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Key Points

• IKZF1 associations
with high-risk B-ALL
may differ by age and
sex.

• A novel variant on
chromosome 14,
rs189434316, is asso-
ciated with over a
3.5-fold risk of normal
cytogenetic B-ALL.

The incidence and mortality rates of B-cell acute lymphoblastic leukemia (B-ALL)

differ by age and sex. To determine if inherited genetic susceptibility contributes to these

differences we performed 2 genome-wide association studies (GWAS) by age, sex, and

subtype and subsequent meta-analyses. The GWAS included 446 B-ALL cases, and

3027 healthy unrelated blood andmarrow transplant (BMT) donors as controls from the

Determining the Influence of Susceptibility Conveying Variants Related to One-Year

Mortality after BMT (DISCOVeRY-BMT) study. We identified 1 novel variant,

rs189434316, significantly associated with odds of normal cytogenetic B-ALL (odds ratio

from meta-analysis [ORmeta] 5 3.7; 95% confidence interval [CI], 2.5, 6.2; P value from

meta-analysis [Pmeta] 5 6.0 3 1029). The previously reported pediatric B-ALL GWAS

variant, rs11980379 (IKZF1), replicated in B-ALL pediatric patients (ORmeta 5 2.3;

95% CI, 1.5, 3.7; Pmeta 5 1.0 3 1029), with evidence of heterogeneity (P 5 .02) between

males and females. Sex differences in single-nucleotide polymorphism effect were seen

in those .15 years (OR 5 1.7; 95% CI, 1.4, 2.2, PMales 5 6.38 3 1026/OR 5 1.1; 95% CI, 0.8,

1.5; PFemales 5 .6) but not #15 years (OR 5 2.3; 95% CI, 1.4, 3.8; PMales 5 .0007/OR 5 1.9;

95% CI, 1.2, 3.2; PFemales 5 .007). The latter association replicated in independent

pediatric B-ALL cohorts. A previously identified adolescent and young-adult onset

ALL-associated variant in GATA3 is associated with B-ALL risk in those .40 years. Our

findings provide more evidence of the influence of genetics on B-ALL age of onset and

we have shown the first evidence that IKZF1 associations with B-ALL may be sex and

age specific.

Submitted 20 February 2017; accepted 7 July 2017. DOI 10.1182/
bloodadvances.2017006023.

The full-text version of this article contains a data supplement.
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Introduction

Acute lymphoblastic leukemia (ALL) is a disease primarily impacting
children, however, one-third of cases are in adults (.20 years of
age).1 The 5-year relative survival for children 1 to 5 years of age is
.90%, but for those over 60 years of age, the 5-year relative
survival is ,20%.2,3 Causation appears to be multifactorial,
including exogenous or endogenous exposures and genetic
susceptibility.4 Studies of environmental risk contributing to ALL
are inconclusive. Suggested risk factors include obesity and
smoking in individuals .55 years of age, occupational exposures,
chemotherapy/radiation as therapy for other diseases, and prenatal/
early exposures.5-15 These external exposures only account for a
small proportion of disease risk, and a strong case for genetic
contribution can be made for pediatric and adolescent/young-adult
(AYA) ALL.16-19

Genome-wide association studies (GWASs) have identified
common genetic variants for pediatric and AYA ALL in 6 regions
either within or near these genes: ARID5B, IKZF1, CDNK2A/B,
CEBPE, GATA3, BMI-PIP4K2A.20-31 Recently, the largest meta-
analysis of 2 pediatric GWASs of B-cell ALL (B-ALL) identified 2
new susceptibility loci within genes LHPP and ELK3.32 Variants in
ARID5B, IKZF1, and GATA3 vary in effect by age and cytogenetic
subgroups. For example, ARID5B variants are associated with
hyperdiploid B-ALL in pediatric patients,20,30,33,34 which accounts
for ;30% of pediatric ALL and is a marker of favorable prognosis.1

In contrast, rs3824662, a variant in GATA3, was consistently
associated with AYA ALL regardless of cytogenetic subgroup, but
is not associated with pediatric ALL.29 Despite the evidence of
potential age effects20,21 (evidenced by the high mortality rate in
adult ALL cases3) and sex effects, there is both higher incidence
and worse prognosis of ALL in males than females; GWASs have
not been conducted in adult-onset ALL nor have they been
conducted by sex.3

To this end, we performed the first GWAS in a high-risk B-ALL
population treated with unrelated donor (URD) allogeneic blood
and marrow transplant (BMT), then further stratified by age, sex, and
cytogenetic subgroup.

Methods

This study was conducted in accordance with the Declaration of
Helsinki and was reviewed and approved by the Roswell Park
Cancer Institute Institutional Review Board. All patient data were
deidentified. Summary data are provided in this manuscript.

Study design and population

The cases and controls were selected from an ongoing parent
study: Determining the Influence of Susceptibility Conveying
Variants Related to One-Year Mortality after BMT (DISCOVeRY-
BMT).35-38 Briefly, the parent study was designed to find common
germ line genetic variation associated with survival after an URD-
BMT. DISCOVeRY-BMT consists of 2 cohorts of ALL, acute
myeloid leukemia, and myelodysplastic syndrome patients and their
HLA-matched unrelated healthy donors35 (supplemental Methods).
For this study, cases were diagnosed with B-ALL and controls were
unrelated healthy donors aged 18 to 61 years who passed a
comprehensive medical examination and were disease-free at the
time of donation. T-cell ALL cases (N 5 77) were removed from

both cohorts due to the low number of cases and inherent
differences between B- and T-cell ALL. All patients and donors
provided written informed consent for their clinical data to be used
for research purposes and were not compensated for their
participation.

Genotyping and quality control

Genotyping was performed at the University of Southern California
(USC) Genomics Facility using the Illumina Omni-Express Bead-
Chip containing ;733 000 single-nucleotide polymorphisms
(SNPs). SNPs were removed if the missing rate was .2%, minor
allele frequency (MAF) ,1%, or for violation of Hardy-Weinberg
equilibrium (P , 1.0 3 1026).

Problematic samples were removed based on the sample missing
rate, duplicates, reported-genotyped sex mismatch, abnormal
heterozygosity, cryptic relatedness, and population outliers (sup-
plemental Methods). All quality-control (QC) measures were
implemented in R and Plink statistical software.39,40

Imputation

Genotype data were imputed using Impute2 v2.041-43 with a
reference panel of haplotypes from the 1000 Genomes phase
1v3.44,45 QCTOOL46 was used to remove imputed genotypes with
a MAF ,0.01 and info and certainty score ,0.7 and ,0.9,
respectively45,46

Statistical analyses

Descriptive statistics, including x2 and Student t tests, were
performed on demographic variables (age, sex, and cytogenetic
subgroup) by case-control status. Logistic regression assuming an
additive model implemented in SNPTESTv2.5 was used to perform
genome-wide association analyses adjusted for age in cases
and controls for overall B-ALL and subtype-specific B-ALL
analyses.40,43 The following subtype-specific analyses were per-
formed: hyperdiploid negative (,51 chromosomes), Philadelphia
chromosome negative (Ph2), abnormal and normal cytogenetic
subgroups. Some high-risk subtypes have been omitted due to data
availability and insufficient sample sizes. GWASs by age group
were done for individuals ,20 years (pediatric), 20 to 40 years
(young adult), and .40 years (older adult) compared with all
controls. These age categories represent an average of age-
specific categories from clinical literature and prior pediatric and
AYA GWASs. Sex-specific analyses were also performed in males
and females; sex status of individuals was self-reported and further
confirmed by genotyping. Cohorts 1 and 2 were combined with
METAL software (odds ratio from meta-analysis [ORmeta] and P
value frommeta-analysis [Pmeta])

47,48 using standard error weighted
meta-analysis; genome-wide significance was defined as Pmeta ,
5 3 1028 with Pmeta , 5.0 3 1026 considered suggestive of
association. The Cochran Q method (P values) and I2 were used to
test for heterogeneity across subgroups.49 To determine whether
age or sex could be considered a mediator50,51 (thus significantly
impacting the effect of the association between SNP and B-ALL
risk), the Sobel mediation test was used.52,53 The proportion of the
total effect mediated by age or sex was determined by comparing
the difference between the b-coefficients for B-ALL before and
after adjustment for age: (bunadj 2 badj)/bunadj, where bunadj and badj

are the total effect and the direct effect, respectively.52,53
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We defined significant evidence of age mediating the SNP-disease
relationship when P was ,.05 and if all of the Sobel test criteria for
a mediator were met.52,53 To interrogate the role of genetics in ALL
age of onset further, we also performed a case-only analysis, using
age as outcome (continuous and categorical) in regression models
for each genome-wide significant association initially identified.
Interaction analyses of SNP and sex, as well as OR, and
comparisons of stratified estimates were used to determine
whether sex was acting as an effect modifier.

Replication of sex-specific effects

DISCOVeRY-BMT ALL cases are predominantly young adults and
older adults, thus sex- specific findings for our pediatric associa-
tions were tested within a meta-analysis of 2 previously performed
pediatric B-ALL GWASs. These 2 data sets were previously used in
a meta-analyses with 2 other published GWASs.54-60 Briefly, the
cases consisted of 437 children of European ancestry with B-ALL
treated on The Children’s Oncology Group P9904 protocol58,61

and 427 pediatric B-ALL cases from the German GWAS.55,62

Controls included 475 from the German GWAS and European
ancestry controls (N 5 958) from the Genetic Association
Information Network (supplemental Methods).54 Stratified analyses
by sex were performed within the cohort and we report ORs and
P values for the logistic additive model. These data are only
pediatric and thus replication for adult GWAS associations could
not be performed.

Heritability and polygenic risk scores

Two approaches were used to better understand heritability and the
aggregate contribution of genetic variation to B-ALL risk. We
estimated the proportion of phenotypic variance explained by
common SNPs genome-wide in males and females separately using
genome-wide complex trait analysis (GCTA).63-66 Second, poly-
genic risk scores (PRSs) were calculated by combining significant
loci weighted by effect sizes estimated from the logistic regression
GWAS using PRSice software67 (supplemental Methods).

Results

Demographics

DISCOVeRY-BMT consists predominantly (.95%) of individuals
self-reported as European American (EA) with 3073 BMT recipients
and 3144 BMT donors initially genotyped. Sample QC on self-
reported EA recipients and donors was performed on each cohort
separately (supplemental Methods; supplemental Figure 1), which
yielded 2111 recipients and 2219 donors in cohort 1 and 777
recipients and 808 donors in cohort 2.

Analyses described herein include either the 364 individuals with
B-ALL who received a BMT (cases) and 2219 donors (controls) in
cohort 1 and 82 B-ALL cases and 808 controls in cohort 2, or a
subset of these (supplemental Table 1). Ages of cases ranged from
1 to 68 years, whereas controls ranged from 18 to 61 years due to
minimum and maximum ages for donation. Controls are pre-
dominantly male, which reflects clinical selection bias against
parous females who may increase risk of graft-versus-host disease.
However, the proportion of males in the control group mirrors that of
cases. In both cohorts, cases were also skewed to a hyperdiploid-
negative karyotype, which is a more aggressive subtype of B-ALL
frequently treated with BMT.T
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Genome-wide associations

The final genotyping data in recipients consisted of 637 655 typed
SNPs in cohort 1 and 632 823 typed SNPs in cohort 2
(supplemental Methods; supplemental Figure 1) from which ;8.5
million imputed variants were available for genome-wide analyses.
Quantile-quantile (Q-Q) plots of SNP association with B-ALL
(supplemental Figure 2) show no evidence of genomic inflation due
to cryptic population structure (l5 1.001) and none of the principal
components (PCs) were associated with risk of B-ALL, therefore,
PCs were not included in the regression analyses. We report on a
novel genome-wide association with normal cytogenetic B-ALL, as
well as genome-wide significant associations in genes previously
identified by GWASs, considering age and sex in exploratory
analyses (supplemental Table 2; supplemental Figure 3).

A novel association, rs189434316 (92 697 912 bp), with normal
cytogenetic B-ALL was identified on chromosome 14 (Table 1;
Figure 1) between SLC24A4 and CPSF2. The T allele (MAF 5 0.07)
increases odds of normal cytogenetic B-ALL by over 3.5-fold
compared with controls (ORmeta 5 3.7; 95% confidence interval
[CI], 2.5-6.2; Pmeta5 6.03 1029). This genome-wide association was
seen only with normal cytogenetic B-ALL and was not observed overall
or in other subtypes (all B-ALL cases,Pmeta5 2.631025; hyperdiploid
negative, Pmeta 5 1.6 3 1026; Ph2, Pmeta 5 3.4 3 1026; abnormal
cytogenetic B-ALL, Pmeta 5 .3). To further explore the biological
relevance of this novel variant, we analyzed the association of the
SNP with both death due to disease and progression free survival,
defined as the time to disease progression or death following
transplant. The T allele is associated with death due to disease
(hazard ratio [HR]meta5 2.28; 95%CImeta5 1.27, 4.13; Pmeta5 .006)

and worse progression-free survival (HRmeta 5 1.45; 95% CImeta 5
1.03, 2.03; Pmeta 5 .03) in normal cytogenetic B-ALL cases.

We found evidence of genome-wide associations in GATA3 and
IKZF1, both identified in published AYA and pediatric ALL GWASs,
respectively.20-23,29 With the exception ofGATA3 and IKZF1, other
previously published pediatric and AYA GWAS associations
(CDKN2A/B, ARID5B, BMI-PIP4K2A, CEBPE, LHPP, ELK3) did
not replicate in DISCOVeRY-BMT (supplemental Table 2). The
variant in GATA3, rs3824662, previously shown to be associated
with AYA B-ALL,29 increased odds of B-ALL overall (Pmeta 5
3.293 10213), within hyperdiploid-negative (Pmeta5 2.953 10213),
Ph2 (Pmeta 5 1.16 3 10212), and normal cytogenetic B-ALL
(1.093 1028) (Table 1; supplemental Table 2). AnotherGATA3
variant, rs569421, showed a 60% increased risk of B-ALL in
cases compared with controls (Pmeta 5 4.4 3 1028). This variant
has not been reported to be associated with B-ALL overall or by
subtype, however, joint analyses with rs3824662 indicated
rs569421 is not an independent risk variant.

SNP rs11980379 in IKZF1 is a known pediatric B-ALL risk variant
and perfectly correlated (r2 5 1.0) with rs413260, which has also
previously been associated with pediatric B-ALL.20,21,23-28,30-32

SNP rs11980379 in IKZF1 was significantly associated at the
genome-wide level with Ph2 (Pmeta 5 3.6 3 1029) and normal
cytogenetics B-ALL (age-adjusted) (Pmeta 5 4.6 3 1028)
(supplemental Table 2). However, rs11980379 demonstrated
smaller effect sizes and higher P values with increasing age
(Table 1). In pediatric patients, the C allele in this SNP conferred
2.3-fold increased odds of B-ALL, an ;1.4-fold increased risk of
B- ALL in young adults (Pmeta 5 .005), and a 1.2-fold increased risk
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of B-ALL in older adults (Pmeta 5 .13) (Table 1; Figures 2-3).
Stronger associations with smaller P values were also observed
within the pediatric age group across all cytogenetic subgroups
(hyperdiploid negative, Ph2, abnormal and normal) (data not shown)
and thus this age-specific association is not attributable to
differences in underlying subtype distributions. Sobel tests of
mediation estimate that the proportion of the total effect
(percentage of mediation) of the SNP that is mediated by age is

4% (P 5 .055), indicating some evidence for age as a pathway
mediator.

In addition to age-specific effects, there are strong sex-specific
associations for IKZF1, however, unlike age, sex does not
mediate the effect of the variant on the risk of B-ALL (Sobel
mediation, P5 .5) but rather there is evidence of heterogeneity of
effect between males and females. The C allele in rs11980379
showed an 80% increased risk of B-ALL in males (OR 5 1.8;
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95% CI, 1.24-2.50; Pmeta 5 3.8 3 1028), whereas there is no
significant association in females (OR 5 1.26; 95% CI, 0.92-
1.70; Pmeta 5 .06) (Figure 4; Table 2; supplemental Figure 4),
with evidence of significant heterogeneity between males and
females (I2 5 80; Q 5 0.02). When comparing crude and sex-
adjusted OR, the crude OR for the IKZF1 SNP is 1.58, whereas
the sex-adjusted OR is 1.56, yielding about a 1% difference; the
ORs between the crude and adjusted should be different if sex is
a confounder. The stratified ORs for males (1.9 [95% CI, 1.4,
2.3]) and females (1.2 [95% CI, 0.9, 1.6]) differ and in turn differ
from the crude OR. Allele frequencies of controls by sex show no
difference between males and females thus the SNP is not just
associated because it has a higher frequency in men in the
general population. This evidence indicates that sex could be
modifying the effect of this IKZF1 variant on ALL risk. This
sex-specific genetic effect shows some evidence of an age
association as well. The C allele is not a risk factor in females
.15 years (OR5 1.1; 95% CI, 0.8-1.5; P5 .6) but appears to be
more strongly associated in females ,15 years (OR 5 1.9; 95%
CI, 1.2-3.2; P5 .007). In contrast males show little change in OR
for those .15 years at diagnosis (OR 5 1.74; 95% CI, 1.4- 2.2;
P 5 6.38 3 1026) vs ,15 years (OR 5 2.34; 95% CI, 1.4-3.8;
P 5 .0007). In analyses of cases .15 years of age, the evidence
of heterogeneity based on the Cochran Q statistic remains
between males and females (I2 5 60), whereas in cases ,15
years of age (replication cohort) there is no significant evidence
in effect heterogeneity between males and females (supplemen-
tal Table 3). This finding for .15 years is also supported by
evidence of statistical interaction between the SNP and sex
variable (P 5 .02) in models of ALL susceptibility.

Additional genome-wide significant variants previously identified in
pediatric and AYA B-ALL GWASs, in genes ARID5B, BMI1-
PIP4K2A, CEBPE, CDKN2A/B, ELK3, and LHPP, did not reach
genome-wide significance in our B-ALL GWAS either overall, or by
subtype, age, or sex. The most significant association in these
genes was seen in CDKN2B, rs1333035, Pmeta 5 2.093 1025, in
LD (r2 5 0.8) with rs3218005, previously identified in pediatric
genome-wide analyses of ALL (supplemental Table 2).

Replication analysis of sex-specific findings

Replication analysis of sex-specific findings for those ages 1 to 15
years was performed in meta-analyses of 2 B-ALL pediatric
GWASs. The rs11980379 association replicated in both the male
and female B-ALL pediatric population conferring a 40% increased
risk (ORmeta 5 1.4; 95% CI, 1.1-1.9; P5 3.93 1025) in males and
a 60% increased risk in females (ORmeta 5 1.6; 95% CI, 1.2, 2.3;
P5 1.43 1028) (supplemental Table 3). There was no evidence of
heterogeneity in effect sizes between males and females ,15
years, similar to our findings. The novel significant variant,
rs189434316, could not be replicated in this pediatric population
as there were no cytogenetically normal cases; rs189434316 was
not associated with abnormal cytogenetic B-ALL in either our data
or the replication (P 5 .3).

GCTAs and PRS

GCTA estimates of male and female heritability (h2) were 0.83
(standard error [SE] 5 0.34; P 5 .001) and 0.52 (SE 5 0.18; P 5
.0002), respectively (supplemental Table 4). The correlation
between male and female heritability estimates was weak with a
large standard error (r5 0.11; SE5 0.29) (supplemental Table 4).
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The PRS distributions and medians differ between cases (overall
and by age group) and controls, with cases having a significantly
higher median risk score than controls (P , .001) (supplemental
Figure 5). In cohort 1, the high-risk group (carriers of the most high-
risk alleles from SNPs) had a threefold increased risk of having
B-ALL (P 5 2.4 3 10214) and the medium-risk group conferred an
almost twofold increased risk of disease (P 5 .0006), when
compared with the low-risk group (reference) (supplemental
Table 5).

When stratified by age, pediatric individuals with high PRS had an
almost fourfold increased risk of B-ALL (P 5 1.5 3 1027); the
medium PRS group had 40% increased odds of having B-ALL
(P 5 .3), although nonsignificant, compared with those with low
PRS score. In the young adults and older adults, high-risk PRS
score individuals had threefold increased odds of disease, P 5 4.3
3 1027 and P5 3.73 1026, respectively. The medium-risk groups
showed an ;1.8 and twofold difference from the low-risk group in
young adults (P 5 .02) and older adults (P 5 .01), respectively
(supplemental Table 5). Males had a 3.5-fold increased risk of
B-ALL for the high- risk PRS group compared with the low-risk

group (P5 4.13 10211). Females also showed an increased risk of
B-ALL (OR5 2.5) in the high-risk group compared with the low-risk
group (P 5 .0001). The high-risk median PRS was not significantly
different between males and females (P 5 .34).

Discussion

In these GWASs of B-ALL susceptibility across age and between
sexes in a high-risk BMT population, we found evidence for novel
associations within subtypes, as well as sex- and age- specific
associations in previously identified variants. Besides these variants,
we did not replicate genome-wide or suggestive associations with
other prior known pediatric GWAS regions. Most likely this is due to
these loci being associated with favorable-risk ALL (pediatric) and
the cases that comprise DISCOVeRY-BMT are high-risk ALL.

The established GATA3 B-ALL risk variant showed association
regardless of cytogenetic subgroup. GATA3 encodes for a
transcription factor that is critical for lymphoid cell lineage
commitment and early T-cell differentiation, and loss-of-function
somatic mutations have been discovered in early T-cell precursor
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Table 2. Genome-wide significant associations with the C allele in rs11980379 (IKZF1) and B-ALL by sex in EAs

Sex N cases (Cohort 1/Cohort 2)

Cohort 1 Cohort 2

ORmeta (95% CI) Pmeta I2 (P)OR (95% CI) P OR (95% CI) P

Male 219/53 1.9 (1.4, 2.3) 1.5 3 1027 1.5 (0.9, 2.2) .05 1.8 (1.2, 2.5) 3.8 3 1028 80.2 (.02)

Female 145/29 1.2 (0.9, 1.6) .13 1.4 (0.6, 2.1) .3 1.3 (0.9, 1.7) .06

I2 and P reflect heterogeneity in the SNP associations with B-ALL between males and females.
OR, odds ratio of logistic additive model risk is presented in terms of the C (minor) allele.
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ALL.68,69 Alterations in GATA3 have been linked to other blood
cancers, including Hodgkin lymphoma.70 Our GATA3 findings in
conjunction with the evidence for association of the GATA3 risk
variant with pediatric Ph-like ALL,22 a more adverse type of ALL, and
AYA associations suggest GATA3 is linked to high-risk ALL.

The strength of the IKZF1 variant in our high-risk pediatric B-ALL
group indicates that this variant most likely contributes to risk of
both adverse ALL (hyperdiploid negative) and favorable ALL as it
has previously been strongly associated in pediatric ALL cases
(hyperdiploid) with favorable outcomes. IKZF1 is a transcription
factor that is needed for development of hematopoietic stem cells
to lymphoid precursors.71,72 It is frequently targeted by copy-
number alterations in ALL blast cells (particularly in high-risk ALL);
deletions and mutations result in loss of function or dominant-
negative isoforms73 and are associated with a poor prognosis.72,73

Two SNPs (rs6964969 and rs11978267) strongly correlated with
the IKZF1 variant (r2 . .95) are cis-expression quantitative trait loci
in monocytes and whole blood.74-76 In addition, rs6964969 is
predicted to affect NFKB1 transcription factor binding, which can
lead to inappropriate immune cell development or delayed cell
growth when there are problems with normal binding/expression.77

The age-specific findings reinforce the idea that genetic variation
may contribute differently to risk of pediatric vs adult high-risk
B-ALL. This is reasonable as other genetic features, for example,
chromosome aberrations, also differ between pediatric and adult
ALL.

Unlike age, sex is not a mediator variable in the relationship between
the IKZF1 genetic variant and B-ALL risk, but rather is modifying the
effect of the SNP on risk of B-ALL. Interestingly, it is possible that
this sex effect is age-specific. Our analyses of genetic association at
an approximate pre- and postpuberty age may indicate that there is
some relationship between female sex hormones (activated during
puberty) and this SNP, manifesting in similar risk attributable to the
IKZF1 variant before puberty in males and females, but not for
females following puberty. Analyses of the (prepuberty) pediatric
patients, and thus those with favorable B-ALL subtypes, who
comprise the replication data set, clearly demonstrate that pediatric
ALL germ line susceptibility IKZF1 associations do not differ by sex.
Our data demonstrate that as age increases (.15 years), sex-
specific associations are observable. Although we analyzed,15 vs
.15 years, further investigation into the role of age and sex in large
sample sets with greater variance in B-ALL subtype is warranted.

The PRS models show that the high-risk group and the medium-risk
group have a significantly different risk than the low-risk category,
with nonoverlapping CIs. Given the significantly increased risk of
B-ALL in those in the high-risk group, it is valuable to consider these
variants together and how they are contributing to disease risk.

Our novel finding on chromosome 14, rs189434316, was
associated with normal cytogenetic B-ALL but not abnormal
cytogenetic B-ALL. This variant is significantly associated with
increased hazard of death due to disease and worse progression-
free survival, adding to the biological plausibility of this novel finding.
It is not immediately clear how this SNP could be correlated with
outcome, as functional annotation does not demonstrate evidence
for impacting gene expression or transcription factor binding.
Replication in another high-risk population is an important next
step.78

Although this is the first B-ALL susceptibility study of a high-risk
population across the age spectrum, our study has some limitations.
We had 80% power to detect ORs in line with previous reports, 2 to
1.5, for MAF ranging from 40% to 10%, respectively; this was
reduced for the age and sex subgroup analyses. Also, specific
translocations (eg, BCR-ABL, ETV- RUNX, and MLL) were not
considered and analyses were limited to EAs, thus, these variants
may not be valid for other continental ancestry groups. We used a
standard genome-wide association significance level of P , 5.0 3
1028 for each of our GWASs; a more stringent threshold might
need to be considered given that we are testing 3 age groups and
sex as well.

Our age-specific GWAS identified inherited variants that strongly
influence B-ALL susceptibility in adults and validate AYA findings,
shedding new light on age-related differences in ALL biology. To
date, GWASs of ALL either adjusted for sex or did not report sex-
specific results, hence our study provides the first evidence that sex
is an effect modifier and different genetic variants are contributing
to ALL in males and females.

Understanding genetic contribution can aid our understanding of
B-ALL etiology. Also, identification of people at high risk for B-ALL
enables the integration of genetic and clinical risk factors to improve
patient stratification.79 This study is 1 step closer to achieving more
personalized inherited susceptibility to this heterogeneous and
devastating disease.
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