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ABOUT THE OPTIMAL ESTIMATION OF A DENSITY WITH INFINITE

SUPPORT UNDER HELLINGER LOSS

MATHIEU SART

Abstract. The aim of this paper is to give a complete description of the optimal estimation rates
for the Hellinger loss when the square root of the density belongs to a Besov ball Bα

p,∞(R). We
make them explicit without further conditions when p < 2, and under a tail dominance condition
when p is larger.

1. Introduction

We consider n independent and identically distributed random variables X1, . . . ,Xn with values
in R. We suppose that their distribution is absolutely continuous with respect to the Lebesgue
measure and denote their density by f .

An important challenge in the density estimation problem is to determine as accurately as possible
the minimax risk. The latter can be defined as follows. Let D(R) be the set of densities on R, F

be a subset of D(R), and L be a loss function. The minimax risk is

R(F ,L ) = inf
f̂

sup
f∈F

E

[
L (f, f̂)

]
,

where the infimum is taken over all estimators f̂ . Different choices are possible for L . Among them
are the qth powers of the Lq distances L = dqq, or the square of the Hellinger distance L = h2. We
recall that h is defined for all f1, f2 ∈ D(R) by

h2(f1, f2) =
1

2

∫ (√
f1(x)−

√
f2(x)

)2
dx.

The role of the minimax risk is to give a baseline against which to compare when proposing a
statistical estimation procedure. We are more precisely interested here in the optimal estimation
rate, that is in the sequence (εn)n≥1 satisfying

0 < lim inf
n→+∞

ε−1
n R(F ,L ) < lim sup

n→+∞
ε−1
n R(F ,L ) < +∞.

An optimal estimation procedure f̂ is therefore a procedure whose risk E[L (f, f̂)] converges at
the rate εn under the sole condition that f lies in F . This minimax point of view thus makes it
possible to discard certain procedures that are not rate optimal, even in the a priori simple case
where f is a smooth density on R.
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2 MATHIEU SART

To formalize things a little more, we state that f is smooth if f belongs to a ball Bα
p,∞(R) of

a Besov space. In a nutshell, the parameter R is an upper-bound of the (quasi) Besov norm of
the elements f of Bα

p,∞(R). This (quasi) norm measures the variations of f by means of a (quasi)
L
p norm and according to the smoothness exponent α. The larger p is, the more uniformly the

regularity of f is measured. The latter is therefore likely to have much smaller local variations
if p is large than if p is small. Note also that R induces a constraint on the (quasi) Lp norm of f
and hence on its tails when p < 1 (the smaller p is, the lighter they should be). There are several
possible equivalent definitions of R, and we choose one in Section 2.1. For the sake of rigour, we
assume throughout this introduction that R is large enough (Bα

p,∞(R) does not contain densities
with compact support in [0, 1] if R is too small when α > (1/p − 1)+).

The minimax rates have been studied by many authors when L = dqq. They are now fully known,
up to log factors, when the density is also compactly supported, that is when it belongs to

F =
{
f ∈ B

α
p,∞(R), supp f ⊂ [0, 1]

}
.

A summary of these rates can be found in [Sar21]. Let us just mention that the case p ≥ q can
be easily solved with linear estimators. This is no longer true when p < q, see [DJKP96]. To
be optimal, an estimator must, in some sense, adapt to local variations of the density. When,
moreover, α is allowed to be smaller than 1/p, the statistical estimation procedure must be able to
cope with singularities to be optimal.

In recent years, a special endeavour has been made by statisticians to remove the assumption of
compact support. For the Lq loss, results can be found in [JLL04, RBRTM11, GL11, Lep13, GL14,
LW19, Sar23]. Other statistical frameworks have also been involved in this effort. We may cite the
regression model, the problem of estimating the conditional density, the hazard rate, the intensity
of a Poisson process, or the density in the convolution structure model. For more details, we refer
to [RBR10, LW19, BC21, CGC21, CL23].

The aim of the present manuscript is to deal with the Hellinger loss L = h2. The latter
naturally appears in the study of maximum likelihood estimators, see [BM98, DW16, KS16] for
some references. This is also true for the T - and ρ-estimators, the founding references being [Bir06a]
and [BBS17]. In the case of the Hellinger loss, the assumption of regularity is traditionally put
on

√
f , and we will also adopt this point of view here. Note that the minimax risk has already been

investigated in [Bir06a] when
√
f is compactly supported and belongs to a Besov ball. The whole

point of this paper is to understand how the minimax risk evolves when f is no longer assumed to
be compactly supported.

For the Lq losses, the estimation rates remain noticeably the same as in the compact case (within
possible log factors) when the tails of f are light enough, say when f(x) ≤ |x|−b for some large b
and all |x| ≥ 1. This point has been revealed by [GL14]. Actually, there are not even logarithmic
losses when q = 1, see [Sar23]. The situation turns out to be completely different for the Hellinger
loss.

First, the minimax risk for the Hellinger loss does not tend to 0 if the only assumption made
on the density is

√
f ∈ B

α
p,∞(R) with p ≥ 2. A supplementary condition on the tails of f is

required to ensure the convergence of the minimax risk. We propose here to use the one of [Sar23].
This phenomenon can be explained by the importance that the Hellinger distance gives to the
estimation errors in the tails of f . A similar result is true for the L

1 loss when f ∈ B
α
p,∞(R) but

not for the other L
q losses [GL14, Sar23]. We prove that the minimax risk achieves the rate n−γ
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where γ ∈ (0, 2α/(2α + 1)] depends on the tails of f . But contrary to the L
q losses (including

q = 1), we never have γ = 2α/(2α + 1) if the tail dominance condition allows f(x) ≤ |x|−b, and
this, whatever the value of b > 1.

Second, the optimal rate of convergence is n1−p/2 when p < 2 and no additional assump-
tion is made. This result is valid for all α > 1/p − 1/2. This rate contrasts with the clas-

sical rate n−2α/(2α+1) associated with compactly supported densities. A faster rate can be ob-
tained under the tail dominance condition of [Sar23]. But, as above, it is not possible to recover

the rate n−2α/(2α+1) if the density is allowed to be slightly fat tailed. In the remaining case
α ≤ 1/p− 1/2, the minimax risk does not tend to 0 even when the density is compactly supported
on [0, 1].

We present our results in the forthcoming section. The proofs are postponed to Section 3.
Throughout this paper, we suppose n ≥ 2. Moreover, c, c1, c2, . . . are terms that may vary from
line to line. To lighten the notations, we define for all class F of functions,

R(F ) = R
(
F , h2

)
.

We denote for p > 0 and x = (xk)k∈Z the weak (quasi) ℓp norm of x by

‖x‖p,∞ = sup
t>0

t

(
∑

k∈Z

1|xk |≥t

)1/p

.

When p = ∞, we set ‖x‖∞,∞ = ‖x‖∞.

2. Minimax rates

2.1. Assumptions on the density. We present in this section the classes of functions we use to
model the smoothness of f and the size of its tails.

2.1.1. Wavelet basis. A classical way to measure the regularity of a function is to decompose it
in a wavelet basis, and to put conditions on its wavelet coefficients. We deal here with the special
bi-orthogonal basis of [CDF92] where the father wavelet is φ = 1[0,1], where the mother wavelet ψ is

piecewise constant and where their duals φ̄ and ψ̄ are compactly supported and Hölder continuous
with exponent τ ∈ N

⋆.

In this basis, any square integrable function f can be written as

f =
∞∑

j=−1

∑

k∈Z

βj,k(f)ψ̄j,k,(1)

where for any j ≥ −1, k ∈ Z,

βj,k(f) =

∫
f(x)ψj,k(x) dx,

and where for any x ∈ R, j ≥ 0, k ∈ Z,

ψ̄−1,k(x) = φ̄(x− k), ψ̄j,k(x) = 2j/2ψ̄(2jx− k)

ψ−1,k(x) = φ(x− k), ψj,k(x) = 2j/2ψ(2jx− k).
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It is worthwhile to notice that the coefficients βj,k(f) are well defined if f is only supposed to
be integrable. The decomposition (1) remains valid in this case (see Appendix H of [Sar23] for
instance).

2.1.2. Besov classes. We consider p ∈ [0,+∞], α ∈ ((1/p − 1)+, τ) and introduce the standard

Besov space Bαp,∞. By definition, it is composed of functions f of Lmax{p,1}(R) satisfying ‖f‖Bα
p,∞

<
∞ where

‖f‖Bα
p,∞

= sup
j≥−1

{
2j(α+1/2−1/p)‖βj,·(f)‖p

}
,

see [DJ97]. The quantity ‖f‖Bα
p,∞

refers to the (quasi) Besov norm of f . The Besov ball Bα
p,∞(R)

is thus defined for R > 0 by

B
α
p,∞(R) =

{
f ∈ Bαp,∞, ‖f‖Bα

p,∞
≤ R

}
.

In the present paper, we pay particular attention to the strong and weak Besov classes Bαp,∞(R)
and WBαp,∞(R). They are defined as follows:

Bαp,∞(R) =
{
f ∈ Bαp,∞, ∀j ≥ 0, ‖βj,·(f)‖p ≤ R2−j(α+1/2−1/p)

}
,

WBαp,∞(R) =
{
f ∈ L

max{p,1}(R), ∀j ≥ 0, ‖βj,·(f)‖p,∞ ≤ R2−j(α+1/2−1/p)
}
.

We can classify the above conditions on the wavelet coefficients by order of importance: they are
the weakest for the weak Besov classes, then the strong Besov classes, and finally the Besov balls.

2.1.3. Tail dominance condition. We describe here a supplementary assumption that is in-
tended to control the tails of the density.

We define for j ≥ 0 and k ∈ Z,

Fj,k(f) =

∫ 2−j(k+1/2)

2−j(k−1/2)
f(x) dx.(2)

We set for M > 0, and θ ∈ (0, 1),

Tθ(M) =
{
f ∈ L

1(R), f ≥ 0, ∀j ≥ 0, ‖Fj,·(f)‖θθ ≤M2j(1−θ)
}

WT θ(M) =
{
f ∈ L

1(R), f ≥ 0, ∀j ≥ 0, ‖Fj,·(f)‖θθ,∞ ≤M2j(1−θ)
}
.

The case θ = 0 corresponds to compactly supported functions:

Tθ(M) = WT θ(M) =
{
f ∈ L

1(R), f ≥ 0, ∀j ≥ 0, |{k ∈ Z, Fj,k(f) > 0}| ≤M2j
}
.

In this formula, | · | denotes the size of the set between the two bars. A density belonging to one
of these classes is therefore a density whose tails are sufficiently light. The smaller θ is, the lighter
they are.

In line with [Sar23], we say that the “weak tail dominance condition” is fulfilled if f ∈ WT θ(M).
The “strong tail dominance condition” is met if f ∈ Tθ(M). This terminology “tail dominance
condition” has been initially proposed by Alexander Goldenshluger and Oleg Lepski in [GL14].
Their condition do not exactly match with ours though (our conditions are always implied by
theirs, see [CL20] where the condition f ∈ Tθ(M) also appears).
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We recall – see Proposition 1 of [Sar23] – that a compactly supported density on [−L,L] satisfies
our tail dominance condition with θ = 0 andM = 2L+2. This bound onM can be a bit pessimistic
though. Think for example about the density f defined for a > 0 and x ∈ R by

f(x) =
1

2
1[−a−1,−a](x) +

1

2
1[a,a+1](x).

It belongs to T0(6) whereas L = a+ 1 may be taken arbitrarily large. In the non-compact case, a
density f satisfying f(x) ≤ Ab|x|−b for all |x| ≥ 1 and some A > 0, b > 1, lies in WT θ(M) with
θ = 1/b and M only depending on b,A. The (strong) tail dominance condition is automatically
fulfilled with θ = p when f belongs to a Besov ball Bα

p,∞(R) with p < 1. A variant of this last

claim, that is useful when dealing with a smoothness assumption on
√
f , is the following.

Proposition 1. Let p ∈ (0, 2), R > 0, α ∈ (1/p − 1/2, τ) and f ∈ D(R). Then, if
√
f belongs

to B
α
p,∞(R), f belongs to Tp/2(c1Rp). Conversely, if

√
f ∈ Bαp,∞(R) and f ∈ Tp/2(Rp), then√

f ∈ B
α
p,∞(c2R). The terms c1, c2 only depend on the wavelet basis and α, p.

2.2. Minimax risk. We now investigate the minimax risk under the preceding conditions. We
consider p ∈ (0,+∞], α ∈ ((1/p − 1/2)+, τ), θ ∈ [0, p/2] ∩ [0, 1), R > 0, M ≥ 1. We define when
p 6= 2,

Fα,p,θ(R,M) =
{
f ∈ D(R),

√
f ∈ WBαp,∞(R), f ∈ WT θ(M)

}
.

When p = 2, we rather set

Fα,p,θ(R,M) =
{
f ∈ D(R),

√
f ∈ Bαp,∞(R), f ∈ WT θ(M)

}
.

The theorem below gives a non-asymptotic upper-bound of the minimax risk when f belongs
to Fα,p,θ(R,M).

Theorem 2. For all p ∈ (0,+∞], α ∈ ((1/p − 1/2)+, τ), θ ∈ [0, p/2] ∩ [0, 1), R > 0, M ≥ 1,

R(Fα,p,θ(R,M)) ≤ c1

[
εn +

log n

n

]
,(3)

where

εn = R2(1−θ)/(2α+1−2θ/p)M (1+2α−2/p)/(1+2α−2θ/p)n−2α(1−θ)/(2α+1−2θ/p) +Mn−(1−θ),

and where c1 is a positive number only depending on p, α, θ and the wavelet basis.

This result can be compared with the following lower-bound:

Theorem 3. For all p ∈ (0,+∞], α ∈ ((1/p− 1/2)+, τ), θ ∈ [0, p/2]∩ [0, 1), there are R0,M0 such
that for all R ≥ R0, M ≥M0 and n large enough,

R(F ′
α,p,θ(R,M)) ≥ c2 εn,

where εn is given in the preceding theorem, and where F ′
α,p,θ(R,M) is a subset of Fα,p,θ(R,M).

Moreover, any function f ∈ F ′
α,p,θ(R,M) belongs to Tθ(M) and satisfies |x|f θ(x) ≤ c3M for all

|x| ≥ 1. We also have
√
f ∈ Bαp,∞(R) and even

√
f ∈ B

α
p,∞(R) if θ < p/2 of if θ = p/2 with

M ≤ Rp. Above, c2, c3,M0, R0 are positive numbers only depending on p, α, θ and the wavelet basis.
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When θ = 0, we recover the usual estimation rate, and this, for all possible values of α and p
satisfying α ∈ ((1/p − 1/2)+, τ). We recall that τ can be taken arbitrarily large. The case α ≤
(1/p − 1/2)+ is treated below.

We observe that the optimal estimation rate is strongly affected by the parameter θ, i.e, the
tails of f . The larger θ is, the slower the rate is. However, the choice of the dominance condition
(whether weak or strong) has no influence on the rate. We can also assume, without changing the
results, that the density is fat tailed, i.e. its tails are smaller than the inverse of a power of |x|. As
explained in the introduction, this deterioration of rates when the density is slightly fat tailed does
not occur for the L

q losses (whatever q ≥ 1).

When p ≥ 2, the minimax rate can be made arbitrarily slow by letting θ tend to 1. Actually,
it is not possible to estimate the density under the sole assumption that

√
f belongs to a Besov

ball Bα
p,∞(R) with R large enough (see the proof of Theorem 3). The situation appears to be quite

different when p < 2. The tail dominance condition is indeed always satisfied in this case with
θ = p/2. More precisely, we derive from the above: for all p ∈ (0, 2), α ∈ ((1/p−1/2)+, τ), R ≥ R0,
and n large enough,

c2R
pn−(1−p/2) ≤ R

({
f ∈ D(R),

√
f ∈ B

α
p,∞(R)

})
≤ c1R

pn−(1−p/2).

The rate is much slower than the standard rate n−2α/(2α+1) we would have had if the density was
compactly supported though.

We will not insist on this point but the preceding rates can be reached by an adaptive estimator
(that is by an estimator whose construction does not involve p, α, θ,R,M). We refer to the proof
of Theorem 2 for more details.

In the previous results, we assumed α > 1/p − 1/2 when p < 2. This condition is necessary to
ensure the convergence of the minimax risk, even when the density is compactly supported. We
may indeed show:

Proposition 4. For all p ∈ (0, 2), R > 0, τ > 1/p − 1/2 and α = 1/p − 1/2,

R
({
f ∈ D(R),

√
f ∈ B

α
p,∞(R), supp f ⊂ [0, 1]

})
≥ 1/16.

It is interesting to note that the exponent in the optimal rate does not tend to 0 when α →
1/p − 1/2. There is thus a kind of discontinuity at the boundary α = 1/p − 1/2. A similar
phenomenon occurs for the L

1 distance but not for the other Lq distances, see [Sar21, Sar23].

3. Proofs

3.1. Proof of Proposition 1. We only show that if
√
f belongs to B

α
p,∞(R), then f ∈ Tp/2(c1Rp).

The proof of the converse is straightforward (just apply Cauchy-Schwarz inequality). To simplify
the notations, we omit the square root of f in the wavelets coefficients.

We define

Fk,j1,j2 =
∑

k1∈Z
k2∈Z

|βj1,k1 ||βj2,k2 |Ij,k,j1,k1,j2,k2 ,



OPTIMAL ESTIMATION UNDER HELLINGER LOSS 7

where

Ij,k,j1,k1,j2,k2 =

∫ 2−j(k+1/2)

2−j(k−1/2)

∣∣ψ̄j1,k1ψ̄j2,k2
∣∣ .

Since p < 2, ‖ · ‖1 ≤ ‖ · ‖p/2, and hence

(Fk(f))
p/2 ≤ 2

∑

j1≥−1
j2≥j1

(Fk,j1,j2)
p/2 .(4)

We consider a real number L̄ > 0 large enough to ensure that supp ψ̄j′,k′ ⊂ [2−j
′

+(−L̄+k′), 2−j′+(L̄+
k′)], where j′+ = max{j, 0}, and set

Kj,j′,k′ =
[
−L̄+ 2j−j

′

+

(
k′ − L̄

)
, L̄+ 2j−j

′

+

(
k′ + L̄

)]
.

Note that Kj,j′,k contains at most

|Kj,j′,k′ | ≤ c1

[
1 + 2j−j

′

]
(5)

integers. Moreover, Ij,k,j1,k1,j2,k2 = 0 if k1 6∈ Kj1,j2,k2 or if k2 6∈ Kj2,j1,k1 . If L̄ is large enough,
the integral is also zero if k 6∈ Kj,j1,k1 or if k 6∈ Kj,j2,k2 . The same thing is true if k1 6∈ Kj1,j,k or
k2 6∈ Kj2,j,k. In any case, we have Ij,k,j1,k1,j2,k2 ≤ c2rj1,j2 where

rj1,j2 = 2min{j1/2+j2/2−j,−(j2−j1)/2}.

We deduce from Cauchy-Schwarz inequality,

Fk,j1,j2 ≤ c2rj1,j2



∑

k1∈Z

β2j1,k11k∈Kj,j1 ,k1

∑

k2∈Z

1k2∈Kj2,j1,k1
∩Kj2,j,k




1/2

×



∑

k2∈Z

β2j2,k21k∈Kj,j2 ,k2

∑

k1∈Z

1k1∈Kj1,j2,k2
∩Kj1,j,k




1/2

.

By using the inequality ‖ · ‖1 ≤ ‖ · ‖p/2 again,

(Fk,j1,j2)
p/2 ≤ c3r

p/2
j1,j2



∑

k1∈Z

βpj1,k11k∈Kj,j1 ,k1



∑

k2∈Z

1k2∈Kj2,j1,k1
∩Kj2,j,k



p/2



1/2

×



∑

k2∈Z

βpj2,k21k∈Kj,j2 ,k2



∑

k1∈Z

1k1∈Kj1,j2,k2
∩Kj1,j,k



p/2



1/2

.



8 MATHIEU SART

A new application of Cauchy-Schwarz leads to

∑

k∈Z

(Fk,j1,j2)
p/2 ≤ c3r

p/2
j1,j2



∑

k∈Z

∑

k1∈Z

βpj1,k11k∈Kj,j1 ,k1



∑

k2∈Z

1k2∈Kj2,j1,k1
∩Kj2,j,k



p/2



1/2

×



∑

k∈Z

∑

k2∈Z

βpj2,k21k∈Kj,j2 ,k2



∑

k1∈Z

1k1∈Kj1,j2,k2
∩Kj1,j,k



p/2



1/2

≤ c3r
p/2
j1,j2

Rp2−(j1+j2)(p/2)(α+1/2−1/p)

(
sup
k,k1∈Z

|Kj,j1,k1 ||Kj2,j1,k1 ∩Kj2,j,k|p/2
)1/2

×
(

sup
k,k2∈Z

|Kj,j2,k2 ||Kj1,j2,k2 ∩Kj1,j,k|p/2
)1/2

.

We now use (5) to get if j2 ≥ j and j1 ≥ j
∑

k∈Z

(Fk,j1,j2)
p/2 ≤ c4R

p2−(p/2)(j1+j2)(α−1/p+1/2).

If j2 ≥ j and j1 < j,
∑

k∈Z

(Fk,j1,j2)
p/2 ≤ c4R

p2j(1−p/2)/22−(p/2)j2(α−1/p+1/2)2−α(p/2)j1 .

If j2 ≤ j, and j1 ≤ j,
∑

k∈Z

(Fk,j1,j2)
p/2 ≤ c4R

p2j(1−p/2)2−(p/2)j1α2−(p/2)j2α.

We conclude thanks to (4). �

3.2. Proof of Theorem 2. Our proof relies on the result below that is due to [Bir06a] (see his
Theorem 6 and Proposition 8).

Proposition 5. Let (Vm)m∈M be an at most countable collection of linear spaces of L2(R) with
finite dimension. Let (∆m)m∈M be a family of non-negative weights such that

∑

m∈M

e−∆m ≤ 1.

Then, there is an estimator f̂ such that

E

[
h2(f, f̂)

]
≤ c inf

m∈M

{
d22
(√

f , Vm
)
+

dimVm +∆m

n

}
.

In the above inequality, c is a universal constant.

Without loss of generality, we may assume in the sequel that we have another independent
sample X ′

1, . . . ,X
′
n of X. We set for j ≥ −1 and k ∈ Z,

Ij,k = {x ∈ R, ψj,k(x) 6= 0} ,
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and consider the (random) set

Z̃j =
{
k ∈ Z, ∃i ∈ {1, . . . , n}, X ′

i ∈ Ij,k
}
.

Let us order the sample X ′
(1) < X ′

(2) < · · · < X ′
(n) and define the smallest integer J̃ ≥ 0 satisfying

min
1≤i≤n−1

(
X ′

(i+1) −X ′
(i)

)
> 21−J̃Lψ.

In this inequality, Lψ ≥ 1 stands for a real number such that supp ψ ⊂ [−Lψ, Lψ].
Let K̃ be the collection of all sets of the form K = (Kj)j∈{−1,...,J̃}

where Kj denotes a finite

subset of Z̃j. We define for all such K the linear space

VK =





J̃∑

j=−1

∑

k∈Kj

γj,kψ̄j,k, ∀j ≥ −1, k ∈ Kj , γj,k ∈ R



 .

The dimension of this linear space is not larger than

dimVK ≤
J̃∑

j=−1

|Kj |.

For all K ∈ K̃, we set

∆(K) =

J̃∑

j=−1

{
|Kj |+ |Kj | log

(
e|Z̃j|/|Kj |

)
− log

(
1− e−1

)}
,

where we use the convention 0× log(e|Z̃j |/0) = 0. It follows from Proposition 2.5 of [Mas07] that
∑

K∈K̃

e−∆(K) ≤ 1.

We apply Proposition 5 conditionally to the independent sample X ′
1, . . . ,X

′
n and take the expec-

tation of the result. By cleaning it a little, we get

E

[
h2(f, f̂)

]
≤ c1E


 inf
K∈K̃



d

2
2

(√
f , VK

)
+

1

n

J̃∑

j=−1

|Kj | log+
(
|Z̃j|/|Kj |

)
+
J̃ + 1

n






 ,

where c1 is universal, where log+(x) = log(e+ x), and where 0× log+(|Z̃j|/0) = 0. To simplify the

notations, we set in the sequel βj,k = βj,k
(√
f
)
. We deduce from the above inequality,

E

[
h2(f, f̂)

]
≤ c2



E




J̃∑

j=−1

inf
Kj⊂Z̃j





∑

k∈Z\Kj

β2j,k +
|Kj | log+(|Z̃j |/|Kj |)

n








+
E
[
J̃
]
+ 1

n
+ E




∞∑

j=J̃+1

∑

k∈Z

β2j,k








≤ c2 [A+R1 +R2 + T ] ,
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where

A =
E
[
J̃
]
+ 1

n

R1 =
E[|Z̃−1|]

n

R2 =
∞∑

j=0

E


 inf
Kj⊂Z̃j





∑

k∈Z̃j\Kj

β2j,k +
|Kj | log+(|Z̃j |/|Kj |)

n








T = E




J̃∑

j=−1

∑

k 6∈Z̃j

β2j,k +
∞∑

j=J̃+1

∑

k∈Z

β2j,k


 .

This oracle inequality has the same flavour as that obtained by [Sar23] for the L
1 loss (see his

inequality (14)). We can hence use some of its results to reduce the size of this proof. First, note

that an upper-bound on R1 is given by his Lemma 23: R1 ≤ c3Mn−(1−θ). For T , A and R2, we
show:

Lemma 1. There exists c4 > 0 only depending on p, α and the wavelet basis such that

T ≤ c4εn.

Lemma 2. There exist c5, c6 > 0 only depending on p, α and the wavelet basis such that

A ≤ c5
log n+ log(1 +R)

n

≤ c6

[
εn +

log n

n

]
.

Lemma 3. There exists c7 > 0 only depending on p, α and the wavelet basis such that

R2 ≤ c7εn.

It then remains to put all these bounds together to conclude. �

Proof of Lemma 1. Define the number ñj,k of i ∈ {1, . . . , n} such that X ′
i ∈ Ij,k. We have ñj,k ≤ 1

if k 6∈ Z̃j or if j ≥ J̃ + 1. Hence,

T ≤ 2

∞∑

j=−1

∑

k∈Z

β2j,kP [ñj,k ≤ 1] .

Set

fj,k =

∫
f(x)1supp ψj,k

(x) dx

Zj = {k ∈ Z, fj,k ≥ 1/n} .



OPTIMAL ESTIMATION UNDER HELLINGER LOSS 11

We have,

T ≤ 2
∞∑

j=−1

∑

k∈Z

β2j,k
[
(1− fj,k)

n + nfj,k(1− fj,k)
n−1
]

≤ 4T1 + 4T2,

where

T1 =
∞∑

j=−1

∑

k 6∈Zj

β2j,k

T2 = n

∞∑

j=−1

∑

k∈Zj

β2j,kfj,k(1− fj,k)
n−1.

Define bj,k such that β2j,k = 2−j/2|bj,k|. For all j ≥ 0, ‖bj,·‖p/2 ≤ R22−j(2α+1/2−1/(p/2)) if
√
f ∈

Bαp,∞(R). This inequality also holds true for the weak ℓp/2 (quasi) norm if
√
f belongs to the weak

Besov class. We conclude by using Lemma 21 of [Sar23] with his βj,k replaced by bj,k, p by p/2, α
by 2α and R by R2. �

Proof of Lemma 2. Let ξ > 0, q > 1 and suppose that the L
q norm of f is finite: ‖f‖q < ∞.

Lemma 17 of [Sar23] ensures that J̃ ≤ c1 [1 + log(1 + ξ)] , with probability 1 − n‖f‖q/ξ. In this
inequality, c1 is a term only depending on q and ψ. We deduce,

E[J̃ ] ≤ c2

[
1 +

∫ ∞

0
P

(
J̃ ≥ c1 [1 + log(1 + ξ)]

)
(1 + ξ)−1 dξ

]

≤ c3

[
1 + c1n‖f‖q

∫ ∞

max{n‖f‖q ,1}
ξ−1(1 + ξ)−1dξ + c1

∫ max{n‖f‖q ,1}

0
(1 + ξ)−1dξ

]

≤ c4 [1 + log(1 + n‖f‖q)] .

It then remains to bound ‖f‖q for some q > 1.

We consider q ∈ (max{1, p/2}, p(α + 1/2)) if p is finite and q > 1 if p is infinite. When∑∞
j=−1 2

(j/2)(1−1/q)‖βj,·‖2q is finite,
√
f ∈ L

2q(R), and

‖f‖1/2q =
∥∥∥
√
f
∥∥∥
2q

≤ c5

∞∑

j=−1

2(j/2)(1−1/q)‖βj,·‖2q.(6)

Note that |βj,k| ≤ c6
√
fj,k ≤ c6 as f is a density and hence ‖βj,·‖2q2q ≤ c7

∑
k∈Z fj,k ≤ c8. We

moreover have when p is finite and j ≥ 0,

‖βj,·‖2q2q ≤ c9 ‖βj,·‖pp,∞ ≤ c9R
p2−jp(α+1/2−1/p).
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When p = ∞ and j ≥ 0, we rather have,

‖βj,·‖2q2q ≤ c10

(
∑

k∈Z

fj,k

)
‖βj,·‖2(q−1)

∞

≤ c11R
2(q−1)2−j(q−1)(2α+1).

In both cases,
∞∑

j=0

2(j/2)(1−1/q) ‖βj,·‖2q < c12R
r,(7)

where r = p/(2q) if p is finite, and r = 1− 1/q if p = ∞. We conclude by (6). �

Proof of Lemma 3 when p ≥ 2. By choosing Kj = ∅ or Kj = Z̃j,

R2 ≤
∞∑

j=0

min




E



∑

k∈Z̃j

β2j,k


 ,

E[|Z̃j|]
n




.

It follows from Lemma 23 of [Sar23] that

E

[
|Z̃j|

]
≤ c1Mnθ2j(1−θ).(8)

By using a suitable version of Hölder’s inequality – see [CVNRF15] – we get
∑

k∈Z̃j

β2j,k ≤ c2‖βj,·‖2p,∞|Z̃j |1−2/p.

When p 6= 2, we deduce from
√
f ∈ WBαp,∞(R),

∑

k∈Z̃j

β2j,k ≤ c2R
22−2j(α+1/2−1/p)|Z̃j|1−2/p.

This last inequality is also true when p = 2 and
√
f ∈ Bαp,∞(R). We deduce from (8) and Jensen’s

inequality,

R2 ≤ c3

∞∑

j=0

min
{
Mn−(1−θ)2j(1−θ), R2M1−2/pnθ(1−2/p)2−j(2α+θ(1−2/p))

}
.

It remains to compute the right-hand side of this inequality to prove the result. �

Proof of Lemma 3 when p < 2. We set for j ≥ 0,

K̃j =
{
k ∈ Z̃j, β

2
j,k ≥ 1/n

}

and observe as
√
f ∈ WBαp,∞(R),

|K̃j | ≤ np/2Rp2−jp(α+1/2−1/p).

By using a classical inequality in weak spaces, see (35) of [Sar23],
∑

k∈Z̃j\K̃j

β2j,k ≤ c1n
−(1−p/2)Rp2−jp(α+1/2−1/p).
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Therefore,

R2 ≤ c2

∞∑

j=0

min





E[|Z̃j|]
n

,E



∑

k∈Z̃j\K̃j

β2j,k +
|K̃j | log+(|Z̃j|/|K̃j |)

n







.

By doing as in the preceding proof for the first term, and by using Jensen’s inequality,

R2 ≤ c3

∞∑

j=0

min
{
Mn−(1−θ)2j(1−θ), n−(1−p/2)Rp2−jp(α+1/2−1/p) log+

(
MR−pnθ−p/22jp(α+1/2−θ/p)

)}
.

Elementary computations allows to bound the right-hand side of this inequality from above (see
Lemma 30 of [Sar23]). �

3.3. Proof of Theorem 3. Let ℓ ≥ 1 be the smallest integer such that (−2ℓ, 2ℓ) contains the

supports of φ̄ and ψ̄. We consider two integers j ≥ −1, j0 ≥ 0 such that 2j0+j−ℓ ≥ 12. We
define k ≥ 1 as the smallest integer satisfying 1 + 2k ≥ 2j0+j−ℓ−1, and k̄ ≥ 1 as the largest integer

satisfying 4k̄+2k+1 ≤ 2j0+j−ℓ. We endow D = {0, 1}k̄ with the Hamming distance ∆ defined for
all δ, δ′ ∈ D by

∆(δ, δ′) =
k̄∑

k=1

|δk − δ′k|.

We consider b > 0 and set for δ ∈ D,

hδ = b




k̄∑

k=1

δkψ̄j,2ℓ+1(k+k) +

k̄∑

k=1

(1− δk)ψ̄j,2ℓ+1(k+k+k̄)


 .

Let g0 ∈ B
α
p,∞(Rg0) be a compactly supported density on [0, 2] satisfying infx∈[1/2,1] g0(x) ≥ 1/4

and ‖g0‖∞ ≤ 1. We then consider κ = 4max {21/2‖φ̄‖∞, ‖ψ̄‖∞} and set for x ∈ R,

g(x) = κb2j/2g0(2
−j0x).

Let ζ be a density, compactly supported on (−1, 0), bounded by 1, and such that
√
ζ ∈ B

α
p,∞(R/max{21/p, 2}).

We put

q =

∫
(g(x) + hδ(x))

2 dx,

and define for x ∈ R,

fδ(x) = (1− q)ζ(x) + (g(x) + hδ(x))
2 .

We now state:

Lemma 4. There are a1, a2, a3, a4 such that if

b22j0+j ≤ a1

b2j/22j0(1/p−α) ≤ a2R

b2j0/p2j(α+1/2)
1j≥0 ≤ a3R

b2θ2jθ2j0 ≤ a4M
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then, fδ is a density belonging to Tθ(M) such that
√
fδ ∈ Bαp,∞(R). If b2j/22j0/p ≤ a2R,

√
fδ ∈

B
α
p,∞(R). For all |x| ≥ 1,

|x|f θδ (x) ≤ a5M,

and for all δ, δ′ ∈ D,

h2(fδ, fδ′) = a6b
2∆(δ, δ′).

The terms a1, a2, a3, a4, a5, a6 above are positive and only depend on g0, p, θ and the wavelet basis.

The proof of this lemma is given after the present proof. We define

F
′
α,p,θ(R,M) = {fδ, δ ∈ D} .

It follows from Assouad’s lemma – see [Bir06b] – that if b2 = 1/(2a6n),

R(F ′
α,p,θ(R,M)) ≥ c0n

−12j0+j,

where c0 only depends on the wavelet basis, g0, p, θ. It then remains to choose j and j0.

We first suppose either θ < p/2 or θ = p/2 and R ≥ M1/p. We then define j ≥ 0 as the largest
integer such that

2j(1+2α−2θ/p) ≤ R2M−2/pn1−2θ/p.

We then consider c1 small enough and the largest integer j0 ≥ 0 such that

2j0 ≤ c1Mnθ2−jθ.

We may check that the conditions of the lemma are satisfied.

We now suppose θ = p/2 and R < M1/p. We set j = −1, consider c2 small enough and define
j0 ≥ 0 as the largest integer such that 2j0 ≤ c2Mnθ. All the conditions of the lemma are met, hence
the result. �

Proof of Lemma 4. First, observe that

q ≤ 2

[∫
g2(x) dx+

∫
h2δ(x) dx

]

is not larger than 1 if we choose a1 appropriately. This entails that fδ is a density.

We have supp hδ ⊂ [2ℓ−j(2k + 1), 2ℓ−j(4k̄ + 2k + 1)] ⊂ [2j0−1, 2j0 ], supp g ⊂ [0, 2j0+1] and
g(x) ≥ ‖hδ‖∞ for all x ∈ [2j0−1, 2j0 ]. We deduce g + hδ ≥ 0 and

√
fδ(x) =

√
(1− q)ζ(x) + g(x) + hδ(x).

We also have

hδ ∈ Bαp,∞
(
bk̄1/p2j(α+1/2−1/p)

1j≥0

)
∩B

α
p,∞

(
bk̄1/p2j(α+1/2−1/p)

)
,

g ∈ Bαp,∞
(
c1b2

j/22j0(1/p−α)
)
∩B

α
p,∞

(
c1b2

j/22j0/p
)
,

where c1 only depends on g0 and the wavelet basis. Therefore, we may consider a2 and a3 so that√
fδ ∈ Bαp,∞(R). If the supplementary conditions are fulfilled,

√
fδ ∈ B

α
p,∞(R).

Note that ζ belongs to Tθ(M/2) if M is large enough. Besides, h2δ ∈ Tθ(‖hδ‖2θ∞(2j0+1 + 1)), see
Lemma 2.1 of [CL20]. A similar result holds true for g2δ and hence fδ ∈ Tθ(M) if a4 is small enough.



OPTIMAL ESTIMATION UNDER HELLINGER LOSS 15

As to the Hellinger distance, we have

h2(fδ, fδ′) =
1

2

∫
(hδ(x)− hδ′(x))

2 dx,

and we conclude using that the supports of ψ̄j,2ℓ+1k are disjoint.

Finally, for all |x| ≥ 1,

fδ(x) ≤ 2
(
‖g‖2∞ + ‖hδ‖2∞

)

≤ c2b
22j ,

where c2 only depends on g0 and the wavelet basis. Since fδ is compactly supported on [−1, 2j0+1],
we get

|x|f θδ (x) ≤ 2j0+1
[
c2b

22j
]θ

≤ 2a4c
θ
2M.

�

3.4. Sketch of the proof of Proposition 4. Let ϕδ be the map defined in the proof of Propo-
sition 4 of [Sar23] with his α replaced by 2α and his p replaced by p/2. In other words,

ϕδ(x) =
1

D

j1∑

j=j0

2j
∑

k∈Kj

δj,k1Ij,k (x),

where the Ij,k ⊂ [0, 1/2) are disjoint intervals of size 2−j , where δj,k ∈ {0, 1}, where |Kj | = np/2+1,

where j0 is the smallest integer such that 2j0 ≥ 4(np/2 + 1), where j1 ≥ j0 is to be specified, and

where D = (j1 − j0 + 1)(np/2 + 1). We define for x ∈ R,

fδ(x) = ϕδ(x) + ϕ1−δ(x− 1/2).

Note that fδ is a compactly supported density on [0, 1] such that
√
fδ(x) =

√
ϕδ(x)+

√
ϕ1−δ(x− 1/2)

and

√
ϕδ(x) =

1√
D

j1∑

j=j0

2j/2
∑

k∈Kj

δj,k1Ij,k (x).

The lemma below is proved as Lemma 36 of [Sar23] (just replace the ℓ1–ℓp inequality by Hölder’s
inequality in the first line of his proof when p ∈ (1, 2)).

Lemma 5. For all ε > 0, j1 large enough, and δ = (δj,k)j,k,
√
ϕδ belongs to B

α
p,∞(ε).

We deduce that
√
fδ lies inB

α
p,∞(R) if j1 is large enough. Now, for all δ, δ

′ of the form δ = (δj,k)j,k,
δ′ = (δ′j,k)j,k,

h2(fδ, fδ′) =
1

D

j1∑

j=j0

∑

k∈Kj

|δj,k − δ′j,k|.

We conclude by using Assouad’s Lemma (see [Bir06b], Lemma 2) and by taking j1 large enough. �



16 MATHIEU SART

References
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