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ABSTRACT
Due to complex and volatile lighting environment, underwater
imaging can be readily impaired by light scattering, warping, and
noises. To improve the visual quality, Underwater Image Enhance-
ment (UIE) techniques have been widely studied. Recent efforts
have also been contributed to evaluate and compare the UIE per-
formances with subjective and objective methods. However, the
subjective evaluation is time-consuming and uneconomic for all
images, while existing objective methods have limited capabilities
for the newly-developed UIE approaches based on deep learning. To
fill this gap, we propose an Underwater Image Fidelity (UIF) metric
for objective evaluation of enhanced underwater images. By exploit-
ing the statistical features of these images, we present to extract
naturalness-related, sharpness-related, and structure-related fea-
tures. Among them, the naturalness-related and sharpness-related
features evaluate visual improvement of enhanced images; the
structure-related feature indicates structural similarity between
images before and after UIE. Then, we employ support vector re-
gression to fuse the above three features into a final UIF metric.
In addition, we have also established a large-scale UIE database
with subjective scores, namely Underwater Image Enhancement
Database (UIED), which is utilized as a benchmark to compare all
objective metrics. Experimental results confirm that the proposed
UIF outperforms a variety of underwater and general-purpose im-
age quality metrics.
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(a) Original image (b) 0.7541/1.7745 (c) 0.6326/1.5410 (d) 0.6254/1.4213

(e) Original image (f) 0.6321/1.6217 (g) 0.6441/1.6745 (h) 0.5865/1.5233

(i) Original image (j) 0.6458/1.6245 (k) 0.6605/1.7614 (l) 0.6139/1.4705

Figure 1: Typical underwater images (the first left column) and
their scored enhancements (the other three columns), where the
scores of each enhanced image are respectively given by UCIQE and
UIQM. How to compare the visual quality of enhanced underwater
images is still a challenging task.

1 INTRODUCTION
The underwater optical images bring additional information be-
yond sonar imaging. However, the complex waterbody and poor
light conditions impair the visual quality of underwater images.
In practice, Underwater Image Enhancement (UIE) technique is
thus necessary to transfer low-quality underwater images to high-
quality ones. As shown in Fig. 1, diversified enhancements are
employed in original underwater images, resulting in pictures with
higher visual qualities. To compare the UIE algorithms and select
optimal results, it is imperative to score these enhanced images,
which is still a challenging task.

Until now, the visual quality of images can be evaluated by Image
Quality Assessment (IQA), whose popular works include subjective
and objective methods. For most of images, human is the ultimate
receiver, thus the subjective evaluation is considered to be the most
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accurate and reliable way of IQA. Recently, ITU has promoted
several methods to subjectively evaluate image quality [17]. How-
ever, the subjective evaluation also has significant drawbacks: high
complexity, high cost and unable to be embedded into real-world
systems. As a result, the subjective methods are usually utilized
to set benchmark to evaluate objective metrics, and the objective
metrics with higher correlations to subjective scores are embedded
into real-world systems.

Existing objective IQA can be classified into full-reference, reduced-
reference and no-reference algorithms, subject to the accessibil-
ity of ideally unimpaired references. In underwater imaging, an
ideally unimpaired image is unable to be obtained, thus the typi-
cal reference-based IQA approaches, such as Structural Similarity
Index (SSIM) [35] and Feature Similarity Index (FSIM) [43], are
not applicable. On the other hand, no-reference IQA approaches
have achieved significant performances to evaluate generic images
[14, 29, 30, 38, 42]. However, these no-reference approaches are
usually designed based on Natural Scene Statistics (NSS), which
performs different in underwater environment. Thus, they also fail
to evaluate the quality of underwater images.

The Underwater Color Image Quality Evaluation (UCIQE) [39]
and Underwater Image Quality Measure (UIQM) [31] metrics have
been widely used to qualify the enhancement performance of un-
derwater images [4, 19, 21, 34]. Among them, the UCIQE metric
quantifies non-uniform color casts, blurring, and noise in underwa-
ter images, and then combines them in a linear manner. The UIQM
metric evaluates underwater images with color, sharpness and con-
trast. These two methods have been proved to achieved good per-
formances in most underwater scenarios at that time. However,
this decade has witnessed a booming of UIE algorithms, especially
deep-learning-based UIE algorithms. In such case, the UIE may
generate complicated color and structure changes which are un-
able to be evaluated by conventional metrics. From Fig. 1, a higher
UCIQE/UIQM score may not represent a better visual quality. For
example, some images have obvious reddish color shifts and arti-
facts as shown in Fig 1. (b), (g) and (k), but these images obtain
better UCIQE and UIQM scores. Therefore, it is highly desirable to
design an effective IQA metric for objective UIE evaluation.

To address this issue, we exploit the characteristics of underwa-
ter images to obtain three types of features: naturalness-related,
sharpness-related and structure-related features, which are demon-
strated to be effective to assess the underwater image quality. The
Support Vector Regression (SVR) are then utilized to fuse all features
into a final metric. In addition, we also develop the largest-ever UIE
quality database with subjective scores, which helps to guarantee
the generalization performance of our model. It can also serve as a
benchmark to compare subjective IQA metrics for UIE. In summary,
the main contributions of this paper include:

1) A large-scale Underwater Image Enhancement Database (UIED),
which is the first-of-its-kind database with human-labeled qual-
ity scores. The database includes different underwater scenes
that are enhanced by 10 representative UIE approaches. The
UIED can be utilized as a benchmark to develop and evaluate
subjective methods of underwater image quality assessment.

2) Three types of image features to evaluate the underwater image
fidelity in three dimensions. An optimal UIE should generate

natural images with sharp textures and high structure similarity
to original image. Inspired by this, we propose to extract and
model the three types of features based on statistics of under-
water images. The effectiveness of features has been proved in
ablation study.

3) An SVR-based fusion of features to obtain our Underwater Image
Fidelity (UIF) metric. We employ the popular SVR models for
feature pooling and regression. To ensure the generalization
performance of our UIF metric, it is trained and examined by k-
fold validation in UIED. Experimental results reveal the efficiency
of our method.

2 RELATEDWORK
In this section, we review related works of our paper. Among them,
the UIE methods are utilized to construct our UIED database. The
conventional IQA methods and Underwater IQA methods are com-
pared in our experiments.

2.1 Underwater Image Enhancement Methods
In recent years, many UIE methods have been proposed. The exist-
ing UIE methods can be divided into three categories: Non-physical-
model-based methods [1], [8], [7], physical-model based [5], [33],
[34], [21] and deep-learning-based methods[19], [20].

Non-physical-model-based methods aim to adjust input image
pixel values to improve visual quality. Ancuti et al. [1] proposed a
UIE algorithmwithmulti-scale fusion strategy. Fu et al. [8] proposed
a retinex-based UIE method, which decomposes the reflectance and
illumination of underwater images. In [7], they also proposed a
two-step enhancement procedure, which includes a color correction
and a contrast enhancement.

Physical-model-based methods construct physical models for
underwater degradation. Li et al. [21] proposed a contrast enhance-
ment algorithm which combined with an image dehazing model.
In [5], an Underwater Dark Channel Prior (UDCP) was proposed
based on the fact that the information of red channel is undepend-
able. Peng et al. [33] proposed a Generalized Dark Channel Prior
(GDCP) that incorporates adaptive color correction into an image
formation model for UIE. Based on image blurriness and light ab-
sorption, they also [34] proposed a depth estimation method for
underwater scenes.

Deep-learning-based methods have led a fast development and
offered state-of-the-art performance in many UIE tasks. Li et al.
[19] proposed an end-to-end deep network, namely UWCNN, to
address the UIE problem for diverse underwater images. In [20],
they also designed a Water-Net model which is trained on paired
underwater images and the corresponding reference images.

In addition, the commercial application dive+ [2] has also been
released in iTunes store, with good performances of underwater
enhancement.

2.2 Conventional IQA Methods
IQA plays an important role in many computer vision problems. In
recent years, metrics have been used to evaluate enhancement or
restoration performance for underwater images.

Most traditional no-reference IQA metrics are based on NSS
regularities. Anish et al. extracted effective statistical features to
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evaluate image quality [29]. The Natural Image Quality Evaluator
(NIQE) model proposed by Mittal et al. [30] extracted a set of local
features from an image. Gu et al. [14] designed No-reference Free
Energy RobustMetric (NFERM) by adding features of HumanVision
System (HVS). Gu et al. [13] solved the no-reference IQA for blur
images using a sharpness metric in autoregressive parameter space.
Xue et al. [37] combined gradient magnitude with laplacian of
gaussian to predict image quality. Kang et al. [18] investigated a
Convolutional Neural Network (CNN) to jointly learn features for
IQA. However, an underwater image is always degraded by light
absorption and scattering, which may not be captured by these
NSS models effectively. Thus, these NSS-based approaches are not
effective enough for underwater images.

Meanwhile, some no-reference IQAmethods have been proposed
for enhanced image quality assessment. Fang et al. [6] proposed a
blind contrast quality metric based on image skewness, kurtosis,
and entropy. Gu et al. [10] proposed a blind metric according to
17 features through analysis of images. These methods may not
perform well in underwater IQA due to lack of consideration on
the underwater imaging models and image features. Liu et al. [24]
used synthetic data to generate the ideal reference image, thereby
converting the evaluation of enhanced images into a full-reference
IQA problem. However, its synthetic data only cover very limited
types of underwater conditions, which may be insufficient to sim-
ulate underwater image distortions. Thus, these methods are also
not reliable to apply for underwater image enhancement.

2.3 Underwater IQA Methods
Until now, there are two underwater IQA methods that are widely
applied to evaluate UIE approaches. They are the UCIQE [39] and
UIQM [31] metrics.

Yang et al. designed the UCIQE metric in [39]. The UCIQE trans-
forms an underwater image from RGB color space to CIELab color
space, which is more consistent withHVS. It quantifies non-uniform
color casts, blurring and noise in underwater monitor images and
then linearly combines these three components. A higher UCIQE
score indicates the result has a better balance among the chroma,
saturation and contrast.

Panetta et al. proposed the UIQM inspired by HVS in [31]. The
UIQM comprises a colorfulness measure, asharpness measure, and a
contrast measure for underwater images, based on the underwater
image modeling presented in [31]. The choice of weighted coeffi-
cients depends on the application purpose. A higher UIQM score
denotes the result is more consistent with human visual perception.

As shown in Fig. 1, the two metrics also have lower correlations
to human scores when the enhancement distortion is complex.
However, due to the wide applications of deep learning models,
the UIE technique has inevitably brought complex warping and
color changes. To model the impacts of these complex distortions,
we suggest to utilize a deep learning network. This also requires
a large-scale database to train and test the deep-learning-based
model.

3 PROPOSED UIED DATABASE
There is a lack of publicly available large-scale UIE database with
human subjective scores. To fill this void, the UIED dataset is devel-
oped as the largest-ever subjective database of UIE images, which
can serve as a benchmark to develop and evaluate objective ap-
proaches. In this section, we will elaborate the preparation of im-
ages, subjective test and post-processing to construct this database.

3.1 Preparation of Enhanced Underwater
Images

We select 100 authentic underwater images fromGoogle and related
works [36], [20]. These underwater images are taken from real
underwater scenes, with resolutions ranged from 183 × 275 to
1350 × 1800. Typical underwater images are presented in Fig. 2. To
generatemore enhanced images for test, we utilize 10 representative
UIE algorithms, including 3 non-physical-model-based methods (i.e.
fusion-based [1], retinex-based [8], two-step-based [7]), 4 physical-
model-based methods (i.e. histogram prior [21], UDCP [5], UIBLA
[34], GDCP [33]), 2 deep-learning-based methods (i.e. UWCNN [19],
Water-Net [20] and 1 commercial application (i.e. dive+ [2]). With
the 100 images and 10 UIE approaches, we have a total of 1,000
enhanced underwater images. All enhancement underwater images
and the corresponding raw images are included in the UIED.

(a) Coral (b) Marine life (c) Seabed rock

(d) Sculpture (e) Wreck (f) Diver

Figure 2: Typical underwater images in UIED, including 16 coral
images, 26 marine life images, 14 seabed rock images, 12 sculpture
images, 10 wreck images and 22 diver images.

3.2 Subjective Test
We implement a subjective quality study to evaluate the 1,000 en-
hanced images. In the subjective quality evaluation, we adopt a
single-stimulus strategy and a five-level quality scale to label im-
ages [17]. A lower rating score represents a worse perceptual visual
quality, and vice versa. A detailed description of the rating criteria
is given in Table 1.

The subjective test consists of 10 sessions and in each session,
100 of the 1,000 images are evaluated. At the beginning of each
session, a subject watches and evaluates 5 prescreen images to get
familiar to testing environment and procedure. Then, the subject is
asked to score the following 100 images in a random order. Each
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Table 1: Rating Criteria for Subjective Test

Level Description
1 The target is invisible, and color severely distorts.
2 The target is invisible, and color partially distorts.
3 The target is visible, and color slightly distorts.
4 The target is visible, some flaws in visual quality.
5 The target is clearly, and visual quality is great.

image is shown for 7 seconds before next. The subject can take a
5-minute break between sessions to avoid visual fatigue.

There are totally 16 subjects including 9 males and 7 females
in the subjective test. They all have prior knowledges of image
processing. All test images are shown in random order with a
MATLAB graphical user interface. The images are displayed in
laboratory environment with normal illumination conditions. All
of the above conditions are set and calibrated according to the
recommendations of ITU-R [17]. Table 2 lists an overview of the
test methodology and conditions.

Table 2: Detailed Setting of Subjective Experiment

Category Item Detail

Display
Monitor AOC 24n2h LCD

Resolution 1920 × 1080
Platform Matlab R2016b

Methodology
Method Single-stimulus

Quality scale 5-level categorical
Order Random

Test settings

Groups 10
Subjects number 9 males / 7 females
Time interval 7 seconds
Environment Laboratory

3.3 Data Post-Processing
To show the reliability of data, we choose to use Normalized Cross
Correlation (NCC) and Euclidean distance (EUD) to evaluate the
agreement of subject ratings [27]. A higher NCC value or a lower
EUD indicates higher correlation between two subjective rating
vectors. For the above 16 subjective ratings, the average value of
NCC and EUD is 0.961 and 0.055, respectively. Therefore, the subject
ratings are agreed on the perceptual qualities of these images and
the testing results are reliable.

We then follow the steps in [28] to process the subjective ratings.
Rating for an image is considered as outlier if it is outside 2 or

√
20

standard deviations of the mean rating of that image. A subject with
more than 5% outlier evaluations is rejected. Both outlier ratings
and outlier subjects are excluded from the following processing.
The normalized ratings for an image are averaged over all valid
subjects to theMeanOpinion Score (MOS). TheMOS of the database
is almost ranged from 20 to 80. That is, our collected subjective
scores span a wide range from low to high scores.

Fig.3 shows the MOS values corresponding to the enhancement
results in Fig.1. It can be seen that our subjective experiment rated

(a) Original image (b) MOS:23.94 (c) MOS:42.89 (d) MOS:52.76

(e) Original image (f) MOS:28.80 (g) MOS:37.61 (h) MOS:56.40

(i) Original image (j) MOS:33.08 (k) MOS:22.42 (l) MOS:58.77

Figure 3: The MOS values of images in Fig. 1.

has a high correlation to HVS. On the other hand, the popular
UCIQE and UIQM show inferior performances that still have room
to be further improved.

4 PROPOSED UIF METRIC
Based on the UIED, we are able to develop the UIF metric for a
more accurate quantitative evaluation of enhanced underwater
images. The design philosophy lies in three key aspects, including
naturalness, sharpness, and structure of an enhanced underwater
image. In this section, we present to attract features to characterize
the naturalness, sharpness and structure, and further integrate
them to infer the ultimate quality score. Details of our method are
presented as follows.

4.1 Naturalness-Related Features
In most cases, the natural underwater images have low color rich-
ness due to light absorption and scattering. Thus, many UIE meth-
ods aim to eliminate the color attenuation from vision and improve
color richness. However, overemphasis on color may also result in
unreasonable color or an unnatural look. Therefore, we employ the
NSS regularities to approximately capture the attributes of natural-
ness of underwater images. In addition, researches have shown a
good correlation between underwater colors and human perception
in CIELab space [39]. Inspired by this, we also transfer the under-
water images to CIELab space to calculate the naturalness-related
features.

Distribution of NSS model. To detect naturalness-related features
in enhanced underwater images, we first choose the NSS model
which is frequently used in IQA tasks [23, 38]. It is defined on the
brightness of image

𝑓 (𝑥 ;𝜈, 𝜎2) = 𝜈

2𝛿Γ( 1
𝜃
)
𝑒
(−(

|𝑥 |
𝜃

)𝜈 )
, (1)
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where 𝛿 and Γ(·) are defined as:

𝜃 = 𝜎

√︄
Γ(1/𝜈)
Γ(3/𝜈) ,

(2)

Γ(𝜃 ) =
∫ ∞

0
𝑡𝜃−1𝑒−𝑡𝑑𝑡 𝜃 > 0. (3)

The parameter 𝜈 and 𝜎2 control the shape and variance of the
distribution, respectively, which are collected to describe image
naturalness.

Contrast and variance in CIELab.We transform the underwater
image from RGB to CIELab, which is a uniform color space. Con-
sidering the luminance contrast is one of the most sensitive factors
in poor illumination, we calculate the luminance contrast for en-
hanced images in turbid underwater environment. It is obtained by
the ratio between highest and lowest luminance values

𝜎CIE =
1

𝑁

𝑁∑︁
𝑖=1

√︃
𝛼2
𝑖
+ 𝛽2

𝑖

𝐿𝑖
, (4)

where 𝛼 and 𝛽 are the channel parameters of CIELab space, 𝐿 is
value in luminance channel and 𝑁 presents the number of image
pixels.

In summary, the naturalness-related features include

Fnaturalness = {𝜈, 𝜎2,𝐶CIE, 𝜎CIE}. (5)

4.2 Sharpness-Related Features
A high-fidelity image is usually with rich details that are charac-
terized by sharpness of edges and pixels. In underwater imaging,
forward scattering may affect image details and blurs edges. As a
result, an important objective of UIE is to improve the sharpness
of edges and thus present high-quality pictures with clear objects.
To characterize the sharpness of an enhanced image, we exploit
the following features including Dark Channel Prior (DCP) index,
contrast, edge contrast and entropy.

DCP Index. The index was utilized to capture image contrast
during haze removal [16]. In underwater environment with low
light intensities, dark images are usually captured, which might
hinder object recognition by humans or algorithms. Therefore, the
UIE approaches are designed to enhance the lightness of underwater
images, which changes the DCP channel pixels. Inspired by this,
we compute the average value of DCP channel pixels as:

𝜇dark = average{ min
𝑐∈𝑅,𝐺,𝐵

𝐼𝑐 }, (6)

where 𝑐 ∈ 𝑅,𝐺, 𝐵 indicates the RGB channels of enhanced image 𝐼 .
Contrast. The contrast has been utilized in visual enhancement of

underwater images [21]. First of all, the enhanced image is divided
into non-overlapped grayscale patches with size 64 × 64. Then, a
patch is labeled as a textured patch if its edge density, i.e. the ratio
between edge pixels and all pixels within the patch, is larger than
0.2%. Finally, the overall contrast is obtained as the sum of standard
variances of all textured patches:

𝐶 =

𝑀∑︁
𝑖=1

std_var(𝑃𝑖, 𝑗 ), (7)

where 𝑃𝑖, 𝑗 is the 𝑖, 𝑗-th patch of image and𝑀 represents the number
of textured patches.

Edge contrast. The edge information has been widely utilized to
assess fidelities of images [22, 41]. In this work, we utilize a simple
but efficient edge extraction for ease of calculation. First of all, the
Canny edge detector is applied to all channels of image to obtain
three edge maps. Then, each edge map is equally divided into𝑚×𝑛
non-overlapped blocks with size 5×5. Finally, the contrasts of all
blocks are calculated and averaged to obtain a final measure within
edge maps [32]:

𝐶edge =

3∑︁
𝑐=1

𝜆𝑐 ·
2

𝑚𝑛

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

log(
max𝐵𝑐,𝑖, 𝑗

min𝐵𝑐,𝑖, 𝑗
), (8)

where 𝐵𝑐,𝑖, 𝑗 represents the 𝑖, 𝑗-th edge block in channel 𝑐 , andmax
and min are to calculate the extreme values within the edge block.
𝜆𝑐 is a coefficient for RGB color channels.

Entropy. As a classic image measurement, the entropy character-
izes diversity of image pixels. Therefore, it has a high correlation
to image contrast. For the enhanced image with 𝐿 brightness levels,
the entropy is defined by

𝐸 = −
𝐿−1∑︁
𝑖=0

𝑝𝑖 log 𝑝𝑖 , (9)

where 𝑝𝑖 is the histogram probability of brightness value 𝑖 .
In summary, the sharpness-related features include

𝐹sharpness = {𝜇dark,𝐶,𝐶edge, 𝐸}. (10)

(a) (b)

Figure 4: An example of structural artifact introduced by
UIE.

(a) original image (b) over-enhanced image (c) variance similarity map

Figure 5: An example of over-enhanced underwater images and
variance similarity map. (a) original image, (b) over-enhanced im-
age, (c) variance similarity map.
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Figure 6: The detailed framework of the proposed UIF method.

4.3 Structure-Related Features
The structural similarity between original and enhanced images is
critical because the UIE algorithms, especially the deep-learning-
based UIE, may introduce structural artifacts during the enhance-
ment process. An example is shown in Fig. 4, where unwanted
textures are introduced due to color changes. These artifacts may
severely degrade visual quality of enhanced images. Therefore, we
need to measure the structural similarity between original and en-
hanced images. It is noted that the image structural similarity was
firstly introduced by SSIM. To evaluate the similarity between an
image and its distorted version. Inspired by this index, we calculate
our structure-related features with brightness values of original
and enhanced underwater images.

Variance similarity. In most cases, over enhancement of underwa-
ter images will cause large variance of brightness, with an example
shown in Fig. 5 (b). In such case, we can construct a variance simi-
larity measure to identify these over-enhanced regions. Similar to
SSIM, we define the variance similarity as:

𝑠𝜎 =
2𝜎𝐼𝜎0 + 𝑐1
𝜎2
𝐼
+ 𝜎20 + 𝑐1

, (11)

where 𝜎𝐼 and 𝜎0 are the variances of enhanced and original images,
respectively. They are calculated locally with a 7×7 window. 𝑐1 is
a small constant to avoid zero denominators. With this measure,
we can calculate the similarity between Fig. 5 (a) and (b) to obtain
the variance map shown in Fig. 5 (c). It can be readily seen that the

over-enhanced regions with large brightness changes are labeled
with low variance similarities.

Mean and normalized similarities. The local mean 𝜇 and normal-
ized image 𝐼 can describe the perceptual similarity of textured
regions [9], where the normalized image is calculated by (𝐼 −
𝜇 (𝐼 ))/𝜎 (𝐼 ). Therefore, we also utilize the similarities between mean
and normalized images as supplementary indexes:

𝑠𝜇 =
2𝜇𝐼 𝜇0 + 𝑐2
𝜇2
𝐼
+ 𝜇20 + 𝑐2

, (12)

𝑠𝐼 =
2𝐼𝐼 𝐼0 + 𝑐3
𝐼2
𝐼
+ 𝐼20 + 𝑐3

, (13)

where 𝜇𝐼 and 𝜇0 respectively denote the local mean values of en-
hanced and original images, 𝐼𝐼 and 𝐼0 respectively denote the nor-
malizations of enhanced and original images, 𝑐2 and 𝑐3 are small
constants to avoid zero denominators.

In summary, the structure-related features include

𝐹structure = {𝑠𝜎 , 𝑠𝜇 , 𝑠𝐼 }. (14)

4.4 Feature Pooling and Regression
Fig. 6 shows the detailed framework of proposed UIF metric, which
mainly consists of two modules: feature extraction and feature
regression. In feature extraction module, we obtain the naturalness-
related, sharpness-related and structure-related features, as dis-
cussed above. If a feature is represented by a two-dimensional map,
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an average pooling is employed to reduce the dimensions. All fea-
tures are then linked into a feature vector:

𝐹 = [𝜈, 𝜎2,𝐶CIE, ..., 𝑠𝜎 , 𝑠𝜇 , 𝑠𝐼 ] . (15)

In feature regression module, we select the SVR for fusion con-
sidering its success in regression tasks. As illustrated in Fig. 6, we
use labeled underwater enhanced image pairs to train the regressor,
which can be utilized to predict the quality of any input image.
Given the features 𝐹 = [𝜈, 𝜎2,𝐶CIE, ..., 𝑠𝜎 , 𝑠𝜇 , 𝑠𝐼 ], the correspond-
ing quality label MOS values 𝑆𝑖 and the training image set, we can
train the regressor by SVR:

regressor = TRAIN(𝐹𝑖 , 𝑆𝑖 ) . (16)

After the training process, we can apply this regressor to yield
quality scores of any testing enhanced image 𝐼 and original image
𝐼0 :

𝑞 = PREDICT(𝐼 , 𝐼0, regressor). (17)

LIBSVM [3] is adopted to implement SVR and has previously been
applied to IQA problems[6]. In training process, we choosea Radial
Basis Function (RBF) kernel. The other SVR parameters are set as:
penalty coefficient=0.1, 𝜀-insensitive loss function=0.01, and RBF
kernel parameters=1.

5 EXPERIMENTAL RESULTS
In this section, we will evaluate proposed UIF metric with experi-
mental results. Popular IQAmetrics, including general no-reference
metrics, enhanced image quality metrics and UIE quality metrics
are examined for comparison. We also present ablation study to
show the effectiveness of all types of features.

5.1 Experiment Settings
To demonstrate the efficiency of our method, we choose a variety
of IQA methods for comparison. They include 9 no-reference IQA
methods for natural images (BRISQUE [29], NIQE [30], NFERM
[14], IL-NIQE[42], SISBLIM [12], BLIINDS-II [37], dipIq [26], og-iqa
[25], CNN-IQA [18]), 3 IQA methods for enhanced images (CPCQI
[10], BIQME [10], and NR-CDIQA [6]) and 2 IQA methods for en-
hanced underwater images (UCIQE [39] and UIQM [31]). For fair
comparison, we use the publicly available codes provided by au-
thors. If a metric is obtained by machine learning and its training
code is available, its parameters are further tuned for fair compar-
ison. To examine the generalization ability of machine learning
models including our UIF metric, they are examined with 𝑘-fold
cross-validations, where 𝑘 is set as 4. A fold of data is examined
and recorded only when it is used as testing test.

The performances of all IQA metrics are evaluated by two com-
monly used consistency criteria, including Spearman Rankorder
Correlation Coefficient (SRCC) and Pearson Linear Correlation Co-
efficient (PLCC). The SRCC scores the prediction monotonousness
to MOS values, while the PLCC scores the linear correlation be-
tween the IQA model’s predictions and MOS values. In particular,
higher PLCC or SRCC indicates an IQA metric is more consistent
with subjective quality evaluations.

Table 3: Performance Comparison of Selected IQA metrics

Type Methods SRCC PLCC

General IQA

BRISQUE 0.465 0.496
NFERM 0.355 0.339
NIQE 0.326 0.344

IL-NIQE 0.393 0.347
OG-IQA 0.216 0.233
SISBLIM 0.277 0.321

BLIINDS-II 0.341 0.352
dipIQ 0.126 0.217

CNN IQA 0.027 0.081

IQA for enhancement
CPCQI 0.266 0.284
BIQME 0.205 0.259
CDIQA 0.276 0.292

IQA for UIE
UCIQE 0.252 0.298
UIQM 0.276 0.268
UIF 0.733 0.757

5.2 Comparisons and Discussions
The comparison results of all IQA metrics are summarized in Ta-
ble 3, where the best results and 2nd-best results are highlighted
with red bold and blue bold, respectively. As shown in the table,
some no-reference IQA methods are designed for images in the
air (e.g. BRISQUE, NFERM, NIQE, IL-NIQE, OG-IQA, SISBLIM, and
BLIINDS-II), thus their extracted NSS characteristics are not appli-
cable to all underwater images. The accuracy of these no-reference
IQA metrics is low. Even for learning-based metrics such as dipIQ,
CNN IQA, the performance in terms of SRCC and PLCC are not
high. This fact implies the particularity and complexity of under-
water image characteristics, which makes the IQA for UIE images
a more challenging problem.

The methods designed for enhanced images (e.g. CPCQI, BIQME,
and CDIQA) also show inferior performances in UIE images. This
may be because they are designed to prefer images with high con-
trasts without consideration to the special distortions and artifacts
in underwater images. As a result, the features extracted by these
methods are not competitive and the experimental results are not
ideal.

Besides, the performances of popular UCIQE and UIQM are still
low in UIED. The possible reasons are as follows. Firstly, these
methods were proposed earlier when few UIE algorithms were
developed. The recent booming of UIE approaches have led to a va-
riety of image distortions and artifacts, which cannot be considered
by early methods. Secondly, they were tuned in small datasets due
to lack of large-scale dataset, which could not be constructed due
to lack of UIE algorithms. Thirdly, they incorporated fewer features
to evaluate underwater images, which limits their performance in
diverse underwater scenarios.

Finally, the proposed UIF metric achieves superior performance
to other metrics. This demonstrates the effectiveness of multiple
features and SVR-based fusion. More importantly, our metric is
also benefited from the large-scale UIED, which is the largest-ever
underwater image quality database with subjective scores.
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To present an intuitive comparison between UIF and conven-
tional metrics, we select four typical underwater images and their
enhancements, as shown in Fig. 7. We also calculate the UCIQE
and UIF values of all enhanced images and present them in the
same figure. From this figure, the conventional UCIQE metric may
focus on chroma components of images and thus tend to prefer
images with rich colors. It gives high scores to the (b) (f) (l) (p),
which have either red artifacts or contrast distortions. In contrast,
the UIF metric has preferences for (c) (h) (j) (n). This is because
the UIF considers naturalness, contrast and similarity besides of
underwater image colors, which are more consistent with HVS.
Therefore, our UIF metric shows the state-of-the-art performance
in quality evaluation of enhanced underwater images.

(a) 0.544/41.59 (b) 0.714/38.63 (c) 0.643/55.54 (d) 0.627/28.37

(e) 0.465/34.10 (f) 0.696/29.51 (g) 0.591/42.21 (h) 0.631/43.09

(i) 0.640/55.54 (j) 0.644/73.81 (k) 0.643/72.60 (l) 0.674/54.54

(m) 0.432/28.37 (n) 0.654/58.25 (o) 0.593/52.37 (p) 0.751/54.97

Figure 7: Typical underwater images (the first left column) and
their scored enhancements (the other three columns), where the
scores of each enhanced image are respectively given by UCIQE and
proposed UIF.

5.3 Ablation Study
To evaluate the contribution of each type of features, we conduct
a series of ablation experiments. Specifically, the image features
merged in the following methods.
• Method1: Only naturalness-related features.
• Method2: Only sharpness-related features.
• Method3: Only structure-related features.
• Method4: Naturalness-related and sharpness related features.
• Method5: Sharpness-related and structure-related features.
• Method6: Naturalness-related and structure-related features.
• Method7: The UIF with all three types of features.

Table 4 shows the performances of all 7 methods. From the
table, we can draw several conclusions. Firstly, the model achieves
acceptable performances even with one type of feature. Compared

with Table 3, the corresponding performance is still superior to
other IQA models in underwater IQA. Secondly, with more types
of features, the proposed model generally improves its prediction
performance in terms of SRCC and PLCC. Thirdly, by a fusion of
all types of features, our UIF metric achieves the best performance
of all. This fact demonstrates the effects of all types of features
in our UIF metric. With an SVR-based regression, the fused index
achieves superior performance to predict subjective evaluations
with an objective approach.

Table 4: Performance of Different Feature Groups

Feature Groups Descriptions SRCC PLCC
Method 1 Only naturalness 0.663 0.689
Method 2 Only sharpness 0.588 0.605
Method 3 Only structure 0.618 0.645
Method 4 Naturalness and sharpness 0.676 0.691
Method 5 Sharpness and structure 0.707 0.713
Method 6 Naturalness and structure 0.701 0.727
Method 7 All type features 0.733 0.757

5.4 Further Applications
The proposed UIFmetric can be further applied in other IQA tasks of
enhanced images, with acceptable correlations to subjective scores.
In this section, we test the UIF metric in three other databases,
including DHQ [40] for dehazing quality assessment, CID2013[15]
and CCID2014 [11] for contrast-enhanced quality assessments. For
comparison, we keep the same SVR parameter settings and training
steps. The training to testing ratio is set as 80:20. In Table 5, we
present average SRCC and PLCC values for the three databases.
Although the existing IQA methods for general enhanced images
cannot work well in underwater IQA, as shown in Table 3, our
UIF metric can still achieve acceptable performances in for IQA of
general enhanced images. This also shows the generalization of our
UIF metric to a certain extent.

Table 5: Evaluations on Other IQA Tasks

Databases Type SRCC PLCC
CID2013 Contrast-changed Image 0.6959 0.6795
CCID2014 Contrast-changed Image 0.7167 0.7031

DHQ Dehazing Image 0.6234 0.6707

6 CONCLUSIONS
Recent efforts of UIE have greatly promoted the visual quality of
underwater images. Nevertheless, the quality measures of UIE have
not been updated to evaluate the enhanced images by newly devel-
oped UIE models. In this paper, we make the first attempt to build
a large-scale underwater image quality database for UIE, namely
UIED, which can be utilized to train and evaluate objective IQA
approaches for enhanced underwater images. Based on this data-
base, we also propose a new quality metric of underwater images,
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namely UIF, which shows the state-of-the-art performance in this
scenario. Experimental results also demonstrate the effectiveness of
features and the generalization ability of UIF. The proposed metric
can evaluate the qualities of enhanced underwater images and also
help to select optimal UIE approaches under different underwater
environments.
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