Elastic turbulence in polymer solutions: modelling and numerical simulations

By
Sumithra Reddy YERASI
Advisor: Dario VINCENZI
Laboratoire Jean Alexandre Dieudonné
University Côte d'Azur

In collaboration with Jason R. PICARDO, IIT Bombay, India and Anupam GUPTA, IIT Hyderabad, India

UNIVERSITE:

Elastic turbulence:

A chaotic flow that emerges in polymer solutions at low Reynolds number and high Weissenberg number

Purely elastic turbulence (Experiment)
Irregular patterns and spiral-like structures

$$
\mathrm{Wi}=13, \mathrm{Re}=0.7
$$

Reynolds number $=\frac{\text { Viscous time scale }}{\text { Convective time scale }}=\frac{L^{2} / v}{L / U}=\frac{U L}{v}$
Weissenberg number $=\frac{\text { Polymer relaxation time }}{\text { Flow time scale }}=\frac{\tau}{T}$
V. Steinberg, Nature, Annu. Rev. Fluid Mech. 2021
S. Datta et al., Phys. Rev. Fluids, 2022

Characteristics of elastic turbulence:

> Activation of several spatial and temporal scales with a steep power law decay in the spectra of the velocity fluctuations
$>$ Increase in the flow resistance compared to the laminar flow at the same Reynolds number
> Enhancement of the mixing rate by orders of magnitude compared to diffusion
A. Groisman \& V. Steinberg, Nature, 2000

Applications of elastic turbulence

Mixing of a passive scalar (Experiment)

In a pure solvent, $\mathrm{Wi}=0$

$$
\mathrm{t}=0 \mathrm{sec} \quad \mathrm{t}=120 \mathrm{sec}
$$

Other applications:

Poole et al., J. Non-Newton. Fluid Mech, 2012

In the elastic turbulent regime generated by polymers

$$
\mathrm{t}=0 \mathrm{sec} \quad \mathrm{t}=30 \mathrm{sec}
$$

- Increase in the heat transfer efficiency
- Increased efficiency in the formation of emulsions

Governing equations for the viscoelastic fluids

$$
\begin{aligned}
& \frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}=-\boldsymbol{\nabla} p+v \boldsymbol{\nabla}^{2} \boldsymbol{u}+\frac{\mu}{\tau} \boldsymbol{\nabla} \cdot \boldsymbol{C}+\boldsymbol{f}-\text { Velocity field } \\
& \frac{\partial \boldsymbol{C}}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{C}=\boldsymbol{C} \cdot \boldsymbol{\nabla} \boldsymbol{u}+(\boldsymbol{\nabla} \boldsymbol{u})^{T} \cdot \boldsymbol{C}-\frac{1}{\tau}(\boldsymbol{C}-\boldsymbol{I})-\text { Conformation tensor field }
\end{aligned}
$$

Limitations:

- Loss of positive-definiteness leading to numerical instabilities at high Weissenberg numbers
- Simulations in more realistic geometries to include boundary effects
- Three-dimensional simulations

Numerical treatments:

- Addition of a diffusive term i.e. $\kappa(\boldsymbol{C}, \boldsymbol{\nabla} \boldsymbol{u}) \boldsymbol{\nabla}^{2} \boldsymbol{C}$
- Use of shock-capturing schemes like Kurganov-Tadmor scheme
- Reformulation of the constitutive equations

Numerical simulations : Kolmogorov forcing

Contours of the vorticity field

$\mathrm{Wi}=21.3$

Wi=31

Spatial energy spectra

Flow transition from regular to irregular pattern

Steep power-law with an exponent ~ 3.8

Four-roll mill forcing
With diffusion

With diffusion

Without diffusion

Two-dimensional simulations

- Addition of a large amount of global diffusion produces unphysical artifacts by smearing out the gradients in the stress field

Thomases et al., Physica D, 2011
A. Gupta \& D. Vincenzi, J. Fluid Mech., 2019

Reformulation of the constitutive equations

Log Cholesky decomposition
$\boldsymbol{C}=\boldsymbol{L} \boldsymbol{L}^{\boldsymbol{T}}, \boldsymbol{L}$ is the lower triangular matrix $\underline{\log (L)}$ transport eqn. is solved

Symmetric square root decomposition

Cellular forcing $\quad \boldsymbol{C}=\boldsymbol{b} \boldsymbol{b}^{\boldsymbol{T}}, \boldsymbol{b}$ is the symmetric square root of \boldsymbol{C} $f=f_{0} k_{f}\left[\cos \left(k_{f} x\right)+\cos \left(k_{f} y\right)\right]$ b transport eqn. is solved
$\mathrm{Re}=0, \mathrm{Wi}=10$, no artificial diffusion

Evolution of determinant and trace of \boldsymbol{C}

An a priori constraint: If $\operatorname{det}(\boldsymbol{C}) \geq 1$ at $\mathrm{t}=0$, it must remain greater than one $\forall \mathrm{t}$ Hu et al., Commun. Math. Sci., 2007
For any symmetric matrix $\boldsymbol{C}: \operatorname{tr}(\boldsymbol{C}) \geq d \operatorname{det}(\boldsymbol{C})^{1 / d} ; \ln 2 D: \operatorname{tr}(\boldsymbol{C}) \geq 2$

Comparison of large-scale structures at $k_{f}=6$

Addition of a modified diffusion $\kappa(\boldsymbol{C}, \boldsymbol{\nabla} \boldsymbol{u}) \boldsymbol{\nabla}^{2} \boldsymbol{C}$
Log Cholesky with diffusion

Large-scale structures dominate the stress field

Energy spectra $k_{f}=6$

$>$ Increase of energy at large-scales $\left(k<k_{f}\right)$

Evolution of a passive scalar field

Log Cholesky decomposition

Symmetric square root decomposition

$\boldsymbol{C}=\boldsymbol{L} \boldsymbol{L}^{\boldsymbol{T}}, \boldsymbol{L}$ is the lower triangular matrix
 $$
\underline{\log (L)} \text { transport eqn. is solved }
$$

$\boldsymbol{C}=\boldsymbol{b} \boldsymbol{b}^{\boldsymbol{T}}, \boldsymbol{b}$ is the symmetric square root of \boldsymbol{C} b transport eqn. is solved

$$
\frac{\partial \theta}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \theta=\kappa \boldsymbol{\nabla}^{2} \theta-\text { Passive scalar field }
$$

Conclusions:

- The lower bound on the determinant of \boldsymbol{C} can be used as a criteria to characterise the accuracy of the numerical solutions
- Use of a logarithmic transformation supresses the numerical errors and ensures that the numerical solution satisfies all the necessary criteria for the solution to be accurate
- Addition of any form of diffusion smears out the stress gradients and generates unphysical artifacts

Thank you for your attention!!!

