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The aim of this paper is to give a complete description of the optimal estimation rates for the Hellinger loss when the square root of the density belongs to a Besov ball B α p,∞ (R). We make them explicit without further conditions when p < 2, and under a tail dominance condition when p is larger.

Introduction

We consider n independent and identically distributed random variables X 1 , . . . , X n with values in R. We suppose that their distribution is absolutely continuous with respect to the Lebesgue measure and denote their density by f . An important challenge in the density estimation problem is to determine as accurately as possible the minimax risk. The latter can be defined as follows. Let D(R) be the set of densities on R, F be a subset of D(R), and L be a loss function. The minimax risk is

R(F , L ) = inf f sup f ∈F E L (f, f ) ,
where the infimum is taken over all estimators f . Different choices are possible for L . Among them are the q th powers of the L q distances L = d q q , or the square of the Hellinger distance L = h 2 . We recall that h is defined for all f 1 , f 2 ∈ D(R) by

h 2 (f 1 , f 2 ) = 1 2 f 1 (x) -f 2 (x) 2 dx.
The role of the minimax risk is to give a baseline against which to compare when proposing a statistical estimation procedure. We are more precisely interested here in the optimal estimation rate, that is in the sequence (ε n ) n≥1 satisfying

0 < lim inf n→+∞ ε -1 n R(F , L ) < lim sup n→+∞ ε -1 n R(F , L ) < +∞.
An optimal estimation procedure f is therefore a procedure whose risk E[L (f, f )] converges at the rate ε n under the sole condition that f lies in F . This minimax point of view thus makes it possible to discard certain procedures that are not rate optimal, even in the a priori simple case where f is a smooth density on R.

To formalize things a little more, we state that f is smooth if f belongs to a ball B α p,∞ (R) of a Besov space. In a nutshell, the parameter R is an upper-bound of the (quasi) Besov norm of the elements f of B α p,∞ (R). This (quasi) norm measures the variations of f by means of a (quasi) L p norm and according to the smoothness exponent α. The larger p is, the more uniformly the regularity of f is measured. The latter is therefore likely to have much smaller local variations if p is large than if p is small. Note also that R induces a constraint on the (quasi) L p norm of f and hence on its tails when p < 1 (the smaller p is, the lighter they should be). There are several possible equivalent definitions of R, and we choose one in Section 2.1. For the sake of rigour, we assume throughout this introduction that R is large enough (B α p,∞ (R) does not contain densities with compact support in [0, 1] if R is too small when α > (1/p -1) + ).

The minimax rates have been studied by many authors when L = d q q . They are now fully known, up to log factors, when the density is also compactly supported, that is when it belongs to

F = f ∈ B α p,∞ (R), supp f ⊂ [0, 1] .
A summary of these rates can be found in [START_REF] Sart | Minimax bounds for besov classes in density estimation[END_REF]. Let us just mention that the case p ≥ q can be easily solved with linear estimators. This is no longer true when p < q, see [START_REF] David L Donoho | Density estimation by wavelet thresholding[END_REF]. To be optimal, an estimator must, in some sense, adapt to local variations of the density. When, moreover, α is allowed to be smaller than 1/p, the statistical estimation procedure must be able to cope with singularities to be optimal.

In recent years, a special endeavour has been made by statisticians to remove the assumption of compact support. For the L q loss, results can be found in [JLL04, RBRTM11, GL11, Lep13, GL14, LW19, Sar23]. Other statistical frameworks have also been involved in this effort. We may cite the regression model, the problem of estimating the conditional density, the hazard rate, the intensity of a Poisson process, or the density in the convolution structure model. For more details, we refer to [RBR10, LW19, BC21, CGC21, CL23].

The aim of the present manuscript is to deal with the Hellinger loss L = h 2 . The latter naturally appears in the study of maximum likelihood estimators, see [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF][START_REF] Charles | Global rates of convergence of the mles of logconcave and s-concave densities[END_REF][START_REF] Arlene | Global rates of convergence in log-concave density estimation[END_REF] for some references. This is also true for the T -and ρ-estimators, the founding references being [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF] and [START_REF] Baraud | A new method for estimation and model selection: ρ-estimation[END_REF]. In the case of the Hellinger loss, the assumption of regularity is traditionally put on √ f , and we will also adopt this point of view here. Note that the minimax risk has already been investigated in [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF] when √ f is compactly supported and belongs to a Besov ball. The whole point of this paper is to understand how the minimax risk evolves when f is no longer assumed to be compactly supported.

For the L q losses, the estimation rates remain noticeably the same as in the compact case (within possible log factors) when the tails of f are light enough, say when f (x) ≤ |x| -b for some large b and all |x| ≥ 1. This point has been revealed by [START_REF] Goldenshluger | On adaptive minimax density estimation on R d[END_REF]. Actually, there are not even logarithmic losses when q = 1, see [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF]. The situation turns out to be completely different for the Hellinger loss.

First, the minimax risk for the Hellinger loss does not tend to 0 if the only assumption made on the density is

√ f ∈ B α p,∞ (R) with p ≥ 2.
A supplementary condition on the tails of f is required to ensure the convergence of the minimax risk. We propose here to use the one of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF]. This phenomenon can be explained by the importance that the Hellinger distance gives to the estimation errors in the tails of f . A similar result is true for the L 1 loss when f ∈ B α p,∞ (R) but not for the other L q losses [START_REF] Goldenshluger | On adaptive minimax density estimation on R d[END_REF][START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF]. We prove that the minimax risk achieves the rate n -γ where γ ∈ (0, 2α/(2α + 1)] depends on the tails of f . But contrary to the L q losses (including q = 1), we never have γ = 2α/(2α + 1) if the tail dominance condition allows f (x) ≤ |x| -b , and this, whatever the value of b > 1.

Second, the optimal rate of convergence is n 1-p/2 when p < 2 and no additional assumption is made. This result is valid for all α > 1/p -1/2. This rate contrasts with the classical rate n -2α/(2α+1) associated with compactly supported densities. A faster rate can be obtained under the tail dominance condition of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF]. But, as above, it is not possible to recover the rate n -2α/(2α+1) if the density is allowed to be slightly fat tailed. In the remaining case α ≤ 1/p -1/2, the minimax risk does not tend to 0 even when the density is compactly supported on [0, 1].

We present our results in the forthcoming section. The proofs are postponed to Section 3. Throughout this paper, we suppose n ≥ 2. Moreover, c, c 1 , c 2 , . . . are terms that may vary from line to line. To lighten the notations, we define for all class F of functions,

R(F ) = R F , h 2 .
We denote for p > 0 and x = (x k ) k∈Z the weak (quasi) ℓ p norm of x by

x p,∞ = sup t>0 t k∈Z ½ |x k |≥t 1/p . When p = ∞, we set x ∞,∞ = x ∞ .

Minimax rates

2.1. Assumptions on the density. We present in this section the classes of functions we use to model the smoothness of f and the size of its tails.

Wavelet basis.

A classical way to measure the regularity of a function is to decompose it in a wavelet basis, and to put conditions on its wavelet coefficients. We deal here with the special bi-orthogonal basis of [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF] where the father wavelet is φ = ½ [0,1] , where the mother wavelet ψ is piecewise constant and where their duals φ and ψ are compactly supported and Hölder continuous with exponent τ ∈ N ⋆ .

In this basis, any square integrable function f can be written as

f = ∞ j=-1 k∈Z β j,k (f ) ψj,k , (1) 
where for any j ≥ -1, k ∈ Z,

β j,k (f ) = f (x)ψ j,k (x) dx,
and where for any

x ∈ R, j ≥ 0, k ∈ Z, ψ-1,k (x) = φ(x -k), ψj,k (x) = 2 j/2 ψ(2 j x -k) ψ -1,k (x) = φ(x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
It is worthwhile to notice that the coefficients β j,k (f ) are well defined if f is only supposed to be integrable. The decomposition (1) remains valid in this case (see Appendix H of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF] for instance).

2.1.2. Besov classes. We consider p ∈ [0, +∞], α ∈ ((1/p -1) + , τ ) and introduce the standard Besov space B α p,∞ . By definition, it is composed of functions

f of L max{p,1} (R) satisfying f B α p,∞ < ∞ where f B α p,∞ = sup j≥-1 2 j(α+1/2-1/p) β j,• (f ) p , see [DJ97]. The quantity f B α p,∞ refers to the (quasi) Besov norm of f . The Besov ball B α p,∞ (R) is thus defined for R > 0 by B α p,∞ (R) = f ∈ B α p,∞ , f B α p,∞ ≤ R .
In the present paper, we pay particular attention to the strong and weak Besov classes B α p,∞ (R) and WB α p,∞ (R). They are defined as follows:

B α p,∞ (R) = f ∈ B α p,∞ , ∀j ≥ 0, β j,• (f ) p ≤ R2 -j(α+1/2-1/p) , WB α p,∞ (R) = f ∈ L max{p,1} (R), ∀j ≥ 0, β j,• (f ) p,∞ ≤ R2 -j(α+1/2-1/p
) . We can classify the above conditions on the wavelet coefficients by order of importance: they are the weakest for the weak Besov classes, then the strong Besov classes, and finally the Besov balls.

2.1.3. Tail dominance condition. We describe here a supplementary assumption that is intended to control the tails of the density.

We define for j ≥ 0 and k ∈ Z,

F j,k (f ) = 2 -j (k+1/2) 2 -j (k-1/2) f (x) dx. (2)
We set for M > 0, and θ ∈ (0, 1),

T θ (M ) = f ∈ L 1 (R), f ≥ 0, ∀j ≥ 0, F j,• (f ) θ θ ≤ M 2 j(1-θ) WT θ (M ) = f ∈ L 1 (R), f ≥ 0, ∀j ≥ 0, F j,• (f ) θ θ,∞ ≤ M 2 j(1-θ)
. The case θ = 0 corresponds to compactly supported functions:

T θ (M ) = WT θ (M ) = f ∈ L 1 (R), f ≥ 0, ∀j ≥ 0, |{k ∈ Z, F j,k (f ) > 0}| ≤ M 2 j .
In this formula, | • | denotes the size of the set between the two bars. A density belonging to one of these classes is therefore a density whose tails are sufficiently light. The smaller θ is, the lighter they are.

In line with [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF], we say that the "weak tail dominance condition" is fulfilled if f ∈ WT θ (M ). The "strong tail dominance condition" is met if f ∈ T θ (M ). This terminology "tail dominance condition" has been initially proposed by Alexander Goldenshluger and Oleg Lepski in [START_REF] Goldenshluger | On adaptive minimax density estimation on R d[END_REF]. Their condition do not exactly match with ours though (our conditions are always implied by theirs, see [START_REF] Cao | Uncompactly supported density estimation with l 1 risk[END_REF] where the condition f ∈ T θ (M ) also appears).

We recall -see Proposition 1 of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF] -that a compactly supported density on [-L, L] satisfies our tail dominance condition with θ = 0 and M = 2L+2. This bound on M can be a bit pessimistic though. Think for example about the density f defined for a > 0 and x ∈ R by

f (x) = 1 2 ½ [-a-1,-a] (x) + 1 2 ½ [a,a+1] (x).
It belongs to T 0 (6) whereas L = a + 1 may be taken arbitrarily large. In the non-compact case, a density f satisfying f (x) ≤ A b |x| -b for all |x| ≥ 1 and some A > 0, b > 1, lies in WT θ (M ) with θ = 1/b and M only depending on b, A. The (strong) tail dominance condition is automatically fulfilled with θ = p when f belongs to a Besov ball B α p,∞ (R) with p < 1. A variant of this last claim, that is useful when dealing with a smoothness assumption on √ f , is the following.

Proposition 1. Let p ∈ (0, 2), R > 0, α ∈ (1/p -1/2, τ ) and f ∈ D(R). Then, if √ f belongs to B α p,∞ (R), f belongs to T p/2 (c 1 R p ). Conversely, if √ f ∈ B α p,∞ (R) and f ∈ T p/2 (R p ), then √ f ∈ B α p,∞ (c 2 R).
The terms c 1 , c 2 only depend on the wavelet basis and α, p.

Minimax risk.

We now investigate the minimax risk under the preceding conditions. We

consider p ∈ (0, +∞], α ∈ ((1/p -1/2) + , τ ), θ ∈ [0, p/2] ∩ [0, 1), R > 0, M ≥ 1. We define when p = 2, F α,p,θ (R, M ) = f ∈ D(R), f ∈ WB α p,∞ (R), f ∈ WT θ (M ) . When p = 2, we rather set F α,p,θ (R, M ) = f ∈ D(R), f ∈ B α p,∞ (R), f ∈ WT θ (M ) .
The theorem below gives a non-asymptotic upper-bound of the minimax risk when f belongs to F α,p,θ (R, M ).

Theorem 2. For all p ∈ (0, +∞], α ∈ ((

1/p -1/2) + , τ ), θ ∈ [0, p/2] ∩ [0, 1), R > 0, M ≥ 1, R(F α,p,θ (R, M )) ≤ c 1 ε n + log n n , (3) 
where

ε n = R 2(1-θ)/(2α+1-2θ/p) M (1+2α-2/p)/(1+2α-2θ/p) n -2α(1-θ)/(2α+1-2θ/p) + M n -(1-θ) ,
and where c 1 is a positive number only depending on p, α, θ and the wavelet basis.

This result can be compared with the following lower-bound:

Theorem 3. For all p ∈ (0, +∞], α ∈ ((1/p -1/2) + , τ ), θ ∈ [0, p/2] ∩ [0, 1), there are R 0 , M 0 such that for all R ≥ R 0 , M ≥ M 0 and n large enough, R(F ′ α,p,θ (R, M )) ≥ c 2 ε n
, where ε n is given in the preceding theorem, and where

F ′ α,p,θ (R, M ) is a subset of F α,p,θ (R, M ). Moreover, any function f ∈ F ′ α,p,θ (R, M ) belongs to T θ (M ) and satisfies |x|f θ (x) ≤ c 3 M for all |x| ≥ 1. We also have √ f ∈ B α p,∞ (R) and even √ f ∈ B α p,∞ (R) if θ < p/2 of if θ = p/2 with M ≤ R p . Above, c 2 , c 3 , M 0 ,
R 0 are positive numbers only depending on p, α, θ and the wavelet basis.

When θ = 0, we recover the usual estimation rate, and this, for all possible values of α and p satisfying α ∈ ((1/p -1/2) + , τ ). We recall that τ can be taken arbitrarily large. The case α ≤ (1/p -1/2) + is treated below.

We observe that the optimal estimation rate is strongly affected by the parameter θ, i.e, the tails of f . The larger θ is, the slower the rate is. However, the choice of the dominance condition (whether weak or strong) has no influence on the rate. We can also assume, without changing the results, that the density is fat tailed, i.e. its tails are smaller than the inverse of a power of |x|. As explained in the introduction, this deterioration of rates when the density is slightly fat tailed does not occur for the L q losses (whatever q ≥ 1).

When p ≥ 2, the minimax rate can be made arbitrarily slow by letting θ tend to 1. Actually, it is not possible to estimate the density under the sole assumption that √ f belongs to a Besov ball B α p,∞ (R) with R large enough (see the proof of Theorem 3). The situation appears to be quite different when p < 2. The tail dominance condition is indeed always satisfied in this case with θ = p/2. More precisely, we derive from the above: for all p ∈ (0, 2), α ∈ ((1/p -1/2) + , τ ), R ≥ R 0 , and n large enough,

c 2 R p n -(1-p/2) ≤ R f ∈ D(R), f ∈ B α p,∞ (R) ≤ c 1 R p n -(1-p/2) .
The rate is much slower than the standard rate n -2α/(2α+1) we would have had if the density was compactly supported though.

We will not insist on this point but the preceding rates can be reached by an adaptive estimator (that is by an estimator whose construction does not involve p, α, θ, R, M ). We refer to the proof of Theorem 2 for more details.

In the previous results, we assumed α > 1/p -1/2 when p < 2. This condition is necessary to ensure the convergence of the minimax risk, even when the density is compactly supported. We may indeed show:

Proposition 4. For all p ∈ (0, 2), R > 0, τ > 1/p -1/2 and α = 1/p -1/2, R f ∈ D(R), f ∈ B α p,∞ (R), supp f ⊂ [0, 1] ≥ 1/16.
It is interesting to note that the exponent in the optimal rate does not tend to 0 when α → 1/p -1/2. There is thus a kind of discontinuity at the boundary α = 1/p -1/2. A similar phenomenon occurs for the L 1 distance but not for the other L q distances, see [START_REF] Sart | Minimax bounds for besov classes in density estimation[END_REF][START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF].

Proofs

Proof of Proposition 1. We only show that if

√ f belongs to B α p,∞ (R), then f ∈ T p/2 (c 1 R p ). The proof of the converse is straightforward (just apply Cauchy-Schwarz inequality). To simplify the notations, we omit the square root of f in the wavelets coefficients.

We define

F k,j 1 ,j 2 = k 1 ∈Z k 2 ∈Z |β j 1 ,k 1 ||β j 2 ,k 2 |I j,k,j 1 ,k 1 ,j 2 ,k 2 , where I j,k,j 1 ,k 1 ,j 2 ,k 2 = 2 -j (k+1/2) 2 -j (k-1/2) ψj 1 ,k 1 ψj 2 ,k 2 . Since p < 2, • 1 ≤ • p/2 , and hence (F k (f )) p/2 ≤ 2 j 1 ≥-1 j 2 ≥j 1 (F k,j 1 ,j 2 ) p/2 . (4)
We consider a real number L > 0 large enough to ensure that supp ψj

′ ,k ′ ⊂ [2 -j ′ + (-L+k ′ ), 2 -j ′ + ( L+ k ′ )]
, where j ′ + = max{j, 0}, and set

K j,j ′ ,k ′ = -L + 2 j-j ′ + k ′ -L , L + 2 j-j ′ + k ′ + L .
Note that K j,j ′ ,k contains at most

|K j,j ′ ,k ′ | ≤ c 1 1 + 2 j-j ′ (5) integers. Moreover, I j,k,j 1 ,k 1 ,j 2 ,k 2 = 0 if k 1 ∈ K j 1 ,j 2 ,k 2 or if k 2 ∈ K j 2 ,j 1 ,k 1 . If L is large enough, the integral is also zero if k ∈ K j,j 1 ,k 1 or if k ∈ K j,j 2 ,k 2 .
The same thing is true if k 1 ∈ K j 1 ,j,k or k 2 ∈ K j 2 ,j,k . In any case, we have I j,k,j 1 ,k 1 ,j 2 ,k 2 ≤ c 2 r j 1 ,j 2 where r j 1 ,j 2 = 2 min{j 1 /2+j 2 /2-j,-(j 2 -j 1 )/2} . We deduce from Cauchy-Schwarz inequality,

F k,j 1 ,j 2 ≤ c 2 r j 1 ,j 2   k 1 ∈Z β 2 j 1 ,k 1 ½ k∈K j,j 1 ,k 1 k 2 ∈Z ½ k 2 ∈K j 2 ,j 1 ,k 1 ∩K j 2 ,j,k   1/2 ×   k 2 ∈Z β 2 j 2 ,k 2 ½ k∈K j,j 2 ,k 2 k 1 ∈Z ½ k 1 ∈K j 1 ,j 2 ,k 2 ∩K j 1 ,j,k   1/2
. By using the inequality

• 1 ≤ • p/2 again, (F k,j 1 ,j 2 ) p/2 ≤ c 3 r p/2 j 1 ,j 2    k 1 ∈Z β p j 1 ,k 1 ½ k∈K j,j 1 ,k 1   k 2 ∈Z ½ k 2 ∈K j 2 ,j 1 ,k 1 ∩K j 2 ,j,k   p/2    1/2 ×    k 2 ∈Z β p j 2 ,k 2 ½ k∈K j,j 2 ,k 2   k 1 ∈Z ½ k 1 ∈K j 1 ,j 2 ,k 2 ∩K j 1 ,j,k   p/2    1/2 . A new application of Cauchy-Schwarz leads to k∈Z (F k,j 1 ,j 2 ) p/2 ≤ c 3 r p/2 j 1 ,j 2    k∈Z k 1 ∈Z β p j 1 ,k 1 ½ k∈K j,j 1 ,k 1   k 2 ∈Z ½ k 2 ∈K j 2 ,j 1 ,k 1 ∩K j 2 ,j,k   p/2    1/2 ×    k∈Z k 2 ∈Z β p j 2 ,k 2 ½ k∈K j,j 2 ,k 2   k 1 ∈Z ½ k 1 ∈K j 1 ,j 2 ,k 2 ∩K j 1 ,j,k   p/2    1/2 ≤ c 3 r p/2 j 1 ,j 2 R p 2 -(j 1 +j 2 )(p/2)(α+1/2-1/p) sup k,k 1 ∈Z |K j,j 1 ,k 1 ||K j 2 ,j 1 ,k 1 ∩ K j 2 ,j,k | p/2 1/2 × sup k,k 2 ∈Z |K j,j 2 ,k 2 ||K j 1 ,j 2 ,k 2 ∩ K j 1 ,j,k | p/2 1/2
. We now use (5) to get if j 2 ≥ j and

j 1 ≥ j k∈Z (F k,j 1 ,j 2 ) p/2 ≤ c 4 R p 2 -(p/2)(j 1 +j 2 )(α-1/p+1/2) .
If j 2 ≥ j and j 1 < j, k∈Z (F k,j 1 ,j 2 ) p/2 ≤ c 4 R p 2 j(1-p/2)/2 2 -(p/2)j 2 (α-1/p+1/2) 2 -α(p/2)j 1 .

If j 2 ≤ j, and j 1 ≤ j,

k∈Z (F k,j 1 ,j 2 ) p/2 ≤ c 4 R p 2 j(1-p/2) 2 -(p/2)j 1 α 2 -(p/2)j 2 α .
We conclude thanks to (4).

3.2. Proof of Theorem 2. Our proof relies on the result below that is due to [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF] (see his Theorem 6 and Proposition 8).

Proposition 5. Let (V m ) m∈M be an at most countable collection of linear spaces of L 2 (R) with finite dimension. Let (∆ m ) m∈M be a family of non-negative weights such that m∈M e -∆m ≤ 1.

Then, there is an estimator f such that

E h 2 (f, f ) ≤ c inf m∈M d 2 2 f , V m + dim V m + ∆ m n .
In the above inequality, c is a universal constant.

Without loss of generality, we may assume in the sequel that we have another independent sample X ′ 1 , . . . , X ′ n of X. We set for j ≥ -1 and k ∈ Z,

I j,k = {x ∈ R, ψ j,k (x) = 0} ,
and consider the (random) set

Z j = k ∈ Z, ∃i ∈ {1, . . . , n}, X ′ i ∈ I j,k .
Let us order the sample

X ′ (1) < X ′ (2) < • • • < X ′ (n)
and define the smallest integer J ≥ 0 satisfying min 1≤i≤n-1

X ′ (i+1) -X ′ (i) > 2 1-J L ψ .
In this inequality, L ψ ≥ 1 stands for a real number such that supp ψ ⊂ [-L ψ , L ψ ].

Let K be the collection of all sets of the form K = (K j ) j∈{-1,..., J} where K j denotes a finite subset of Z j . We define for all such K the linear space

V K =    J j=-1 k∈K j γ j,k ψj,k , ∀j ≥ -1, k ∈ K j , γ j,k ∈ R    .
The dimension of this linear space is not larger than

dim V K ≤ J j=-1 |K j |.
For all K ∈ K, we set

∆(K) = J j=-1 |K j | + |K j | log e| Z j |/|K j | -log 1 -e -1 ,
where we use the convention 0 × log(e| Z j |/0) = 0. It follows from Proposition 2.5 of [START_REF] Massart | Concentration inequalities and model selection: Ecole d'Eté de Probabilités de Saint-Flour XXXIII-2003[END_REF] that

K∈ K e -∆(K) ≤ 1.
We apply Proposition 5 conditionally to the independent sample X ′ 1 , . . . , X ′ n and take the expectation of the result. By cleaning it a little, we get

E h 2 (f, f ) ≤ c 1 E   inf K∈ K    d 2 2 f , V K + 1 n J j=-1 |K j | log + | Z j |/|K j | + J + 1 n      ,
where c 1 is universal, where log + (x) = log(e + x), and where 0 × log + (| Z j |/0) = 0. To simplify the notations, we set in the sequel β j,k = β j,k √ f . We deduce from the above inequality,

E h 2 (f, f ) ≤ c 2    E   J j=-1 inf K j ⊂ Z j    k∈Z\K j β 2 j,k + |K j | log + (| Z j |/|K j |) n      + E J + 1 n + E   ∞ j= J+1 k∈Z β 2 j,k      ≤ c 2 [A + R 1 + R 2 + T ] ,
where

A = E J + 1 n R 1 = E[| Z -1 |] n R 2 = ∞ j=0 E    inf K j ⊂ Z j      k∈ Z j \K j β 2 j,k + |K j | log + (| Z j |/|K j |) n         T = E    J j=-1 k ∈ Z j β 2 j,k + ∞ j= J+1 k∈Z β 2 j,k    .
This oracle inequality has the same flavour as that obtained by [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF] for the L 1 loss (see his inequality ( 14)). We can hence use some of its results to reduce the size of this proof. First, note that an upper-bound on R 1 is given by his Lemma 23: R 1 ≤ c 3 M n -(1-θ) . For T , A and R 2 , we show:

Lemma 1. There exists c 4 > 0 only depending on p, α and the wavelet basis such that

T ≤ c 4 ε n .
Lemma 2. There exist c 5 , c 6 > 0 only depending on p, α and the wavelet basis such that

A ≤ c 5 log n + log(1 + R) n ≤ c 6 ε n + log n n .
Lemma 3. There exists c 7 > 0 only depending on p, α and the wavelet basis such that

R 2 ≤ c 7 ε n .
It then remains to put all these bounds together to conclude.

Proof of Lemma 1. Define the number ñj,k of i ∈ {1, . . . , n} such that

X ′ i ∈ I j,k . We have ñj,k ≤ 1 if k ∈ Z j or if j ≥ J + 1. Hence, T ≤ 2 ∞ j=-1 k∈Z β 2 j,k P [ñ j,k ≤ 1] . Set f j,k = f (x)½ supp ψ j,k (x) dx Z j = {k ∈ Z, f j,k ≥ 1/n} .
We have,

T ≤ 2 ∞ j=-1 k∈Z β 2 j,k (1 -f j,k ) n + nf j,k (1 -f j,k ) n-1 ≤ 4T 1 + 4T 2 ,
where

T 1 = ∞ j=-1 k ∈Z j β 2 j,k T 2 = n ∞ j=-1 k∈Z j β 2 j,k f j,k (1 -f j,k ) n-1 . Define b j,k such that β 2 j,k = 2 -j/2 |b j,k |. For all j ≥ 0, b j,• p/2 ≤ R 2 2 -j(2α+1/2-1/(p/2)) if √ f ∈ B α p,∞ (R)
. This inequality also holds true for the weak ℓ p/2 (quasi) norm if √ f belongs to the weak Besov class. We conclude by using Lemma 21 of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF] with his β j,k replaced by b j,k , p by p/2, α by 2α and R by R 2 .

Proof of Lemma 2. Let ξ > 0, q > 1 and suppose that the L q norm of f is finite: f q < ∞. Lemma 17 of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF] ensures that J ≤ c 1 [1 + log(1 + ξ)] , with probability 1n f q /ξ. In this inequality, c 1 is a term only depending on q and ψ. We deduce,

E[ J] ≤ c 2 1 + ∞ 0 P J ≥ c 1 [1 + log(1 + ξ)] (1 + ξ) -1 dξ ≤ c 3 1 + c 1 n f q ∞ max{n f q ,1} ξ -1 (1 + ξ) -1 dξ + c 1 max{n f q ,1} 0 (1 + ξ) -1 dξ ≤ c 4 [1 + log(1 + n f q )] .
It then remains to bound f q for some q > 1.

We consider q ∈ (max{1, p/2}, p(α

+ 1/2)) if p is finite and q > 1 if p is infinite. When ∞ j=-1 2 (j/2)(1-1/q) β j,• 2q is finite, √ f ∈ L 2q (R), and 
f 1/2 q = f 2q ≤ c 5 ∞ j=-1 2 (j/2)(1-1/q) β j,• 2q . (6)
Note that |β j,k | ≤ c 6 f j,k ≤ c 6 as f is a density and hence β j,• 2q 2q ≤ c 7 k∈Z f j,k ≤ c 8 . We moreover have when p is finite and j ≥ 0,

β j,• 2q 2q ≤ c 9 β j,• p p,∞ ≤ c 9 R p 2 -jp(α+1/2-1/p) .
When p = ∞ and j ≥ 0, we rather have,

β j,• 2q 2q ≤ c 10 k∈Z f j,k β j,• 2(q-1) ∞
≤ c 11 R 2(q-1) 2 -j(q-1)(2α+1) .

In both cases,

∞ j=0 2 (j/2)(1-1/q) β j,• 2q < c 12 R r , (7) 
where r = p/(2q) if p is finite, and r = 1 -1/q if p = ∞. We conclude by (6).

Proof of Lemma 3 when p ≥ 2. By choosing

K j = ∅ or K j = Z j , R 2 ≤ ∞ j=0 min      E    k∈ Z j β 2 j,k    , E[| Z j |] n      .
It follows from Lemma 23 of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF] that

E | Z j | ≤ c 1 M n θ 2 j(1-θ) . (8) 
By using a suitable version of Hölder's inequality -see [START_REF] René Erlin Castillo | Multiplication and composition operators on weak l p spaces[END_REF] -we get

k∈ Z j β 2 j,k ≤ c 2 β j,• 2 p,∞ | Z j | 1-2/p .
When p = 2, we deduce from

√ f ∈ WB α p,∞ (R), k∈ Z j β 2 j,k ≤ c 2 R 2 2 -2j(α+1/2-1/p) | Z j | 1-2/p .
This last inequality is also true when p = 2 and √ f ∈ B α p,∞ (R). We deduce from (8) and Jensen's inequality,

R 2 ≤ c 3 ∞ j=0 min M n -(1-θ) 2 j(1-θ) , R 2 M 1-2/p n θ(1-2/p) 2 -j(2α+θ(1-2/p)) .
It remains to compute the right-hand side of this inequality to prove the result.

Proof of Lemma 3 when p < 2. We set for j ≥ 0,

K j = k ∈ Z j , β 2 j,k ≥ 1/n and observe as √ f ∈ WB α p,∞ (R), | K j | ≤ n p/2 R p 2 -jp(α+1/2-1/p) .
By using a classical inequality in weak spaces, see (35) of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF],

k∈ Z j \ K j β 2 j,k ≤ c 1 n -(1-p/2) R p 2 -jp(α+1/2-1/p) .
Therefore,

R 2 ≤ c 2 ∞ j=0 min      E[| Z j |] n , E    k∈ Z j \ K j β 2 j,k + | K j | log + (| Z j |/| K j |) n         .
By doing as in the preceding proof for the first term, and by using Jensen's inequality,

R 2 ≤ c 3 ∞ j=0 min M n -(1-θ) 2 j(1-θ) , n -(1-p/2) R p 2 -jp(α+1/2-1/p) log + M R -p n θ-p/2 2 jp(α+1/2-θ/p) .
Elementary computations allows to bound the right-hand side of this inequality from above (see Lemma 30 of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF]).

3.3. Proof of Theorem 3. Let ℓ ≥ 1 be the smallest integer such that (-2 ℓ , 2 ℓ ) contains the supports of φ and ψ. We consider two integers j ≥ -1, j 0 ≥ 0 such that 2 j 0 +j-ℓ ≥ 12. We define k ≥ 1 as the smallest integer satisfying 1 + 2k ≥ 2 j 0 +j-ℓ-1 , and k ≥ 1 as the largest integer satisfying 4 k + 2k + 1 ≤ 2 j 0 +j-ℓ . We endow D = {0, 1} k with the Hamming distance ∆ defined for all δ, δ ′ ∈ D by

∆(δ, δ ′ ) = k k=1 |δ k -δ ′ k |.
We consider b > 0 and set for δ ∈ D,

h δ = b   k k=1 δ k ψj,2 ℓ+1 (k+k) + k k=1 (1 -δ k ) ψj,2 ℓ+1 (k+k+ k)   .
Let g 0 ∈ B α p,∞ (R g 0 ) be a compactly supported density on [0, 2] satisfying inf x∈[1/2,1] g 0 (x) ≥ 1/4 and g 0 ∞ ≤ 1. We then consider κ = 4 max {2 1/2 φ ∞ , ψ ∞ } and set for x ∈ R, g(x) = κb2 j/2 g 0 (2 -j 0 x).

Let ζ be a density, compactly supported on (-1, 0), bounded by 1, and such that √ ζ ∈ B α p,∞ (R/ max{2 1/p , 2}). We put q = (g(x) + h δ (x)) 2 dx, and define for x ∈ R,

f δ (x) = (1 -q)ζ(x) + (g(x) + h δ (x)) 2 .

We now state:

Lemma 4. There are a 1 , a 2 , a 3 , a 4 such that if

b 2 2 j 0 +j ≤ a 1 b2 j/2 2 j 0 (1/p-α) ≤ a 2 R b2 j 0 /p 2 j(α+1/2) ½ j≥0 ≤ a 3 R b 2θ 2 jθ 2 j 0 ≤ a 4 M then, f δ is a density belonging to T θ (M ) such that √ f δ ∈ B α p,∞ (R). If b2 j/2 2 j 0 /p ≤ a 2 R, √ f δ ∈ B α p,∞ (R). For all |x| ≥ 1, |x|f θ δ (x) ≤ a 5 M, and for all δ, δ ′ ∈ D, h 2 (f δ , f δ ′ ) = a 6 b 2 ∆(δ, δ ′ ).
The terms a 1 , a 2 , a 3 , a 4 , a 5 , a 6 above are positive and only depend on g 0 , p, θ and the wavelet basis.

The proof of this lemma is given after the present proof. We define

F ′ α,p,θ (R, M ) = {f δ , δ ∈ D} . It follows from Assouad's lemma -see [Bir06b] -that if b 2 = 1/(2a 6 n), R(F ′ α,p,θ (R, M )) ≥ c 0 n -1 2 j 0 +j
, where c 0 only depends on the wavelet basis, 0 , p, θ. It then remains to choose j and j 0 .

We first suppose either θ < p/2 or θ = p/2 and R ≥ M 1/p . We then define j ≥ 0 as the largest integer such that 2 j(1+2α-2θ/p) ≤ R 2 M -2/p n 1-2θ/p .

We then consider c 1 small enough and the largest integer j 0 ≥ 0 such that

2 j 0 ≤ c 1 M n θ 2 -jθ .
We may check that the conditions of the lemma are satisfied.

We now suppose θ = p/2 and R < M 1/p . We set j = -1, consider c 2 small enough and define j 0 ≥ 0 as the largest integer such that 2 j 0 ≤ c 2 M n θ . All the conditions of the lemma are met, hence the result.

Proof of Lemma 4. First, observe that q ≤ 2 g 2 (x) dx + h 2 δ (x) dx is not larger than 1 if we choose a 1 appropriately. This entails that f δ is a density.

We have supp h δ ⊂ [2 ℓ-j (2k + 1), 2 ℓ-j (4 k + 2k + 1)] ⊂ [2 j 0 -1 , 2 j 0 ], supp g ⊂ [0, 2 j 0 +1 ] and g(x) ≥ h δ ∞ for all x ∈ [2 j 0 -1 , 2 j 0 ]. We deduce g + h δ ≥ 0 and f δ (x) = (1q)ζ(x) + g(x) + h δ (x).

We also have h δ ∈ B α p,∞ b k1/p 2 j(α+1/2-1/p) ½ j≥0 ∩ B α p,∞ b k1/p 2 j(α+1/2-1/p) , g ∈ B α p,∞ c 1 b2 j/2 2 j 0 (1/p-α) ∩ B α p,∞ c 1 b2 j/2 2 j 0 /p , where c 1 only depends on g 0 and the wavelet basis. Therefore, we may consider a 2 and a 3 so that √ f δ ∈ B α p,∞ (R). If the supplementary conditions are fulfilled, √ f δ ∈ B α p,∞ (R). Note that ζ belongs to T θ (M/2) if M is large enough. Besides, h 2 δ ∈ T θ ( h δ 2θ ∞ (2 j 0 +1 + 1)), see Lemma 2.1 of [START_REF] Cao | Uncompactly supported density estimation with l 1 risk[END_REF]. A similar result holds true for g 2 δ and hence f δ ∈ T θ (M ) if a 4 is small enough.

As to the Hellinger distance, we have

h 2 (f δ , f δ ′ ) = 1 2 (h δ (x) -h δ ′ (x)) 2 dx,
and we conclude using that the supports of ψj,2 ℓ+1 k are disjoint.

Finally, for all |x| ≥ 1,

f δ (x) ≤ 2 g 2 ∞ + h δ 2 ∞ ≤ c 2 b 2 2 j ,
where c 2 only depends on g 0 and the wavelet basis. Since f δ is compactly supported on [-1, 2 j 0 +1 ], we get

|x|f θ δ (x) ≤ 2 j 0 +1 c 2 b 2 2 j θ ≤ 2a 4 c θ 2 M.
3.4. Sketch of the proof of Proposition 4. Let ϕ δ be the map defined in the proof of Proposition 4 of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF] with his α replaced by 2α and his p replaced by p/2. In other words,

ϕ δ (x) = 1 D j 1 j=j 0 2 j k∈K j δ j,k ½ I j,k (x),
where the I j,k ⊂ [0, 1/2) are disjoint intervals of size 2 -j , where δ j,k ∈ {0, 1}, where |K j | = n p/2 +1, where j 0 is the smallest integer such that 2 j 0 ≥ 4(n p/2 + 1), where j 1 ≥ j 0 is to be specified, and where D = (j 1j 0 + 1)(n p/2 + 1). We define for x ∈ R, f δ (x) = ϕ δ (x) + ϕ 1-δ (x -1/2).

Note that f δ is a compactly supported density on [0, 1] such that f δ (x) = ϕ δ (x)+ ϕ 1-δ (x -1/2) and

ϕ δ (x) = 1 √ D j 1 j=j 0 2 j/2 k∈K j δ j,k ½ I j,k (x).
The lemma below is proved as Lemma 36 of [START_REF] Sart | Non linear wavelet density estimation on the real line[END_REF] (just replace the ℓ 1 -ℓ p inequality by Hölder's inequality in the first line of his proof when p ∈ (1, 2)).

Lemma 5. For all ε > 0, j 1 large enough, and δ = (δ j,k ) j,k , √ ϕ δ belongs to B α p,∞ (ε).

We deduce that √ f δ lies in B α p,∞ (R) if j 1 is large enough. Now, for all δ, δ ′ of the form δ = (δ j,k ) j,k , δ ′ = (δ ′ j,k ) j,k ,

h 2 (f δ , f δ ′ ) = 1 D j 1 j=j 0 k∈K j |δ j,k -δ ′ j,k |.
We conclude by using Assouad's Lemma (see [START_REF] Birgé | Statistical estimation with model selection[END_REF], Lemma 2) and by taking j 1 large enough.