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ABSTRACT
Deep learning models are now core components of modern audio
synthesis, and their use has increased significantly in recent years,
leading to highly accurate systems for multiple tasks. However, this
quest for quality comes at a tremendous computational cost, which
incurs vast energy consumption and greenhouse gas emissions. At
the heart of this problem are the standardized evaluation metrics used
by the scientific community to compare various contributions. In
this paper, we suggest relying on a multi-objective metric based on
Pareto optimality, which considers equally the accuracy and energy
consumption of a model. By applying our measure to the current
state-of-the-art in generative audio models, we show that it can dras-
tically change the significance of the results. We hope to raise aware-
ness on the need to more systematically investigate the energy effi-
ciency of high-quality models, in order to place computational costs
at the center of deep learning research priorities.

Index Terms— Neural audio synthesis, Multi-objective evalua-
tion, Energy footprint

1. INTRODUCTION

Deep learning currently holds most of the state-of-the-art results in
a wide range of application fields. Despite major advances in manu-
facturing energy-efficient hardware, the computational cost of deep
learning remains humongous and continuously rising [1, 2], signif-
icantly contributing to global warming [3, 4]. Although part of the
current research effort is concerned with the true cost of deep mod-
els [5], taking into account the environmental cost of these models is
mostly overlooked against the never-ending quest for accuracy. This
aspect, while novel in deep learning research, already emerges in
some communities such as natural language processing (NLP) [6].
Nonetheless, those energy footprint measurements have never been
addressed in the field of generative neural networks for audio gen-
eration. This is an essential question as the use of deep generative
models for audio is becoming more and more frequent.

Generating raw audio waveform using neural networks is not
a straightforward endeavor. It requires handling high dimensional
structures with long-term dependencies, which usually leads to com-
putationally and energetically costly models. Despite these signifi-
cant limitations, we now count a large variety of deep models that
can produce high-quality raw audio [7, 8] with each having its own
set of advantages and restrictions. However, measuring the precise
energy consumption of a given model remains a complex task [9],
which remains mostly neglected both in terms of training and sample
generation. The disparities in power consumption between various
neural audio synthesis architectures are significant and, therefore,
should be integrated into the evaluation process.

In this paper, we focus on neural vocoders, which are a class
of generative models used for speech generation based on mel-
spectrograms conditioning. We train a wide variety of models from
major families of deep generative models and compute the energy
footprint of sample generation. We perform audio perceptual tests
on the converged networks to obtain precise measures of their qual-
ity. We propose the novel use of a multi-objective criterion based
on Pareto optimality to evaluate the trade-off between energy and
quality, and assess our methodology on six state-of-the-art models.
We implement three distinct configurations for each of these models,
ranging from lighter to larger architectures, to perform an in-depth
analysis of the corresponding computational cost. We show that
lighter models can produce high-quality samples while maintaining
more sustainable energy consumption than bigger models. Through
the adoption of this proposed energy-quality efficiency framework,
we aim to endow future research proposals with more complete eval-
uation and, consequently, put the energy footprint on a first-grade
level of importance. To summarize, our key contributions are:

• Perform a large-scale evaluation of the energetic cost of deep
neural vocoders depending on the size of their architecture.

• Propose a new methodology for incorporating both the energy
footprint and generation quality in the evaluation process, by
relying on a multi-objective approach.1

2. ENERGY EFFICIENCY MEASURES

Measuring the exact energy consumption of any type of computer
software is an extremely challenging task, as it is usually intertwined
with other processes (e.g. cache hits and misses, memory accesses)
[10]. In the context of deep learning, we can divide the energy
consumption of a given model between two different modes: the
amount of energy required to train the model until convergence,
and the amount of energy required by the model for a single infer-
ence (generating a given sample in the case of audio synthesis). To
approximate the energy and carbon cost of training models, [6] sam-
pled GPU, CPU, and DRAM power consumption using the NVIDIA
System Management Interface and Intel’s Running Average Power
Limit. Recently, [11] proposed an online tool called the Machine
Learning Impact Calculator, which estimates carbon emissions pro-
duced while training deep leaning models according to the overall
time, hardware and geographic position. In the same spirit, [12]
developed an open-source Python package called Carbontracker,
which tracks the energy consumption of a single epoch and predicts
the entire training cost.

1All of our source code is available in our supporting webpage at
https://github.com/ConstanceDws/neural-audio-energy



Another common measure of energy efficiency is the total num-
ber of model parameters, as it is easy to determine and partly corre-
lated with computational complexity. Unlike aforementioned mea-
sures, this metric provides the advantage of being hardware- and
location-independent. Nonetheless, the number of parameters does
not accurately reflect power consumption as some operations con-
sume more than others. Hence, the best way to alleviate this is-
sue is to consider the number of Floating Point Operations (FLOPs)
of a model [13]. Although this computation is not straightforward
as it depends on various hyperparameters of the model (e.g., input
size, kernel size, stride, padding, bias), several python packages pro-
vide approximations of these calculations, such as the profiler from
Deepspeed2 that also computes per-layer values such has the num-
ber of MACs (Multiply–Accumulate operation) and the latency of
a forward pass. Other methods exist to account for the on-device
consumption, like the pyJoules3 python package that monitors GPU,
CPU and DRAM energy usage.

3. GENERATIVE MODELS FOR AUDIO

Generative models are a flourishing class of unsupervised learning
approaches that deals with learning to generate novel data based on
the observation of existing examples. Several methods exist, which
we can split in five categories: auto-regressive models, Variational
Auto-Encoders (VAE) [14], Generative Adversarial Networks (GAN)
[15], flow-based models [16] and diffusion models [17].

Auto-regressive models attempt to model examples by assuming
that a given output element is only related to prior values. Following
this formulation, WaveNet [18] and SampleRNN [19] have tackled
direct waveform learning through end-to-end generation. Unfortu-
nately, these methods are based on heavy architectures whose com-
putational complexity incur large energy consumption, especially for
inference. Furthermore, these also provide almost no direct control
on the generative process. Some approaches use VAE [20] that learn
a latent space providing a low-dimensional representation of the data
while remaining rather simple and fast to train. However, the gener-
ated samples tend to be slightly blurry compared to recent adversar-
ial networks, such as WaveGan [21] or GANSynth [22]. These show
impressive reconstruction abilities but usually lack latent expressiv-
ity and are difficult to optimize due to unstable training dynamics.
The recently proposed Normalizing Flows (NF), used in WaveFlow
[23] or FloWaveNet [24] allow to model highly complex distribu-
tions and already yield remarkable results. However, NF do not pro-
vide any dimensional reduction, thus taking considerable amounts
of time to train. Finally, diffusion models define a Markov chain of
diffusion steps, where the data is increasingly corrupted by noise and
the aim is to learn the reverse denoising diffusion process. As a rel-
atively recent class of models, they are yet to be extensively studied
for audio generation. However, the seminal works are those of [25]
and [26], in which a denoising diffusion model is learned through
dilated convolutional architectures.

Despite the successes provided by these models, they still in-
cur large computational costs, only handled by modern accelerators
(such as GPUs or TPUs). Moreover, the plurality of models and
training time needed for them to converge questions the real effec-
tiveness with regards to the quality of the generated results, and what
could be the best compromise in terms of energetic cost.

2https://www.deepspeed.ai/tutorials/flops-profiler/
3https://github.com/powerapi-ng/pyJoules

4. MUTLI-OBJECTIVE CRITERIA

4.1. Methodolody

Increasing the size of deep models often improve their quality at the
expense of large energy costs. As these objectives seem to be con-
flicting, we propose to introduce the use of multi-objective evalua-
tion criteria, also called Pareto optimization. Formally, we consider
a multi-objective optimization problem as

min
x∈X

{f1(x), f2(x), . . . , fk(x)} (1)

where k is the number of objective functions and x the feasible
solutions. A feasible solution xa ∈ X is said to dominate another
feasible solution xb ∈ X , notated xa ≺ xb, if :

• ∀i ∈ {1, . . . , k}, fi(xa) ≤ fi(xb)

• ∃j ∈ {1, . . . , k}, fj(xa) < fj(xb)

A solution x∗ ∈ X is a Pareto optimal solution if there are no
x̂ such that x̂ ≺ x∗. The set of all these optimal solutions is called
the Pareto front; an illustration is shown in Figure 1.

f1(x)

<latexit sha1_base64="IvzewStCIhg+HENBEYw8tPwnBys="></latexit>

f2(x)
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Pareto optimal
Non-Pareto optimal

Fig. 1. Example of a Pareto front where we seek to minimize two
functions f1 and f2. Red points are Pareto optimal solutions while
white ones are non optimal.

Now, consider two generative models A and B. If A and B
have the same sound quality, but A consumes less than B (so A
dominates B), then A is Pareto-optimal. Conversely, if A and B
have the same energy footprint, but B provides higher quality, then
B is Pareto-optimal. Hence, we aim to find the set of all Pareto
optimal models to form a Pareto front and measure the dependency
of two main factors: quality and energy.

4.2. Experiments

4.2.1. Models

In order to account for energy costs inside the evaluation of neural
audio synthesis models, we consider six state-of-the-art approaches
belonging to the three major families of generative models dis-
cussed earlier: GAN, flow-based and diffusion models. Within these
groups, we respectively consider MelGAN [27] and HiFi-GAN [25],
WaveGlow [28] and WaveFlow [23] and, finally, WaveGrad [26] and
DiffWave [25]. The choice of these models was dictated by their im-
pact in the community and their recent introduction. They are also
part of the neural vocoder subfamily, which have the particularity
of being conditioned on mel-spectrogams, and are therefore widely
used in speech synthesis. At the time of writing this article, all these
models have been introduced within the previous three years. Our
choice to exclude autoregressive models as well as VAE is respec-
tively due to their prohibitively long inference time, and their lower



quality in the audio domain. Therefore, they are currently rarely
used in applications compared to other families. Due to space con-
straints, we do not provide the per-layer description of the models,
but for more details, please refer to the original papers.

For each of these six models, we consider three different con-
figurations : a small (S), medium (M) and large (L) configuration.
Most of these are architectures already proposed in the original pa-
pers, while others are our own suggestion following the same logic
present in the considered papers (e.g. channel or depth variation).
For more information, all configurations are available in the code.

4.2.2. Dataset

We train and evaluate all models on one of the reference datasets
in speech generation, namely LJSpeech [29]. This dataset is com-
posed of 13,100 audio samples of various speakers, ranging from 1
to 10 seconds at 22050 Hz, for a total of around 24 hours. In our
experiments, after downsampling the data to 16000 Hz, we apply
the preprocessing strategy which is the most commonly used across
the tested models (WaveGlow, MelGan and WaveFlow). Hence, we
keep only the first N = 214 samples from each clip and then extract
an 80-bands mel-spectrogram s from this audio with a FFT of size
2048 and a hop size of 256. We then perform min-max normaliza-
tion on each spectrogram. Finally, we split the data between training
(80%) and testing (20%) sets.

4.2.3. Training

All models are trained 120 hours a single NVIDIA RTX A5000
GPU, where batch-size is scaled automatically to maximize the GPU
memory usage in order to enhance parallelization. Hence, all models
are evaluated on the same amount of energy consumption, estimated
at 300W × 120h = 36kWh per model by the ML impact calcula-
tor [11]. Furthermore, the choice of using a single GPU allows both
to simplify the energy consumption cost, and also represent typi-
cal computational capacities of public research institutions. For all
models, we use the ADAM [30] optimizer and rely on the respective
learning rate of the tested models in their original implementations.

4.3. Results

4.3.1. Synthesis quality

In order to provide estimations of perceptual audio quality, we per-
formed a human-based perceptual quality evaluation. Participants
were asked to rate the naturalness of sounds, by grading each sam-
ple between 1 (”bad”) and 5 (”perfect”). In this analysis we include
both the ground truth data (from the test set) and each model recon-
struction. A total of 41 participants undertook the complete test, the
majority of whom were audio professionals. We present the results
of this MOS (Mean Opinion Score) evaluation in Table 1, alongside
the spectral distance as defined in [31], denoted as DSTFT.

As we can see, there are large discrepancies between the MOS
and DSTFT when evaluating the generation quality. This underlines
the need for human-based evaluation, as slight reconstruction arte-
facts can have a large perceptual impact. Indeed, although the Dif-
fWave model have the lowest DSTFT reconstruction error, it exhibits
quite low MOS scores. Overall, the WaveGrad and HiFi-GAN mod-
els (all configuration included) have largely higher MOS scores than
other models. On the other hand, WaveGlow has rather poor MOS
results, which could be explained by the lack of sufficient training
time when compared to the original paper. Across all models, it

Model MOS DSTFT

Ground truth 4.34 (±0.005) 0
MelGAN* S 1.37 (±0.004) 0.1496
MelGAN M 2.12 (±0.007) 0.1199
MelGAN* L 2.22 (±0.007) 0.1146
HiFi-GAN S 3.90 (±0.007) 0.0804
HiFi-GAN M 3.59 (±0.008) 0.0791
HiFi-GAN L 4.12 (±0.007) 0.0712
WaveGrad* S 3.24 (±0.007) 0.0758
WaveGrad M 3.66 (±0.008) 0.0736
WaveGrad L 3.59 (±0.007) 0.0709
DiffWave S 1.89 (±0.006) 0.0838
DiffWave M 2.18 (±0.006) 0.0725
DiffWave L 2.41 (±0.007) 0.0698
WaveFlow S 1.50 (±0.005) 0.1192
WaveFlow M 2.44 (±0.010) 0.1059
WaveFlow L 2.77 (±0.008) 0.1180
WaveGlow* S 1.07 (±0.002) 0.1518
WaveGlow M 1.52 (±0.004) 0.1177
WaveGlow L 1.80 (±0.006) 0.1136

Table 1. Perceptual (Mean Opinion Score) and reconstruc-
tion (DSTFT) qualities of neural vocoders conditioned on mel-
spectrogram. (*) indicate configurations that we suggest in addition
to those of the original papers.

appears that increasing the size of the architecture consistently in-
creases the quality of the corresponding generations, which is coher-
ent with the current trend in the scientific literature and was expected
at this point of the study.

4.3.2. Energy efficiency

In order to better understand the tradeoff between increased size (and
quality) of the models and their corresponding energetic impact, we
compute the number of parameters as well as the number of floating
point operations per second of generated content. We then record the
energy for our models to generate 10 clips of 10 seconds of raw audio
on a single NVIDIA RTX A5000 GPU using the pyJoules package.
For flows models, we remove the weight normalization layers as they
slow down the audio generation without impacting the correspond-
ing inference quality. We summarize all of these energy footprint
metrics in Table 2.

By analyzing the in-use energy footprint as well as the number of
GFLOPs, we notice extremely large differences between the various
types of generative models. GAN tend to be really efficient, whereas
diffusion models have an inference energy cost around 100 times
larger.

4.4. Pareto analysis

In order to fully understand the tradeoff between quality and en-
ergy impact, we display our proposed multi-objective analysis in
Figure 2. We separate this analysis between the hardware-agnostic
metric GFLOPs (left) and the inference energy costs (right). In both
cases, we plot different models depending on their corresponding
MOS evaluation. We depict the optimal Pareto models, which are
circled in red. A first noticeable result of this study is that our multi-
objective analysis produces coherent results, since we can directly
find optimal models with low energy consumption but high quality
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Fig. 2. Representation of Pareto Frontier for energy vs quality. The objective is to maximize the quality (MOS) and minimize the number of
GLFOPs (left) and the energy cost of inference (right).

Model # Param # GFLOPs Egen (mJ)
MelGAN* S 1.03M 1.39 49.08
MelGAN M 4.27M 7.02 69.46
MelGAN* L 18.21M 33.98 95.14
HiFi-GAN S 0.928M 2.56 59.28
HiFi-GAN M 1.46M 3.22 64.59
HiFi-GAN L 13.94M 40.57 96.61
WaveGrad* S 4.18M 890.44 3398.11
WaveGrad M 17.12M 3498.64 5439.46
WaveGrad* L 33.91M 8522.08 7833.62
DiffWave S 1.23M 79.43 769.82
DiffWave M 2.62M 255.78 1458.17
DiffWave L 6.89M 899.61 2937.61
WaveFlow S 5.95M 852.85 599.95
WaveFlow M 12.86M 3419.39 1102.88
WaveFlow L 22.39M 6063.60 1408.01
WaveGlow* S 17.56M 45.84 181.98
WaveGlow M 34.76M 116.21 496.72
WaveGlow L 87.73M 333.04 283.07

Table 2. Comparison of computation and energy footprints of var-
ious generative models for speech synthesis conditioned on mel-
spectrogram. (*) indicate configurations that we suggest in addition
to those of the original papers.

score. A second result of this analysis is that only few models are
included inside the Pareto front, with the vast majority of the mod-
els being dominated in both aspects simultaneously. This means that
our proposed multi-objective approach allows to efficiently discrimi-
nate between different models on both their audio quality and energy
impact. A third key component of this study is that the hardware ag-
nostic metric and the GPU metric are consistent, with slight shifts
showing that energy and GFLOPs are not linearly correlated.

If we take a closer look at the per-model inference tradeoff (by
considering only the same symbol), we can see that it also forms
what we can call sub-Pareto front, from lighter to larger configura-
tions (from light green to dark blue), but it’s only when we look at
the big picture that it reveals disparities of generative models archi-
tectures and configurations. Hence, our analysis allows to raise at-
tention and provide new keys for researchers to evaluate their models

within the context of a multi-objective analysis rather than compar-
ing quality and efficiency separately. Furthermore, we believe that it
is through this research effort that we will be able to achieve a more
sustainable computing.

5. CONCLUSIONS

In this paper, we proposed a large-scale evaluation of neural
vocoders while integrating their energy footprint for training and
inference. We relied on six stat-of-the-art models and evaluate their
quality according to three different configurations from lighter to
larger architectures. Then, we proposed a multi-objective analysis
of both quality from human-based evaluation (MOS) and energy
consumption. Within this framework, we showed that this energy
footprint must be linked to the model perceptual quality and that,
small models can perform better than larger and more costly mod-
els. We believe this is the first attempt to integrate both energy
consumption and quality in neural audio synthesis models, taking a
step forward against blind evaluations that only take into account au-
dio quality. This, in the future, can become increasingly important,
since lightweight models are fundamental for real-time embedded
systems. It should be noted that our approach is generic and could
be applied to any type of model or input data.

CO2 Emission Related to our Experiments Experiments were
conducted using a private infrastructure, which has a carbon effi-
ciency of 0.7 kgCO2eq/kWh. A cumulative of 2160 hours of com-
putation was performed on hardware of type RTX A5000 (TDP of
300W). Total emissions are estimated to be 453.6 kgCO2eq.
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