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On Strict Brambles1

Emmanouil Lardas2 Evangelos Protopapas3 Dimitrios M. Thilikos3

Dimitris Zoros2

Abstract

A strict bramble of a graph G is a collection of pairwise-intersecting connected subgraphs of G.
The order of a strict bramble B is the minimum size of a set of vertices intersecting all sets
of B. The strict bramble number of G, denoted by sbn(G), is the maximum order of a strict
bramble in G. The strict bramble number of G can be seen as a way to extend the notion
of acyclicity, departing from the fact that (non-empty) acyclic graphs are exactly the graphs
where every strict bramble has order one. We initiate the study of this graph parameter by
providing three alternative definitions, each revealing different structural characteristics. The
first is a min-max theorem asserting that sbn(G) is equal to the minimum k for which G is
a minor of the lexicographic product of a tree and a clique on k vertices (also known as the
lexicographic tree product number). The second characterization is in terms of a new variant of
a tree decomposition called lenient tree decomposition. We prove that sbn(G) is equal to the
minimum k for which there exists a lenient tree decomposition of G of width at most k. The
third characterization is in terms of extremal graphs. For this, we define, for each k, the concept
of a k-domino-tree and we prove that every edge-maximal graph of strict bramble number at
most k is a k-domino-tree. We also identify three graphs that constitute the minor-obstruction
set of the class of graphs with strict bramble number at most two. We complete our results by
proving that, given some G and k, deciding whether sbn(G) ≤ k is an NP-complete problem.

Keywords: Strict bramble, Bramble, Treewidth, Lexicographic tree product number, Obstruction
set, Tree decomposition, Lenient tree decomposition.
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1 Introduction

A well-known definition of acyclicity is the following: a non-empty graph G is acyclic if for every
collection of pairwise intersecting subtrees of G there is some vertex appearing in every subtree. In
this paper we deal with a natural parametric extension of acyclicity, that is, the minimum k such
that for every collection of pairwise intersecting subtrees of G there is a set of k vertices intersecting
all of them. To our knowledge, this graph parameter1 appeared for the first time by Kozawa, Otachi
and Yamazaki in [15] with the name PI number (where PI stands for “Pairwise Intersecting”) and
was used in order to derive lower bounds for the treewidth of several classes of product graphs (for
the definition of treewidth, see Section 2). The same parameter was recently introduced by Aidun,
Dean, Morrison, Yu, and Yuan in [1] with the name strict bramble number and is the term that
we adopt in this paper. The strict bramble number was used in [1] in order to study the relation
of treewidth and the gonality on particular classes of graphs.

Strict brambles. We proceed with the formal definition of the strict bramble number. Given a
collection B of vertex sets of G and some vertex set X, we say that X covers B if every set in B
has some vertex in common with X. We say that a vertex set S is connected if the subgraph of G
induced by S is connected. A strict bramble of a graph G is a collection B of vertex sets of G such
that:

(1) every set in B is connected;

(2) every two sets in B have some vertex in common.

The order of a strict bramble B of G is the minimum size of a set that covers B and is denoted
by order(B). The strict bramble number of G, denoted by sbn(G), is the maximum order of a strict
bramble of G.

Brambles. Given two vertex sets S and S′ of a graph G we say that S and S′ touch in G if either
they have some vertex in common or there is an edge with one endpoint in S and the other in S′.
If we relax the definition of strict bramble by substituting (2) with:

(2′) every two sets in B are touching,

then we obtain the (classic) notion of bramble and the parameter bramble number, denoted by
bn(G), introduced by Seymour and Thomas in [21]2. The study of brambles attracted a lot of
attention because of the main result in [21], that is a min-max theorem asserting that for every
graph G, the treewidth of G is one less than its bramble number. As already observed in [15] (using
the results of [17]), for every graph G, it holds that sbn(G) ≤ bn(G) ≤ 2 · sbn(G) which, in turn,
implies that:

sbn(G)− 1 ≤ tw(G) ≤ 2 · sbn(G)− 1. (1)

Treewidth, the min-max analogue of brambles, is one of the most important graph parameters. It
was introduced by Robertson and Seymour in [18] (see [6, 12] for earlier appearances). Treewidth

1We use the term graph parameter for every function mapping graphs to non-negative integers.
2We wish to stress that in [21] the term “screen” was used, instead of the term “bramble”.
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served as a cornerstone parameter of the Graph Minors series of Robertson and Seymour and is
omnipresent in a wide range of topics in combinatorics and in graph algorithms [7].

In this paper we initiate the study of the strict bramble number, mainly motivated by the fact
that, so far, no min-max analogue, parallel to treewidth, is known for this graph parameter. In
this direction, we provide three alternative definitions of the strict bramble number, each revealing
different characteristics of this parameter. We start with a brief introduction of these definitions.

Lexicographic tree product. Let G,H be a pair of graphs. The lexicographic product of G and
H, denoted by G ·H, is the graph whose vertex set is the Cartesian product of the vertex sets of G
and H and where the vertex (u, v) is adjacent with the vertex (w, z) in G ·H if and only if either
u is adjacent with w in G or it holds that u = w and v is adjacent with z in H. The lexicographic
tree product number of G is defined by Harvey and Wood in [13] as:

ltp(G) = min{k ∈ N | there is a tree T such that G is a minor of T ·Kk}.

(For the definition of the minor relation, see Section 2). Our first contribution is to show that
the lexicographic tree product number and the strict bramble number are the same parameter.
Incidentally, replacing sbn with ltp in (1), was already proved in [13].

Lenient tree decompositions. Let G be a graph, T a tree and let χ be a function mapping
vertices of T to vertex sets of G. We say that two vertices t, t′ of T are close in T if either they are
identical or they are adjacent. The pair (T, χ) is a lenient tree decomposition of G if it satisfies the
following three conditions:

(C1) ⋃t∈V (T ) χ(t) is the vertex set of G;

(C2) for every edge e of G, there are two close vertices t, t′ of T such that, e ⊆ χ(t) ∪ χ(t′);

(C3) for every vertex x of G, the set {t | x ∈ χ(t)} is connected in T.

We define the width of (T, χ), as the maximum size of a set χ(t), for vertices t of T. See Figure 1
for an example of the above definition. Our second characterization of the strict bramble number
is that, for every graph G, sbn(G) is equal to the minimum width of a lenient tree decomposition
of G. In that way, lenient tree decompositions can serve as the analogue of tree decompositions for
the case of strict brambles. Notice that the definition of a tree decomposition, given in Section 2,
follows from the above definition if we substitute “close” by “identical”.

k-domino-trees. Given a non-negative integer k, a k-tree is recursively defined as follows: a
graph G is a k-tree if it is either isomorphic to Kr, for some r ≤ k, or it contains a vertex v of
degree k in G whose neighborhood induces a clique in G and whose removal from G yields a k-tree.
It is known that among all the graphs with treewidth at most k, those that are edge-maximal (that
is, after the addition of any edge they obtain treewidth more than k) are precisely the k-trees. This
implies that the treewidth of a graph can be defined as the minimum k for which G is a spanning
subgraph of a k-tree. Is there an analogous definition for the strict bramble number? What are
the edge-extremal graphs of strict bramble number at most k?

3
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Figure 1: A lenient tree decomposition of the graph G′ of Figure 2.

Our third characterization is obtained by answering the above questions. For this, in Section 4,
we introduce the concept of a k-domino-tree. We prove that sbn(G) is equal to the minimum k for
which G is a spanning subgraph of a k-domino-tree.

The proof of all aforementioned equivalences is given in Section 5. Moreover, in Section 6,
we prove that the edge-extremal graphs of strict bramble number at most k are precisely the
k-domino-trees. Interestingly, k-domino-trees enjoy a more elaborate structure than the one of k-
trees. While all k-trees on n vertices have the same number of edges the same does not hold for the
k-domino-trees on n vertices. As we see in Section 6 the number of edges may vary considerably.

Obstructions. Given a graph class G, the minor-obstruction set of G, denoted by Obs(G), is the
set of all minor-minimal graphs that do not belong to G (for the definition of the minor relation,
see Section 2). In the case where G is closed under taking minors – that is, minors of the graphs
in G are also in G – then Obs(G) offers an exact characterization of G as, for every graph G, G ∈ G
iff for every H ∈ Obs(G), H is not a minor of G. Moreover, this gives a “finite” characterization
of G as, by the Robertson and Seymour theorem [19], Obs(G) is always a finite set. Let Gk be the
class of graphs of strict bramble number at most k. As we already mentioned, G1 is the class of
all acyclic graphs, therefore Obs(G1) = {K3}. Our next result is the identification of Obs(G2), that
consists of the three graphs depicted in Figure 7.

NP-completeness. We complete our study by showing that the problem of deciding whether,
given a graph G and a non-negative integer k, sbn(G) ≤ k, is an NP-complete problem. We do
so by reducing the computation of treewidth to the computation of the strict bramble number
(Section 8). Notice that, membership in NP is non-trivial for this problem. For this, our min-max
equivalence result (Section 5) comes in handy. The paper concludes with some open problems on
the strict bramble number, presented in Section 9.

2 Preliminaries

Integers, sets, and tuples. We denote by N the set of non-negative integers. Given two integers
p and q, the set [p, q] refers to the set of every integer r such that p ≤ r ≤ q. For an integer p ≥ 1,
we set [p] = [1, p]. For a set S, we denote by 2S the set of all subsets of S and, given an integer
r ∈ [|S|], we denote by

(S
r

)
the set of all subsets of S of size r.
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Graphs. All graphs in this paper are simple, i.e. they are finite and they do not have multiple
edges or loops. Given a graph G we denote its vertex and edge set by V (G) and E(G) respectively.
Given graphs H and G, H is a subgraph of G, denoted as H ⊆ G if, V (H) ⊆ V (G) and E(H) ⊆
E(G). Given an S ⊆ V (G), we define the subgraph of G induced by S, denoted by G[S], as the
graph G[S] =

(
S,
(S

2
)
∩ E(G)

)
. Also, we define G − S = G[V (G) \ S] and G − u = G − {u}, for

u ∈ V (G).

Basic definitions. Given a graph G, we denote by cc(G), the set of all connected components of
G. Let S ⊆ V (G).We define the connectivity-degree of S as cdegG(S) = |cc(G−S)|, i.e. the number
of connected components of G − S. We also define Acc(G,S) = {G[V (C) ∪ S] | C ∈ cc(G − S)}
and we call Acc(G,S) the set of all augmented connected components of G− S. Let x ∈ V (G). We
denote the degree of x ∈ V (G), by degG(x). Also for A,B ⊆ V (G) we say that A and B intersect
if A ∩ B 6= ∅. Given a tree T and some t ∈ V (T ) with degT (t) = 1, we call t a leaf node of T.
Otherwise, we call t an internal node of T. We also use Kk to denote the complete graph on k

vertices.

Paths and separators. Let x, y ∈ V (G). If x = y, an x-y path of G is the graph ({x}, ∅).
Otherwise, an x-y path P of G is any connected subgraph of G, where degP (x) = 1 and degP (y) = 1
and for any other vertex z ∈ V (P ), degP (z) = 2. The length of a path P is equal to |E(P )|. The
distance between x and y in G is the minimum number of edges of an x-y path in G. Given a path
P and a vertex z ∈ V (P ), we call z an internal vertex of P if degP (z) = 2, otherwise we call z a
terminal vertex of P. We call two paths P and Q vertex disjoint if V (P )∩V (Q) = ∅ and internally
vertex disjoint if V (P )∩ V (Q) contains only terminal vertices. Let X,Y ⊆ V (G). An X-Y path P
of G is an x-y path of G, where x ∈ X and y ∈ Y.

Let x, y ∈ V (G). A set S ⊆ V (G) is an (x, y)-separator of G if x and y are in different
connected components of G − S. S is a minimal (x, y)-separator if none of its proper subsets is
an (x, y)-separator. A set S is a minimal separator of G if it is a minimal (x, y)-separator for
some x, y ∈ V (G). Also let X,Y ⊆ V (G). A set S ⊆ V (G) is an (X,Y )-separator of G, if it is an
(x, y)-separator of G, for every pair x, y of vertices x ∈ X \S, y ∈ Y \S. A graph is k-connected, if
it contains at least k + 1 vertices and does not contain any (x, y)-separator of less than k vertices.

Lemma 1. Let G be a graph and B ⊆ 2V (G) be a strict bramble of G. Also let X,Y ⊆ V (G) be
covers of B and S ⊆ V (G) be an (X,Y )-separator of G. Then S also covers B.

Proof. Let B ∈ B. Recall that B is connected and by definition, intersects both X,Y. Since S is an
(X,Y )-separator of G, B also intersects S.

Chordal graphs. A graph is chordal if all its induced cycles are triangles. The next proposition
contains some folklore observations regarding separators in chordal graphs.

Proposition 2. Let G be a chordal graph and x, y ∈ V (G). Any minimal (x, y)-separator of G
induces a clique. Given a minimal (x, y)-separator of G there exist vertices x′ and y′ in the same
connected components of G − S as x and y respectively, such that x′ and y′ are adjacent to every
vertex in S. If S, S′ are minimal separators of G, then S′ is contained in some augmented connected
component of G− S and vice versa.
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Minors. Let H,G be graphs. H is a minor of G and we write H ≤m G if we can obtain H from
G through a sequence of vertex deletions, edge deletions and edge contractions. A minor-model of
H in G is a function µ : V (H)→ 2V (G) that satisfies the following properties:

1. for all u ∈ V (H), µ(u) is connected;

2. for any pair u, v ∈ V (H), µ(u) ∩ µ(v) = ∅;

3. if {u, v} ∈ E(H) then there exists an edge {w, z} ∈ E(G) such that w ∈ µ(u) and z ∈ µ(v).

It is well-known that H is a minor of G if and only if there exists a minor model of H in G.

Tree decompositions. Let G be a graph, T a tree and let χ : V (T ) → 2V (G) be a function
mapping vertices of T to subsets of vertices of G. The pair (T, χ) is a tree decomposition of G if it
satisfies the following three conditions:

(C1) ⋃t∈V (T ) χ(t) = V (G);

(C2) for every edge e ∈ E(G), there is a vertex t ∈ V (T ), such that e ⊆ χ(t);

(C3) for every vertex x ∈ V (G), the set {t | x ∈ χ(t)} is connected in T.

We refer to the vertices of T as the nodes of (T, χ) and to their images as the bags of (T, χ). Given
a vertex x ∈ V (G), we define its trace in (T, χ) as the set Trace(T,χ)(x) = {t ∈ V (G) | x ∈ χ(t)}.
When (T, χ) is clear from the context, we simply write Trace(x). Also for any leaf node t ∈ V (T ) with
(the unique) incident edge {t, t′} ∈ E(T ), we define the t-petal of (T, χ), as Petal(T,χ)(t) = χ(t)\χ(t′),
i.e. the private vertices of t. When (T, χ) is clear from the context, we simply write Petal(t). We
define the width of (T, χ) as the maximum size of a bag of (T, χ) minus one. The treewidth of a
graph G, denoted by tw(G), is the minimum width over all the tree decompositions of G.

3 Lenient tree decompositions

In this section we provide some new concepts and we prove a series of preliminary results on lenient
tree decompositions that will be useful for the proof of our main min-max equivalence Theorem in
Section 5.

Let (T, χ) be a lenient tree decomposition of G. The definitions of nodes, bags and t-petals
of (T, χ), as well as the trace of a vertex of G, are identical to those we gave in the case of
tree decompositions. We start with the following easy observation that follows directly from the
definition of a lenient tree decomposition.
Observation 3. If G and H are two graphs where H ≤m G and G has a lenient tree decomposition
of width at most k, then so does H.

Lemma 4. Let G be a graph and let (T, χ) be a lenient tree decomposition of G. Consider an
internal node t ∈ V (T ) of (T, χ) such that there exist different vertices x, y ∈ V (G), such that,
Trace(x) is a subtree of a subtree of T − t and Trace(y) is a subtree of a different subtree of T − t.
Then χ(t) is a (x, y)-separator of G.

6



Proof. Fix a x-y path P in G and consider the set U = ⋃
u∈P Trace(u). Conditions (C2) and

(C3) imply that U is connected in T. So t ∈ U, since t is in the unique path of T connecting
the two subtrees. Thus there exists a vertex of P intersecting χ(t) which implies that it is a
(x, y)-separator.

Lemma 5. Let G be a graph and let (T, χ) be a lenient tree decomposition of G. Let K ⊆ G be
an induced clique in G. Then there exists an adjacent pair of nodes t, t′ ∈ V (T ) of (T, χ) such that
V (K) ⊆ χ(t) ∪ χ(t′).

Proof. If there is a bag of (T, χ) that contains V (K) we are done. Assume otherwise. The proof
proceeds by orienting every node t ∈ V (T ) towards the subtree containing V (K) \ χ(t). By our
assumption every leaf of T points towards the inner part of T. Consider an internal node t ∈ V (T ).
By condition (C3), for every vertex in x ∈ V (K) \ χ(t), Trace(x) is exclusively contained in some
subtree of T − t. Then, since K is a clique, because of Lemma 4, ⋃x∈V (K)\χ(t) Trace(x) is exclusively
contained in the same subtree of T − t. This implies that t can only point in a single direction and
also that adjacent nodes of (T, χ) cannot both point outward. Consider a maximal directed path
that respects the directions given to the nodes of (T, χ), which terminates at node t ∈ V (T ). Then
there is a t′ ∈ V (T ), such that {t, t′} ∈ E(T ), pointing towards t. Then V (K) ⊆ χ(t) ∪ χ(t′).

Lemma 6. Let G be a graph and let (T, χ) be a lenient tree decomposition of G such that |V (T )| ≥ 3.
Also let S ⊆ V (G) be connected. Then for any three nodes t, t′, t′′ ∈ V (T ) such that t′ is an internal
node of the unique t-t′′ path P in T, if χ(t) ∩ S 6= ∅ and χ(t′′) ∩ S 6= ∅ then χ(t′) ∩ S 6= ∅.

Proof. Let x ∈ χ(t) ∩ S, y ∈ χ(t′′) ∩ S. If x = y then by condition (C3), x ∈ χ(t′). Else if x and y
are adjacent then by condition (C2), there exists a pair of close nodes u, v ∈ V (T ) where {x, y} ⊆
χ(u)∪χ(v). By condition (C3), we can assume that u, v ∈ V (P ) and thus P ⊆ Trace(x)∪Trace(y),
which implies that either x ∈ χ(t′) or y ∈ χ(t′). Else if x and y are not adjacent, then, by Lemma 4,
χ(t′) is an (x, y)-separator, and since S is connected it must intersect χ(t′).

Extreme lenient tree decompositions. We call a lenient tree decomposition (T, χ) of width
k extreme, if it satisfies the following properties.

• All bags of (T, χ) are of equal size.

• No bag of (T, χ) is a subset of another one.

• For any node t ∈ V (T ), such that degT (t) = 2, and for any two nodes t′, t′′ ∈ V (T ) such that
t ∈ V (P ), where P is the unique t′-t′′ path in T, it holds that χ(t) * χ(t′) ∪ χ(t′′).

• For every pair t′, t′′ ∈ V (T ) of different leaf neighbours of a node t ∈ V (T ), |Petal(t′) ∪
Petal(t′′)| > k.

Lemma 7. Let G be a graph. If there exists a lenient tree decomposition of G of width k, then
there exists an extreme lenient tree decomposition (T, χ) of G of the same width.

Proof. Define (T, χ) as the lenient tree decomposition of width k, that minimizes:

k|V (T )| −
∑

t∈V (T )
|χ(t)| (2)

7



and subject to (2), minimizes:

|V (T )|. (3)

We prove that (T, χ) is extreme. If |V (T )| ≤ 1, then our claim trivially holds. Now, assume it is
not. We distinguish cases.

Suppose that there exists a pair of bags of (T, χ) with unequal size. Then there is also a pair
of adjacent nodes t, t′ ∈ V (T ) such that |χ(t)| < |χ(t′)|. Then we can add vertices of χ(t′) \ χ(t) to
χ(t). This contradicts the minimality of (2).

Now, suppose that there exists a bag that is a subset of another bag of (T, χ). Then, because of
condition (C3), there is also a pair of adjacent nodes t, t′ ∈ V (T ) such that χ(t) ⊆ χ(t′). Then we
can remove node t from (T, χ) and connect its neighbours with t′. This contradicts the minimality
of (2).

Let t ∈ V (T ) with degT (t) = 2 and a pair of nodes t′, t′′ ∈ V (T ), such that t ∈ V (P ), where P
is the unique t′-t′′ path in T. Suppose that χ(t) ⊆ χ(t′) ∪ χ(t′′). Then we can remove t, and make
t′, t′′ adjacent. This contradicts the minimality of (3).

Finally, suppose that there is a node t ∈ V (T ), such that there exists a pair t′, t′′ ∈ V (T ) of
different leaf neighbours of t such that |Petal(t′) ∪ Petal(t′′)| ≤ k. Then we can identify the two
leaves into a single leaf, whose bag will contain Petal(t′) ∪ Petal(t′′), plus some additional vertices
of χ(t) \ (Petal(t′)∪Petal(t′′)), to ensure that the bag corresponding to the new leaf has size |χ(t)|.
This contradicts the minimality of (3).

Given a graph G and a lenient tree decomposition (T, χ) of G, we define the (T, χ)-completion
of G as the graph G+ = (V (G), E+) where,

E+ =
⋃

t,t′∈V (T ):
t, t′ are close in T

(
χ(t) ∪ χ(t′)

2

)
.

That is, we add edges (if they do not already exist) between all vertices of each bag or of each two
“neighboring” bags. Clearly, (T, χ) is also a lenient tree decomposition of G+.

Lemma 8. Let G be a graph and let (T, χ) be a lenient tree decomposition of G. Also let G+ be
the (T, χ)-completion of G. Then G+ is chordal.

Proof. Suppose that there exists a pair x, y ∈ V (G) of non-adjacent vertices of G+ that belong to
an induced cycle of size at least four. Since x, y are not adjacent and the union of the bags of any
adjacent pair of nodes of (T, χ) induces a clique in G+, the closest nodes t, t′ ∈ V (T ), whose bags
contain x, y respectively are at distance at least two in T. Let t′′ ∈ V (T ) be an internal vertex of a
t-t′ path in T. Because of Lemma 4, χ(t′′) is a (x, y)-separator in G+. Let P, P ′ ⊆ G+ be the two
internally vertex disjoint x-y paths that define this cycle. These paths intersect χ(t′′) and since
χ(t′′) is a clique, the cycle has two non-consecutive vertices that are adjacent, which contradicts
our assumption. Thus G+ is chordal.

Lemma 9. Let G be a graph and let (T, χ) be an extreme lenient tree decomposition of G of width
k. Also let G+ be the (T, χ)-completion of G. Then for any pair of nodes t, t′ ∈ V (T ) of (T, χ) there
exist k disjoint χ(t)-χ(t′) paths in G+.

8



Proof. The proof proceeds by induction on the distance of t, t′ in T. If t = t′ or t, t′ are adjacent,
the claim trivially holds. Assume that t, t′ are at distance r > 1. Consider the unique t-t′ path in
T and consider the neighbour of t′ on this path, say t′′. By the inductive hypothesis there are k
disjoint χ(t)-χ(t′′) paths in G. Since χ(t′)∪χ(t′′) induces a clique in G+ we can easily extend these
paths to disjoint χ(t)-χ(t′) paths.

Lemma 10. Let G be a graph and let (T, χ) be an extreme lenient tree decomposition of G of width
k. Also let G+ be the (T, χ)-completion of G. Then, if S ⊆ V (G+) is a minimal (x, y)-separator of
G+, there exists a node t ∈ V (T ) of (T, χ) such that S = χ(t).

Proof. Since x, y ∈ V (G+) are not adjacent they do not belong in an adjacent pair of bags of
(T, χ). Then Lemma 9 easily implies that there are k internally vertex disjoint x-y paths in G+.

Then, by Menger’s Theorem, S has size at least k. Additionally, by Lemma 8, G+ is chordal and
thus S induces a clique in G+. Then, Lemma 5, implies that there exists an adjacent pair of nodes
t, t′ ∈ V (T ) such that S ⊆ χ(t) ∪ χ(t′). Also, since the closest bags of (T, χ) that contain x, y

are at distance at least two, at least one of x or y cannot be in χ(t) ∪ χ(t′). Assume it is x and
that χ(t) is closer than χ(t′) to the closest bag containing x. Since G+ is chordal we can assume
that x is adjacent to all vertices of S. Now observe that conditions (C2) and (C3) imply that x
cannot be adjacent with any vertex in χ(t′) \ χ(t) which implies that S cannot contain any vertex
in χ(t′) \ χ(t). Thus S = χ(t).

Lemma 11. Let G be a graph and let (T, χ) be an extreme lenient tree decomposition of G. Also
let G+ be the (T, χ)-completion of G. Then there is a unique bijection between minimal separators
S ⊆ V (G+) of G+ and nodes t ∈ V (T ) of (T, χ), such that S = χ(t), cdegG+(S) = degT (t) and for
any maximal clique K ⊆ G+, such that S ⊆ V (K), there is a node t′ ∈ V (T ), adjacent to t, such
that V (K) = χ(t) ∪ χ(t′).

Proof. Because of Lemma 10, for every minimal separator S ⊆ V (G+) of G+, there is a node
t ∈ V (T ), such that S = χ(t), where clearly t is an internal node of T. Now, observe that, since
every pair of different bags of (T, χ) is not a subset of one another, for any internal node t ∈ V (T ),
there exists a pair of vertices whose trace in T belongs in different subtrees of T − t. Then, because
of Lemma 4, every internal bag of (T, χ) is a separator of G+, and because of Lemma 10, it also
has to be minimal. Also, since no two bags of (T, χ) are equal, this bijection is unique. Then,
let S ⊆ V (G+) be a minimal separator of G+ and t ∈ V (T ) be the unique internal node of T
such that S = χ(t). Because of Lemma 5, for any maximal clique K ⊆ G+, such that S ⊆ V (K),
there must be a node t′ ∈ V (T ), adjacent to t, such that V (K) = χ(t) ∪ χ(t′). Additionally,
degT (t) ≤ cdegG+(S), since each connected component of G+ − S is contained in some subtree of
T − t. Also cdegG+(S) ≤ degT (t), since each of these subtrees must induce a connected graph since
G+ is the (T, χ)-completion of G.

Amalgamations of lenient tree decompositions. Our min-max theorem (Section 5) is us-
ing the technique of Bellenbaum and Diestel [5] for proving the equivalence between the bramble
number (that is a max-min parameter) and treewidth (that is a min-max parameter). An impor-
tant ingredient of the proof of Bellenbaum and Diestel [5] is the concept of amalgamating tree
decompositions. We next adapt it to lenient tree decompositions.
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Let (T, χ) be a lenient tree decomposition of a graph G. Let S ⊆ V (G), C ∈ Acc(G,S) and
C− = C − S. Let s ∈ V (T ) be a node of (T, χ) and for every x ∈ S, let Zx ⊆ T be an s-Trace(x)
path in T. Then we define (T, χ′) so that for every t ∈ V (T ) we set,

χ′(t) = (χ(t) ∩ V (C−)) ∪ {x ∈ S | t ∈ V (Zx)}.

It is easy to observe that (T, χ′) is a lenient tree decomposition of C, where we force S ⊆ χ′(s)
while we fix condition (C3) of the definition with the necessary addition of vertices to every bag of
(T, χ). We say that (T, χ′) is an amalgamated restriction of (T, χ) on C with respect to s.

Let G be a graph and S ⊆ V (G). Let T = {(TC , χC) | C ∈ Acc(G,S))} be a family, where for
each C ∈ Acc(G,S), (TC , χC) is a lenient tree decomposition of C with a node sC ∈ V (TC) where
S ⊆ χC(sC). We build from T , a lenient tree decomposition (T, χ) of G as follows. T is obtained
by ⋃C∈Acc(G,C) TC after adding a new node tnew and for every (TC , χC) ∈ T , making tnew adjacent
with sC . We finally define,

χ′ = {(tnew, S)} ∪
⋃

C∈Acc(G,C)
χC .

Observe that (T, χ) is a lenient tree decomposition of G. We call it the S-amalgamation of T . By
the above construction we observe the following.
Observation 12. Let k ∈ N. If every (TC , χC) ∈ T has width at most k, then the S-amalgamation
of T also has width at most k.

Following the ideas of [5], we prove the following lemma.

Lemma 13. Let G be a graph, S ⊆ V (G) and let C ∈ Acc(G,S). Also let (T, χ) be a lenient tree
decomposition of G, s ∈ V (T ), and (T ′, χ′) be the amalgamated restriction of (T, χ) on C with
respect to s. Also, suppose that G− (V (C) \S) contains a set {Px | x ∈ S} of disjoint S-χ(s) paths
where x is a terminal vertex of Px. Then for every node t ∈ V (T ), |χ′(t)| ≤ |χ(t)|.

Proof. Let t ∈ V (T ) be a node such that there is an x ∈ χ′(t) \ χ(t). By definition of χ′(t),
we have that x ∈ S. Let Zx ⊆ T be an s-Trace(x) path in T. By definition of χ′(t), we have
that t ∈ V (Zx). Since x /∈ χ(t), then t /∈ Trace(x), which implies that Zx has length at least 1.
Moreover, if t = s, then trivially χ(s) contains the terminal of Px that belongs in χ(s). Thus, we
can assume that t is an internal node of T. Let y be the terminal vertex of Px in χ(s). Note that,
if Px has length 1, then x, y are adjacent and by condition (C2), there exists a pair of close nodes
u, v ∈ V (T ) where {x, y} ⊆ χ(u) ∪ χ(v). By condition (C3), we can assume that u, v ∈ V (Zx)
and thus Zx ⊆ Trace(x) ∪ Trace(y), which, since x /∈ χ(t), implies that y ∈ χ(t). Now, assume
that, Px has length at least 2 and that x, y are not adjacent. Then, because of Lemma 4, χ(t)
is an (x, y)-separator, and hence contains some other distinct vertex of Px. Note that under the
assumption that x ∈ χ′(t)\χ(t), any such vertex is not contained in χ′(t), since χ′(t) ⊆ V (C) while
V (Px) \ {x} ⊆ V (G) \ V (C). Thus |χ′(t)| ≤ |χ(t)|.

4 k-domino-trees

Recall that k-trees serve as the edge-extremal graphs of graphs of bounded bramble number (via
the equivalence with treewidth). In this section we define the concept of a k-domino-tree that is
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the corresponding extremal structure for the strict brambles. As we will see, this notion is more
entangled than k-trees.

Let G be a chordal graph. We call a maximal clique of G, external (respectively internal), if its
vertex set contains at most one (respectively at least two) minimal separator(s) of G. We say that
all external maximal cliques containing the same minimal separator S, form an external family of S,
and we denote it by KG(S). For each K ∈ KG(S), we define its valiancy to be val(K) = |V (K) \S|,
i.e. the number of private vertices of K. We call a minimal separator S, external (respectively
internal), if KG(S) 6= ∅ (respectively KG(S) = ∅).
Let k ∈ N. A graph G is a k-domino-tree if it is either Kr for some r ≤ k, or it satisfies the following
properties:

i. G is chordal;
ii. Every minimal separator of G has size k;
iii. Every maximal clique of G has size in [k + 1, 2k];
iv. The vertex set of every maximal clique of G contains at most two minimal separators;
v. The vertex set of every maximal clique of G that contains exactly two minimal separators
S, S′ is equal to S ∪ S′;

vi. Every internal minimal separator of G of connectivity-degree two, is not contained in the
union of two other minimal separators;

vii. For every external minimal separator S of connectivity-degree two, the union of the vertex
sets of the maximal cliques that contain S, has size greater than 2k;

viii. For every external minimal separator S, with |KG(S)| > 1, for any different pair K,K ′ ∈ KS ,
val(K) + val(K ′) > k.

A graph G is a partial k-domino-tree if it is a spanning subgraph of a k-domino-tree.
See Figure 2 for an example of the above definition. We proceed with a few remarks. By

i., in a k-domino-tree, every minimal separator S is contained in the vertex set of a maximal
clique. Moreover, it is easy to observe that, each augmented connected component in Acc(G,S),
contains exactly one maximal clique whose vertex set contains S. Therefore, a minimal separator of
connectivity-degree d is contained in exactly d different maximal cliques. Also for any K ∈ KG(S),
val(K) ∈ [1, k].Moreover, for different pairs K,K ′ ∈ KG(S), V (K)∩V (K ′) = S, so val(K)+val(K ′)
does not double count vertices. Also, if S is external, the connectivity-degree of S is at least |KG(S)|.

The following Lemma will be very useful in our proof of the min-max theorem in Section 5.

Lemma 14. Let G be a k-domino-tree and S ⊆ V (G) be a minimal separator of G such that there
exists C ∈ cc(G− S) with |V (C)| > k. Then there exists a minimal separator S′ ⊆ V (G) of G with
the following properties:

1. S′ is properly contained in C+, where C+ = G[V (C)∪S], i.e. C+ is the augmented connected
component of G− S, corresponding to C.

2. S and S′ are not a subset of one another.
3. The vertices in S ∪ S′ induce a maximal clique in G.
4. C − S′ is a connected component of G− S′.
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Figure 2: A graph G with a set S of three square vertices, such that G′ = G \ S is a 2-domino-tree. The
neighbor of the red square vertex is a cut-vertex, which violates property ii.. Also, the K2 incident to the red
square, violates property iii.. The violet square vertex cannot exist, as otherwise the K3 induced by it and
its neighbors is separated by {i, f}, which is contained in the maximal clique induced by {f, g, h, i} which
contains three minimal separators. This violates property iv.. The maximal clique induced by the green
square vertex and its neighbors contains two minimal separators that do not cover the green square vertex.
This violates property v.. Consider now the graph G′. If we remove from G′ the edge {c, d}, the graph will no
longer be chordal, which violates property i.. If we remove the edge {k, l}, the set {j,m} becomes an internal
minimal separator of connectivity-degree two, that is contained in the union of the minimal separators {j, k}
and {l,m}, which violates property vi.. If we remove the edge {l, o}, the set {m,n} becomes an external
minimal separator of connectivity-degree two, where the union of the vertex sets of the maximal cliques
induced by {l,m, n} and {m,n, o}, has size four, which violates vii.. If we remove edge {a, b}, the external
minimal separator {c, d} belongs to the external maximal cliques induced by {a, c, d} and {b, c, d} and the
sum of the valiances of these two cliques is two, which violates property viii..

Proof. Since every maximal clique ofG has size at most 2k and |V (C)| > k, there exists a pair of non
adjacent vertices x ∈ S, y ∈ V (C), in G. Let S′ ⊆ V (G) be a minimal (x, y)-separator maximizing
the size of C ′y ∈ Acc(G,S′), where C ′y is the augmented connected component of G− S′, such that
y ∈ V (C ′y).

Property 1. holds, since there exists a x-y path with internal vertices in C, which implies that
there is a vertex of C in S′, which, since G is chordal (property i.), implies that S′ ⊆ V (C+).

Property 2. also holds since x ∈ S, while x /∈ S′ and S′ contains a vertex of C which clearly
cannot be in S.

For property 3. assume that S ∪ S′ does not induce a clique in G. Then there exists a pair
of non adjacent vertices x′ ∈ S, y′ ∈ S′ which in turn implies the existence of a minimal (x′, y′)-
separator S′′ ⊆ V (G) of G, which is also properly contained in C+. Observe that since x′ and y′
are not adjacent, x′ /∈ S′, which since S is a clique, implies that S′ is also an (x′, y)-separator.
Now let C ′x′ ∈ Acc(G,S′), such that x′ ∈ V (C ′x′) and C ′′y ∈ Acc(G,S′′), such that y ∈ V (C ′′y ).
Notice that every x′-y′ path has an internal vertex in C ′x′ and it intersects S′′. This implies that
S′′ is completely contained in C ′x′ and in turn that y /∈ S′′. Finally observe that there exists a y-y′
path with internal vertices only in C ′y and S′′ cannot intersect any such path which implies that
y′ ∈ V (C ′′y ). This contradicts the assumption on S′. Also since S ∪ S′ induces a clique in G, it is
contained in a maximal clique of G whose vertex set contains exactly two minimal separators, S
and S′. Then S ∪ S′ induces the entire maximal clique (property v.).
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Figure 3: The connected component C, and the minimal separators S and S′ of Lemma 14.

For property 4., let C ′x ∈ Acc(G,S′), such that x ∈ V (C ′x). It suffices to prove that (V (C ′x) \
S′) ∩ V (C) is empty. Then C ′y − S′ is the required connected component. Assume that there
exists a vertex z ∈ (V (C ′x) \ S′) ∩ V (C). Since S ∪ S′ induces a maximal clique in G, there exists
a vertex w ∈ S ∪ S′, such that {w, z} /∈ E(G). Let S′′ be a minimal (w, z)-separator in G, such
that S′′ ⊆ S ∪ S′. Clearly such a separator exists. But then S ∪ S′ contains at least three minimal
separators which contradicts property iv..

5 The min-max equivalence Theorem

In this section we prove the main result of this paper. We prove equivalent min-max formalizations
for the strict bramble number in terms of the lexicographic tree product number, the minimum
width of lenient tree decompositions and subgraph containment in extremal structures. Our main
result is the following.

Theorem 15. Let G be a graph and k ∈ N. The following statements are equivalent.

1. There is a tree T such that G is a minor of T ·Kk.

2. G has a lenient tree decomposition of width at most k.
3. G has no strict bramble of order greater than k.
4. G is a partial k-domino-tree.

Proof. (2 ⇒ 1 ). Let (T, χ) be a lenient tree decomposition of G of width k. Because of Lemma 7,
we may assume that (T, χ) is also extreme. Let G+ = T ·Kk. It is enough to prove that G ≤m G+.

Let µ : V (G)→ V (G+) be a mapping such that for each v ∈ V (G), µ(v) contains exactly one vertex
from each clique corresponding to the vertices of Trace(v). Observe that since (T, χ) is extreme,
these vertices can be selected such that, for different v, v′ ∈ V (G), µ(v) and µ(v′) are disjoint. Also
for adjacent vertices u, v ∈ V (G) it is easy to see that they contain a pair of vertices u′, v′ ∈ V (G+),
from close nodes t ∈ Trace(u) and t′ ∈ Trace(v), which are adjacent in G+. In any case µ is a minor
model of G in G+, as required.

(1 ⇒ 2 ). Let (T, χ) be such that χ maps each node of T to the corresponding clique in T ·Kk.

Clearly (T, χ) is a lenient tree decomposition of T ·Kk and the result follows from Observation 3.
(4 ⇒ 3 ). The claim trivially holds if G has at most k vertices. Let D be a k-domino-tree such

that G is a spanning subgraph of D. Assume to the contrary that G has a strict bramble B ⊆ 2V (G)

of order greater than k. B is also a strict bramble of the same order in D. Every minimal separator
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S ⊆ V (D) of D has size k and, as such, there exists an element of B which it does not intersect.
This element is connected and thus must be completely contained in some connected component
C ∈ cc(D−S). Choose S with the smallest such component. If C has size k we are done. Otherwise
observe that there exists a separator S′ ⊆ V (D) of D with the properties stated at Lemma 14.
With the same reasoning there exists a connected component C ′ ∈ cc(D − S′) that contains an
element of B. Properties 1, 2 and 4 of Lemma 14 certify that there exists a connected component
of D−S′ properly contained in C. C ′ cannot be this component as this would contradict the choice
of S. Property 4 also certifies that the vertex set of any other connected component of D − S′ is
disjoint from the vertex set of C. This contradicts the intersecting properties of B.

(2 ⇒ 4 ). The claim trivially holds if G has at most k vertices. Let (T, χ) be a lenient tree
decomposition of G of width k. As before, because of Lemma 7, we may assume that (T, χ) is
extreme. Let D be the (T, χ)-completion of G. Clearly D is a spanning supergraph of G. We argue
that D is a k-domino-tree. Property i. is obtained directly from Lemma 8. Property ii. is implied
from Lemma 10 since all bags of (T, χ) have size k. For Property iii., because of Lemma 5, for every
maximal cliqueK of D, there is an adjacent pair of nodes t, t′ ∈ V (T ) such that V (K) ⊆ χ(t)∪χ(t′).
This immediately implies that |V (K)| ≤ 2k. Also observe that, since χ(t) and χ(t′) are not a
subset of one another, |V (K)| ≥ k + 1. Property iv. is implied from Lemma 9, since if V (K)
contains a minimal separator of D, then it is either χ(t) or χ(t′). Also, Property v. holds since,
χ(t) ∪ χ(t′) = V (K). Now, consider a minimal separator S ⊆ V (D) of cdegD(S) = 2. Then, by
Lemma 11, let t ∈ V (T ) be the corresponding node of degT (t) = 2. Since (T, χ) is extreme, for any
pair of nodes t′, t′′ ∈ V (T ) such that t ∈ V (P ), where P is the unique t′-t′′ path in T, we have that
χ(t) * χ(t′)∪χ(t′′). This easily implies property vi. and property vii. Additionally, if S is external,
t has exactly |KG(S)| leaf neighbours in T. Moreover, if |KG(S)| > 1, let t′, t′′ ∈ V (T ) be two
different leaf neighbours of t. We know that, |Petal(t′) ∪ Petal(t′′)| > k. Now observe that, because
of Lemma 11, χ(t) ∪ χ(t′) and χ(t) ∪ χ(t′′) correspond to two maximal cliques K,K ′ ∈ KG(S) and
that Petal(t′) = val(K) while Petal(t′′) = val(K ′). Thus property viii. is also satisfied.

3 ⇒ 2 ). This part of the proof uses the ideas of the corresponding proof in [5]. Assume that
G has no strict bramble of order greater than k. We show that for every strict bramble B ⊆ 2V (G)

of G, there is a lenient tree decomposition of G such that, if the size of a bag is greater than k

then this bag does not cover B. We call such a lenient tree decomposition B-admissible. Observe
that for S = ∅, the width of a B-admissible lenient tree decomposition of G is at most k, since
trivially any set covers an empty strict bramble. To prove that G admits a B-admissible lenient tree
decomposition, we will prove instead that every C ∈ Acc(G,S), admits a B-admissible lenient tree
decomposition (TC , χC), with a node s ∈ V (TC), such that χC(s) = S. Then the S-amalgamation
of {(TC , χC) | C ∈ Acc(G,S)} is clearly B-admissible.

Let B ⊆ 2V (G) be a strict bramble and let S ⊆ V (G) be a minimal cover of B. Then order(B) =
|S| ≤ k. If S = V (G) then the lenient tree decomposition with S as the only bag, is B-admissible.
Assume otherwise. We proceed with a backwards induction on the size |B|.

For the base case assume that any B′ ⊆ 2V (G) such that |B′| > |B| is not a strict bramble,
i.e., B is a strict bramble with a maximum number of elements. We can safely assume this since
|B| < 2V (G). This holds since B cannot contain a set and its complement. Let C ∈ cc(G − S),
C+ = G[V (C) ∪ S] and let B′ = B ∪ {C}. Since B′ is not a strict bramble it is implied that C
does not cover B. Then the pair (T, χ) where T consists of two adjacent nodes t, t′ ∈ V (T ) while
χ(t) = S and χ(t′) = C is a lenient tree decomposition of C+ with the required properties.
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Now assume inductively that for any strict bramble B′ ⊆ 2V (G) such that |B′| > |B|, there is
a B′-admissible lenient tree decomposition of G. Let C ∈ cc(G − S), C+ = G[V (C) ∪ S] and let
B′ = B ∪ {C}. If B′ is not a strict bramble then we proceed as in the base case. Assume that it
is. Then, since S covers B and S ∩ C = ∅, we have that C /∈ B and thus |B′| > |B|. Then by
the induction hypothesis, there is a B′-admissible lenient tree decomposition of G, say (T, χ). Ιf
(T, χ) is also B-admissible then we are done. Otherwise, there exists a node s ∈ V (T ) of (T, χ),
such that |χ(s)| > k, that covers B but does not cover B′. Since it does not cover B′, it is implied
that χ(s) ⊆ V (G − C). Moreover, because of Lemma 1, any (S, χ(s))-separator of G has size at
least order(B). By Menger’s Theorem, there exists a set {Px | x ∈ S} of disjoint S-χ(s) paths in G.
Since order(B) = |S| and |S| < |χ(s)|, we can also assume that for every x ∈ S, x is the endpoint
of Px in S. Finally, observe that since χ(s) ⊆ V (G − C), we can also assume that for each x ∈ S,
V (Px) ⊆ V (G− C).

Now let (T ′, χ′) be the amalgamated restriction of (T, χ) on C+ with respect to s. First observe
that since χ(s) ⊆ V (G−C), we have that χ′(s) = S. It remains to show that (T ′, χ′) is B-admissible.
Let t ∈ V (T ′), such that |χ′(t)| > k. Since |S| ≤ k, by definition, we have that χ′(t) ∩ V (C) 6= ∅,
which also implies that χ(t) ∩ V (C) 6= ∅. Also, by Lemma 13, we have that |χ(t)| ≥ |χ′(t)| > k.

Then since (T, χ) is B′-admissible and χ(t) ∩ V (C) 6= ∅, there must be some B ∈ B such that
χ(t) ∩ B = ∅. We show that χ′(t) ∩ B = ∅ as well. Let x ∈ χ′(t) ∩ B. Let tx ∈ Trace(T ′,χ′)(x)
be closest to s. Let Zx ⊆ T ′ be the unique s-tx shortest path in T ′. Suppose to the contrary that
χ′(t) ∩ B 6= ∅. By definition of χ′(t), it must be that x ∈ S and x /∈ χ(t). Then this implies that
t ∈ V (Zx). Since |χ′(s)| ≤ k, t 6= s. Also, since x /∈ χ(t), t 6= tx. Then t is an internal node of T ′.
Moreover, since χ(s) covers B, we have that χ(s) ∩ B 6= ∅. Also by assumption, χ(tx) ∩ B 6= ∅.
Then, because of Lemma 6, χ(t) ∩B 6= ∅ which contradicts the fact that χ(t) ∩B = ∅.

6 Edge-maximal graphs

In this section we prove a bound on the number of edges of a graph with strict bramble number at
most k. Recall that Gk = {G | sbn(G) ≤ k}.We achieve this by identifying the exact structure of all
edge-maximal graphs of Gk. The striking difference with treewidth (where all k-trees on n vertices
have the same number of edges), is that, edge-maximal graphs of some specific size may have a
varying number of edges. More formally, we do this by proving that the edge-maximal graphs of
Gk are exactly the k-domino-trees.

Theorem 16. Let G ∈ Gk. G is an edge-maximal graph if and only if, G is a k-domino-tree.

Proof. Since G ∈ Gk, by Theorem 15, G is a partial k-domino-tree. Assume that it is edge-maximal
but not a k-domino-tree. This is an immediate contradiction, since we can still add edges to make
it a k-domino-tree and remain in the class. For the converse assume that it is a k-domino-tree but
not edge-maximal. Then, by Theorem 15, G is a proper spanning subgraph of a k-domino-tree,
say D. We prove that G is isomorphic to D, thus contradicting our assumption. If V (G) ≤ 2k, by
definition and properties vii., viii., G and D are isomorphic to K|V (G)|. Assume that |V (G)| > 2k.
Then D has at least one minimal separator.

First observe that any minimal separator S of D is also a minimal separator of G. Thus, since
G is a proper spanning subgraph of D, for any connected component C ∈ cc(G−S), that contains
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some vertex of a connected component C ′ ∈ cc(D − S), it holds that |V (C)| ≤ |V (C ′)|. Let K be
a maximal clique in D. If G also contains K as a maximal clique we are done. Assume otherwise.

First, assume that K is an external maximal clique whose vertex set contains the external
minimal separator S ⊆ V (D) of D. Let C ∈ Acc(G,S), such that V (C) contains a vertex of
V (K) \S. From the previous observation |V (C)| ≤ 2k. We distinguish two cases. Assume that S is
external in G. If cdegG(S) = 2, then the union of the vertex sets of the two maximal cliques that
contain S, has size at most 2k, which contradicts property vii.. Otherwise, in the context of G,
define KG(S) as usual and assume that |KG(S)| > 1. Then for any pair of different maximal cliques,
say K ′,K ′′ ∈ KG(S), since |V (C)| ≤ 2k, we have that val(K ′) + val(K ′′) ≤ k, which contradicts
property viii.. Now, assume that S is internal in G. Then C contains some other external minimal
separator of G, and we can reapply the two previous arguments.

Now, assume that K is an internal maximal clique in D and let S, S′ ⊆ V (D) be the two
minimal separators covering V (K). Since K is not a maximal clique in G, there exists a pair of
vertices x ∈ S, y ∈ S′, that are not adjacent in G. Then there exists a minimal (x, y)-separator
S′′ ⊆ V (G) in G contained in V (K). Observe that, S′′ cannot be an internal minimal separator
with cdegG(S′′) = 2, as that would contradict property vi.. Also, if cdegG(S′′) > 2, then there
exists a connected component of G − S′′, contained in V (K), which implies that there exists at
least one vertex of V (K) that is not covered by S ∪S′ in D. This contradicts property v. in D.

Bounds. We continue by presenting a tight upper bound for the number of edges an edge-maximal
graph in Gk can have. Consider (T, χ) to be an extreme lenient tree decomposition of width k for
some graph G. We proceed to count the maximum number of edges that G can have. Recall, that
in an extreme lenient tree decomposition all bags have size k and no pair of bags is a subset of one
another.

Root T from some arbitrary internal node ρ ∈ V (T ). For every node t ∈ V (T ) different than ρ,
let p ∈ V (T ) be the parent of t, i.e. the neighbor closest to ρ. Then, define kt = |χ(t) \ χ(p)|, i.e.
the number of new vertices of G that this node introduces. Notice that, kt ∈ [k]. Also for notational
simplicity, let X = V (T ) \ {ρ}. In this way, it is clear that

|V (G)| = k +
∑
t∈X

kt,

and for the number of edges,

|E(G)| =
(
k

2

)
+
∑
t∈X

[(
kt
2

)
+ k · kt

]

=
(
k

2

)
+
(
k − 1

2

)(
|V (G)| − k

)
+ 1

2
∑
t∈X

k2
t .

To maximize the above quantity, we have to maximize the sum of squares. We have that∑
t∈X kt = |V (G)| − k and we want to partition this quantity into |X| variables, kt ∈ [k], so as

to maximize ∑t∈X k
2
t . The optimal solution is given by having as many variables equal to k as

possible. So, if |V (G)| = c · k+ r, where r < k, the optimal is given when k vertices are introduced
for the root (this introduces

(k
2
)
edges), c− 1 nodes introduce k new vertices each (this introduces
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Figure 4: A 2-domino-tree on 8 vertices, and 16 edges, which is the maximum possible number of edges a
2-domino-tree on 8 vertices may have.

k2 +
(k

2
)
edges at a time) and we have a single node that introduces the remainder r (this introduces

rk +
(r

2
)
edges). We have that:

|E(G)| ≤
(
k

2

)
+ c− 1

2
(
3k2 − k

)
+ rk +

(
r

2

)
(4)

Replacing c by (|V (G)| − r)/k and r by |V (G)| mod k, in (4) we have that:

|E(G)| ≤ 3k − 1
2 |V (G)| − k2 − k

2
(
|V (G)| mod k

)
+ 1

2
(
|V (G)| mod k

)2
(5)

Let G ∈ Gk. Then there is a function f : N × N → N such that |E(G)| ≤ f(|V (G)|, k), where
f(|V (G)|, k), is defined as the right-hand upper bound in (5). This gives an upper bound to the
number of edges of a graph G where sbn(G) ≤ k.

Also this bound is tight. Consider a k-domino-tree D, with |V (D)| = |V (G)|, that is made up
of c linearly arranged maximal cliques, where one of the external maximal cliques has size k + r,

while all others have size 2k (see Figure 4). Then |E(D)| = f(|V (D)|, k).
Now, assume that |V (G)| ≥ 3k and let D′ be a k-domino-tree, with |V (D′)| = |V (D)|, that is

made up of (c − 3)k + r + 2 linearly arranged maximal cliques in a fan way, where all maximal
cliques have k − 1 vertices in common, both of the external maximal cliques have size 2k and all
others have size k + 1 (see Figure 5). Then:

|E(D′)| =
(
k

2

)
+ ck2 + (r − 1)k (6)

Again, by replacing c with (|V (D′)| − r)/k, in (6) we have that:

|E(D′)| = k|V (D′)|+ k2 − 3k
2 (7)

To conclude, this implies that the edge-maximal graphs in Theorem 16 do not necessarily have
the same number of edges. Let G ∈ Gk be an edge-maximal graph with the maximum possible
number of edges and let G′ ∈ Gk be an edge-maximal graph with the minimum possible number of
edges, such that |V (G)| = |V (G′)| = c · k + r, where c ≥ 3. A lower bound on the size difference
between the two edge sets is the following:

|E(G)| − |E(G′)| ≥ c− 3
2 k(k − 1) +

(
r

2

)
(8)

or as a function of n = |V (G)| = |V (G′)|:

|E(G)| − |E(G′)| ≥ k − 1
2 n− k

2
(
n mod k

)
+ 1

2
(
n mod k

)2
− 3

(
k

2

)
(9)
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Figure 5: A 2-domino-tree on 8 vertices and 15 edges.

Already for k = 2 and n = 8 in (9), we have that |E(G)| − |E(G′)| ≥ 1. Figure 4 and Figure 5
depict this.

7 Minor obstructions for strict bramble number at most two

We use the term graph collection for finite sets of graphs, while for infinite sets of graphs we use
the term graph class. Given a collection of graphs H, we denote by exc(H) the class of all graphs
that do not contain any of the graphs in H as a minor.

A graph class G is minor-closed if every minor of a graph in G belongs to G. We define the
set Obs(G) of all minor-minimal graphs not belonging to G. A direct consequence of the celebrated
Robertson and Seymour Theorem [19], is that Obs(G) is a finite set. This implies that every minor-
closed graph class G can be finitely characterised by this obstruction set, as a graph H belongs
to G, if and only if, none of the (finitely many) graphs in Obs(G) is a minor of H. Therefore
G = exc(Obs(G)). Although the identification of the obstruction set of a minor-closed graph class
can be a very difficult task (as the size of this set more often than not is enormous), there is
an ever-growing list of characterizations (partial or complete) of the obstruction sets for diverse
minor-closed graph classes (see e.g., [2, 4, 8–11,14,16,20,22,25,26]).

Recall that we have defined Gk to be the class of graphs with strict bramble number at most k.
The goal of this section is to give an alternative characterization of G2 in terms of forbidden minors.
First, as we have already noticed, Obs(G1) = {K3}, as G1 contains exactly the graphs in which each
connected component is a tree. We start the study of Obs(G2) with the following lemma.

Lemma 17. Every graph in Obs(G2) is 2-connected.

Proof. Let G,G′ ∈ G2, such that they are disjoint. Let x ∈ V (G), y ∈ V (G′) and let G′′ be the
graph, that is the result of the disjoint union of G with G′, after identifying x, y into a single vertex.
Observe that G′′ ∈ G2. To see this, take any two disjoint lenient tree decompositions of G and G′
and consider a new one: the tree is created by adding an edge between the two nodes of the trees
containing x and y and the set of bags is the union of the set of bags of the two decompositions.
This is a lenient tree decomposition of G′′ of the same width. Now let H ∈ Obs(G2) and assume it
is not 2-connected. Then there exists a cut-vertex that splits H, into at least two proper minors of
H that belong to G2. Then, by the previous argument, H ∈ G2, a contradiction.

Let G be a graph and let (T, χ) be a tree decomposition of G. The adhesion set of an edge
e = {t, t′} ∈ E(T ) is the vertex set χ(t)∩χ(t′) ⊆ V (G) and the adhesion of an edge e ∈ E(T ) is the
size of the adhesion set of e. The adhesion of the tree decomposition (T, χ) is equal to the maximum
adhesion of the edges of T. The adhesion variety of a node t ∈ V (T ), denoted by adv(t), is the
number |{χ(t) ∩ χ(t′) | t′ ∈ NT (t)}|, i.e. the number of different adhesion sets of edges incident to
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Figure 6: On the right we can see a tree-decomposition (T, χ) of G (we have marked the vertices of each
bag χ(t)). Notice that the adhesion set of {t, t′} ∈ E(T ) is the set {b, e} and that the adhesion of (T, χ) is
2. Also notice that the t-torso is the graph G[{c, b, e}] with the addition of the (T, χ)-completion edge {b, e}.
Additionally, adv(t) = 3 and AugT,χ(G) is G with the addition of the edge {b, e}.

t (see Figure 6). For every t ∈ V (T ), we define the edge set E(t) = ⋃
t′∈NT (t)

(χ(t)∩χ(t′)
2

)
and the

t-torso of (T, χ) as the graph (χ(t), E(G[χ(t)]) ∪ E(t)). We also call (T, χ)-augmentation of G the
graph obtained if we take the union of every t-torso of G, t ∈ V (T ), and we denote it by AugT,χ(G),
or simply Aug(G) when (T, χ) is clear from the context. We call the edges of AugT,χ(G) that are
not edges of G, (T, χ)-completion edges (see Figure 6).

We also require the well-known notion of triconnected decompositions. The following result is a
restatement, in our terminology, of the classic result of Tutte (see [24]).

Proposition 18. Every graph has a tree decomposition (T, χ) of adhesion at most two where every
t-torso is either a 3-connected graph or a complete graph on at most three vertices. Moreover, for
every t ∈ V (T ), and every completion edge {x, y} of the t-torso, there is a x-y path of length at
least two in G that does not contain edges of the t-torso and every two such paths, corresponding
to the same torso, are internally disjoint.

We call a decomposition (T, χ) of a graph G, as in 18, a triconnected decomposition of G and its
t-torsos triconnected components of G. Observe that every triconnected component of G is a minor
of G.

We also require the following easy proposition. It follows easily by the classic result of Tutte
in [23], asserting that for every 3-connected graph G there is a sequence G1, . . . , Gr of 3-connected
graphs such that Gi is a minor of Gi+1, for every i ∈ [r − 1] and where Gr = G and G1 is a wheel
graph.

Proposition 19. Every 3-connected graph not containing W4 as a minor is isomorphic to K4.

Let Z be the collection of graphs W4, H1, H2, as seen in Figure 7. We prove the following
Lemmata.

Lemma 20. Let G be a 2-connected graph that excludes as a minor the graphs in Z. Then there
is a triconnected decomposition (T, χ), such that:

• every edge of T has adhesion two;

• every node of T has adhesion variety at most two;
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• for every t ∈ V (T ) with adhesion variety two, the set χ(t) is the union of the adhesion sets
of the edges incident to t in T.

Proof. Let (T, χ) be a triconnected decomposition of G, which subject to 18 minimizes,

µ(T, χ) :=
∑

t∈V (T )
(adv(t)− 2).

Since G is 2-connected we can assume that every edge of T has adhesion exactly two. Observe that,
since W4 is not a minor of G, by 19, every 3-connected t-torso of (T, χ) is isomorphic to K4. Also,
since (T, χ) has adhesion two, every other triconnected component of G must be isomorphic to K3.

Therefore, for every t ∈ V (T ), |χ(t)| ∈ {3, 4}. For every node t ∈ V (T ), let At be the family of
different adhesion sets of the edges incident to t in T. Notice that, |At| = adv(t). For each Ai ∈ At,
i ∈ [adv(t)], we consider some Ci ∈ Acc(G,Ai), where χ(t) 6⊆ V (Ci). We distinguish two cases.

Case 1: G[χ(t)] is isomorphic to K3. Assume that |At| ≥ 3. Then we distinguish two subcases.
Subcase 1a: For some i ∈ [3], Ci is a path between the two vertices x, y ∈ Ai. This implies that
Ai /∈ E(G) and that Ci has length at least 2. Let z 6= x, y be the third vertex of χ(t). Then we can
add a completion edge between z and every vertex of Ci and then replace node t with a path in
T, for each new triangle created. Clearly, this new triconnected decomposition decreases µ(T, χ),
which is a contradiction.
Subcase 1b: For every i ∈ [3], Ci is not a path between the two vertices x, y ∈ Ai. Then, since G
is 2-connected, Ci contains a cycle. Then we can contract Ci into a triangle with x, y as one side,
and we obtain H1 as a minor, which contradicts our hypothesis.

Case 2: G[χ(t)] is isomorphic to K4.We prove that for every pair of different Ai, Aj ∈ At, Ai∩Aj =
∅. Notice that this implies that |At| ≤ 2 and that if |At| = 2, χ(t) = ⋃

At. Assume to the contrary,
that Ai ∩ Aj 6= ∅, for some pair of different Ai, Aj ∈ At. Then contract Ci, Cj into single vertices
and remove Ai, Aj from E(G), if the edges exist. Then we get H2 as a minor of G, which again
contradicts our hypothesis.

Lemma 21. Let G be a 2-connected graph that excludes as a minor the graphs in Z. Then G ∈ G2.

Proof. We prove thatG admits a lenient tree decomposition (T, χ) of width 2. Then, by Theorem 15,
G ∈ G2. Let (T ′, χ′) be a triconnected decomposition of G, as in Lemma 20. We obtain (T, χ) from
(T ′, χ′) as follows. We define the set, A = {χ′(t) ∩ χ′(t′) | {t, t′} ∈ E(T ′)}, i.e. the set of different
adhesion sets of (T ′, χ′). We define a node t ∈ V (T ) for each A ∈ A and we set χ(t) = A. Two
nodes t, t′ ∈ V (T ) are adjacent if there exists a node t′′ ∈ V (T ′) such that, χ(t) and χ(t′), are the
adhesion sets of edges incident to t′′. Also for every leaf node t ∈ V (T ′) of T ′, we put all vertices
of χ′(t), which are not contained in some adhesion set, in a new node in T which is adjacent to
the unique node of T, corresponding to the adhesion set of the edge incident to t in T ′. Since every
node of (T ′, χ′) has adhesion variety at most two, clearly T is a tree. Since the adhesion sets of
edges incident to a node t in T ′ with adhesion variety two, cover every vertex of χ′(t), a vertex is
either in a leaf or in an adhesion set in T ′, thus (T, χ) satisfies conditions (C1) and (C2). Now,
consider a vertex x ∈ V (G). Since in T ′, Trace(T ′,χ′)(x) is connected, the nodes corresponding to
the different adhesion sets that contain x will also be connected in (T, χ), thus condition (C3) is
also satisfied. Since (T ′, χ′) has adhesion two, the width of (T, χ) is two.
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Figure 7: The graphs in Z.

Lemma 22. Let G be a graph that has no strict bramble of order greater than 2. Then G excludes
as a minor the graphs in Z.

Proof. We provide for each of the graphs in Z, a strict bramble of order three. For W4 we have the
following strict bramble,

{{v1, v2, v3}, {v1, v3, v4}, {v1, v4, v5}, {v1, v2, v5}, {v2, v3, v5}, {v2, v3, v4}, {v3, v4, v5},
{v2, v4, v5}, {v1, v2, v4}, {v1, v3, v5}}

for H1 we have the following strict bramble,

{{v1, v2, v3}, {v3, v5, v6}, {v1, v4, v6}, {v2, v4, v5}, {v2, v3, v4}, {v1, v2, v5}, {v1, v4, v5}}

and for H2 we have the following strict bramble.

{{v1, v2, v3}, {v1, v2, v5}, {v1, v3, v4}, {v2, v4, v5}, {v1, v4, v6}, {v2, v4, v6}, {v3, v5, v6}}

By the equivalency of Theorem 15, it holds that sbn is minor-closed and thus G excludes as a
minor the graphs in Z.

We now present the main theorem of this section.

Theorem 23. The obstruction set of the class G2, consists of the graphs in Z.

Proof. Observe that any proper minor of the graphs in Z has strict bramble number at most
two. Combined with Lemma 22, this implies that Z ⊆ Obs(G2). Now assume that there exists
an obstruction Z ∈ Obs(G2) \ Z. As Z ∈ Obs(G2), Z excludes all the graphs in Z as a minor.
Additionally, by Lemma 17, Z is 2-connected. Then, by Lemma 21, Z ∈ G2, which contradicts the
choice of Z. Thus Obs(G2) = Z.

Notice that Obs(G2) = Z, indicates that the class G2 is “orthogonal” to the class, say T2, of the
graphs of treewidth at most two, where Obs(T2) = {K4}. Indeed sbn(K4) = 2 and tw(K4) = 3,
while sbn(H1) = 3 and tw(H1) = 2.

8 NP-completeness

In this section, we prove that given a graph G and an integer k ∈ N, deciding whether sbn(G) ≤ k
or, equivalently, ltp(G) ≤ k is NP-complete. Membership in NP follows from the definition of sbn via
lenient tree decompositions, due to the min-max equivalence of Theorem 15. For the NP-hardness,
we reduce the problem of deciding whether tw(G) ≤ k (that is NP-complete [3]) to our problem.
We first prove the following Lemma.
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Lemma 24. Let H be a graph obtained from a graph G after replacing every edge of G with 2k− 1
paths of length two. If H admits a lenient tree decomposition (T, χ) of width at most k then, for
every pair of vertices x, y ∈ V (G) that are adjacent in G, there is a bag of (T, χ) that contains them
both.

Proof. Let x, y ∈ V (G) be an adjacent pair of vertices in G. We can easily observe that, by the
definition of H, there are 2k − 1 disjoint x-y paths in H. Then, by Menger’s Theorem, any (x, y)-
separator in H has size at least 2k− 1. Let tx, ty ∈ V (T ) be the closest nodes in (T, χ) whose bags
contain x, y respectively. We want to show that the distance between them is zero. Assume that
it is at least two. Then there exists a node of T, in between tx and ty whose bag, by Lemma 4, is
a (x, y)-separator of H of size at most k which is a contradiction. Now assume that the distance
is one. Then since |χ(tx) ∪ χ(ty)| ≤ 2k, there is a neighbour of x, y in H which is not contained in
either χ(tx) or χ(ty), which violates condition (C2).

We continue with the proof of the reduction.

Theorem 25. There exists a polynomially computable function that, given a graph G and an integer
k ∈ N, outputs a graph H such that, tw(G) ≤ k − 1 if and only if, ltp(H) ≤ k.

Proof. We obtain H by replacing every edge of G with 2k − 1 paths of length two. Observe that
the forward direction easily holds. Indeed, having parallel edges and subdividing them does not
increase the tree width of a graph. Then the claim follows since tw(G) ≤ ltp(G). For the backwards
direction, by Theorem 15, it is equivalent to argue in terms of lenient tree decompositions. Let (T, χ)
be a lenient tree decomposition of H of width at most k− 1. Then, by Lemma 24, for every pair of
vertices x, y ∈ V (H) adjacent in G, there is a bag of (T, χ) that contains them both. Now simply
observe that (T, χ) is a tree decomposition of G, of width at most k − 1. Thus tw(G) ≤ k − 1.

9 Open problems

In this paper we initiated the study of the strict bramble number. As computing this parameter is
an NP-complete problem, it is meaningful to design a parameterized algorithm, i.e. one that can
answer whether sbn(G) ≤ k in f(k) · |V (G)|O(1) steps, for some computable function f. Such an
algorithm actually exists because this question is equivalent to checking whether none of the graphs
in Obs(Gk) is contained in G as a minor, Obs(Gk) is finite for every k because of the Robertson
and Seymour theorem [19], and minor checking for graphs of bounded treewidth can be done in
linear (on the size of the host graph) time. However, this argument is not constructive as we do not
know Obs(Gk). Therefore it is an open problem to actually design such an algorithm. A possible
step for this would to identify Obs(Gk) for higher values of k. However, this seems to be a hard
problem, even for k = 3. Combining computer search with some graph-theoretic observations, we
were able to identify3 at least 194 members of Obs(G3): 5 with 7 vertices , 19 with 8 vertices ,
75 with 9 vertices , 86 with 10 vertices , and at least 9 with at least 11 vertices .

3See https://www.cs.upc.edu/˜sedthilk/twointer/Obstruction_checker.py for the verification code.
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