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Elastic turbulence:
A chaotic flow that emerges in polymer solutions at 
low Reynolds number and high Weissenberg number

Purely elastic turbulence (Experiment)
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Irregular patterns and spiral-like structures

Wi=13, Re=0.7

A. Groisman & V. Steinberg, Nature, 2000

Reynolds number = 
Viscous time scale

Convective time scale
= 

Τ𝐿2 ν

Τ𝐿 𝑈
= 

𝑈 𝐿

ν

Weissenberg number = 
Polymer relaxation time

Flow time scale
= 

τ

𝑇 S. Datta et al., Phys. Rev. Fluids, 2022

V. Steinberg, Nature, Annu. Rev. Fluid Mech.2021



Characteristics of elastic turbulence:

➢ Activation of several spatial and 
temporal scales with a steep power 
law decay in the spectra of the 
velocity fluctuations

➢ Increase in the flow resistance 
compared to the laminar flow at 
the same Reynolds number

➢ Enhancement of the mixing rate 
by orders of magnitude compared 
to diffusion

Purely elastic turbulence (Experiment)
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A. Groisman & V. Steinberg, Nature, 2000



Applications of elastic turbulence

In a pure solvent, Wi=0

Mixing of a passive scalar (Experiment)

t = 0 sec t=120 sec t=0 sec t= 30 sec

In the elastic turbulent regime generated by polymers

Other applications:

• Increase in the heat transfer efficiency

• Increased efficiency in the formation of emulsions

Poole et al., J. Non-Newton. Fluid Mech, 2012

Wi= 5.2

Traore et al., J. Non-Newton. Fluid Mech, 2015



Governing equations for the viscoelastic fluids

Limitations:

• Loss of positive-definiteness leading to numerical instabilities at high Weissenberg numbers

• Simulations in more realistic geometries to include boundary effects

• Three-dimensional simulations

Numerical treatments:

• Addition of a diffusive term i.e.  κ(𝑪 , 𝜵𝒖)𝜵2 𝑪
• Use of shock-capturing schemes like Kurganov-Tadmor scheme

• Reformulation of the constitutive equations 

𝜕 𝑪

𝜕 𝑡
+ 𝒖 ⋅ 𝜵𝑪 = 𝑪 ⋅ 𝜵𝒖 + 𝜵𝒖 𝑇 ⋅ 𝑪 −

1

τ
𝑪 − 𝑰 − Conformation tensor field

𝜕 𝒖

𝜕 𝑡
+ 𝒖 ⋅ 𝜵𝒖 = −𝜵𝑝 + 𝜈𝛁2𝒖 +

𝜇

τ
𝜵 ⋅ 𝑪 + 𝒇 − Velocity field



Numerical simulations : Kolmogorov forcing

Contours of the vorticity field

Wi=21.3                                 Wi=31

Spatial energy spectra

Wi=21.3

Wi=31

Steep power-law with an exponent ~ 3.8Flow transition from regular to irregular pattern

Two-dimensional simulationsBerti et al., Phys. Rev. E, 2008



Four-roll mill forcing Cellular forcing

With diffusion Without diffusionWith diffusion

▪ Addition of a large amount of global diffusion produces 

unphysical artifacts by smearing out the gradients in the stress 

field

Two-dimensional simulations

Thomases et al., Physica D, 2011

A. Gupta & D. Vincenzi, J. Fluid Mech., 2019



Reformulation of the constitutive equations

Log Cholesky decomposition Symmetric square root decomposition

C = L 𝑳𝑻, L is the lower triangular matrix C = b 𝒃𝑻, b is the symmetric square root of C

log 𝑳 transport eqn. is solved 𝑏 transport eqn. is solved

Re=0, Wi=10, no artificial diffusion

Cellular forcing

f= 𝑓0𝑘𝑓[cos(𝑘𝑓 𝑥) + cos(𝑘𝑓 𝑦)]



Evolution of determinant and trace of C

An a priori constraint : If det(C) ≥1 at t=0, it must remain greater than one ∀t

𝐹𝑜𝑟 𝑎𝑛𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 C ∶ 𝑡𝑟 C ≥ 𝑑 det(C)1/𝑑 ; In 2D : 𝑡𝑟 C ≥ 2

Hu et al., Commun. Math. Sci., 2007



Comparison of large-scale structures at  𝑘𝑓=6 
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Addition of a modified diffusion κ(𝑪 , 𝜵𝒖)𝜵2 𝑪

Log Cholesky with diffusion

Large-scale structures dominate the stress field



Energy spectra 𝑘𝑓=6 

➢ Increase of energy at large-scales (k<𝑘𝑓)



Evolution of a passive scalar field 

Log Cholesky decomposition Symmetric square root decomposition

C = L 𝑳𝑻, L is the lower triangular matrix C = b 𝒃𝑻, b is the symmetric square root of C

log 𝑳 transport eqn. is solved 𝑏 transport eqn. is solved

𝜕 𝜃

𝜕 𝑡
+ 𝒖 ⋅ 𝜵𝜃 = 𝜅 𝜵2𝜃 −Passive scalar field



Conclusions:

• The lower bound on the determinant of C can be used as a 
criteria to characterise the accuracy of the numerical solutions

• Use of a logarithmic transformation supresses the numerical 
errors and ensures that the numerical solution satisfies all the 
necessary criteria for the solution to be accurate  

• Addition of any form of diffusion smears out the stress 
gradients and generates unphysical artifacts
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