the value

σB = (1−φ)

√
kβ 2

(
1
β
− 1

α

)[
pY 2

b +(h− p)Y 2
p
](

1− T
Tξ χ

)

= (1−φ)

√
lh

l +h

[
pY 2

b +(h− p)Y 2
p
](

1− T
Tξ χ

)
, (98)

depending on the critical temperature Tξ χ (see fourth row, first
panel, of Fig.16). In the ductile regime (T ∗ < T < Tξ ), we
have a first transition coinciding with the softening of all ele-
ments. It represents the beginning of the plastic regime. Two
different values of stress describe this transition: the upper
yield strength σ

+
S = limN→∞ ⟨ f ⟩/N (for Y = Y−

ξ
, i.e. on the

left of Yξ ), and the lower yield strength σ
−
S = limN→∞ ⟨ f ⟩/N

(for Y = Y+
ξ

, i.e. on the right of Yξ ), given by

σ
+
S = (1−φ)

√√√√√kβ 2

(
1
β
− 1

α

)2

1
γ
− 1

α

(h− p)Y 2
p

(
1− T

Tξ

)

= (1−φ)

√
h2 l + p

l +h
Y 2

p

(
1− T

Tξ

)
, (99)

σ
−
S = (1−φ)

√√√√√kβ 2

(
1
β
− 1

γ

)2

1
γ
− 1

α

(h− p)Y 2
p

(
1− T

Tξ

)

= (1−φ)

√
p2 l +h

l + p
Y 2

p

(
1− T

Tξ

)
, (100)

which depend on the critical temperature Tξ (see fourth row,
second panel, of Fig.16). These two values are useful to calcu-
late the stress jump corresponding to the softening mechanism
(yielding) within the ductile regime

σ
+
S −σ

−
S = (1−φ)Yp

l(h− p)√
(l +h)(l + p)

√
1− T

Tξ

, (101)

which is always positive since h > p. Still in the ductile
regime (T ∗ < T < Tξ ), we observe the second transition de-
scribing the complete failure of all the elements for a stress
σF = limN→∞ ⟨ f ⟩/N, for Y = Yχ , assuming the value

σF = (1−φ)

√
k
(

1
β
− 1

γ

)
p
(

1− T
Tχ

)
β Yb

= (1−φ)

√
l

l + p

(
1− T

Tχ

)
pY 2

b , (102)

depending on the critical temperature Tχ (see fourth row, sec-
ond panel, of Fig.16). In the over-ductile regime (Tξ < T <
Tχ ), the complete breaking of the system occurs at the same
stress σF given in Eq.(102) and shown in the fourth row, third
panel, of Fig.16.

The behavior of these transition stresses is summarized in
Fig.17, where they are plotted versus the temperature T . In
addition, different stress-extension curves are shown at differ-
ent temperatures of interest. In the first two cases, A) and B),
we observe a brittle behavior characterized by the breaking
of the system when the stress reaches the value σB and the
extension the value Yξ χ . While the case B) corresponds to a
temperature slightly smaller than T ∗ (brittle), the case C) rep-
resents a temperature slightly larger than T ∗, being therefore
in the ductile region. We see here both the softening transi-
tion at Yξ and the failure transition at Yχ . In this case C), the
stresses satisfy the relationship σ

−
S < σF < σ

+
S and then the

softening peak (upper yield strength) is larger than the failure
peak. We can now continue to increase the temperature until
σ
−
S < σF = σ

+
S , that is, until the softening peak is equal to

the failure peak. This condition is fulfilled in the panel D) of
Fig.17, and it corresponds to the temperature T ∗∗, defined as

T ∗∗ =

h2

l+hY 2
p − p2l

(p+l)2 Y 2
b

KB

[
h2

(l+h)(h−p) ln τα

τγ
− pl

(p+l)2 ln τγ

τβ

] . (103)

In the stress-temperature plot, this temperature value T ∗∗ rep-
resents the intersection of the two curves σF and σ

+
S versus

T . Increasing the temperature further, we enter the region
T ∗∗ < T < Tξ (once again ductile), represented in the panel E),
where the failure peak is larger than the softening peak (upper
yield strength), σ

−
S < σ

+
S < σF . Finally, for values of tem-

perature in the range Tξ < T < Tχ , we are in the over-ductile
regime and the softening peak disappears, remaining only the
failure peak σF for the overall system, as shown in panel F)
of Fig.17. In panels A), B), C), D), E), and F) of Fig.17 we
also represent the stress-extension response for a finite (large)
value of N in order to show the good agreement between the
approximated expressions and the thermodynamic limit.
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FIG. 16. Response of the system in the thermodynamic limit within the three temperature regimes 0 < T < T ∗ (brittle, first column), T ∗ <
T < Tξ (ductile, second column), and Tξ < T < Tχ (over-ductile, third column). We plotted the average number of intact (first row), softened
(second row) and broken elements (third row), and the stress ⟨ f ⟩/N (fourth row), for N → ∞. To compact the notation, we defined φ̄ = 1−φ ,
and we introduced the characteristic stresses σB, σ

+
S , σ

−
S , and σF , as defined in Eqs.(98), (99), (100) and (102).

As a conclusion to this discussion, we would like to point
out that the strength (rupture stress) of the system as a func-
tion of temperature is finally represented by a discontinuous
curve formed by the branch σB for 0 < T < T ∗ (brittle) and
by the branch σF for T ∗ < T < Tχ (ductile), as one can see
in the panel σ −T of Fig.17. This discontinuity can be eas-
ily explained by observing that the brittle-to-ductile transition
involves the phenomenon of softening and thus the synchro-
nized lowering of the elastic constant of all breakable ele-
ments. Since we are applying a stretching to the system con-
trolled by the extension, the reduction of the overall elastic
constant produces a consequent reduction in stress (which is
therefore discontinuous). We further remark that the strength
(σB or σF , depending on the temperature) is proportional to
the factor 1 − φ , which represents the fraction of initially
present elements (φ is in fact the fraction of initially absent
elements). This is reminiscent of the Griffith criterion, stating
that the stress at fracture is lower if the initial crack opening is
larger [1]. In our case, the initial crack opening is proportional
to φ and, therefore, the Griffith criterion is respected. How-
ever, we add here the temperature dependent nature of this cri-
terion, which is described by the classical term

√
1− T

Tξ χ
in

σB, or
√

1− T
Tχ

in σF , which represents the critical behavior
eventually resulting in a genuine phase transition.

The brittle-to-ductile transition has been observed in GaN
nanowires through molecular dynamics simulations [93], and
Fig.18 shows the comparison with our theoretical results. We
considered a GaN nanowire oriented in the direction [0001],
with a diameter of 1.92 nm and a length of 6.12 nm, as re-
ported in Fig.2(d) of Ref.[93]. The lateral facets of this sys-
tem are oriented along the

{
112̄0

}
side planes, as shown

in Fig.1(b) of Ref.[93]. In Fig.18, the blue curves (or dark
gray) represent the brittle behavior whereas the orange (or
light gray) ones describe the ductile behavior. We remark that
Eqs.(95) and (96) define a relation ⟨ f ⟩/N = F (Y ) where F
is a given function. We have to introduce the real stress σ =
⟨ f ⟩/(NS), where S is the area pertaining to each breakable
spring, and the real strain ε = Y/ℓ, where ℓ is the characteris-
tic lengthscale induced by the crystal structure. The stress-
strain relation can be therefore written as σ = F (εℓ)/S,
where F is the relationship defined by Eqs.(95) and (96).
In Fig.18, we adopted the parameters h = 3.77N/m, p =
0.234N/m, l = 0.725N/m, k = 2.00N/m, ∆E = 11.0×10−21J,
Yb = 17.8×10−11m, S= 22.7×10−22m2, ℓ= 12.1×10−12m,
and KB = 1.38× 10−23J/K. As before, most of geometrical
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FIG. 17. Behavior of the characteristic stresses σB, σ
+
S , σ

−
S , and σF versus the temperature T , as defined in Eqs.(98), (99), (100) and (102)

with φ = 0. Moreover, some stress-extension curves are plotted in correspondence of the following values of the temperature: A) 0 < T < T ∗;
B) T = (T ∗)− (on the left of T ∗); C) T = (T ∗)+ (on the right of T ∗); D) T = T ∗∗; E) T ∗∗ < T < Tξ ; F) Tξ < T < Tχ . While the temperature
T ∗ indicates the switching between brittle and ductile behavior, see Eq.(84), the temperature T ∗∗ corresponds to σ

+
S = σF , see Eq.(103). In

panels A), B), C), D), E), and F) we also show the stress-extension response for N = 1000 (dim colors or light gray curves).

FIG. 18. Tensile stress-strain curves for a GaN nanowire oriented in
the direction [0001] (diameter of 1.92 nm, length of 6.12 nm). The
lateral facets are oriented along the

{
112̄0

}
side planes. Comparison

between molecular dynamics simulations results [93] (dashed lines)
and our theory given by Eqs.(95) and (96) (continuous lines). The
parameters used are reported in the main text.

parameters were available in the original paper dealing with
molecular dynamics simulations and the others were fitted to
correctly reproduce the results. We then plotted the stress-
strain curves for the two temperatures T = 300K (brittle be-
havior) and T = 1800K (ductile behavior). It is interesting to
note that the structural parameters used in our model are able
to predict the correct brittle-to-ductile transition as obtained
through molecular dynamics simulations. Moreover, also the
upper and lower yield stresses of the ductile behavior are in
quite good agreement with simulations. We remark that in
our model there is a single softening process and therefore
we can see only one failure peak after the softening peak in
the stress-strain relation. As discussed in the conclusions, the
model could be generalized with more softening steps to de-
scribe real damage such as that of the nanowires studied here.
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VIII. CONCLUSIONS

We proposed and studied two prototypical models able to
describe temperature effects in fracture processes. The first is
aimed at explaining the temperature dependent behavior for
brittle systems, and the second at showing the complex dam-
age processes occurring in the presence of ductile breakable
links with a possibility of a brittle-to-ductile transition regu-
lated by thermal effects. Both models are based on a sim-
ple lattice structure built through unbreakable and breakable
springs. The system is confined between two layers, one fixed
and one movable, and is designed in such a way that lifting
the top layer results in a force experienced by the system, be-
ing able to generate fracture propagation. This structure is
supposed to be embedded into a thermal bath at fixed temper-
ature. Hence, the models are developed within the equilibrium
statistical mechanics formalism. The difference between the
two models lies in the behavior at rupture of the breakable
springs. In the first model for brittle fracture, each break-
able spring can be in two states, namely elastic or broken,
depending on the extension applied to the element itself. The
state transition occurs through the absorption of an amount of
energy that corresponds to the typical surface energy of the
Griffith criterion [1]. In the second model, each breakable
spring can be in three different states representing the elas-
tic, softened, and broken regimes. The intermediate softened
state is introduced to reproduce the possible ductile regime
of the fracture process. In this case, we have a ‘yielding’
point between the elastic and the ductile regimes, followed
by a final failure point corresponding to fracture. The transi-
tion between intact and softened states occurs after the yield-
ing energy is absorbed, and the transition between softened
and broken occurs through the absorption of another amount
of energy corresponding to fracture. Thus, in both models the
energy balance is similar to what is typically assumed in linear
elastic fracture mechanics since Griffith’s and Irwin’s pioneer-
ing works [1, 11, 12], with the fracture phenomenon regulated
by elastic, damage and fracture (surface) energy. However, in-
cluding thermal fluctuations sensibly modifies the results and
add important features to the system description.

As for the model for brittle fracture, we obtain a
temperature-dependent fracture stress and a corresponding
fracture strain, representing a ‘genuine’ phase transition.
Thus, we obtain a critical temperature at which both frac-
ture stress and fracture strain are zero and therefore the mate-
rial is always broken for supercritical temperatures. Interest-
ingly, the obtained temperature-dependent strength is in good
agreement with several experiments and molecular dynam-
ics simulations as demonstrated previously. It is interesting
to note that although breakable springs have a temperature-
independent breaking behavior, the overall system exhibits a
breaking point that is highly dependent on temperature. This
is a typical case of a complex system with collective behavior,
giving rise to a critical phenomenon. We argue that this effect
is relevant in the case of weak links, such as hydrogen bonds
in biological materials, or in rubber, where the elasticity has
an entropic character, or in small size metallic or semiconduc-
tor systems, such as the considered nanowires [91–102].

The model with ductile breakable elements exhibits an even
richer behavior. In this case it is the full response of the system
that is temperature dependent. Indeed, we have demonstrated
the existence of a brittle-to-ductile transition temperature T ∗

(whose expression is obtained in closed form) that regulates
the behavior of the fracture process. On the one hand, for tem-
peratures lower than T ∗, we observe a brittle behavior charac-
terized by a direct transition of the springs from the elastic
to the broken state, without passing through the intermedi-
ate softened state. On the other hand, for temperatures higher
than T ∗, we see that, as the extension applied to the system in-
creases, first the springs soften (yielding point), and then they
switch from the softened to the broken state (failure point).
The intermediate softened region reproduces in this discrete
context the cohesive zone of the classical Dugdale-Barenblatt
model of the ductile fracture [13, 14]. Of course, both yielding
and failure point depend on temperature and are again charac-
terized by phase transitions. In fact, importantly, we are not
only able to calculate the brittle-to-ductile transition tempera-
ture, but also to predict the critical behavior of the upper and
lower yield strengths, and the thermal properties of the frac-
ture strength. Our model is also able to predict the existence
of a special fracture regime, here called over-ductile, in which
the temperature is high enough to damage all elements with-
out mechanical action. In this situation, as the extension of
the system increases, we observe the only transition from the
softened to the broken regime.

From the methodological point of view, to elaborate the
closed form expression of the partition function in both pro-
posed models, we adopted specific techniques particularly
suitable for calculating the determinant and inverse of tridiag-
onal matrices [123, 124]. These approaches allow the deriva-
tion of exact solutions as shown in Appendix A, but also
asymptotic approximations as discussed in Appendix B. Al-
though these mathematical developments are relegated to the
appendices, they are of crucial importance for obtaining the
physical results on fracture processes.

We point out that even if the models here presented clarify
fundamental aspects of thermally activated rupture phenom-
ena, they should be generalized to take into account the com-
plex reality of these processes. We want to mention here at
least four points that partially limit the applicability of these
models to real situations. The first issue concerns the spatial
homogeneity of the adopted models. We have always con-
sidered all springs of discrete systems having the same me-
chanical behavior (in terms of elastic constants, failure thresh-
olds, etc.). In reality, this is true only for perfect monocrys-
talline structures that are quite rare. It would be interesting
to study these phenomena in disordered systems that, on the
one hand, are more similar to several real structures, and on
the other hand, may generate even more interesting critical
behaviors typical of complex systems with quenched disorder
[53, 55–60]. The second point to be explored is the kinetic
of rupture processes. Here we have considered only quasi-
static phenomena studied by means of equilibrium statisti-
cal mechanics. In real experiments, traction can be applied
at different tensile velocities, and the response obviously de-
pends on these traction rates [36, 68]. To model these phe-
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nomena one would have to adopt out-of-equilibrium statis-
tical mechanics and then base the analysis on Langevin or
Fokker-Planck methodologies [125–128]. To conclude, the
third point that could be improved concerns the fact that the
softening process is restricted to a single step of reduction of
the elastic constant of the breakable springs. In order to be
more adherent to the physical reality of the yielding process
one would have to imagine a series of steps where several re-
ductions of the elastic constant take place progressively. In
this sense, the yielding point would be implemented through
a multi-softening process, more similar to what happens in
real nonlinear materials. The fourth and final point concerns
the too-simple geometry of our model, which should be im-
proved (with 2D or 3D lattices) in order to be able to represent
real elastic fields to be compared with models from continuum
mechanics.

Appendix A: Exact results for tridiagonal matrices

Since the matrix A defined in Eq.(5) is tridiagonal, we
can analytically evaluate the inverse A −1 and the determi-
nant detA [123, 124]. We consider a generic tridiagonal ma-
trix M , and we define its elements as Mi,i = bi (main diag-
onal), Mi,i−1 = ai (lower diagonal), and Mi,i+1 = ci (upper
diagonal). All other elements are zero. We can introduce the
quantities θi by means of the following recurrence relation{

θi = biθi−1 −aici−1θi−2,

θ−1 = 0, θ0 = 1, i = 1,2, . . . ,N,
(A1)

where, in particular, θN = detM . Furthermore, it is possible
to define the quantities φi through the recurrence formula{

φi = biφi+1 − ciai+1φi+2,

φN+2 = 0, φN+1 = 1, i = N,N −1, . . . ,1,
(A2)

where φ1 = θN = detM . These definitions can be used to
determine the elements of the inverse matrix M−1 [123, 124],
as follows

(M−1)i, j =



(−1)i+ jcici+1 . . .c j−1θi−1φ j+1

θN
, if i < j,

θi−1φi+1

θN
, if i = j,

(−1)i+ ja j+1a j+2 . . .aiθ j−1φi+1

θN
, if i > j.

(A3)
By considering our particular case, the elements in the main
diagonal of A are defined as ai = 2 + α for 1 ≤ i ≤ ξ ,
and ai = 2+ β for ξ + 1 ≤ i ≤ N. Moreover, we have that
Ai,i+1 = Ai+1,i = −1 for the upper and lower diagonals. For
this special situation, θi and φi are defined by the rules{

θi = aiθi−1 −θi−2,

θ−1 = 0, θ0 = 1, i = 1,2, . . . ,N,
(A4)

and {
φi = aiφi+1 −φi+2,

φN+2 = 0, φN+1 = 1, i = N,N −1, . . . ,1.
(A5)

Consequently, the elements of the inverse matrix A −1 are
given by

(A −1)i, j =



θi−1φ j+1

θN
, if i < j,

θi−1φi+1

θN
, if i = j,

θ j−1φi+1

θN
, if i > j.

(A6)

Hence, we need to find θi and φi in order to obtain the inverse
matrix elements. We start by evaluating θi for i ≤ ξ . In this
case, ai = 2+α , and Eq.(A4) becomes

θi = (2+α)θi−1 −θi−2. (A7)

To find a solution, we substitute θi = λ i in the last equation,
and we obtain a second degree algebraic equation with solu-
tions

λ1,2 =
2+α ±

√
α2 +4α

2
. (A8)

Then, a generic solution for θi, with i ≤ ξ , is given by the
following linear combination

θi = A
(

2+α +
√

∆α

2

)i

+B
(

2+α −
√

∆α

2

)i

, (A9)

where we introduced ∆α = α2 + 4α . We can obtain the two
coefficients A and B by the initial conditions in Eq.(A4). We
obtain

A =
2+α +

√
∆α

2
√

∆α

, B =−2+α −
√

∆α

2
√

∆α

. (A10)

Therefore, the final solution for θi, when i ≤ ξ , is

θi = G (α, i+1), (A11)

where we introduced the function

G (γ,z) =
1√
∆γ

[(
2+ γ +

√
∆γ

2

)z

−

(
2+ γ −

√
∆γ

2

)z]
,

(A12)
with ∆γ = γ2 + 4γ . If we introduce the parameters τγ and ργ

as follows

τγ =
2+ γ +

√
∆γ

2
, ργ =

2+ γ −
√

∆γ

2
, (A13)

the function G (γ,z) can be written as

G (γ,z) =
1√
∆γ

(
τ

z
γ −ρ

z
γ

)
. (A14)
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We note that

τγ −ργ =
√

∆γ , ργ τγ = 1. (A15)

Now, we evaluate θi when i ≥ ξ +1. In this case, ai = 2+β

and Eq.(A4) becomes

θi = (2+β )θi−1 −θi−2. (A16)

As before, we find that the general solution is given by the
linear combination

θi =C

(
2+β +

√
∆β

2

)i

+D

(
2+β −

√
∆β

2

)i

, (A17)

where ∆β = β 2 + 4β . To find the coefficients C and D, we
exploit the initial conditions θξ = G (α,ξ + 1) and θξ−1 =
G (α,ξ ). Straightforward calculations lead to the solution for
θi, when i ≥ ξ +1, in the form

θi = G (β , i−ξ +1)G (α,ξ +1)−G (β , i−ξ )G (α,ξ ),
(A18)

where we used the function defined in Eq.(A12). We consider
Eq.(A5) and we proceed with the evaluation of φi. We start
with the case where i ≥ ξ +1. In this condition, the recurrent
equation becomes

φi = (2+β )φi+1 −φi+2, (A19)

which must be combined with the initial conditions in
Eq.(A5). Eventually, we obtain φi for i ≥ ξ +1 in the form

φi =−G (β , i−N −2). (A20)

We can find φi when i ≤ ξ by using the two conditions φξ+1 =
−G (β ,ξ −N−1) = G (β ,N+1−ξ ) and φξ+2 =−G (β ,ξ −
N) = G (β ,N −ξ ). After straightforward calculations, we get
for i ≤ ξ

φi = G (β ,N +1−ξ )G (α,ξ +2− i)
−G (β ,N −ξ )G (α,ξ +1− i). (A21)

The obtained values of θi and φi allow the calculation of A −1

and detA , useful to implement the determination of the par-
tition function in Eq.(16) and the quantities in Eqs.(18) and
(19). Moreover, these results are useful to develop some
asymptotic expressions in Appendix B.

Appendix B: Asymptotic analysis

Considering the brittle model with a large number N of
units, it is possible to derive approximations to simplify the
partition function and the main average quantities. More
specifically, we can find approximations for v⃗ ·A −1⃗v and for
detA . We start our analysis by expanding the first quadratic

form as follows

v⃗ ·A −1⃗v =
N

∑
i=1

N

∑
j=1

vi(A
−1)i, jv j

=
N

∑
i=1

N

∑
j=1

(β +δi,N)(A
−1)i, j(β +δ j,N)

=β
2

N

∑
i=1

N

∑
j=1

(A −1)i, j +2β

N

∑
i=1

(A −1)i,N +(A −1)N,N

=β
2S2(ξ )+2βS1(ξ )+S0(ξ ),

(B1)
where we introduced S2(ξ ) as the sum over all the elements
of the inverse matrix, S1(ξ ) as the sum over all the elements
of the N-th column of the inverse matrix, and S0(ξ ) as the
element (N,N) of the inverse matrix. We observe that these
three quantities are in general function of ξ .

Exploiting the symmetry of the inverse matrix A −1, we
write S2(ξ ) as

S2(ξ ) =
N

∑
i=1

(A −1)i,i +2
N−1

∑
i=1

N

∑
j=i+1

(A −1)i, j. (B2)

The evaluation of S2(ξ ) for a matrix A that shows heteroge-
neous diagonal elements ai (ξ ̸= {0,N}) can be done but is
not straightforward. Fortunately, it is possible to observe that,
in the limit of large N, the form of S2(ξ ) is a linear combina-
tion of the two values S2(0) and S2(N), each corresponding to
a matrix with homogeneous diagonal. In fact, when ξ = 0, the
diagonal components of A are all equal to 2+β , and when
ξ = N, the diagonal components of A are all equal to 2+α .

With the help of the left panel of Fig.19, we can observe
that, as N increases, the form of S2(ξ ) numerically obtained
through Eq.(A6) (continuous curves), approach the straight
line joining S2(0) and S2(N) (dashed line). To improve the ap-
proximation, we observe that in the linear solution for S2(ξ )
we could also add a zeroth order term (with respect to N),
represented by an additional small quantity C(ξ ), possibly de-
pendent on ξ , but independent of N.

Now, we analytically evaluate S2(0). By means of this
value, it is also easy to obtain S2(N) simply substituting β

with α . When ξ = 0, we have from Appendix A

θi = G (β , i+1), (B3)
φi = G (β ,N +2− i), (B4)

where i = 1, . . . ,N. In addition, Eq.(A6) gives

(A −1)i, j =



G (β , i)G (β ,N +1− j)
G (β ,N +1)

, if i < j,

G (β , i)G (β ,N +1− i)
G (β ,N +1)

, if i = j,

G (β , j)G (β ,N +1− i)
G (β ,N +1)

, if i > j.

(B5)
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FIG. 19. The quantities S2(ξ )/N, S1(ξ ) and S0(ξ ) are obtained
using Usmani relations (continuous curves) for different values of
N = {10, . . . ,300} (with step of 10). We observe that, as N increases,
the quantities approach their relative approximations obtained for
large N (dashed lines).

We can therefore write S2(0) as

S2(0) =
N

∑
i=1

G (β , i)G (β ,N +1− i)
G (β ,N +1)

+2
N−1

∑
i=1

N

∑
j=i+1

G (β , i)G (β ,N +1− j)
G (β ,N +1)

. (B6)

Using the definition of G (γ,z) in Eq.(A12), and the properties

of τγ and ργ introduced in Eq.(A15), we get

S2(0) =
(τN+1

β
− τ

−N−1
β

)−1√
∆β

×

{
2(N −1)

(
τ

N+1
β

τβ −1
−

τ
−N
β

τβ −1

)
+

2τ
2−N
β

−2τN
β

τ2
β
−1

+N(τN+1
β

+ τ
−N−1
β

)+
2τβ

(τ2
β
−1)

(τ−N
β

− τ
N
β
)

+
2+2τβ

(τβ −1)2 (1+ τβ − τ
N
β
− τ

1−N
β

)

}
,

(B7)
where we used several times the geometric sum. The expres-
sion for S2(0) given in Eq.(B7) is not transparent but, in the
limit of large N, it can be approximated by

S2(0)∼
N
β
−
√

β 2 +4β −β

β 2 =
N
β
+C(0), (B8)

where

C(0) =−
√

β 2 +4β −β

β 2 . (B9)

This term represents the zeroth order correction (with respect
to N), previously discussed. When ξ = N, we can obtain the
result by simply substituting β with α , eventually obtaining

S2(N)∼ N
α
−

√
α2 +4α −α

α2 =
N
α
+C(N), (B10)

where

C(N) =−
√

α2 +4α −α

α2 . (B11)

Finally, we can write the general approximation for S2(ξ ) in
the limit of large N as

S2(ξ )∼
N
β
+

(
N
α
− N

β

)
ξ

N
+C(ξ ), if α,β ̸= 0, (B12)

where C(0) is given in Eq.(B9), C(N) is given in Eq.(B11),
and C(ξ ) assumes a constant value for ξ ∈ {1, . . . ,N−1} (for
large N), which is always in the range between C(0) and C(N).
We do not determine here this value since is not relevant for
our analysis. Indeed, although the zeroth order term of S2(ξ )
is represented by three different values of the constant depend-
ing on ξ , in the application to the fracture problem we adopt
the value C(0) in all calculations. It is not difficult to realize
that this is the only value playing a role in our model since it
describes the behavior of the system when ξ = 0, i.e. when
all the breakable springs are fractured. In this condition, only
one spring links together the two layers of the system and the
constant C(0) is able to describe the exact stiffness of the re-
sulting spring network. The other values C(ξ ), for ξ ̸= 0, are
negligible when N → ∞.

The approach used to find the approximation of S2(ξ ) for
large N, can be also applied for S1(ξ ) and S0(ξ ). Concerning
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S1(ξ ), as shown in the center panel of Fig.19, its value numer-
ically obtained with Eq.(A6) approaches the constant value
S1(0) as N increases. This value is therefore the approxima-
tion of S1(ξ ) for large N. Through previous definitions, we
can write S1(0) as

S1(0) =
N

∑
i=1

(A −1)i,N =
N

∑
i=1

θi−1

θN
=

N

∑
i=1

G (β , i)
G (β ,N +1)

, (B13)

which, in the limit of large N, leads to

S1(ξ )∼ S1(0)∼
2

β +
√

∆β

. (B14)

We can observe that the exact values of S0(ξ ) approach the
constant value S0(0) for large N, as one can see in the right
panel of Fig.19. We have the exact expression

S0(0) = (A −1)N,N =
θN−1

θN
, (B15)

which, in the limit of large N, gives

S0(ξ )∼ S0(0)∼
1
τβ

=
2

2+β +
√

β 2 +4β
, (B16)

as shown in the right panel of Fig.19. Now we determine the
value of the quadratic form in Eq.(B1), for large N, as

v⃗ ·A −1⃗v ∼ β
2
[

N
β
+

(
1
α
− 1

β

)
ξ +C(0)

]
(B17)

+ 2β

(
2

β +
√

β 2 +4β

)
+

(
2

2+β +
√

β 2 +4β

)
.

To conclude, we recall the definition of q, stated in Eq.(15),
and we get

q = 1+βN − v⃗ ·A −1⃗v ∼ lh
l +h

ξ

k
+ ε, (B18)

where we introduced

ε =

√
β 2 +4β −β

2
. (B19)

Finally, Eqs.(B18) and (B19) prove Eqs.(20) and (21) of the
main text.

To complete this part, we study the approximation of detA
for large values of N. Thanks to Usmani theory [123, 124],
we have

detA = θN . (B20)

Adopting the results of Appendix A, it is possible to evaluate
the determinant of A for different ξ = 0, . . . ,N. The results
can be found in Fig.20, from which we realize that the value
of ln(detA )/N is approximated by a straight line that links
together the values of lndetA /N when ξ = 0, and when ξ =
N, in the limit of large N. It is simple to prove that for ξ =
0 we have lnθN/N ≃ lnτβ when N → ∞, and similarly for

FIG. 20. The quantity (lndetA )/N is obtained using Usmani rela-
tions (continuous curves) for different values of N = {10, . . . ,300}
(with steps of 10). We observe that, as N increases, (lndetA )/N
approaches its approximation for large N (dashed line).

ξ = N we have lnθN/N ≃ lnτα when N → ∞. The equation
that gives the value of lndetA /N, in the limit of large N, is
therefore obtained as

lndetA
N

=
lnθN

N
∼ lnτβ +

ξ

N
ln

τα

τβ

. (B21)

Equivalently, we can write

detA ∼ τ
ξ

α τ
N−ξ

β
, (B22)

which proves Eq.(22) of the main text.
We discuss now the same results for the model with the soft-

ening mechanism. In this case, the quadratic form v⃗ ·A −1⃗v,
can be written as in Eq.(B1)

v⃗ ·A −1⃗v = β
2S2(ξ ,χ)+2βS1(ξ ,χ)+S0(ξ ,χ), (B23)

where S2, S1 and S0 depends now on both interface positions
ξ and χ . We start by analyzing the behavior of S2. Since
S2(0,0)≃ N/β , S2(0,N)≃ N/γ and S2(N,N)≃ N/α , we get
for large values of N the following expression

S2(ξ ,χ)≃
N
β
+

(
N
α
− N

γ

)
ξ

N
+

(
N
γ
− N

β

)
χ

N
+C, (B24)

where considerations similar to the previous ones confirm that
the zero-th order term C assumes the same value in Eq.(B9).
Similarly, we can prove that for large values of N the quanti-
ties S1 and S0 assume the same values obtained for the purely
brittle fracture model, i.e.

S1(ξ ,χ)∼
2

β +
√

β 2 +4β
, (B25)

S0(ξ ,χ)∼
2

2+β +
√

β 2 +4β
, (B26)

which are independent of ξ andχ . Adopting these approxima-
tions in the expression for q, we obtain for N → ∞

q ∼ β
2
(

ξ

γ
− ξ

α
− χ

γ
+

χ

β

)
+ ε, (B27)
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where ε is given by

ε =

√
β 2 +4β −β

2
. (B28)

This result corresponds to Eq.(56) of the main text. Finally,
we can also find an approximated expression for detA (ξ ,χ)
that now depends on both ξ and χ . Since previous approxi-
mation for lndetA (ξ ) was a linear function of ξ linking the
values obtained for the two homogeneous matrices at ξ = 0
and ξ = N, we can now assume that the approximation for
lndetA (ξ ,χ) is a linear function in ξ and χ passing through
the three points identified by (ξ ,χ)= (0,0),(N,0) and (N,N).
Hence, we assume that

lndetA
N

∼ a+bξ + cχ, (B29)

where a, b and c are coefficients, which can be found with
the assumptions a = lnτβ , a+ cN = lnτγ , and a+ cN +bN =
lnτα , with

τα =
2+α +

√
α2 +4α

2
, (B30)

τβ =
2+β +

√
β 2 +4β

2
, (B31)

τγ =
2+ γ +

√
γ2 +4γ

2
. (B32)

These values satisfy the relation τβ < τγ < τα . To conclude,
we obtain the relation

lndetA
N

∼ lnτβ +
ξ

N
ln

τα

τγ

+
χ

N
ln

τγ

τβ

, (B33)

which corresponds to Eq.(57) of the main text.
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