
HAL Id: hal-04042629
https://hal.science/hal-04042629v2

Preprint submitted on 6 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validation of Modern JSON Schema: Formalization and
Complexity

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo
Sartiani, Stefanie Scherzinger

To cite this version:
Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, et al.. Vali-
dation of Modern JSON Schema: Formalization and Complexity. 2023. �hal-04042629v2�

https://hal.science/hal-04042629v2
https://hal.archives-ouvertes.fr

111

Validation of Modern JSON Schema: Formalization and
Complexity
LYES ATTOUCHE, Université Paris-Dauphine – PSL, France

MOHAMED-AMINE BAAZIZI, Sorbonne Université, LIP6 UMR 7606, France

DARIO COLAZZO, Université Paris-Dauphine – PSL, France

GIORGIO GHELLI, Dip. Informatica, Università di Pisa, Italy

CARLO SARTIANI, DIMIE, Università della Basilicata, Italy

STEFANIE SCHERZINGER, Universität Passau, Germany

JSON Schema is the standard language used to describe the structure of JSON documents. The standard is

constantly evolving, and Draft 2019-09 added two new features, dynamic references and annotation-dependent

validation. This addition changes the evaluation model, so that the versions after Draft 2019-09 are now called

Modern JSON Schema, while Classical JSON Schema indicates those that precede it.

These new features solve important practical problems, but they are not easy to understand, and the

modification of the evaluation model renders the theory that has been developed for Classical JSON Schema

not applicable to the new versions. In this paper we face these problems. We give the first formal description

of Modern JSON Schema, we then use this formal apparatus in order to study the complexity of validation

for Modern JSON Schema, and we present a surprising result: with the addition of dynamic references, the

problem of JSON Schema validation moves from PTIME-complete to PSPACE-hard. We also show that the

problem is PSPACE-complete, by providing a polynomial space algorithm. We show that the problem is in

PTIME in the special case when there is a fixed bound on the number of distinct dynamic references in each

schema, by defining a deterministic polynomial time algorithm. We study the influence of schema size and of

instance size, showing that the problem is PSPACE-complete with respect to the schema size, but is in PTIME

when the schema is fixed and only the instance size is allowed to vary. Finally, we run experiments that show

that there are schemas where the asymptotic complexity difference between dynamic and static references is

extremely visible with small schemas already.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: JSON Schema, complexity of validation

1 INTRODUCTION
1.1 Evolution of JSON Schema
JSON is a data language whose values are nested objects and arrays, and JSON Schema [25] is

the de-facto standard schema language for JSON. It is based on the combination of structural

operators, describing base values, objects, and arrays, through logical operators such as disjunction,

conjunction, negation, and recursive references.

JSON Schema passed through many versions, the most important being Draft-04 [18], which

was the first to be widely adopted, Draft-06 [31], which introduced extensions without changing

the validation model, Draft 2019-09 [29], and Draft 2020-12 [30].

The evaluation model of Draft-04 and Draft-06 is quite easy to understand and to formalize,

and it has been studied in many papers, such as [8, 15, 16, 26]. However, Draft 2019-09 introduces

Authors’ addresses: Lyes Attouche, Université Paris-Dauphine – PSL, Paris, France, lyes.attouche@dauphine.fr; Mohamed-

Amine Baazizi, Sorbonne Université, LIP6 UMR 7606, Paris, France, baazizi@ia.lip6.fr; Dario Colazzo, Université Paris-

Dauphine – PSL, Paris, France, dario.colazzo@dauphine.fr; Giorgio Ghelli, Dip. Informatica, Università di Pisa, Pisa, Italy,

ghelli@di.unipi.it; Carlo Sartiani, DIMIE, Università della Basilicata, Potenza, Italy, carlo.sartiani@unibas.it; Stefanie

Scherzinger, Universität Passau, Passau, Germany, stefanie.scherzinger@uni-passau.de.

2023. 2475-1421/2023/8-ART111 $15.00

https://doi.org/XXXXXXX.XXXXXXX

Proc. ACM Program. Lang., Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://doi.org/XXXXXXX.XXXXXXX

111:2

two important novelties to the evaluation model: annotation-dependent validation, and dynamic

references; according to the terminology introduced by Henry Handrews in [7], because of these

modifications to the evaluation model, Draft 2019-09 is the first Draft that defines Modern JSON

Schema, while the previous Drafts define variations of Classical JSON Schema. These novelties are

motivated by application needs, but none of them is faithfully represented by the abstract models

that had been developed and studied for Classical JSON Schema. Further, both novelties seem in

need of formal clarification, as documented by many online discussions, such as [24] and [20].

Draft 2020-12 [30] is the version of Modern JSON Schema that we study in this paper.

1.2 An example of Modern JSON Schema
A JSON Schema schema is a formal specification of a validation process that can be applied to a

JSON value called “the instance”. A schema, such as the one in Figure 1, can contain nested schemas.

A schema is either true, false, or it is an object whose fields, such as "type" : "array", are called

keywords, and the term “keyword” is also used to indicate just the name of the field. Two keywords

with the same parent object are said to be adjacent.

1 { " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",
2 "$id": " https :// example .com/simple −tree",
3 " $anchor ": "tree",
4 "type": " object ",
5 " properties ": {
6 "data": true,
7 " children ": {
8 "type": " array ",
9 " items ": { "$ref": " https :// example .com/simple −tree#tree" }
10 }
11 },
12 " examples ": [
13 { "data": 3, " children ": [{ "data": null, " children ": [] },
14 { "data": " ", " children ": [] }] },
15 { " children ": [{ "data": null }, { " children ": [{ }] }] },
16 { "daat": 3, " hcilreden ": true }
17]
18 }

Fig. 1. A schema representing trees.

Looking at Figure 1, the "$schema" keyword specifies that this schema is based on Draft 2020-12.

Subschemas of a JSON schema can be identified with a URI with structure baseURI·"#"·fragmentId

(we use 𝑠1 ·𝑠2 for string concatenation); the "$id" keyword assigns a base URI to its parent schema,

and the "$anchor" keyword gives a fragment identifier to its parent schema, so that, in this case,

the fragment named "tree" is the entire schema. Hence, this schema can be referred to as either

"https://example.com/simple-tree" or as "https://example.com/simple-tree#tree".

The "type" keyword specifies that this schema only validates objects, while it fails on the other

JSON types, that is, arrays and base values. The "properties" keyword specifies that, if the instance

under validation contains a "data" property, then its value has no constraint, and, if it contains a

"children" property, then its value must satisfy the nested subschema of lines 7-10: it must be an

array whose elements (if any) must all satisfy "$ref" : "https://example.com/simple-tree#tree".

"$ref" is a reference operator that invokes a local or remote subschema, which, in this case, is

the entire current schema.
1

1
By the rules of URI reference resolution [13], the URI "https://example.com/simple-tree#tree" could be substituted

by the local reference "$ref" : "#tree", since "https://example.com/simple-tree" is the base URI of this schema.

https://modern-json-schema.com/
https://github.com/json-schema-org/json-schema-spec/issues/1172
https://github.com/orgs/json-schema-org/discussions/57

Validation of Modern JSON Schema: Formalization and Complexity 111:3

This schema is satisfied by all the instances that are listed in the "examples" array.2 The second

example shows that no field is mandatory — fields can be made mandatory by using the keyword

"required". The third example shows that fields that are different from "data" and "children" are

just ignored — we will discuss later how one can forbid such extra fields. To sum up, the only JSON

instances where this schema fails are those that associate "children" to a value that is not an array,

such as {"data" : 3, "children" : "aaa"}.
Dynamic references have been added as an extension mechanism, allowing one to first define a

base form of a data structure, and then to refine it, very much in the spirit of “self” refinement in

object-oriented languages. To this aim, the basic data structure is named using "$dynamicAnchor"

and is referred using the "$dynamicRef" keyword, as in Figure 2, lines 3 and 9. This combination

indicates that "$dynamicRef" : "https://example.com/simple-tree#tree" is dynamic, which means

that, when this schema is accessed through a different context, this dynamic reference may be

redefined so that it refers to a fragment that is still named "tree", but which is defined in a schema

that is not "https://example.com/simple-tree". We underline the absolute URI part of the dynamic

reference to remind the reader of the fact that this URI is only used if it is not redefined in the

“dynamic context”, as we will explain later.

1 { " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",
2 "$id": " https :// example .com/simple −tree",
3 " $dynamicAnchor ": "tree",
4 "type": " object ",
5 " properties ": {
6 "data": true,
7 " children ": {
8 "type": " array ",
9 " items ": { " $dynamicRef ": "https://example.com/simple-tree#tree" }
10 }
11 }
12 }

Fig. 2. A schema representing extensible trees.

The contextual redefinition mechanism is illustrated by Figure 3.

The schema "https://example.com/strict-tree" redefines the dynamic anchor "tree" (line 4),

so that it now indicates a conjunction between "$ref" : "https://example.com/simple-tree#tree"

and the keyword "unevaluatedProperties" : false, which forbids the presence of any property

that does not match those listed in "https://example.com/simple-tree#tree". If one applies this

schema, it will invoke "$ref" : "https://example.com/simple-tree#tree" (Figure 3-line 5), which

will execute the schema of Figure 2 in a “dynamic scope” where "https://example.com/strict-tree"

has redefined the meaning of "$dynamicRef" : "https://example.com/simple-tree#tree", because

"https://example.com/strict-tree" has been met before "https://example.com/simple-tree" (this

rule will be formalized in Section 3.7 and discussed in Section 4).
3

Hence, the “outermost” (or “first”) schema that contains "$dynamicAnchor" : "fragmentName" is the

one that fixes the meaning of that anchor for any other schema 𝑆 ′ that will invoke "$dynamicRef" :
"absURI"·"#"·"fragmentName" later, independently from the absolute URI "absURI" used by 𝑆 ′.
This semantics is quite surprising, and we believe it needs a formal definition. We are going to

provide that definition, and this was actually the original motivation of this work.

2
JSON Schema validation will just ignore all non-validation keywords such as "examples".

3
In Figure 3 we use a non-standard keyword "non-examples" to indicate instances that are validated by "$ref" :

"https://example.com/simple-tree#tree" but not by the present schema — again, JSON Schema allows any non-

standard keyword, and just ignores it.

111:4

1 {
2 " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",
3 "$id": " https :// example .com/strict −tree",
4 " $dynamicAnchor ": "tree",
5 "$ref": " https :// example .com/simple −tree#tree",
6 " unevaluatedProperties ": false ,
7 "non − examples " : [
8 { "dat": 3 },
9 { "data": 3, " childrn ": [] },
10 { " children ": [{ "data": null }, { " childrn ": [] }] }
11]
12 }

Fig. 3. A schema that refines trees.

1.3 Annotation dependency
In Modern JSON Schema, keywords produce annotations, and the validation result of a keyword

may depend on the annotations produced by adjacent keywords. These annotations carry a lot

of information, but the information that is relevant for validation is which children of the cur-

rent instance (that is, which properties, if it is an object, or which items, if it is an array) have

already been evaluated. This information is then used by the operators "unevaluatedProperties"

and "unevaluatedItems", since they are only applied to children that have not been evaluated, where

the exact meaning of this term will be discussed later.

For example, in the schema of Figure 3, the assertion "unevaluatedProperties" : false depends on

the annotations returned by the adjacent keyword "$ref" : "https://example.com/simple-tree#tree"

(Figure 1). In this case, "$ref" evaluates all and only the fields whose name is either "data" or

"children", hence "unevaluatedProperties" : false is applied to any other field, hence it fails if,

and only if, fields with a different name exist.

The order in which the keywords appear in the schema is irrelevant for this mechanism; as

formalized later, the result is the same as if the "unevaluatedProperties" keyword were always

evaluated last among the keywords inside a same schema.

The definition of evaluated in the specifications of Draft 2020-12 ([30]) presents many ambiguities,

as testified by online discussions such as [24] and [20]. These ambiguities do not affect the final

result of evaluation, but only the error messages that are generated; these aspects are discussed in

Appendix G. We believe that an important contribution of this work is that it provides a precise

and succinct language where this kind of ambiguities can be discussed and settled.

1.4 Our Contribution
We provide the following contributions.

i) We provide a formalization of Modern JSON Schema through a set of rules that take into

account both annotation-dependent validation and dynamic references (Sections 2 and 3).

We implemented a corresponding validator for Modern JSON Schema written in Scala, and

used it to verify their correctness using the JSON Schema standard test suite (Section 9).

ii) We analyze the complexity of validating a JSON instance against a schema and show that, when

dynamic references come into play, the validation problem becomes PSPACE-hard (Section 5);

validation was known to be PTIME-complete for Classical JSON Schema.

iii) We prove that the bound is strict, hence the problem is PSPACE-complete, by providing a

polynomial space algorithm for validation (Section 6).

iv) We show that annotation-dependent validation alone does not change the PTIME complexity

of JSON Schema validation, by providing an explicit algorithm for Modern JSON Schema

https://github.com/json-schema-org/json-schema-spec/issues/1172
https://github.com/orgs/json-schema-org/discussions/57

Validation of Modern JSON Schema: Formalization and Complexity 111:5

that runs in polynomial time on schemas that do not contain dynamic references (Section 7).

The algorithm actually runs in polynomial time on any family of schemas where the number

of dynamic references is bounded by a constant.

v) We study the data complexity of validation and prove that, when fixing a schema 𝑆 , validation

remains polynomial even in the presence of dynamic references. To this aim, we provide a

technique to substitute dynamic references with static references, at the price of an exponen-

tial increase of the schema size (Section 8).

vi) We run experiments that show that there are families of schemas where the distinction between

dynamic and static references is clearly visible in the experimental result; the experiment

also shows that many established validators generally exhibit an exponential behaviour also

on the PTIME fragment of JSON Schema (Section 9).

2 FORMALIZING JSON SCHEMA SYNTAX
2.1 Introduction
For reasons of space, we only formalize here a crucial subset of Modern JSON Schema, while the

rest is in Appendix A. There are two aspects of JSON Schema, URI management and keyword

reordering, that we prefer to address separately from the other aspects, in order to simplify the

presentation, through a “normalization process” that we define in Section 2.2; we then formalize

the syntax of normalized JSON Schema in Section 2.3.

2.2 URI resolution and resource flattening
The keywords "$id", "$ref", and "$dynamicRef" accept any URI reference as value, they apply the

resolution process defined in [13], and they then interpret the resulting resolved URI according

to JSON Schema rules. Since resolution is already specified in [13], we will not formalize it here,

and we will assume that, in every schema that is interpreted through our rules, the values of these

three keywords have been already resolved, and that the result of that resolution has the shape

absURI ·"#"·fragmentId, where fragmentId may be empty for "$ref", and "$dynamicRef", and must

be empty for "$id".

A "$id" : absURI keyword at the top-level of a schema object that is nested inside a JSON Schema

document indicates that that object is a separate resource, identified by absURI , that is embedded

inside that document but is otherwise independent. When the "$id" : absURI keyword is found in

an object that is not interpreted as a schema, for example inside an unknown keyword or a non

validation keyword such as "default", then it has no special meaning. The set of positions that are

interpreted as schemas is defined by the grammar presented in Section 2.3.

Embedded resources are an important feature, since they allow the distribution of different

resources with just one file, but they present some problems when they are nested inside ar-

bitrary keywords, and when a reference crosses the boundaries between resources, as does

"$ref" : "#/properties/foo/items" in Figure 4 (see also Section 9.2.1 of the specifications [30]).

To avoid this kind of problems, we assume that every JSON Schema document is resource-flattened

before validation. Resource flattening consists in moving every embedded resource identified as

absURI into the value of a field named absURI of a "$defs" keyword at the top level of the document,

and replacing the resource with an equivalent schema {"$ref" : absURI · "#"} that invokes that
resource; "$defs" is a placeholder keyword that is not evaluated, but which provides a place to

collect schemas that can be invoked using "$ref" or "$dynamicRef". During this phase, we also

replace any reference that crosses resource boundaries with a canonical reference that directly

refers the target (as suggested in Section 8.2 of the specifications [30]) (Figure 4).

111:6

1 { " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",
2 "$id": " https :// example .com/ resource1 ",
3 "type": " object ",
4 "$ref": "#/ properties /foo/ items ",
5 " properties ": {
6 "foo": {
7 " $schema ": " https :// json − schema .org/ draft /2019 −09/ schema ",
8 "$id": " https :// example .com/ embedded ",
9 " items ": {
10 "$id": " https :// example .com/ embeddedInside ",
11 "type": " number "
12 }
13 }
14 },
15 " default ": { "$id": " https :// example .com/ irrelevantId ", "type": " number " }
16 }
17

18 { " $schema ": ..., "$id": ..., "type": ...,
19 "$ref": " https :// example .com/ flattened #",
20 " properties ": {
21 "foo": { "$ref": " https :// example .com/ embedded " }
22 },
23 " default ": { "$id": " https :// example .com/ irrelevantId ", "type": " number },
24 " $defs ": {
25 " https :// example .com/ embedded " : {
26 " $schema ": " https :// json − schema .org/ draft /2019 −09/ schema ",
27 "$id": " https :// example .com/ embedded ",
28 " items ": { "$ref": " https :// example .com/ embeddedInside "}
29 },
30 " https :// json − schema .org/ draft /2020 −12/ schema " : {
31 " $schema ": " https :// json − schema .org/ draft /2019 −09/ schema ",
32 "$id": " https :// example .com/ embeddedInside ",
33 "type": " number "
34 }
35 }
36 }

Fig. 4. A schema with embedded resources and its flattened version.

Closed schemas. The input of a validation problem includes a schema 𝑆 and all schemas that are

recursively reachable from 𝑆 by following the URIs used in the "$ref" and "$dynamicRef" operators.

For complexity evaluation we will only consider closed schemas, that is, schemas that include all

the different resources that can be recursively reached from the top-level schema (see Figure 6 for

an example). There is no loss of generality, since external schemas can be embedded in a top-level

one by copying them in the "$defs" section, using the "$id" operator to preserve their base URI.

2.3 JSON Schema Normalized Grammar
JSON Schema syntax is a subset of JSON syntax. We present in Figure 5 the grammar for a subset of

the keywords, which is rich enough to present our results — the full grammar is in Appendix A. In

this grammar, the meta-symbols are (X)∗, which is Kleene star of 𝑋 , and (X)?, which is an optional

𝑋 . Non-terminals are italic words, and everything else — including { [, :] } — are terminal symbols.

Our grammar imposes a specific order among keywords, because the result of some JSON Schema

keywords depends on that of some adjacent keywords. Specifically, the two keywords in FstDep

depend on some keywords in IndKey (such as "properties" and "patternProperties"), and the two

keywords in SndDep depend on the keywords in FstDep, and on many keywords in IndKey, such as

"properties", "patternProperties","anyOf", "allOf", "$ref", and others.

JSON Schema allows the keywords to appear in any order, and evaluates them in an order that

respects the dependencies among keywords. We formalize this behaviour by assuming that, before

validation, each schema is reordered to respect the grammar in Figure 5. The grammar specifies that

Validation of Modern JSON Schema: Formalization and Complexity 111:7

a schema 𝑆 is either a boolean schema, or it begins with a possibly empty sequence of independent

keywords or triples, followed by a possibly empty sequence of first-level dependent keywords,

followed by a possibly empty sequence of second-level dependent keywords.

𝑞 ∈ Num, 𝑖 ∈ Int, 𝑘 ∈ Str, absURI ∈ Str, 𝑓 ∈ Str, format ∈ Str, 𝑝 ∈ Str, 𝐽 ∈ JVal
Tp ::= "object" | "number" | "integer" | "string" | "array" | "boolean" | "null"
S ::= true | false | { IndKey (, IndKey)∗ (, FstDep)∗ (, SndDep)∗ }

| { FstDep (, FstDep)∗ (, SndDep)∗ } | { SndDep (, SndDep)∗ } | { }
IndKey ::= "minimum" : 𝑞 | "maximum" : 𝑞 | "pattern" : 𝑝 | "required" : [𝑘1, . . . , 𝑘𝑛]

| "type" : Tp | "$id" : absURI | "$defs" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑛 : 𝑆𝑛 }
| "$ref" : absURI ·"#"·f | "$dynamicRef" : absURI ·"#"·f
| "$anchor" : plain − name | "$dynamicAnchor" : plain − name

| "anyOf" : [𝑆1, . . . , 𝑆𝑛] | "allOf" : [𝑆1, . . . , 𝑆𝑛] | "oneOf" : [𝑆1, . . . , 𝑆𝑛]
| "not" : 𝑆 | "patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 }
| "properties" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑚 : 𝑆𝑚 }
| 𝑘 : 𝐽 (with 𝑘 not cited as keyword in any other production)

FstDep ::= "additionalProperties" : 𝑆 | "items" : 𝑆
SndDep ::= "unevaluatedProperties" : 𝑆 | "unevaluatedItems" : 𝑆

Fig. 5. Minimal grammar of normalized JSON Schema Draft 2020-12.

This grammar specifies the predefined keywords, the type of the associated value (here JVal

is the set of all JSON values), and their order. We do not formalize here further restrictions on

patterns 𝑝 , absolute URIs absURI , and fragment identifiers 𝑓 . A valid schema must also satisfy two

more constraints: (1) every URI that is the argument of "$ref" or "$dynamicRef" must reference a

schema, and (2) any two adjacent keywords must have different names.

3 JSON SCHEMA VALIDATION
3.1 JSON data model
JSON values are either base values, or nested arrays and objects; the order of object fields is

irrelevant.

𝑠 ∈ Str, 𝑑 ∈ Num, 𝑛 ∈ Int, 𝑛 ≥ 0

𝐽 ::= null | true | false | 𝑑 | 𝑠 | [𝐽1, . . . , 𝐽𝑛] | { 𝑙1 : 𝐽1, . . . , 𝑙𝑛 : 𝐽𝑛 } 𝑖 ≠ 𝑗 ⇒ 𝑙𝑖 ≠ 𝑙 𝑗

In this paper we reserve the notation { . . . } to JSON objects, hence we use {| 𝑎1, . . . , 𝑎𝑛 |} and
{| 𝑎𝑖 |}𝑖∈𝑁 to indicate a set. When the order of the elements is relevant, we use the list notation

[| 𝑎1, . . . , 𝑎𝑛 |]; we also use ®𝑎 to indicate a list.

3.2 Introduction to the proof system
We are going to define a judgment that describes the result and the annotations that are returned

when a keyword 𝐾 = 𝑘 : 𝑃 is applied to an instance 𝐽 in a context 𝐶 , where 𝐶 provides the

information needed to interpret dynamic references. Hence, we read the following judgment

𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅)
as: the application of the keyword 𝐾 to the instance 𝐽 , in the context 𝐶 , returns the boolean 𝑟 and

the annotations 𝜅. The annotations as defined in [30] are a complex data structure, but we only

represent here the small subset that is relevant for validation, that is, the set of evaluated children,

111:8

of the instance 𝐽 . The evaluated children of an object are represented by their names, and the

evaluated children of an array by their position, so that:

𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅) ∧ 𝐽 = { 𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛 } ⇒ 𝜅 ⊆ {| 𝑘1, . . . , 𝑘𝑛 |}
𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅) ∧ 𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒ 𝜅 ⊆ {| 1, . . . , 𝑛 |}
𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅) ∧ 𝐽 a base value ⇒ 𝜅 = ∅

We define a similar schema judgment𝐶 ⊢S 𝐽 ? 𝑆 → (𝑟, 𝜅) in order to describe the result of applying
a schema 𝑆 to an instance 𝐽 , and we define a list evaluation judgment𝐶 ⊢L 𝐽 ? [|𝐾1, . . . , 𝐾𝑛 |] → (𝑟, 𝜅)
in order to apply a list of keywords to 𝐽 , passing the annotations produced by a sublist [|𝐾1, . . . , 𝐾𝑖 |]
to the following keyword 𝐾𝑖+1. Observe that the letters K, S, and L that appear on top of ⊢ are not

metavariables but just symbols used to differentiate the three judgments.

In the next sections we define the rules for keywords and for schemas. Keywords are called

assertions when they assert properties of the analyzed instance, so that "$id" is not an assertion,

while "type" is. Assertions are called applicators when they have schema parameters, such as 𝑆1
and 𝑆2 in "anyOf" : [𝑆1, 𝑆2], that they apply either to the instance, in which case they are in-place

applicators (e.g, "anyOf" : [𝑆1, 𝑆2]), or to elements or items of the instance, in which case they are

object applicators or array applicators (e.g., "properties" : { 𝑘1 : 𝑆1, 𝑘2 : 𝑆2 }).
In the following sections we present the rules for “terminal” assertions, Boolean in-place applica-

tors, and for object and array applicators. We also illustrate the rules for sequential evaluation and

for the schema judgments, and finally the rules for static and dynamic references.

3.3 Terminal assertions
Terminal assertions are those that do not contain any subschema to reapply. The great majority of

them are conditional on a type 𝑇 : they are trivially satisfied when the instance 𝐽 does not belong

to 𝑇 , and they otherwise verify a specific condition on 𝐽 . Hence, these keyword are defined by a

couple of rules, as exemplified here for the keyword "minimum" : 𝑞. The first rules always returns 𝑇

(true) when 𝐽 is not a number, while the second one, applied to numbers, returns the same boolean

𝑟 ∈ {|𝑇, 𝐹 |} as checking whether 𝐽 ≥ 𝑞. The set of evaluated children is ∅.
TypeOf (𝐽) ≠ number

𝐶 ⊢K 𝐽 ? "minimum" : 𝑞 → (𝑇, ∅)
(minimumTriv)

TypeOf (𝐽) = number 𝑟 = (𝐽 ≥ 𝑞)
𝐶 ⊢K 𝐽 ? "minimum" : 𝑞 → (𝑟, ∅)

(minimum)

Typed terminal assertions are completely defined by a type and a condition; a complete list of

these keywords, with the associated type and condition, can be found in Appendix A.2.

We also have four type-uniform terminal assertions, that do not single out any specific type for a

special treatment. They are "enum", "const", "type" : [Tp
1
, . . . , Tp𝑛], and "type" : Tp. We only define

here the rule for "type" : Tp, where TypeOf (𝐽) extracts the type of the instance 𝐽 .

𝑟 = (TypeOf (𝐽) = Tp)
𝐶 ⊢K 𝐽 ? "type" : Tp→ (𝑟, ∅)

(type)

Hence, the rule for a type-uniform terminal assertion is completely defined by a boolean condition,

as reported in Table 1.

3.4 Boolean applicators
JSON Schema boolean applicators apply a list of schemas to the instance, obtain a list of intermediate

boolean results, and combine the intermediate results using a boolean operator. For the annotations,

all assertions always return a union of the annotations produced by their subschemas, even when

Validation of Modern JSON Schema: Formalization and Complexity 111:9

assertion: kw :J’ condition: cond(J, kw :J’)

"enum" : [𝐽1, . . . , 𝐽𝑛] 𝐽 ∈ {| 𝐽1, . . . , 𝐽𝑛 |}
"const" : 𝐽𝑐 𝐽 = 𝐽𝑐

"type" : Tp TypeOf (𝐽) = Tp
"type" : [Tp

1
, . . . ,Tp𝑛] TypeOf (𝐽) ∈ {| Tp

1
, . . . ,Tp𝑛 |}

Table 1. Boolean conditions for type-uniform terminal assertions.

the assertion fails. This should be contrasted with the behaviour of schemas, where a failing schema

never returns any annotation (Section 3.6).
4

Hence, this is the rule for the disjunctive applicator "anyOf"; it combines the intermediate results

using the ∨ operator, and a child of 𝐽 is evaluated if, and only if, it has been evaluated by any

subschema 𝑆𝑖 .

∀𝑖 ∈ {| 1 . . . 𝑛 |}. 𝐶 ⊢S 𝐽 ? 𝑆𝑖 → (𝑟𝑖 , 𝜅𝑖) 𝑟 = ∨({| 𝑟𝑖 |}𝑖∈{| 1...𝑛 |})
𝐶 ⊢K 𝐽 ? "anyOf" : [𝑆1, ..., 𝑆𝑛] → (𝑟,

⋃
𝑖∈{| 1...𝑛 |} 𝜅𝑖)

(anyOf)

The rules for "allOf" and for "not" are analogous: "allOf" is successful if all premises are successful

and negation is successful if its premise fails.

∀𝑖 ∈ {| 1 . . . 𝑛 |}. 𝐶 ⊢S 𝐽 ? 𝑆𝑖 → (𝑟𝑖 , 𝜅𝑖) 𝑟 = ∧({| 𝑟𝑖 |}𝑖∈{| 1...𝑛 |})
𝐶 ⊢K 𝐽 ? "allOf" : [𝑆1, ..., 𝑆𝑛] → (𝑟,

⋃
𝑖∈{| 1...𝑛 |} 𝜅𝑖)

(allOf)

𝐶 ⊢S 𝐽 ? 𝑆 → (𝑟, 𝜅)
𝐶 ⊢K 𝐽 ? "not" : 𝑆 → (¬𝑟, 𝜅)

(not)

3.5 Independent object and array applicators (independent structural applicators)
Independent structural applicators are those that reapply a subschema to some children of the

instance (structural) and whose behavior does not depend on adjacent keywords (independent).

We start with the rules for the "patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 } applicator that
asserts that, if 𝐽 is an object, then every property of 𝐽 whose name matches a pattern 𝑝 𝑗 has a value

that satisfies 𝑆 𝑗 . This rule constraints all instance fields whose name matches any pattern 𝑝 𝑗 in

the applicator, but it does not force any of the 𝑝 𝑗 ’s to be matched by any property name, nor any

property name to match any 𝑝 𝑗 ; if there is no match, the keyword is satisfied.

We first have the trivial rule for the case when 𝐽 is not an object: non-object instances trivially

satisfy the operator.

TypeOf (𝐽) ≠ object

𝐶 ⊢K 𝐽 ? "patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 } → (𝑇, ∅)
(patternPropertiesTriv)

In the non-trivial case, where 𝐽 = { 𝑘 ′
1
: 𝐽1, . . . , 𝑘

′
𝑛 : 𝐽𝑛 }, we first collect the set {| (𝑖1, 𝑗1), . . . , (𝑖𝑙 , 𝑗𝑙) |}

of all pairs (𝑖, 𝑗) such that 𝑘 ′𝑖 ∈ 𝐿(𝑝 𝑗), where 𝐿(𝑝 𝑗) is the language of the pattern 𝑝 𝑗 . For each such

pair (𝑖𝑞, 𝑗𝑞), we collect the boolean 𝑟𝑞 that specifies whether 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 𝑗𝑞 holds or not, and the

entire keyword is successful over 𝐽 if the conjunction 𝑟 = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |}) is 𝑇 . According to the

standard convention, the empty conjunction ∧({| |}) evaluates to 𝑇 , hence this rule does not force
any matching.

4
Other interpretations of the specifications of Draft 2020-12 are possible; see Appendix G for a discussion.

111:10

The evaluated properties are all the properties 𝑘𝑖𝑞 for which a corresponding pattern 𝑝𝑖𝑞 exists,

independently of the result 𝑟𝑞 of the corresponding validation, and independently of the overall

result 𝑟 of the keyword. Observe that the sets 𝜅𝑞 of the children that are evaluated in the subproofs

are discarded; this happens because elements of 𝜅𝑞 are children of a child 𝐽𝑖𝑞 of 𝐽 ; we collect

information about the evaluation of the children of 𝐽 , and are not interested in children of children.

𝐽 = { 𝑘 ′
1
: 𝐽1, . . . , 𝑘

′
𝑛 : 𝐽𝑛 } {| (𝑖1, 𝑗1), . . . , (𝑖𝑙 , 𝑗𝑙) |} = {| (𝑖, 𝑗) | 𝑘 ′𝑖 ∈ 𝐿(𝑝 𝑗) |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 𝑗𝑞 → (𝑟𝑞, 𝜅𝑞) 𝑟 = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢K 𝐽 ? "patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 } → (𝑟, {| 𝑘 ′𝑖1 , . . . , 𝑘

′
𝑖𝑙
|})

(patternProperties)

The rule for "properties" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑚 : 𝑆𝑚 } is essentially the same, with equality 𝑘 ′𝑖 = 𝑘 𝑗
taking the place of matching 𝑘 ′𝑖 ∈ 𝐿(𝑝 𝑗); also in this case, no name match is required, but, if a match

happens, then the corresponding child of 𝐽 must satisfy the subschema with the same name.

𝐽 = { 𝑘 ′
1
: 𝐽1, . . . , 𝑘

′
𝑛 : 𝐽𝑛 } {| (𝑖1, 𝑗1), . . . , (𝑖𝑙 , 𝑗𝑙) |} = {| (𝑖, 𝑗) | 𝑘 ′𝑖 = 𝑘 𝑗 |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 𝑗𝑞 → (𝑟𝑞, 𝜅𝑞) 𝑟 = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢K 𝐽 ? "properties" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑚 : 𝑆𝑚 } → (𝑟, {| 𝑘 ′𝑖1 , . . . , 𝑘

′
𝑖𝑙
|})

(properties)

Of course, we also have the trivial rule (propertiesTriv), analogous to rule (patternPropertiesTriv):
when 𝐽 is not an object, "properties" is trivially satisfied. The rules for the other independent

object applicators, and for the independent array applicators, can be found in Appendix A.

The independent keywords presented in this section (and in the previous one) produce (respec-

tively, collect and transmit) annotations that influence the behavior of the dependent keywords,

which are "additionalProperties", "items", "unevaluatedProperties", and "unevaluatedItems". These

dependencies are formalized in the next sections.

3.6 The semantics of schemas: sequential evaluation of keywords
3.6.1 Schemas and sequential evaluation. We have defined the semantics of the independent

keywords. We now introduce the rules for schemas and for the sequential executions of keywords.

The rules for the true and false schemas are trivial.

𝐶 ⊢S 𝐽 ? true→ (𝑇, ∅) (trueSchema) 𝐶 ⊢S 𝐽 ? false→ (𝐹, ∅) (falseSchema)

The rule for an object schema { ®𝐾 } is based on the keyword-list judgment 𝐶 ⊢L 𝐽 ? ®𝐾 ®𝑟→ 𝜅,

which applies the keywords in the ordered list ®𝐾 , passing the annotations from left to right.

Rule (schema-false) specifies that, as dictated by [30], when schema validation fails, no annotation

is passed, hence no instance child is regarded as evaluated. This is a crucial difference with keywords,

since the 𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅) judgment may return non empty annotations even when 𝑟 = 𝐹 . 5

𝐶 ⊢L 𝐽 ? [|𝐾1, . . . , 𝐾𝑛 |] → (𝑇,𝜅)
𝐶 ⊢S 𝐽 ? {𝐾1, . . . , 𝐾𝑛 } → (𝑇,𝜅)

(schema-true)
𝐶 ⊢L 𝐽 ? [|𝐾1, . . . , 𝐾𝑛 |] → (𝐹, 𝜅)
𝐶 ⊢S 𝐽 ? {𝐾1, . . . , 𝐾𝑛 } → (𝐹, ∅)

(schema-false)

We now describe the rules for the sequential evaluation judgment𝐶 ⊢L 𝐽 ? ®𝐾 → (𝑟, 𝜅). The rules
are specified for each list ®𝐾 + 𝐾 by induction on ®𝐾 and by cases on 𝐾 .

We start with the crucial rule, that for ®𝐾 + "unevaluatedProperties" : 𝑆 . To evaluate ®𝐾 +
"unevaluatedProperties" : 𝑆 we first evaluate ®𝐾 , which yields a set of evaluated children 𝜅, we

5
See the discussion in Appendix G.

Validation of Modern JSON Schema: Formalization and Complexity 111:11

then evaluate 𝑆 on the other children, and we combine the results by conjunction. We return every

property as evaluated.

𝐽 = { 𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛 } 𝐶 ⊢L 𝐽 ? ®𝐾 → (𝑟, 𝜅)
{| 𝑖1, . . . , 𝑖𝑙 |} = {| 𝑖 | 1 ≤ 𝑖 ≤ 𝑛 ∧ 𝑘𝑖 ∉ 𝜅 |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 → (𝑟𝑞, 𝜅𝑞) 𝑟 ′ = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢L 𝐽 ? (®𝐾 + "unevaluatedProperties" : 𝑆) → (𝑟 ∧ 𝑟 ′, {| 𝑘1 . . . , 𝑘𝑛 |})

(unevaluatedProperties)

The rule for ®𝐾 +"additionalProperties" : 𝑆 is identical, apart from the fact that we only eliminate

the properties that have been evaluated by adjacent keywords. The specifications [30] indicate that

this information should be passed as annotation, but that a static analysis is acceptable if it gives

the same result. We formalize this second approach since it is slightly simpler. We define a function

propsOf(®𝐾) that extracts all the patterns and all the names that appear in any "properties" and

"patternProperties" keywords that appear in ®𝐾 and combines them into a pattern; a property is

directly evaluated by a keyword in ®𝐾 if, and only if, it belongs to 𝐿(propsOf(®𝐾)). The notation ki

used in the first line indicates a pattern whose language is {| 𝑘𝑖 |}; ∅ in the third line is a pattern

such that 𝐿(∅) = ∅.

propsOf("properties" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑚 : 𝑆𝑚 }) = k1 ·"|"· . . . ·"|"·kn
propsOf("patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 }) = 𝑝1 ·"|"· . . . ·"|"·𝑝𝑚
propsOf(𝐾) = ∅ otherwise

propsOf([|𝐾1, . . . , 𝐾𝑛 |]) = propsOf(𝐾1) ·"|"· . . . ·"|"·propsOf(𝐾𝑛)
The keyword "additionalProperties" was already present in Classical JSON Schema, and it does

not really depends on the annotations passed by the previous keywords, but only on information

that can be statically extracted from "properties" and "patternProperties"; critically, it is not

influenced by what is evaluated by an adjacent "$ref", as happens to "unevaluatedProperties" in

the example of Figure 3. Modern JSON Schema introduced "unevaluatedProperties" in order to

overcome this limitation.

𝐽 = { 𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛 } 𝐶 ⊢L 𝐽 ? ®𝐾 → (𝑟, 𝜅)
{| 𝑖1, . . . , 𝑖𝑙 |} = {| 𝑖 | 1 ≤ 𝑖 ≤ 𝑛 ∧ 𝑘𝑖 ∉ 𝐿(propsOf(®𝐾)) |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 → (𝑟𝑞, 𝜅𝑞) 𝑟 ′ = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢L 𝐽 ? (®𝐾 + "additionalProperties" : 𝑆) → (𝑟 ∧ 𝑟 ′, {| 𝑘1 . . . , 𝑘𝑛 |})

(additionalProperties)

The rules for "unevaluatedItems" : 𝑆 and "items" : 𝑆 are similar, and they can be found in

Appendix A.

Having exhausted the rules for dependent keywords, we have a catch-all rule for all other

keywords, that says that, when 𝐾 is an independent keyword, we combine the results of 𝐶 ⊢L
𝐽 ? ®𝐾 → (𝑟𝑙 , 𝜅𝑙) and 𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅), but no information is passed between the two judgments.

𝐾 ∈ IndKey 𝐶 ⊢L 𝐽 ? ®𝐾 → (𝑟𝑙 , 𝜅𝑙) 𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅)

𝐶 ⊢L 𝐽 ? (®𝐾 + 𝐾) → (𝑟𝑙 ∧ 𝑟, 𝜅𝑙 ∪ 𝜅)
(klist-(n+1))

Since the above rule is inductive, we need a terminal rule for the case of an empty list of keywords.

𝐶 ⊢L 𝐽 ? [| |] → (𝑇, ∅) (klist-0)

111:12

3.7 Static and dynamic references
The "$ref" and "$dynamicRef" in-place applicators allow a URI-identified subschema to be applied

to the current instance, but the two applicators interpret the URI in a very different way.

As specified in Section 2.2, we assume that the parameter of any "$ref" and "$dynamicRef" is a

resolved URI with structure absUri ·"#"·fragmentId, where the fragment identifier may be empty;

"$ref" : absURI · "#" · fragmentId retrieves the resource 𝑆 identified by absUri, which may be the

current schema or a different one, retrieves the subschema 𝑆 ′ of 𝑆 identified by fragmentId, and

applies 𝑆 ′ to the current instance 𝐽 .

The application of absUri ·"#" ·fragmentId changes the dynamic scope; this fact is recorded by

extending the context𝐶 in the premise with absUri. The context𝐶 is the ordered list of the absolute

URIs of the “dynamic scopes” that have been met by the current branch of the validation proof,

and is used to interpret dynamic references — in the rule, 𝐿 + 𝑒 denotes the operation of adding an

element 𝑒 at the end of a list 𝐿.

𝑆 ′ = get(load(absURI), f) 𝐶 + absURI ⊢S 𝐽 ? 𝑆 ′→ (𝑟, 𝜅)
𝐶 ⊢K 𝐽 ? "$ref" : absURI ·"#"·f → (𝑟, 𝜅)

($ref)

Here, load(absURI) returns the schema 𝑆 identified by absURI , an operation that we cannot

formalize since the standards leave it undefined [13, 30]. get(𝑆, f) returns the subschema identified

by 𝑓 inside 𝑆 ; the fragment 𝑓 may either be empty, hence identifying the entire 𝑆 , or a plain-name,

which is matched by a corresponding "$anchor" operator inside 𝑆 ,6 or a JSON Pointer, that begins

with “/” and is interpreted by navigation — the get function is formally defined in Appendix B.

For simplicity, we assume that the schema has already been analyzed to ensure the following

properties; it would not be difficult to formalize these conditions in the rules:

(1) the load function will not fail;

(2) the get function will not fail;

(3) every "$id" operator assigns to its schema a URI that is different from the URI of any other

resource recursively reachable from its schema.

The applicator "$dynamicRef" is very different, and is defined as follows (see [30] Section 8.2.3.2):

If the initially resolved starting point URI includes a fragment that was created

by the "$dynamicAnchor" keyword, the initial URI MUST be replaced by the URI

(including the fragment) for the outermost schema resource in the dynamic scope

(Section 7.1) that defines an identically named fragment with "$dynamicAnchor".

Otherwise, its behavior is identical to "$ref", and no runtime resolution is needed.

This sentence is not easy to decode, but it means that, given an assertion "$dynamicRef" : absURI ·
"#"·f , one first verifies whether the resource referenced by the “starting point URI” absURI contains
a dynamic anchor "$dynamicAnchor" : 𝑓 ′ with 𝑓 ′ = 𝑓 . In this is the case, "$dynamicRef" : absURI·"#"·f
will be interpreted according to the dynamic interpretation specified in the second part of the

sentence, otherwise it will be interpreted as if it were a static reference "$ref"; this verification

is formalized by the premises dget(load(absURI), f) ≠ ⊥ and dget(load(absURI), f) = ⊥ of the

two rules that we present below for "$dynamicRef". The function dget(𝑆, 𝑓) looks inside 𝑆 for a

subschema that contains "$dynamicAnchor" : 𝑓 , but it returns⊥ if there is no such subschema.
7
After

this check is passed, the dynamic interpretation focuses on the fragment 𝑓 , and it looks for the

6
Actually, it can also be matched by a "$dynamicAnchor" operator, which, in this case, is interpreted as exactly as "$anchor".

7
Observe that dget(load(absURI), f) ≠ ⊥ is a static check that may be performed once for all when the schema is loaded.

This check is called “the bookending requirement”, and it may be dropped in future Drafts (see Remove $dynamicRef

bookending requirement), but our results would not be affected by this decisions.

https://json-schema.org/draft/2020-12/json-schema-core.html#name-dynamic-references-with-dyn
https://github.com/json-schema-org/json-schema-spec/issues/1064
https://github.com/json-schema-org/json-schema-spec/issues/1064

Validation of Modern JSON Schema: Formalization and Complexity 111:13

first (the “outermost”) resource in 𝐶+ that contains a subschema identified by "$dynamicAnchor" : 𝑓 ,

where 𝐶+ is the dynamic context 𝐶 extended with the initial URI absURI .

We formalize this specification using two functions: dget(𝑆, f) and fstURI(𝐶, f). The function
dget(𝑆, f) returns the subschema 𝑆 ′ that is identified in 𝑆 by a plain-name f that has been defined

by "$dynamicAnchor" : "f", and returns ⊥ when no such subschema is found in 𝑆 , and its definition

is given in Appendix B. The function fstURI(𝐿, f) returns the first URI in the list 𝐿 that defines 𝑓 ,

that is, such that dget(load(absURI), f) ≠ ⊥:
fstURI([| |], f) = ⊥
fstURI(absURI + 𝐿, f) = absURI if dget(load(absURI), f) ≠ ⊥
fstURI(absURI + 𝐿, f) = fstURI(𝐿, f) if dget(load(absURI), f) = ⊥

We can finally formalize the dynamic reference rule. It first checks that the initial URI refers to

a dynamic anchor, but, after this check, the result of load(absURI) is forgotten. Instead, we look
for the first URI fURI in 𝐶 + absURI where the dynamic anchor 𝑓 is defined, and we extract the

corresponding subschema 𝑆 ′ by executing dget(load(fURI), 𝑓).

dget(load(absURI), f) ≠ ⊥ fURI = fstURI(𝐶 + absURI , 𝑓)
𝑆 ′ = dget(load(fURI), f) 𝐶 + fURI ⊢S 𝐽 ? 𝑆 ′→ (𝑟, 𝜅)

𝐶 ⊢K 𝐽 ? "$dynamicRef" : absURI ·"#"·f → (𝑟, 𝜅)
($dynamicRef)

Remark 1. Observe that fstURI(𝐶 + absURI , 𝑓) searches fstURI into a list that contains the dynamic

context extended with the URI absURI . We have the impression that the specifications, that we

copied above, would rather require fURI = fstURI(𝐶, 𝑓), but we contacted the specification authors,

and we checked some online verifiers that are widely adopted, and there seems to be a general

agreement that fURI = fstURI(𝐶 + absURI , 𝑓) is the correct formula (see Appendix C for a concrete

example). We do not really understand where the specifications would mandate to search into

absURI as well, and the current version of the official test cases (as for 26
𝑡ℎ

Jan. 2023) does not help

us resolving the ambiguity, but this is not essential, since none of our theoretical results is affected

by this choice.

On the other side, we believe that these difficulties in the interpretation of the natural language

specifications are a further indication of the relevance of a formal specification.

The second rule for "$dynamicRef" applies when the initially resolved starting point URI does

not include a fragment that was created by the "$dynamicAnchor" keyword, hence "$dynamicRef"

behaves as "$ref".

dget(load(absURI), f) = ⊥
𝑆 ′ = get(load(absURI), f) 𝐶 + absURI ⊢S 𝐽 ? 𝑆 ′→ (𝑟, 𝜅)

𝐶 ⊢K 𝐽 ? "$dynamicRef" : absURI ·"#"·f → (𝑟, 𝜅)
($dynamicRefAsRef)

3.8 Compressing the context by saturation
The only rule that depends on the context𝐶 is rule ($dynamicRef) that uses fstURI(𝐶 +absURI , 𝑓) to
retrieve the first𝑈𝑅𝐼 in𝐶 + absURI that identifies a schema where f identifies a dynamic fragment.

For this operation, when𝑈𝑅𝐼 is already present in 𝐶 , its addition at the end of 𝐶 is irrelevant; for

each 𝑈𝑅𝐼 we could just retain its first occurrence in 𝐶 . Let us define 𝐶+?𝑈𝑅𝐼 , that we read as 𝐶

saturated with 𝑈𝑅𝐼 , as 𝐶+?𝑈𝑅𝐼 = 𝐶 when 𝑈𝑅𝐼 ∈ 𝐶 and 𝐶+?𝑈𝑅𝐼 = 𝐶 + 𝑈𝑅𝐼 when 𝑈𝑅𝐼 ∉ 𝐶 . By
the observation above, we can substitute 𝐶 + 𝑈𝑅𝐼 with 𝐶+?𝑈𝑅𝐼 in the premises of rules ($ref),
($dynamicRef), and ($dynamicRefAsRef), obtaining, for example the following rule.

111:14

dget(load(absURI), f) ≠ ⊥ fURI = fstURI(𝐶+?absURI , 𝑓)
𝑆 ′ = dget(load(fURI), f) 𝐶+?fURI ⊢S 𝐽 ? 𝑆 ′→ (𝑟, 𝜅)

𝐶 ⊢K 𝐽 ? "$dynamicRef" : absURI ·"#"·f → (𝑟, 𝜅)
($dynamicRef𝑐)

This observation will be crucial in our complexity evaluations, hence, from now on, we adopt

saturation in the reference rules, and we assume that contexts are URI lists with no repetition.

4 DYNAMIC REFERENCES AS A PARAMETRIZATION MECHANISM
Dynamic references look like a data parametrization mechanism, similar to the 𝑋 variable in

a classical List < X > data structure, but with a peculiar instantiation mechanism. While para-

metric data structures such as List < X > are usually instantiated by parameter-passing, as in

newList < Integer > () (Java syntax), dynamic references are instantiated by giving a first definition,

as we do in Figure 2 for the "#tree" dynamic anchor, and by refining it later on, as we do in Figure 3,

where we recall the original definition and add an extra condition "unevaluatedProperties" : false.

Here, “later on” describes the typical order in which one would design this piece of code; crucially,

the order is inverted at run-time, when we would invoke "https://example.com/strict-tree#tree"

first, and this order would cause the definition in "https://example.com/strict-tree" to overwrite

the definition in "https://example.com/tree". Hence, dynamic references are not “instantiated” by

parameter passing, but rather “overwritten”, in a way that is driven by invocation order. For this

reason, they resemble self parametrization in object-oriented languages, where the structure is

first defined in a superclass, is later refined in subclasses, and the programmer can decide which

version to use, which will depend on their entry-point, that is, on which class they choose to

instantiate. A further parallelism with object-oriented inheritance is the emphasis on refinement: in

many standard examples, the new definition of a dynamic reference invokes the previous definition

and adds more constraints, as we do in Figure 3; this looks very similar to inheritance, where the

subclass refines the superclass.

This peculiar instantiationmechanism is related to the intended application of dynamic references.

Dynamic references have been introduced (as "recursiveRef") in Draft 2019-09 as a refinement

mechanism for recursive data structures, as in our example. The driving example was the meta-

schema of JSON Schema, that is, a schema specifying what is a well formed JSON Schema schema.

If you consider the grammar in Figure 5, they needed a mechanism to describe, in JSON Sche-

ma, that grammar, together with different extensions. That mechanism had to allow different

extensions to that grammar to be specified, each one adding its own cases, and all of them recursively

interpreting 𝑆 according to a combination of all different extensions [5] (core metaschema). Hence,

the mechanism has not been designed to support “parametric data types”, but rather “refinable

recursive data types”, which explains the reliance on “rebinding” rather than “parameter passing”.

5 PSPACE HARDNESS: USING DYNAMIC REFERENCES TO ENCODE A QBF
SENTENCE

Dynamic references add a seemingly minor twist to the validation rules, but this twist has a dramatic

effect on validation complexity. We prove here that dynamic references make validation PSPACE-

hard, by reducing quantified Boolean formulas (QBF) validity, a well-known PSPACE-complete

problem [27, 28], to JSON Schema validation. In detail, we encode an arbitrary closed QBF formula𝜓

as a schema 𝑆𝜓 whose size is linear in𝜓 and with the property that, given any JSON instance 𝐽 , the

assertion [| 𝑏 |] ⊢S 𝐽 ? 𝑆𝜓 , where b is the base URI of 𝑆𝜓 , holds if, and only if, 𝑆𝜓 is valid. Observe

that the actual value of 𝐽 is irrelevant: the schema 𝑆𝜓 is either satisfied by any instance, or by

none at all. In our encoding we use a Boolean subset of JSON Schema, which only includes "$ref",

"$anchor", "$dynamicRef", "$dynamicAnchor", "anyOf", "allOf", true, and false, where true, "$ref",

https://json-schema.org/draft/2020-12/schema

Validation of Modern JSON Schema: Formalization and Complexity 111:15

and "$anchor" are only used to improve readability: every "anyOf" : [true] could just be removed,

while "$ref" and "$anchor" could be substituted by "$dynamicRef" and "$dynamicAnchor".

We start with an example. Consider the following QBF formula:∀𝑥1. ∃𝑥2. (𝑥1∧¬𝑥2)∨(¬𝑥1∧𝑥2);
Figure 6 shows how it can be encoded as a JSON Schema schema.

1 {
2 " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",
3 "$id": "urn:psi",
4 "$ref": "urn: start # forall .x1",
5 " $defs ": {
6 "urn: start ": {
7 "$id": "urn: start ",
8 " $defs ": {
9 " forall .x1" : {
10 " $anchor ": " forall .x1",
11 " allOf ": [{ "$ref": "urn: setvar1 # afterq1 " },
12 { "$ref": "urn: start # afterq1 " }]
13 },
14 " exists .x2": {
15 " $anchor ": " exists .x2",
16 " anyOf ": [{ "$ref": "urn: setvar2 # afterq2 " },
17 { "$ref": "urn: start # afterq2 " }]
18 },
19 " afterq1 ": { " $anchor ": " afterq1 ", "$ref": "urn: start # exists .x2" },
20 " afterq2 ": { " $anchor ": " afterq2 ", "$ref": "urn: close #phi" }
21 }
22 },
23 "urn: setvar1 ": {
24 "$id": "urn: setvar1 ",
25 " $defs ": {
26 " afterq1 ": { " $anchor ": " afterq1 ", "$ref": "urn: start # exists .x2" },
27 "x1": { " $dynamicAnchor ": "x1", " anyOf ": [true] },
28 "not.x1": { " $dynamicAnchor ": "not.x1", " anyOf ": [false] }
29 }
30 },
31 "urn: setvar2 ": {
32 "$id": "urn: setvar2 ",
33 " $defs ": {
34 " afterq2 ": { " $anchor ": " afterq2 ", "$ref": "urn: close #phi" },
35 "x2": { " $dynamicAnchor ": "x2", " anyOf ": [true] },
36 "not.x2": { " $dynamicAnchor ": "not.x2", " anyOf ": [false] }
37 }
38 },
39 "urn: close ": {
40 "$id": "urn: close ",
41 " $defs ": {
42 "x1": { " $dynamicAnchor ": "x1", " anyOf ": [false] },
43 "not.x1": { " $dynamicAnchor ": "not.x1", " anyOf ": [true] },
44 "x2": { " $dynamicAnchor ": "x2", " anyOf ": [false] },
45 "not.x2": { " $dynamicAnchor ": "not.x2", " anyOf ": [true] },
46 "phi": {
47 " $anchor ": "phi",
48 " anyOf ": [
49 { " allOf ": [{ " $dynamicRef ": "urn:close#x1" },
50 { " $dynamicRef ": "urn:close#not.x2" }]
51 },
52 { " allOf ": [{ " $dynamicRef ": "urn:close#not.x1" },
53 { " $dynamicRef ": "urn:close#x2" }]
54 }
55]}}}}}

Fig. 6. Encoding ∀𝑥1. ∃𝑥2. (𝑥1 ∧ ¬𝑥2) ∨ (¬𝑥1 ∧ 𝑥2) as a JSON Schema.

For each variable 𝑥𝑖 we define a resource "urn:setvar" · 𝑖 (lines 23-30 and 31-38 of Figure 6),

each defining two dynamic schemas, one with plain-name "x" ·𝑖 and value true, and the other

111:16

one with plain-name "not.x"·𝑖 and value false8 (lines 27-28, 35-36). The body of the formula to

evaluate is defined in the "phi" property inside a resource "urn:close" (line 46-55). All variables in

"urn:close#phi" are encoded as dynamic references, so that their value depends on the resources

that are in-scope at the moment of the formula evaluation. If the context of the evaluation of

the formula "urn:close"#"phi"includes the resource "urn:setvar" ·𝑖 , then this resource is in the

context before the resource "urn:close", hence "$dynamicRef" : "urn:close#x" · 𝑖 resolves to the

true subschema defined there. If the context of the evaluation does not include the resource

"urn:setvar" · 𝑖 , then "urn:close#x" · 𝑖 resolves to the schema defined for 𝑥𝑖 inside the "urn:close"

resource, whose value is false.

Now we describe how we encode the quantifiers. The first quantifier is encoded inside the

"urn:start" resource. If the quantifier is ∀, as in this case, then we apply "allOf" to two references

(lines 9-13), one that checks whether the rest of the formula holds when 𝑥1 is true, by invoking

"urn:setvar1#afterq1", which sets 𝑥1 to true by bringing "urn:setvar1" in scope, and the second

one that evaluates the rest of the encoding in a context that does not contain "urn:setvar1", so that

𝑥1 will be set to false by the definition that is provided by "urn:close".

The existential quantifier is encoded exactly in the sameway (lines 14-18), with the only difference

that we use "anyOf", so that "urn:start#exists.x2" holds if the rest of the formula holds for at least

one boolean value of 𝑥2. This technique allows one to encode any QBF formula. The size of the

"urn:start" part of that schema is linear in the number of variables. Each "urn:setvar"·𝑖 resource
has a constant size, and their number is linear in the number of variables. Finally, the "urn:close"

resource contains a part whose size is linear in the number of variables and a second part whose

size is linear with the rest of the formula. Hence, the size of the entire schema is linear in the size

of the encoded sentence.

We now formalize this encoding. We substitute the names "#forall.x"·𝑖 and "#exists.x"·𝑖 , used
in the example, with "#quant.x"·𝑖 , in order to simplify the description and the proofs.

Definition 1 (𝑆𝜓). Consider a generic closed QBF formula:

𝜓 = 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛 . 𝜙

where 𝑄𝑖 ∈ {| ∀, ∃ |} and 𝜙 is generated by:

𝜙 ::= 𝑥𝑖 | ¬𝑥𝑖 | 𝜙 ∨ 𝜙 | 𝜙 ∧ 𝜙.
The schema 𝑆𝜓 contains 𝑛 + 3 resources: "urn:psi" (the root), "urn:start", "urn:setvar" ·1, . . . ,

"urn:setvar"· 𝑛, and "urn:close", and its root contains the only assertion

"$ref" : "urn:start#quant.x1"

The "urn:start" resource contains, for each 𝑥𝑖 , two subschemas, named "urn:start#quant.x"·𝑖
and "urn:start#afterq"·𝑖 . Every named subschema has a "$anchor" or a "$dynamicAnchor" keyword

that assigns it a name, and an assertion that we call its “body”. The body of "urn:start#quant.x" · 𝑖
is

boolOp : [{"$ref" : "urn:setvar"·𝑖 ·"#afterq"·𝑖} , {"$ref" : "urn:start#afterq"·𝑖}]
where boolOp = "allOf" when 𝑄𝑖 = ∀, and boolOp = "anyOf" when 𝑄𝑖 = ∃. The body of

"urn:start#afterq"·𝑖 is "$ref" : "urn:start#quant.x"·(𝑖+1)when 𝑖 < 𝑛 and is "$ref" : "urn:close#phi"
when 𝑖 = 𝑛.

Each "urn:setvar"·𝑖 resource contains 3 subschemas: "afterq"·𝑖 , "x"·𝑖 , and "not.x"·𝑖 . The body of

"afterq" ·𝑖 is equal to the body of "urn:start#afterq" ·𝑖; the body of "x" ·𝑖 is "anyOf" : [true], and
the body of "not.x"·𝑖 is "anyOf" : [false].
8
More precisely, it is "anyOf" : [false], since we cannot add an anchor to a schema that is just false; "anyOf" : [true] in
the body of "x" ·𝑖 is clearly redundant, and is there only for readability.

Validation of Modern JSON Schema: Formalization and Complexity 111:17

Finally, the "urn:close" resource contains, for each variable𝑥𝑖 , two subschemas, named "urn:close#x"·
𝑖 and "urn:close#not.x" ·𝑖 , and a schema "phi". The body each "x" ·𝑖 is "anyOf" : [false], and the

body of each "not.x"·𝑖 is "anyOf" : [true]. For a formula 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛 . 𝜙 , the body of "phi" is 𝑆𝜙 ,

which is recursively defined as follows:

𝑆𝑥𝑖 = {"$dynamicRef" : "urn:close#x"·𝑖}
𝑆¬𝑥𝑖 = {"$dynamicRef" : "urn:close#not.x"·𝑖}
𝑆𝜙1∨𝜙2

= "anyOf" : [𝑆𝜙1
, 𝑆𝜙2
]

𝑆𝜙1∧𝜙2
= "allOf" : [𝑆𝜙1

, 𝑆𝜙2
] .

The following theorem, whose proof is in Appendix D, states the correctness of the translation.

Theorem 2. Given a QBF closed formula 𝜓 = 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛 . 𝜙 and the corresponding schema 𝑆𝜓
with base URI 𝑏,𝜓 is valid if, and only if, for every 𝐽 , [| 𝑏 |] ⊢S 𝐽 ? 𝑆𝜓 → 𝑇 .

Since the encoding has linear size, PSPACE-hardness is an immediate corollary; as already

discussed, true, "$ref", and "$anchor" are not really necessary to our encoding.

Corollary 3 (PSPACE-hardness). Validation in any fragment of Modern JSON Schema that

includes "$dynamicRef", "$dynamicAnchor", "anyOf", "allOf", and false, is PSPACE-hard.

6 VALIDATION IS IN PSPACE
After we established that validation of dynamic references is PSPACE-hard, we show here that

the bound is tight, by exhibiting a validation algorithm that runs in polynomial space. To this

aim, we consider the algorithm that applies the typing rules through recursive calls, using a list of

already-met subproblems in order to cut infinite loops.

The algorithm is specified in Figure 1. For each schema, it evaluates its keywords, passing the

current value of the boolean result and of the evaluated children from one keyword to the next

one. Independent keywords (such as "anyOf" and "patternProperties") execute their own rule and

update the current result and the current evaluated items using conjunction and union, as dictated

by rule (klist-(n+1)), while each dependent keyword, (such as "unevaluatedProperties"), updates

these two values as specified by its own rule.

In Algorithm 1 we exemplify one in-place independent applicator ("anyOf"), one in-place applica-

tor that updates the context ("$dynamicRef"), one structural independent applicator ("patternProperties"),

and one dependent applicator ("unevaluatedProperties").

Function SchemaValidate (Context, Instance, Schema, StopList) applies Schema in the context

Context, that is a list of absolute URIs without repetitions, to Instance, and uses StopList in order to

avoid infinite recursion. The Context list is extended by evaluation of dynamic and static references

using the function Saturate (Context, URI) (line 31), which adds URI to Context only if it is not

already there. The StopList records the (Context, Instance, Schema) triples that have been met in the

current call stack. It stops the algorithm when the same triple is met twice in the same evaluation

branch, which prevents infinite loops, since any infinite branch must find the same triple infinitely

many times, because every instance and schema that is met is a subterm of the input, and only

finitely many different contexts can be generated.

We prove now that this algorithm runs in polynomial space. To this aim, the key observation is

the fact that we have a polynomial bound of the length of the call stack. The call stack is a sequence

of alternating tuples SchemaValidate (Context, Instance, Schema, StopList) - KeywordValidate
(. . .) - k(...) - SchemaValidate (Context’, Instance’, Schema’, StopList’), where 𝑘(. . .) is the keyword-

specific function invoked by KeywordValidate. We focus on the sequence of SchemaValidate
(Context, Instance, Schema, StopList) tuples, ignoring the intermediate calls. This sequence can

111:18

Algorithm 1: Validation
1 SchemaValidate(Context,Instance,Schema,StopList)
2 if (Schema == True)) then return (True,EmptySet) ;

3 if (Schema == False)) then return (False,EmptySet) ;

/* “Input” represents a triple */

4 Input := (Context,Instance,Schema);

5 if (Present (Input,StopList)) then raise (“error: infinite loop”) ;
/* Result and Eval are initialized, and then updated by each call to KeywordValidate */

6 Result := True; Eval := EmptySet;

7 for Keyword in Keywords (Schema) do
8 (Result,Eval) := KeywordValidate (Context, Instance, Keyword, Result, Eval, StopList+Input) ;

9 if Result == True then return (Result,Eval);

10 else return (Result,EmptySet) ;

11

12 KeywordValidate(Context,Instance, Keyword, PrevRes, PrevEval, StopList)
13 switch Keyword do
14 case “anyOf”: List do
15 return (AnyOf (Context,Instance,List,PrevRes,PrevEval,StopList));

16 case “dynamicRef”: absURI “#” fragmentId do
17 return (DynamicRef (Context,Instance,absURI,fragment,PrevRes,PrevEval,StopList));

18 . . .

19

20 AnyOf(Context, Instance, List, PrevRes, PrevEval, StopList)
21 Result := True; Eval := EmptySet;

22 for Schema in List do
23 (SchemaRes,SchemaEval) = SchemaValidate (Context, Instance, Keyword, StopList) ;

24 Result := Or (Result,SchemaRes); Eval := Union (Eval,SchemaEval);

25 return (And (PrevResult,Result), Union (PrevEval,Eval));

26

27 DynamicRef(Context, Instance, AbsURI, fragment, PrevRes, PrevEval, StopList)
28 if (dget(load(AbsURI),fragment) = bottom)) then return (StaticRef (...));

29 for URI in Context+AbsURI do if (dget(load(URI),fragment) != bottom) then { fstURI := URI; break; }

30 fstSchema ::= get(load(fstURI),fragment);

31 (SchemaRes,SchemaEval) = SchemaValidate(Saturate (Context,fstURI),Instance,fstSchema,StopList);

32 return (And (PrevResult,SchemaRes), Union (PrevEval,SchemaEval));

33

34 PatternProperties(Context, Instance, SchemaMap, PrevRes, PrevEval, StopList)
35 if (Instance is not Object) then return (True,EmptySet) ;

36 Result := True; Eval := EmptySet;

37 for (name,J) in Instance do
38 for (patt,Schema) in SchemaMap do
39 if (name matches patt) then
40 (SchemaRes,Ignore) = SchemaValidate (Context, J, Schema, StopList) ;

41 Result := And (Result,SchemaRes); Eval := Union (Singleton (name),Eval);

42 return (And (PrevResult,Result), Union (PrevEval,Eval));

43

44 UnevaluatedProperties(Context, Instance, Schema, PrevRes, PrevEval, StopList)
45 if (Instance is not Object) then return (True,EmptySet) ;

46 Result := True;

47 for (a,J) in Instance do
48 if (a not in PrevEval) then
49 (SchemaRes,Ignore) = SchemaValidate (Context, J, Schema, StopList) ;

50 Result := And (Result,SchemaRes);

51 return (And (PrevResult,Result), NamesOf (Instance));

Validation of Modern JSON Schema: Formalization and Complexity 111:19

be divided in at most 𝑛 subsequences, if 𝑛 is the input size, the first one with a context that only

contains one URI, the second one with contexts with two URIs, and the last one having a number of

URIs that is bound by the input size, since no URI is repeated twice in a context. In each subsequence

all the (Instance, Schema) pairs are different, since the stoplist test would otherwise raise a failure.

Since every instance in a call stack tuple is a subinstance of the initial one, and every schema is a

subschema of the initial one, we have at most 𝑛2 elements in each subsequence, hence the entire call

stack never exceeds 𝑛3. We finally observe that every single function invocation can be executed in

polynomial space plus the space used by the functions that it invokes, directly and indirectly; the

result follows, since we have seen that these functions are never more than 3 ∗ 𝑛3 at the same time.

This is the basic idea behind the following Theorem, whose full proof can be found in Appendix D.

Since our algorithm runs in polynomial space, the problem of validation for Modern JSON Schema

is PSPACE-complete.

Theorem 4. For any closed schema 𝑆 and instance 𝐽 whose total size is less than 𝑛, Algorithm 1

applied to 𝐽 and 𝑆 requires an amount of space that is polynomial in 𝑛.

7 POLYNOMIAL TIME VALIDATION FOR STATIC REFERENCES
While dynamic references make validation PSPACE-hard, annotation-dependent validation alone

does not change the PTIME complexity of Classical JSON Schema validation. We prove this fact

here by defining an optimized variant of Algorithm 1 that runs in polynomial time in situations

where there is a fixed bound on the maximum number of dynamic references, hence, a fortiori, for

schemas where no dynamic reference is present.

Our optimized algorithm exploits a memoization technique. To this aim, it returns, from each

evaluation of 𝑆 over 𝐽 in a context 𝐶 , not only the boolean result and the evaluated children, but

also a DFragSet, that specifies which dynamic fragments have been resolved during that evaluation.

For each evaluated judgment 𝐶 ⊢S 𝐽 ? 𝑆 → (𝑟, 𝜅), we write the tuple (𝐶, 𝐽 , 𝑆, 𝑟, 𝜅,DFragSet) in an

updatable store. When, during the same validation, we evaluate again 𝐽 and 𝑆 in an arbitrary context

𝐶 ′, we retrieve any previous evaluation with the same pair (𝐽 , 𝑆), and we verify whether the new𝐶 ′
is equivalent to the context𝐶 used for that evaluation, with respect to the set of fragments that have

been actually evaluated, reported in the DFragSet; here equivalent means that, for each fragment 𝑓

in DFragSet, fstURI(𝐶, 𝑓) and fstURI(𝐶 ′, 𝑓) coincide. If the two contexts are equivalent, then we do

not recompute the result, but we just return the previous (𝑟, 𝜅,DFragSet) triple. It is easy to prove

that, when the number of different dynamic references is bounded, this equivalence relation has a

number of equivalence classes that is polynomial in the size of 𝑆 , hence that memoization limits

the number of recursive call below a polynomial bound.

For simplicity, in our algorithm we keep the UpdatableStore and the StopList separated; it would

not be difficult to merge them in a single data structure that can be used for the purposes of both.

We show here how SchemaValidate changes from Algorithm 1. In Appendix E we also report how

KeywordValidate is modified.

This optimized algorithm returns the same result as the base algorithm, and runs in polynomial

time if the number of different dynamic fragments is limited by a fixed bound. The proofs can be

found in Appendix D.

Theorem 5. Algorithm 2 applied to (𝐶, 𝐽 , 𝑆, ∅, ∅) returns (𝑟, 𝜅, 𝑑), for some 𝑑 , if, and only if, 𝐶 ⊢S
𝐽 ? 𝑆 → (𝑟, 𝜅).

Theorem 6. Consider a family of closed schemas 𝑆 and judgments 𝐽 such that (|𝑆 | + |𝐽 |) ≤ 𝑛, and let
𝐷 be the set of different fragments 𝑓 that appear in the argument of a "$dynamicRef" : initURI ·"#"·f
in 𝑆 . Then, Algorithm 2 runs on 𝑆 and 𝐽 in time 𝑂 (𝑛𝑘+|𝐷 |) for some constant 𝑘 .

111:20

Algorithm 2: Polynomial Time Validation

/* The UpdatableStore maps each evaluated Instance-Schema pair to the list, maybe empty, of

all contexts where it has been evaluated, each context paired to the associated result */

1 SchemaValidateAndStore(Context,Instance,Schema,StopList,UpdatableStore)
2 if (Schema == True) then return (True,EmptySet,EmptySet) ;

3 if (Schema == False) then return (False,EmptySet,EmptySet) ;

4 Input := (Context,Instance,Schema);

5 if (Present (Input,StopList)) then raise (“error: infinite loop”) ;
6 PreviousResultsForSameSchemaAndInstance := UpdatableStore.get(Instance,Schema);

7 for (OldContext,OldResult,OldEval,OldDFragSet) in PreviousResultsForSameSchemaAndInstance do
8 if (Equivalent (Context,OldContext,OldDFragSet)) then /* If the current Context is equivalent

to the OldContext we reuse the old output */

9 return (OldOutput);

10 Output := (True,EmptySet,EmptySet);

11 for Keyword in Keywords (Schema) do
12 Output := KeywordValidate (Context, Instance, Keyword, Output, StopList+Input,UpdatableStore) ;

13 (Result,Eval,DFragSet) := Output;

14 UpdatableStore.addToList((Instance,Schema),(Context,Result,Eval,DFragSet));

15 if Result == True then
16 return (Result, Eval, DFragSet);

17 else
18 return (Result, EmptySet, DFragSet);

19

20 Equivalent (Context,OldContext,DFragSet)
21 Result := True;

22 for f in DFragSet do Result := And (Result, (FirstURI (Context,f) ==FirstURI (OldContext,f)));

23 return (Result);

Corollary 7. Validation is in PTIME for every family of schemas where the maximum number of

different fragments that are argument of "$dynamicRef" is bounded by a constant.

8 PTIME DATA COMPLEXITY THROUGH ELIMINATION OF DYNAMIC REFERENCES
As we have seen, dynamic references change the computational and algebraic properties of JSON

Schema. We define here a process to eliminate dynamic references, by substituting them with static

references; this allows us to reuse results and algorithms that have been defined for Classical JSON

Schema. Specifically, we will prove here that dynamic references can be eliminated from a schema,

and substituted with static references, at the price of a potentially exponential increase in the size

of the schema. This entails that the data complexity of the problem is polynomial (Corollary 9).

A dynamic reference "$dynamicRef" : initURI · "#" · f is resolved, during validation, to a URI

reference fstURI(𝐶+?initURI , 𝑓) · "#" · f that depends on the context 𝐶 of the validation (Section

3.7), so that the same schema 𝑆 behaves in different ways when applied in different contexts. This

context-dependency extends to static references: a static reference "$ref" : absURI ·"#"·f is always

resolved to the same subschema, however, when this subschema invokes some dynamic reference,

directly or through a chain of static references, then the validation behaviour of this subschema

depends on the context, as happens with "$ref" : "urn:close#phi" in our example, which is a static

reference, but the behaviour of the schema it refers to depends on the context.

To obtain the same effect without dynamic references, we observe that, once the context𝐶 is fixed,

then every dynamic reference has a fixed behaviour, and it can be encoded using a static reference

"$ref" : fstURI(𝐶+?initURI , 𝑓) ·"#"·f . Every dynamic reference can be eliminated if we iterate this

Validation of Modern JSON Schema: Formalization and Complexity 111:21

process by defining, for each subschema 𝑆 ′ and for each context 𝐶 , a context-injected version

CI(𝐶, 𝑆 ′), which describes how 𝑆 ′ behaves when the context is 𝐶 . The context-injected CI(𝐶, 𝑆 ′) is
obtained by (1) substituting in 𝑆 ′ every dynamic reference "$dynamicRef" : initURI·"#"·f with a static

reference to the context-injected version of the schema identified by fstURI(𝐶+?initURI , 𝑓) ·"#"·f ,
and (2) substituting every static reference "$ref" : absURI · "#" · f with a static reference to the

context-injected version of the schema identified by absURI ·"#"·f . Step (2) is crucial, since a static

reference may recursively invoke a dynamic one, hence the context must be propagated through

the static references.

Before giving a formal definition of the process that we outlined, we start with an exam-

ple. Consider the context 𝐶 = [| "urn:psi", "urn:start", "urn:setvar1" |] and a reference "$ref" :

"urn:close#phi", which refers to the following schema 𝑆 ′ that contains four dynamic references.

1 "urn: close #phi": {
2 " $anchor ": "phi",
3 " anyOf ": [
4 { " allOf ": [{ " $dynamicRef ": "urn:close#x1" },
5 { " $dynamicRef ": "urn:close#not.x2" }] },
6 { " allOf ": [{ " $dynamicRef ": "urn:close#not.x1" },
7 { " $dynamicRef ": "urn:close#x2" }] }
8]
9 }

The corresponding context-injected schema CI(𝐶, 𝑆 ′) is the following one. When a schema is

identified by absURI ·"#"·f , we identify its context-injected version CI(𝐶, 𝑆 ′) using absURI ·"#"·𝐶 ·f ,
where 𝐶 is an invertible encoding of 𝐶 into a plain-name.

9

1 "urn: close #urn: psi_urn : start_urn : setvar1_phi ": {
2 " $anchor ": "urn: psi_urn : start_urn : setvar1_phi ",
3 " anyOf ": [
4 { " allOf ": [{ "$ref": "urn: setvar1 #urn: psi_urn : start_urn : setvar1_urn : close_x1 " },
5 { "$ref": "urn: close #urn: psi_urn : start_urn : setvar1_urn : close_not .x2" }] },
6 { " allOf ": [{ "$ref": "urn: setvar1 #urn: psi_urn : start_urn : setvar1_urn : close_not .x1" },
7 { "$ref": "urn: close #urn: psi_urn : start_urn : setvar1_urn : close_x2 " }] }
8]
9 },

Let us use 𝐶+ to abbreviate 𝐶+?"urn:close". Observe that, in CI(𝐶, 𝑆 ′), all dynamic references

have been substituted with static references, which depend on the context 𝐶: for example, "x1"

in line 4 has a URI that starts with "urn:setvar1", which is fstURI(𝐶+, "x1"), while "x2" in line

7 has a URI that starts with "urn:close", which is fstURI(𝐶+, "x2"). The fragment name of a

static reference, such as "urn:psi_urn:start_urn:setvar1_phi", encodes both the injected context

("urn:psi_..._urn:setvar1_") and the original fragment name ("_phi").

Observe that the injected context of the "$ref"’s in lines 4-7 extends "urn:psi_..._urn:setvar1_"

with "urn:close_". This corresponds to what happens in the rule ($dynamicRef):

dget(load(absURI), f) ≠ ⊥ fURI = fstURI(𝐶+?absURI , 𝑓)
𝑆 ′ = dget(load(fURI), f) 𝐶+?fURI ⊢S 𝐽 ? 𝑆 ′→ (𝑟, 𝜅)

𝐶 ⊢K 𝐽 ? "$dynamicRef" : absURI ·"#"·f → (𝑟, 𝜅)
($dynamicRef)

The rule dictates that the schema 𝑆 ′ must be analyzed in the extended context 𝐶+, not in the

original context. Hence, in CI(𝐶, 𝑆 ′), each dynamic reference to "urn:close#"·𝑓 ′𝑖 has been substituted

with a static reference to the context-injected schema CI(𝐶+, fstURI(𝐶+, 𝑓 ′𝑖) ·"#" ·f ′i), whose URI-
reference is fstURI(𝐶+, 𝑓 ′𝑖) ·"#"·𝐶+ ·f ′i . The complete unfolding is in Appendix F.

9
In the example, we encode a sequence of absolute URIs such as [| "urn:psi", "urn:start", "urn:setvar1" |] as

"urn:psi_urn:start_urn:setvar1_", that is, we escape any underscore inside the URIs (not exemplified here), and

we terminate each URI with an underscore.

111:22

We can now give a formal definition of the translation process. For simplicity, we assume that

all fragment identifiers are plain-names defined using "$anchor" or "$dynamicAnchor", without loss

of generality, since JSON Pointers can be easily translated using the anchor mechanism.

Given a judgment 𝑆0 with base URI 𝑏, we first define a “local” translation function CI that maps

every pair (𝐶, 𝑆), where 𝐶 is a list of URIs from 𝑆0 without repetitions and 𝑆 is a subschema of

𝑆0, into a schema without dynamic references, and that maps every pair (𝐶,𝐾) to a keyword

without dynamic references. This function maps references as specified below, and acts as an

homomorphism on all the other operators, as exemplified here with "anyOf".

CI(𝐶, "$dynamicRef" : absURI ·"#"·f) = "$ref" : fstURI(𝐶+?absURI , f) ·"#"·𝐶 ·f
CI(𝐶, "$ref" : absURI ·"#"·f) = "$ref" : absURI ·"#"·𝐶 ·f
CI("anyOf" : [𝑆1, . . . , 𝑆𝑛]) = "$ref" : "anyOf" : [CI(𝐶, 𝑆1), . . . , CI(𝐶, 𝑆𝑛)]
. . .

Consider now a schema 𝑆0 and the set C of all possible contexts, that is, of all lists with no

repetitions of absolute URIs of resources inside 𝑆0; a fragment of 𝑆0 is any subschema that defines a

static or a dynamic anchor (e.g., the subschema identified by "urn:close#phi" is a fragment). The

static translation of 𝑆0, Static(𝑆0), is obtained by substituting, in 𝑆0, each fragment 𝑆 𝑓 identified by

absURI ·"#"·f with many fragments𝐶 ·f , one for any context𝐶 ∈ C, where the schema identified by

each absURI · "#" ·𝐶 · f is CI(𝐶, 𝑆 𝑓), as exemplified in Appendix F.
10
If we have 𝑛𝑈 absolute URIs in 𝑆0,

we have Σ𝑖∈{| 0...𝑛𝑈 |} (𝑖!) lists of URIs without repetitions, hence, if we have𝑛𝑓 fragments, the possible

(𝐶, 𝑆 𝑓) pairs are (Σ𝑖∈{| 0...𝑛𝑈 |} (𝑖!)) ×𝑛𝑓 , which is included between 𝑛𝑈 !×𝑛𝑓 and (𝑛𝑈 + 1)!×𝑛𝑓 . This
last formula gives an exponential upper bound, or, more precisely, an upper bound in𝑂 (2𝑛 ·log𝑛). In
practice, the number of reachable schemas will be much smaller, but our example shows that it can

actually be exponential.

We can now prove that this process preserves schema behaviour; the proof is in Appendix D.

Theorem 8 (Encoding correctness). Let 𝑆 be a closed schema with base URI b. Then:

[| b |] ⊢S 𝐽 ? Static(𝑆) → (𝑟, 𝜅) ⇔ [| b |] ⊢S 𝐽 ? 𝑆 → (𝑟, 𝜅)

As an immediate consequence of this construction, and of the polynomiality of validation in

JSON Schema without dynamic references, we have the fact that validation in Modern JSON Schema

has an 𝑂 (2𝑛 ·log𝑛) upper bound when the schema size is considered, but is polynomial when the

schema is fixed and it is only the instance that varies. This is an important result, reminiscent of

data complexity in query evaluation, but the parallelism is not precise: while queries are smaller

than data in most application fields, there are many situations where JSON Schema documents are

generally bigger than the checked instances, for example when complex schemas are used in order

to validate function parameters, that may be quite small.

Corollary 9 (Instance complexity). When 𝑆 is fixed, the validation problem [| 𝑏 |] ⊢S 𝐽 ? 𝑆 →
(𝑟, 𝜅) is in PTIME.

9 EXPERIMENTS
We implemented Algorithm 2 for the entire JSON Schema language. This algorithm applies the rules

in Appendix A. Our Scala implementation can be accessed (anonymously) as an online tool from

10
We say that a translated fragment absURI ·"#" ·𝐶 ·f refers another translated fragment if the schema of the first contains

a reference to the second; when we translate a schema 𝑆0, we do not actually need to generate every possible fragment

absURI ·"#" ·𝐶 ·f , but we only need to translate those that are recursively reachable from the root fragment b ·"#" · [|𝑏 |] ·𝑆0;
this is exemplified in the translation of our example, in Appendix F, where we only translate the context-fragment pairs

that are reachable.

Validation of Modern JSON Schema: Formalization and Complexity 111:23

https://validationproofs.oa.r.appspot.com/.
11
We further make the schemas used in our experiments

available (see below).

9.1 Correctness of formalization
We applied our algorithm to the official JSON Schema test suite [12].

12
We pass all tests apart from

those that contain references to external files (concerning 24 schemas out of 345, at the time of

writing). These references must be resolved at runtime, a feature that we do not yet support. This

is merely a technical limitation that we plan to overcome within the upcoming weeks.

Discussion. This experiment proves that the rules that we presented, and which are faithfully

reflected by our algorithm, are correct and complete with respect to the standard test suite.

9.2 Complexity
We have proved that validation in Modern JSON Schema is PSPACE-complete in the presence of

dynamic references, while it is in PTIME when dynamic references are not present. In the upcoming

experiment, we test (1) whether there exist families of schemas where this difference is reflected by

considerable validation times, and (2) whether they already manifest with small schemas.

Schemas. We designed three families of schemas that are universally satisfiable, and we validate

the JSON instance null against them.

The family of schemas from "dyn1.js" up to "dyn100.js" generalizes our running example; the

file "dyn"·𝑖 ·".js" contains the encoding of

∀𝑥1. ∃𝑥2∀𝑥2𝑖 . ∃𝑥2𝑖+1 . ((𝑥1 ∧ 𝑥2) ∨ (¬𝑥1 ∧ ¬𝑥2)) ∧ . . . ∧ ((𝑥2𝑖 ∧ 𝑥2𝑖+1) ∨ (¬𝑥2𝑖 ∧ ¬𝑥2𝑖+1))

as defined in Section 5. We then have a corresponding family of Draft-04 schemas "stat1.js" up

to "stat100.js", where dynamic references are substituted with static references, and boolean

schemas true and false are substituted with { } and { "not" : { } }.
The third family of schemas, from "dyn.bounded1.js" up to "dyn.bounded100.js", encodes

∀𝑥1. ∃𝑥2∀𝑥2𝑖 . ∃𝑥2𝑖+1. ((𝑥1 ∧ 𝑥2𝑖+1) ∨ (¬𝑥1 ∧ ¬𝑥2𝑖+1)) .

These “dynamic-bounded” schemas, hence, contain dynamic references that respect the condition

of Corollary 7, which allows an optimized algorithm to run in polynomial time.

We provide the schemas online: https://anonymous.4open.science/r/modern-jsonschema-908C/.

Validators. For running third-party validators, we employ the meta-validator Bowtie [11], which

invokes validators encapsulated in Docker containers. We tested all 14 different open-source

validators currently provided by Bowtie, written in 10 different programming languages, as detailed

in Table 2, Appendix H. We also prepared a container for the validator from [26], to include it in

our experiments.

Execution environment. Our execution environment is a 40-core Debian server with 384MB of

RAM. Each core runs with with 3.1Gz and CPU frequency set to performance mode. We are running

Docker version 20.10.12, Bowtie version 0.67.0, and Scala version 2.12.

All runtimes with Bowtie were measured with GNU time, averaged over three runs, and include

the overhead of invoking Bowtie and Docker. We overrode the default timeout setting in Bowtie.

Our Scala implementation was run outside of Bowtie (“solo”). Here, we measure at the level of

11
As an AppEngine application, the online version of the tool comes with strict limitations regarding main memory and

timeouts. It is not suitable for benchmarking, but allows one to interact with the system and to inspect the proofs.

12
We only focus on main schemas and do not consider the optional ones.

https://validationproofs.oa.r.appspot.com/
https://anonymous.4open.science/r/modern-jsonschema-908C/

111:24

microseconds, from within the Scala code. Out of 5 such runs for each experiment, we discard the

smallest and the largest runtime (to ignore caching effects), and average over the remaining three.

Lines in our plots terminate when either the validator produces a logical validation error, a

runtime exception (most commonly, a stack overflow), or when Bowtie reported that the validator

did not respond.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 50 100

stati.js

E
la

p
se

d
 r

u
n

ti
m

e
 (

se
c)

Draft4

0

5

10

15

20

25

 100
modern-jsonschema (solo)

(m
s)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20

dyni.js

Draft2020

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 50 100

dyn.boundedi.js

modern-jsonschema (solo)

Fig. 7. Runtimes of validators on the three schema families. Distinguishing validators that support Draft 4,
Draft 2020, as well as our algorithm “modern-jsonschema”. The inlet shows a closeup of modern-jsonschema.

Results. The results in Figure 7 are perfectly coherent with the theoretical results in the paper.

Results on the "dyn" and "stat" schemas show that, on this specific example, the difference in the

asymptotic complexity of the static and the dynamic version is extremely visible: if we focus on

our validator (red line), we see that validation with dynamic references can become impractical

even with reasonably-sized files (e.g., schema "stat5.js" counts fewer than 250 lines when pretty-

printed), while the runtime remains very modest when dynamic references are substituted with

static references. The runtime on the "bounded" family reflects Corollary 7, showing the effectiveness

of the proposed optimization on this specific example.

The results on the other implementations strongly suggest that many validators have chosen

to implement an algorithm that is exponential even when no dynamic reference is present. This

is not surprising for the validators designed for Draft 2020-12, since we have been the first to

describe an algorithm (Algorithm 2) that runs in polynomial time over the static fragment of Draft

2020-12. It is a bit more surprising for the algorithm published as additional material for [26], since

it implements Draft-04, which belongs to Classical JSON Schema, whose validation problem is in

PTIME, as proved for the first time in that same paper.

Discussion. This experiment shows there are families of schemas where the PSPACE-hardness of

the problem is visible, and that the algorithm we describe in Section 7 is extremely effective when

the dynamic references are substituted with static references, or limited in number. In this paper

we focus on worst-case asymptotic complexity, and we do not present claims about real-world

relevance of our algorithm, which is an important issue, but is not in the scope of this paper.

10 RELATEDWORK
To the best of our knowledge, modern JSON Schema has not been formalized before, nor validation

in the presence of dynamic references has been studied.

Overviews over schema languages for JSON can be found in [9, 10, 15, 26]. In [26] Pezoa et al.

proposed the first formalization of Classical JSON Schema Draft-04 and studied the complexity of

validation. They proved that JSON Schema Draft-04 expressive power goes beyond MSO and tree

automata, and showed that validation is PTIME-complete. They also described and experimentally

analyzed a Python validator that exhibits good performance and scalability. Their formalization

Validation of Modern JSON Schema: Formalization and Complexity 111:25

of semantics and validation, however, cannot be extended to modern JSON Schema due to the

presence of dynamic references.

In [15] Bourhis et al. refined the analysis of Pezoa et al. They mapped Classical JSON Schema

onto an equivalent modal logic, called recursive JSL, and studied the complexity of validation

and satisfiability. In particular, they proved that validation for recursive JSL and Classical JSON

Schema is PTIME-complete and that it can be solved in 𝑂 (|𝐽 |2 |𝑆 |) time; then they showed that

satisfiability for Classical JSON Schema is EXPTIME-complete for schemas without uniqueItems

and is in 2EXPTIME otherwise. Again, their approach does not seem very easy to extend to modern

JSON Schema, as it relies on modal logic and a very special kind of alternating tree automata.

While we are not aware of any other formal study about JSON Schema validation, dozens of

validators have been designed and implemented in the past (please, see [6] for a rather complete list

of about 50 implementations). Only some of them (about 11), like ajv [3] and Hyperjump [4], support

modern JSON Schema and dynamic references. These validators, usually compile schemas in an

efficient internal representation, that is later used for validation purposes. ajv, for instance, uses

modern code generation techniques and compiles a schema into a specialized validator, designed

to support advanced v8 optimization.

Validation has beenwidely studied in the context of XML data (see [22, 23], for instance). However,

schema languages for XML are based on regular expressions, while JSON Schema exploits record

types, recursion, and full boolean logics, and this makes it very difficult to import techniques from

one field to the other.

Schema languages such as JSON Schema and type systems for functional languages are clearly

related, and a lot of work has been invested in the analysis of the computational complexity of

type checking and type inference for programming languages and for module systems (we will

only cite [19], as an example). We are well aware of this research field, but we do not think that it

is related to this specific work, since in that case the focus is on the analysis of code while JSON

Schema validation analyses instances of data structures.

11 CONCLUSIONS AND OPEN PROBLEMS
Modern JSON Schema introduced annotation-dependent validation and dynamic references, which

are widely regarded as complex additions, and which changed the evaluation model, hence invali-

dating the theory developed for Classical JSON Schema.

Here we provide the first published formalization for Modern JSON Schema. This formalization

provides a language to unambiguously describe and discuss the standard, and a tool to understand

its subtleties.

We use our formalization to study the complexity of validation of Modern JSON Schema. We

proved that the problem is PSPACE-complete, and that a very small fragment of the language is

already PSPACE-hard. We proved that this increase in asymptotic complexity is caused by dynamic

references, while annotation-dependent validation without dynamic references can be decided in

PTIME, and we have defined and implemented and experimented an explicit algorithm to this aim.

We defined a technique to eliminate dynamic references, at the price of a potential exponential

increase in the schema size, and we used it to prove that data-complexity of validation is in PTIME.

We leave many open problems, such as the definition of a new notion of schema equivalence

and inclusion that is compatible with annotation-dependent validation, the study of its properties,

and the study of the computational complexity of the problems of satisfiability, validity, inclusion,

and example generation.

REFERENCES
[1] 2022. jschon.dev. https://jschon.dev Online tool. Retrieved 14 October 2022..

https://jschon.dev

111:26

[2] 2022. json-everything validator. https://json-everything.net/json-schema/ Online tool. Retrieved 14 October 2022..

[3] 2023. Ajv JSON Schema validator. https://ajv.js.org Retrieved 10 January 2023..

[4] 2023. Hyperjump JSON Schema Validator. https://json-schema.hyperjump.io/ Online tool. Retrieved 10 January 2023..

[5] 2023. JSON Schema meta-schema. https://json-schema.org/draft/2020-12/schema Retrieved 28 February 2023..

[6] 2023. JSON Schema validators. https://json-schema.org/implementations.html#validators Retrieved 10 January 2023..

[7] Henry Andrews. 2023. Modern JSON Schema. Available online at https://modern-json-schema.com/.

[8] Lyes Attouche, Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger. 2022.

Witness Generation for JSON Schema. Proc. VLDB Endow. 15, 13 (2022), 4002–4014. https://www.vldb.org/pvldb/vol15/

p4002-sartiani.pdf

[9] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019. Schemas And Types For JSON Data.

In Proc. EDBT. 437–439.

[10] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019. Schemas and Types for JSON Data:

From Theory to Practice. In Proc. SIGMOD Conference. 2060–2063.

[11] Julian Bergman. 2023. Bowtie JSON Schema Meta Validator. https://github.com/bowtie-json-schema/bowtie Online

tool. Version 0.67.0..

[12] Julian Bergman. 2023. JSON-Schema-Test-Suite (draft2020-12). https://github.com/json-schema-org/JSON-Schema-

Test-Suite/tree/main/tests/draft2020-12

[13] T. Berners-Lee, R. Fielding, and L. Masinter. January 2005. Uniform Resource Identifier (URI): Generic Syntax. Technical

Report. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/rfc3986

[14] Jim Blackler. 2022. JSON Generator. Available at https://github.com/jimblackler/jsongenerator. Retrieved 19 September

2022..

[15] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. 2017. JSON: Data model, Query languages and

Schema specification. In Proc. PODS. 123–135. https://doi.org/10.1145/3034786.3056120

[16] Pierre Bourhis, Juan L. Reutter, and Domagoj Vrgoc. 2020. JSON: Data model and query languages. Inf. Syst. 89 (2020),

101478. https://doi.org/10.1016/j.is.2019.101478

[17] P. Bryan, K. Zyp, and M. Nottingham. Aprile 2013. JavaScript Object Notation (JSON) Pointer. Technical Report. Internet

Engineering Task Force. https://www.rfc-editor.org/info/rfc6901

[18] Francis Galiegue and Kris Zyp. 2013. JSON Schema: interactive and non interactive validation - draft-fge-json-schema-

validation-00. Technical Report. Internet Engineering Task Force. https://tools.ietf.org/html/draft-fge-json-schema-

validation-00

[19] Fritz Henglein and Harry G. Mairson. 1994. The Complexity of Type Inference for Higher-Order Typed lambda Calculi.

J. Funct. Program. 4, 4 (1994), 435–477. https://doi.org/10.1017/S0956796800001143

[20] Mark Jacobson. 2021. The meaning of "additionalProperties" has changed. Available online at https://github.com/

orgs/json-schema-org/discussions/57.

[21] Klaus-Jörn Lange and Peter Rossmanith. 1992. The Emptiness Problem for Intersections of Regular Languages. In

Mathematical Foundations of Computer Science 1992, 17th International Symposium, MFCS’92, Prague, Czechoslovakia,

August 24-28, 1992, Proceedings (Lecture Notes in Computer Science, Vol. 629), Ivan M. Havel and Václav Koubek (Eds.).

Springer, 346–354. https://doi.org/10.1007/3-540-55808-X_33

[22] Wim Martens, Frank Neven, and Thomas Schwentick. 2009. Complexity of Decision Problems for XML Schemas and

Chain Regular Expressions. SIAM J. Comput. 39, 4 (2009), 1486–1530. https://doi.org/10.1137/080743457

[23] Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan Bex. 2006. Expressiveness and complexity of XML

Schema. ACM Trans. Database Syst. 31, 3 (2006), 770–813. https://doi.org/10.1145/1166074.1166076

[24] Oliver Neal. 2022. Ambiguous behaviour of “additionalProperties” when invalid. Available online at https://github.

com/json-schema-org/json-schema-spec/issues/1172.

[25] JSON Schema Org. 2022. JSON Schema. Available at https://json-schema.org.

[26] Felipe Pezoa, Juan L. Reutter, Fernando Suárez, Martín Ugarte, and Domagoj Vrgoc. 2016. Foundations of JSON Schema.

In Proc. WWW. 263–273.

[27] Larry J. Stockmeyer. 1976. The Polynomial-Time Hierarchy. Theor. Comput. Sci. 3, 1 (1976), 1–22. https://doi.org/10.

1016/0304-3975(76)90061-X

[28] Larry J. Stockmeyer and Albert R. Meyer. 1973. Word Problems Requiring Exponential Time: Preliminary Report. In

Proceedings of the 5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas, USA,

Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd, Michael A. Harrison, Richard M. Karp, and

H. Raymond Strong (Eds.). ACM, 1–9. https://doi.org/10.1145/800125.804029

[29] A. Wright, H. Andrews, and B. Hutton. 2019. JSON Schema Validation: A Vocabulary for Structural Validation of JSON -

draft-handrews-json-schema-validation-02. Technical Report. Internet Engineering Task Force. https://tools.ietf.org/

html/draft-handrews-json-schema-validation-02 Retrieved 19 September 2022..

https://json-everything.net/json-schema/
https://ajv.js.org
https://json-schema.hyperjump.io/
https://json-schema.org/draft/2020-12/schema
https://json-schema.org/implementations.html#validators
https://modern-json-schema.com/
https://www.vldb.org/pvldb/vol15/p4002-sartiani.pdf
https://www.vldb.org/pvldb/vol15/p4002-sartiani.pdf
https://github.com/bowtie-json-schema/bowtie
https://github.com/json-schema-org/JSON-Schema-Test-Suite/tree/main/tests/draft2020-12
https://github.com/json-schema-org/JSON-Schema-Test-Suite/tree/main/tests/draft2020-12
https://datatracker.ietf.org/doc/html/rfc3986
https://github.com/jimblackler/jsongenerator
https://doi.org/10.1145/3034786.3056120
https://doi.org/10.1016/j.is.2019.101478
https://www.rfc-editor.org/info/rfc6901
https://tools.ietf.org/html/draft-fge-json-schema-validation-00
https://tools.ietf.org/html/draft-fge-json-schema-validation-00
https://doi.org/10.1017/S0956796800001143
https://github.com/orgs/json-schema-org/discussions/57
https://github.com/orgs/json-schema-org/discussions/57
https://doi.org/10.1007/3-540-55808-X_33
https://doi.org/10.1137/080743457
https://doi.org/10.1145/1166074.1166076
https://github.com/json-schema-org/json-schema-spec/issues/1172
https://github.com/json-schema-org/json-schema-spec/issues/1172
https://json-schema.org
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1145/800125.804029
https://tools.ietf.org/html/draft-handrews-json-schema-validation-02
https://tools.ietf.org/html/draft-handrews-json-schema-validation-02

Validation of Modern JSON Schema: Formalization and Complexity 111:27

[30] A. Wright, H. Andrews, B. Hutton, and G. Dennis. 2022. JSON Schema: A Media Type for Describing JSON Documents -

draft-bhutton-json-schema-01. Technical Report. Internet Engineering Task Force. https://json-schema.org/draft/2020-

12/json-schema-core.html Retrieved 15 October 2022..

[31] A.Wright, G. Luff, and H. Andrews. 2017. JSON Schema Validation: A Vocabulary for Structural Validation of JSON - draft-

wright-json-schema-validation-01. Technical Report. Internet Engineering Task Force. https://tools.ietf.org/html/draft-

wright-json-schema-validation-01 Retrieved 19 September 2022..

https://json-schema.org/draft/2020-12/json-schema-core.html
https://json-schema.org/draft/2020-12/json-schema-core.html
https://tools.ietf.org/html/draft-wright-json-schema-validation-01
https://tools.ietf.org/html/draft-wright-json-schema-validation-01

111:28

A COMPLETE LIST OF RULES
A.1 Complete grammar

𝑞 ∈ Num, 𝑖 ∈ Int, 𝑘 ∈ Str, absURI ∈ Str, 𝑓 ∈ Str, format ∈ Str, 𝑝 ∈ Str, 𝐽 ∈ JVal
Tp ::= "object" | "number" | "integer" | "string" | "array" | "boolean" | "null"
S ::= { IndKeyOrT (, IndKeyOrT)∗ (, FstDep)∗ (, SndDep)∗ }

| { FstDep (, FstDep)∗ (, SndDep)∗ } | { SndDep (, SndDep)∗ } | { }
| true | false

IndKeyOrT ::= IndKey | ITETriple | ContainsTriple | Other
IndKey ::= "exclusiveMinimum" : 𝑞 | "exclusiveMaximum" : 𝑞

| "minimum" : 𝑞 | "maximum" : 𝑞 | "multipleOf" : 𝑞
| "pattern" : 𝑝 | "minLength" : 𝑖 | "maxLength" : 𝑖
| "minProperties" : 𝑖 | "maxProperties" : 𝑖
| "required" : [𝑘1, . . . , 𝑘𝑛]
| "uniqueItems" : true | "uniqueItems" : false
| "minItems" : 𝑖 | "maxItems" : 𝑖 | "format" : format

| "dependentRequired" : { 𝑘1 : [𝑘11, . . . , 𝑘1𝑜1] . . . , 𝑘𝑛 : [𝑘𝑛
1
, . . . , 𝑘𝑛𝑜𝑛] }

| "enum" : [𝐽1, . . . , 𝐽𝑛] | "const" : 𝐽𝑐
| "type" : Tp | "type" : [Tp

1
, . . . , Tp𝑛]

| "$id" : absURI | "$ref" : absURI ·"#"·f | "$dynamicRef" : absURI ·"#"·f
| "$defs" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑛 : 𝑆𝑛 } |
| "$anchor" : plain − name | "$dynamicAnchor" : plain − name

| "anyOf" : [𝑆1, . . . , 𝑆𝑛] | "allOf" : [𝑆1, . . . , 𝑆𝑛]
| "oneOf" : [𝑆1, . . . , 𝑆𝑛] | "not" : 𝑆
| "prefixItems" : [𝑆1, . . . , 𝑆𝑛] | "contains" : 𝑆
| "patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 }
| "properties" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑚 : 𝑆𝑚 }
| "propertyNames" : 𝑆 | "dependentSchemas" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑛 : 𝑆𝑛 }

ITETriple ::= ("if" : 𝑆,)? "then" : 𝑆, "else" : 𝑆
ContainsTriple ::= ("contains" : 𝑆,)? "minContains" : 𝑖 (, "maxContains" : 𝑖)?
Other ::= "$schema" : 𝑘 | "$vocabulary" : 𝑘 | "$comment" : 𝑘

| "title" : 𝑘 | "description" : 𝑘
| "deprecated" : 𝑏 | "readOnly" : 𝑏 | "writeOnly" : 𝑏
| "default" : 𝐽 | "examples" : [𝐽1, . . . , 𝐽𝑛]
| 𝑘 : 𝐽 (with 𝑘 not cited as keyword in any other production)

FstDep ::= "additionalProperties" : 𝑆 | "items" : 𝑆
SndDep ::= "unevaluatedProperties" : 𝑆 | "unevaluatedItems" : 𝑆

Fig. 8. Complete grammar of normalized JSON Schema Draft 2020-12.

The complete grammar groups the keywords "if"-"then"-"else", and specifies that the presence of

any keyword among "if"-"then"-"else" implies the presence of "then" and "else", which is enforced

by adding a trivial "then" : {}, or "else" : {}, when one or both are missing; this presentation reduces

the number of rules needed to formalize "if"-"then"-"else". In the same way, the grammar groups

"contains"-"minContains"-"maxContains" and imposes the presence of "minContains" when any of

Validation of Modern JSON Schema: Formalization and Complexity 111:29

the three is present, which is enforced by adding the default "minContains" : 1 when "minContains"

is missing.

A.2 Terminal keywords
The types and the conditions of the terminal keywords are specified in the following table. There,

the length operator |𝐽 | counts the number of characters of a string, the number of fields of an

object, and the number of elements of an array. names(J) extracts the names of an object. When 𝑝 is

a pattern or a format, we use 𝐿(𝑝) to indicate the corresponding set of strings.

When TypeOf (kw) is no type then the assertion does not have the (kwTriv) rule and does not

have the condition TypeOf (𝐽) = TypeOf (kw) in the (kw) rule.

assertion kw:J’ TypeOf (kw) cond(J,kw:J’)
"enum" : [𝐽1, . . . , 𝐽𝑛] no type 𝐽 ∈ {| 𝐽1, . . . , 𝐽𝑛 |}
"const" : 𝐽𝑐 no type 𝐽 = 𝐽𝑐

"type" : Tp no type TypeOf (𝐽) = Tp
"type" : [Tp

1
, . . . ,Tp𝑛] no type TypeOf (𝐽) ∈ {| Tp

1
, . . . ,Tp𝑛 |}

"exclusiveMinimum": q number 𝐽 > 𝑞

"exclusiveMaximum": q number 𝐽 < 𝑞

"minimum": q number J ≥ q

"maximum": q number J ≤ q

"multipleOf": q number ∃𝑖 ∈ Int. 𝐽 = 𝑖 × 𝑞
"pattern": p string 𝐽 ∈ 𝐿 (𝑝)
"minLength": i string | 𝐽 | ≥ 𝑖

"maxLength": i string | 𝐽 | ≤ 𝑖

"minProperties": i object | 𝐽 | ≥ 𝑖

"maxProperties": i object | 𝐽 | ≤ 𝑖

"required" : [𝑘1, . . . , 𝑘𝑛] object ∀𝑖 . 𝑘𝑖 ∈ names(𝐽)
"uniqueItems": true array 𝐽 = [𝐽1, . . . , 𝐽𝑛] with 𝑛 ≥ 0

∧ ∀𝑖, 𝑗 . 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛 ⇒ 𝐽𝑖 ≠ 𝐽𝑗

"uniqueItems": false array T

"minItems": i array | 𝐽 | ≥ 𝑖

"maxItems": i array | 𝐽 | ≤ 𝑖

"format": format string 𝐽 ∈ 𝐿 (format)
"dependentRequired" : ∀𝑖 ∈ {| 1 . . . 𝑛 |}.
{ 𝑘1 : [𝑘1

1
, . . . , 𝑘1𝑜1] object 𝑘𝑖 ∈ names(𝐽)

. . . , 𝑘𝑛 : [𝑘𝑛
1
, . . . , 𝑘𝑛𝑜𝑛] } ⇒ {| 𝑘𝑖

1
, . . . , 𝑘𝑖𝑜𝑖 |} ⊆ names(𝐽)

A.3 The boolean applicators

∀𝑖 ∈ {| 1 . . . 𝑛 |}. 𝐶 ⊢S 𝐽 ? 𝑆𝑖 → (𝑟𝑖 , 𝜅𝑖) 𝑟 = ∨({| 𝑟𝑖 |}𝑖∈{| 1...𝑛 |})
𝐶 ⊢K 𝐽 ? "anyOf" : [𝑆1, ..., 𝑆𝑛] → (𝑟,

⋃
𝑖∈{| 1...𝑛 |} 𝜅𝑖)

(anyOf)

∀𝑖 ∈ {| 1 . . . 𝑛 |}. 𝐶 ⊢S 𝐽 ? 𝑆𝑖 → (𝑟𝑖 , 𝜅𝑖) 𝑟 = ∧({| 𝑟𝑖 |}𝑖∈{| 1...𝑛 |})
𝐶 ⊢K 𝐽 ? "allOf" : [𝑆1, ..., 𝑆𝑛] → (𝑟,

⋃
𝑖∈{| 1...𝑛 |} 𝜅𝑖)

(allOf)

∀𝑖 ∈ {| 1 . . . 𝑛 |}. 𝐶 ⊢S 𝐽 ? 𝑆𝑖 → (𝑟𝑖 , 𝜅𝑖) 𝑟 = (|{| 𝑖 | 𝑟𝑖 = 𝑇 |}| = 1)
𝐶 ⊢K 𝐽 ? "oneOf" : [𝑆1, ..., 𝑆𝑛] → (𝑟,

⋃
𝑖∈{| 1...𝑛 |} 𝜅𝑖)

(oneOf)

𝐶 ⊢S 𝐽 ? 𝑆 → (𝑟, 𝜅)
𝐶 ⊢K 𝐽 ? "not" : 𝑆 → (¬𝑟, 𝜅)

(not)

111:30

A.4 References

𝑆 ′ = get(load(absURI), f) 𝐶+?absURI ⊢S 𝐽 ? 𝑆 ′→ (𝑟, 𝜅)
𝐶 ⊢K 𝐽 ? "$ref" : absURI ·"#"·f → (𝑟, 𝜅)

($ref)

dget(load(absURI), f) ≠ ⊥ fURI = fstURI(𝐶+?absURI , 𝑓)
𝑆 ′ = dget(load(fURI), f) 𝐶+?fURI ⊢S 𝐽 ? 𝑆 ′→ (𝑟, 𝜅)

𝐶 ⊢K 𝐽 ? "$dynamicRef" : absURI ·"#"·f → (𝑟, 𝜅)
($dynamicRef)

dget(load(absURI), f) = ⊥
𝑆 ′ = get(load(absURI), f) 𝐶+?absURI ⊢S 𝐽 ? 𝑆 ′→ (𝑟, 𝜅)

𝐶 ⊢K 𝐽 ? "$dynamicRef" : absURI ·"#"·f → (𝑟, 𝜅)
($dynamicRefAsRef)

A.5 If-then-else

𝐶 ⊢S 𝐽 ? 𝑆𝑖 → (𝑇,𝜅𝑖) 𝐶 ⊢S 𝐽 ? 𝑆𝑡 → (𝑟, 𝜅𝑡)
𝐶 ⊢L 𝐽 ? ("if" : 𝑆𝑖 + "then" : 𝑆𝑡 + "else" : 𝑆𝑒) → (𝑟, 𝜅𝑖 ∪ 𝜅𝑡)

(if-true)

𝐶 ⊢S 𝐽 ? 𝑆𝑖 → (𝐹, 𝜅𝑖) 𝐶 ⊢S 𝐽 ? 𝑆𝑒 → (𝑟, 𝜅𝑒)
𝐶 ⊢L 𝐽 ? ("if" : 𝑆𝑖 + "then" : 𝑆𝑡 + "else" : 𝑆𝑒) → (𝑟, 𝜅𝑖 ∪ 𝜅𝑒)

(if-false)

𝐶 ⊢L 𝐽 ? ("then" : 𝑆𝑡 + "else" : 𝑆𝑒) → (𝑇, ∅) (missing-if)

A.6 Object and array applicators: independent applicators
Independent applicators are defined by a set of two rules: (kwTriv) and (kw); the (kwTriv) rules are
specified by the following table; the (kw) rules are specified after the table.

assertion kw : 𝐽 ′ TypeOf (kw)
"patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 } object
"properties" : {𝑘1 : 𝑆1, . . . , 𝑘𝑚 : 𝑆𝑚 } object
"propertyNames" : 𝑆 object
"prefixItems" : 𝑆 array
"contains" : 𝑆 array
"dependentSchemas" : {𝑘1 : 𝑆1, . . . , 𝑘𝑛 : 𝑆𝑛 } object

𝐽 = { 𝑘 ′
1
: 𝐽1, . . . , 𝑘

′
𝑛 : 𝐽𝑛 } {| (𝑖1, 𝑗1), . . . , (𝑖𝑙 , 𝑗𝑙) |} = {| (𝑖, 𝑗) | 𝑘 ′𝑖 ∈ 𝐿(𝑝 𝑗) |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 𝑗𝑞 → (𝑟𝑞, 𝜅𝑞) 𝑟 = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢K 𝐽 ? "patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 } → (𝑟, {| 𝑘 ′𝑖1 , . . . , 𝑘

′
𝑖𝑙
|})

(patternProperties)

𝐽 = { 𝑘 ′
1
: 𝐽1, . . . , 𝑘

′
𝑛 : 𝐽𝑛 } {| (𝑖1, 𝑗1), . . . , (𝑖𝑙 , 𝑗𝑙) |} = {| (𝑖, 𝑗) | 𝑘 ′𝑖 = 𝑘 𝑗 |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 𝑗𝑞 → (𝑟𝑞, 𝜅𝑞) 𝑟 = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢K 𝐽 ? "properties" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑚 : 𝑆𝑚 } → (𝑟, {| 𝑘 ′𝑖1 , . . . , 𝑘

′
𝑖𝑙
|})

(properties)

𝐽 = { 𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛 } ∀𝑖 ∈ {| 1 . . . 𝑛 |}. 𝐶 ⊢S 𝑘𝑖 ? 𝑆 → (𝑟𝑖 , 𝜅𝑖) 𝑟 = ∧({| 𝑟 (𝜅𝑖) |}𝑖∈{| 1...𝑛 |})
𝐶 ⊢K 𝐽 ? "propertyNames" : 𝑆 → (𝑟, ∅)

(propertyNames)

Validation of Modern JSON Schema: Formalization and Complexity 111:31

𝐽 = [𝐽1, . . . , 𝐽𝑚] ∀𝑖 ∈ {| 1 . . .min(𝑛,𝑚) |}. 𝐶 ⊢S 𝐽𝑖 ? 𝑆𝑖 → (𝑟𝑖 , 𝜅𝑖) 𝑟 = ∧({| 𝑟𝑖 |}𝑖∈{| 1...min(𝑛,𝑚) |})
𝐶 ⊢K 𝐽 ? "prefixItems" : [𝑆1, . . . , 𝑆𝑛] → (𝑟, {| 1, . . . ,min(𝑛,𝑚) |})

(prefixItems)

𝐽 = [𝐽1, ..., 𝐽𝑛]
∀𝑖 ∈ {| 1 . . . 𝑛 |}. 𝐶 ⊢S 𝐽𝑖 ? 𝑆 → (𝑟𝑖 , 𝜅𝑖) 𝜅𝑐 = {| 𝑖 | 𝑟𝑖 = 𝑇 |} 𝑟𝑐 = (𝑖 ≤ |𝜅𝑐 | ≤ 𝑗)

𝐶 ⊢K 𝐽 ? ("contains" : 𝑆 + "minContains" : 𝑖 + "maxContains" : 𝑗) → (𝑟𝑐 , 𝜅𝑐)
(contains-max)

rule (contains-max) does not apply and 𝐽 = [𝐽1, ..., 𝐽𝑛]
∀𝑖 ∈ {| 1 . . . 𝑛 |}. 𝐶 ⊢S 𝐽𝑖 ? 𝑆 → (𝑟𝑖 , 𝜅𝑖) 𝜅𝑐 = {| 𝑖 | 𝑟𝑖 = 𝑇 |} 𝑟𝑐 = (𝑖 ≤ |𝜅𝑐 |)

𝐶 ⊢K 𝐽 ? ("contains" : 𝑆 + "minContains" : 𝑖) → (𝑟𝑐 , 𝜅𝑐)
(contains-no-max)

rules (contains-max) and (contains-no-max) do not apply

𝐶 ⊢K 𝐽 ? ("minContains" : 𝑖 (+"maxContains"𝑖)?) → (𝑇, ∅)
(missing-contains)

𝐽 = { 𝑘 ′
1
: 𝐽1, . . . , 𝑘

′
𝑚 : 𝐽𝑚 } {| 𝑖1, . . . , 𝑖𝑙 |} = {| 𝑖 | 𝑖 ∈ {| 1 . . . 𝑛 |}, 𝑘𝑖 ∈ {| 𝑘 ′1, . . . , 𝑘 ′𝑚 |} |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽 ? 𝑆𝑖𝑞 → 𝜅𝑞 𝑟 = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢K 𝐽 ? "dependentSchemas" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑛 : 𝑆𝑛 } → (𝑟,

⋃
𝑞∈{| 1...𝑙 |} 𝜅𝑞)

(dependentSchemas)

A.7 Dependent keywords
Dependent keywords are defined by a set of two rules: (kwTriv) and (kw); the (kwTriv) rule is

specified by the following table.

assertion kw : 𝐽 ′ TypeOf (kw)
"unevaluatedProperties" : 𝑆 object
"additionalProperties" : 𝑆 object
"unevaluatedItems" : 𝑆 array
"items" : 𝑆 array

propsOf("properties" : { 𝑘1 : 𝑆1, . . . , 𝑘𝑚 : 𝑆𝑚 }) = k1 ·"|"· . . . ·"|"·kn
propsOf("patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 }) = 𝑝1 ·"|"· . . . ·"|"·𝑝𝑚
propsOf(𝐾) = ∅ otherwise

propsOf([|𝐾1, . . . , 𝐾𝑛 |]) = propsOf(𝐾1) ·"|"· . . . ·"|"·propsOf(𝐾𝑛)

𝐽 = { 𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛 } 𝐶 ⊢L 𝐽 ? ®𝐾 → (𝑟, 𝜅)
{| 𝑖1, . . . , 𝑖𝑙 |} = {| 𝑖 | 1 ≤ 𝑖 ≤ 𝑛 ∧ 𝑘𝑖 ∉ 𝐿(propsOf(®𝐾)) |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 → (𝑟𝑞, 𝜅𝑞) 𝑟 ′ = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢L 𝐽 ? (®𝐾 + "additionalProperties" : 𝑆) → (𝑟 ∧ 𝑟 ′, {| 𝑘1 . . . , 𝑘𝑛 |})

(additionalProperties)

𝐽 = { 𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛 } 𝐶 ⊢L 𝐽 ? ®𝐾 → (𝑟, 𝜅)
{| 𝑖1, . . . , 𝑖𝑙 |} = {| 𝑖 | 1 ≤ 𝑖 ≤ 𝑛 ∧ 𝑘𝑖 ∉ 𝜅 |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 → (𝑟𝑞, 𝜅𝑞) 𝑟 ′ = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢L 𝐽 ? (®𝐾 + "unevaluatedProperties" : 𝑆) → (𝑟 ∧ 𝑟 ′, {| 𝑘1 . . . , 𝑘𝑛 |})

(unevaluatedProperties)

111:32

maxPrefixOf(®𝐾) = 𝑚 if ("prefixItems" : [𝑆1, . . . , 𝑆𝑚]) ∈ ®𝐾 for some 𝑆1, . . . , 𝑆𝑛

maxPrefixOf(®𝐾) = 0 if ("prefixItems" : [𝑆1, . . . , 𝑆𝑚]) ∉ ®𝐾 for any 𝑆1, . . . , 𝑆𝑛

𝐽 = [𝐽1, ..., 𝐽𝑛] 𝐶 ⊢L 𝐽 ? ®𝐾 → (𝑟, 𝜅) {| 𝑖1, . . . , 𝑖𝑙 |} = {| 1 . . . 𝑛 |} \ {| 1 . . .maxPrefixOf (®𝐾) |}
∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 → 𝜅𝑞 𝑟 ′ = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})

𝐶 ⊢L 𝐽 ? (®𝐾 + "items" : 𝑆) → (𝑟 ∧ 𝑟 ′, {| 1 . . . , 𝑛 |})
(items)

𝐽 = [𝐽1, ..., 𝐽𝑛] 𝐶 ⊢L 𝐽 ? ®𝐾 → (𝑟, 𝜅) {| 𝑖1, . . . , 𝑖𝑙 |} = {| 1 . . . 𝑛 |} \ 𝜅
∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 → 𝜅𝑞 𝑟 ′ = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢L 𝐽 ? (®𝐾 + "unevaluatedItems" : 𝑆) → (𝑟 ∧ 𝑟 ′, {| 1 . . . , 𝑛 |})

(unevaluatedItems)

𝑘 : 𝐽 ′ ∈ IndKeyOrT 𝐶 ⊢L 𝐽 ? ®𝐾 → (𝑟𝑙 , 𝜅𝑙) 𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅)

𝐶 ⊢L 𝐽 ? (®𝐾 + 𝐾) → (𝑟𝑙 ∧ 𝑟, 𝜅𝑙 ∪ 𝜅)
(klist-(n+1))

𝐶 ⊢L 𝐽 ? [| |] → (𝑇, [| |]) (klist-0)

A.8 The trivial rule

𝑘𝑤 ∈ Other
𝐶 ⊢K 𝐽 ? 𝑘𝑤 : 𝐽 ′→ (𝑇, ∅)

(kw-trivial)

A.9 Schema rules

𝐶 ⊢S 𝐽 ? true→ (𝑇, ∅) (trueSchema) 𝐶 ⊢S 𝐽 ? false→ (𝐹, ∅) (falseSchema)

𝐶 ⊢L 𝐽 ? [|𝐾1, . . . , 𝐾𝑛 |] → (𝑇,𝜅)
𝐶 ⊢S 𝐽 ? {𝐾1, . . . , 𝐾𝑛 } → (𝑇,𝜅)

(schema-true)
𝐶 ⊢L 𝐽 ? [|𝐾1, . . . , 𝐾𝑛 |] → (𝐹, 𝜅)
𝐶 ⊢S 𝐽 ? {𝐾1, . . . , 𝐾𝑛 } → (𝐹, ∅)

(schema-false)

B FUNCTIONS get(𝑆, 𝑓) AND dget(𝑆, 𝑓)
dget(𝑆, 𝑓) searches inside 𝑆 for a subschema { "$dynamicAnchor" : 𝑓 , 𝐾1, . . . , 𝐾𝑛 } and returns it.

However, it only searches inside known keywords that contain a schema as a parameter, and the

search is stopped by the presence of an internal "$id" keyword, because "$id" indicates that the

subschema is a separate resource, with a different URI.

We formalize this behaviour by defining two functions:

(1) dgets(𝑆, 𝑓), that searches "$dynamicAnchor" : 𝑓 into 𝑆 , and, if not found, invokes dgetk(𝑘 :

𝐽 , 𝑓) on each keyword 𝑘 : 𝐽 to search inside the schema;

(2) dgetk(𝑘 : 𝐽 , 𝑓) that invokes dgets(𝑆, 𝑓) to search 𝑓 inside the parts of 𝐽 that are known to

contain a subschema.

The function dget(𝑆, 𝑓) is defined as dgets(StripId(𝑆), 𝑓), where StripId(𝑆) removes any out-

ermost "$id" keyword from 𝑆 . This is necessary since dgets interrupts its search when it meets

a "$id" keyword, but the presence of an "$id" in the outermost schema should not interrupt the

search:

StripId({ "$id" : 𝑈𝑅𝐼, ®𝐾 }) = { ®𝐾 }
StripId(𝑆) = 𝑆 otherwise

Validation of Modern JSON Schema: Formalization and Complexity 111:33

The functions dgets(𝑆, 𝑓) and dgetk(𝑆, 𝑓) are defined as follows, where max returns the max-

imum element of a set that contains either schemas or ⊥, according to the trivial order defined

by ⊥ ≤ 𝑆 : that is, max select the only element in the set that is different from ⊥, if it exists and
is unique. If we assume that no plain-name is used by two different anchors in the same schema,

then, in line 4, there exists at most one value of 𝑖 such that dget(𝐾𝑖 , 𝑓) ≠ ⊥, hence the maximum is

well defined, and the same holds for lines 6 and 7.

0 dget(𝑆, 𝑓) = dgets(StripId(𝑆), 𝑓)
1 dgets(true/false, 𝑓) = ⊥
2 dgets({ ®𝐾 }, 𝑓) = ⊥ if "$id" : 𝑈𝑅𝐼 ∈ ®𝐾
3 dgets({ ®𝐾 }, 𝑓) = { ®𝐾 } if "$dynamicAnchor" : 𝑓 ∈ ®𝐾

and 2 does not apply

4 dgets({𝐾1, . . . , 𝐾𝑛 }, 𝑓) = max𝑖∈{| 1...𝑛 |}dgetk(𝐾𝑖 , 𝑓) if 2, 3 do not apply

5 dgetk(𝑘𝑤 : 𝑆, 𝑓) = dgets(𝑆, 𝑓) 𝑘𝑤 ∈ kwSimPar

6 dgetk(𝑘𝑤 : [𝑆1, . . . , 𝑆𝑛], 𝑓) = max𝑖∈{| 1...𝑛 |}dgets(𝑆𝑖 , 𝑓) 𝑘𝑤 ∈ kwArrPar
7 dgetk(𝑘𝑤 : { 𝑘1 : 𝑆1, . . . , 𝑘𝑛 : 𝑆𝑛 }, 𝑓) = max𝑖∈{| 1...𝑛 |}dgets(𝑆𝑖 , 𝑓) 𝑘𝑤 ∈ kwObjPar
8 dgetk(𝑘𝑤 : 𝐽 , 𝑓) = ⊥ 𝑘𝑤 ∈ kwOther
where

kwSimPar = {| "not", "contains", "propertyNames", "items", "additionalProperties",
"unevaluatedProperties", "unevaluatedItems" |}

kwObjPar = {| "$defs", "patternProperties", "properties", "dependentSchemas" |}
kwArrPar = {| "anyOf", "allOf", "oneOf", "prefixItems" |}
kwOther = Str \ kwSimPar \ kwObjPar \ kwArrPar
The four lines of dgetk definition specify that the search for a "$dynamicAnchor" keyword is

performed only inside keywords that are known and whose parameter contains a schema object

in a known position. For example, the search is not performed inside a user-defined keyword or

inside "const" or "default".

When 𝑓 is a plain-name, then the function get is identical to dget, but it extends case 3, since it

matches both "$anchor" and "$dynamicAnchor":

0 get(𝑆, 𝑓) = gets(StripId(𝑆), 𝑓)
1 gets(true/false, 𝑓) = ⊥
2 gets({ ®𝐾 }, 𝑓) = ⊥ if "$id" : 𝑈𝑅𝐼 ∈ ®𝐾
3 gets({ ®𝐾 }, 𝑓) = { ®𝐾 } if "$dynamicAnchor" : 𝑓 ∈ ®𝐾

or "$anchor" : 𝑓 ∈ ®𝐾
and 2 does not apply

4 gets({𝐾1, . . . , 𝐾𝑛 }, 𝑓) = max𝑖∈{| 1...𝑛 |}getk(𝐾𝑖 , 𝑓) if 2, 3 do not apply

5 getk(𝑘𝑤 : 𝑆, 𝑓) = gets(𝑆, 𝑓) 𝑘𝑤 ∈ kwSimPar

. . .

When 𝑓 is a JSON Pointer, it should be interpreted by get(𝑆, 𝐹) according to JSON Pointer

specifications of RFC6901 [17]. However, Draft 2020-12 specs [30] (Section 9.2.1) specify that the

behaviour is undefined when the pointer crosses resource boundaries .

111:34

C WHERE TO SEARCH FOR DYNAMIC ANCHORS
In Remark 1 we discuss the difference between looking for a dynamic reference in𝐶 or in𝐶+?absURI .
We report here a concrete test.

When the schema of Figure 9 is applied to the JSON instance { "children" : { } }, the keyword
"$dynamicRef" : "https://example.com/tree#node" is applied in a dynamic context that only con-

tains "https://example.com/outer", which denotes a resources that does not contain any "$dynamicAnchor" :

"node" keyword. The only such keyword in the schema is at line 7, and is belongs to the embedded

resource "https://example.com/tree". This specific example relies on the fact that an embedded

resource, as identified by the "$id" keyword, is not part of the scope of the embedding resource, the

one identified by "https://example.com/outer", but it could be rephrased by putting the embed-

ded resource in a separate file. Hence, if "$dynamicRef" : "https://example.com/tree#node" were

resolved using the dynamic context only, if would raise a run-time failure. But our rule dictates

that it is resolved in 𝐶+?absURI , that is in
"https://example.com/outer" + "https://example.com/tree"

hence raising a validation error since the value of "children" is not an array. In Figure 9 we see

how four different validators behaved at the date of 10
𝑡ℎ

Jan 2023: the first two exhibit an internal

bug, and the other two use the approach that we formalized; none of them reports a resolution

error due to the fact that "$dynamicAnchor" : "node" is not present in the dynamic scope. Hence,

they validate the choice to look for the fragment id 𝑓 inside 𝐶+?absURI , and not inside 𝐶 only.

Schema:

1 { " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ","$id":
2 " https :// example .com/ outer ",
3 " $dynamicRef ": " https :// example .com/tree#node",
4 " $defs ": {
5 " https :// example .com/tree": {
6 "$id": " https :// example .com/tree",
7 " $dynamicAnchor ": "node",
8 "type": " object ",
9 " properties ": {
10 "data": true,
11 " children ": {
12 "type": " array ",
13 " items ": { " $dynamicRef ": "# node" }
14 }
15 }
16 }
17 }
18 }

Instance:

{ " children " : {}}

Output:

1 https :// json − schema . hyperjump .io/: TypeError : s[t] is undefined
2 https :// tryjsonschematypes . appspot .com: An error occurred − java.lang. NullPointerException
3 https :// json − everything .net/json − schema / " valid ": false
4 " evaluationPath ": "/ $dynamicRef / properties / children "
5 https :// jschon .dev/: " valid ": false
6 " keywordLocation ": "/ $dynamicRef / properties / children /type"

Fig. 9. Different behaviour of several JSON Schema validators.

Validation of Modern JSON Schema: Formalization and Complexity 111:35

D PROOFS
From Section 5:

Theorem 2. Given a QBF closed formula 𝜓 = 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛 . 𝜙 and the corresponding schema 𝑆𝜓
with base URI 𝑏,𝜓 is valid if, and only if, for every 𝐽 , [| 𝑏 |] ⊢S 𝐽 ? 𝑆𝜓 → 𝑇 .

Proof. Consider a QBF formula𝜓 = 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛 . 𝜙 and the corresponding schema 𝑆𝜓 . We say

that a context 𝐶 is well-formed for 𝑆𝜓 if (1) its elements are URIs of resources of 𝑆𝜓 and (2) in case

it contains "urn:close", then "urn:close" is the last element of 𝐶 . We associate every well-formed

context 𝐶 to an assignment 𝐴𝐶 as follows:

𝐴𝐶 (𝑥𝑖) = 𝑇 ⇔ "urn:setvar"·𝑖 ∈ 𝐶
𝐴𝐶 (𝑥𝑖) = 𝐹 ⇔ "urn:setvar"·𝑖 ∉ 𝐶

Given a QBF formula 𝜓 ′ that may contain open variables and an assignment 𝐴 that is defined

for every variable of𝜓 ′, we use 𝑉𝑎𝑙𝑖𝑑 (𝜓 ′, 𝐴) to indicate the fact that𝜓 ′ is valid when every open

variable is substituted with its value in 𝐴.

The index of a context 𝐶 , 𝐼𝑛𝑑 (𝐶), is the maximal 𝑖 such that "urn:setvar"·𝑖 ∈ 𝐶 , and is 0 if no

"urn:setvar"·𝑖 belongs to 𝐶 .
We prove, by induction, the following properties, for every context 𝐶 well-formed for 𝑆𝜓 , where

we define𝑇𝑎𝑖𝑙0 (𝜓) = 𝜙 and𝑇𝑎𝑖𝑙𝑖+1 (𝜓) = 𝑄𝑛−𝑖𝑥𝑛−𝑖𝑇𝑎𝑖𝑙𝑖 (𝜓), so that𝑇𝑎𝑖𝑙𝑖 (𝜓) = 𝑄𝑛−𝑖+1𝑥𝑛−𝑖+1 . . . 𝑄𝑛𝑥𝑛 . 𝜙 :

(1𝑎) "urn:close" ∈ 𝐶 ⇒ 𝐶 ⊢S 𝐽 ? { "$dynamicRef" : "x"·𝑖 } → 𝑇 ⇔ 𝐴𝐶 (𝑥𝑖) = 𝑇
(1𝑏) "urn:close" ∈ 𝐶 ⇒ 𝐶 ⊢S 𝐽 ? { "$dynamicRef" : "not.x"·𝑖 } → 𝑇 ⇔ 𝐴𝐶 (𝑥𝑖) = 𝐹
(2) 𝐶 ⊢S 𝐽 ? { "$ref" : "urn:close#phi" } → 𝑇 ⇔ 𝑉𝑎𝑙𝑖𝑑 (𝜙,𝐴𝐶)
(3) 𝐼𝑛𝑑 (𝐶) ≤ 𝑛 − 𝑖 ⇒

𝐶 ⊢S 𝐽 ? { "$ref" : "urn:start#quant.x"· (𝑛 − 𝑖 + 1) } → 𝑇 ⇔ 𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙𝑖 . 𝜙, 𝐴𝐶)

The theorem follows from case (3), in the case 𝑖 = 𝑛, with𝐶 equal to the base context [| "urn:psi" |].
Property (1a): it holds since "x"· 𝑖 is defined as "anyOf" : [true] in "urn:setvar"· 𝑖 and as "anyOf" :

[false] in "urn:close". In a well-formed context that contains "urn:close", when "urn:setvar" ·𝑖
is present, then it precedes "urn:close", hence the value of { "$dynamicRef" : "x" · 𝑖 } is deter-
mined by "urn:setvar" · 𝑖 , hence is "anyOf" : [true]. If "urn:setvar" · 𝑖 is absent, then the value of

{ "$dynamicRef" : "x"·𝑖 } is defined by "urn:close", hence is "anyOf" : [false]. (1b) is analogous.
Property (2): by induction on 𝜙 , using property (1) for the 𝑥𝑖 and ¬𝑥𝑖 , and induction for 𝑆1 ∧ 𝑆2

and 𝑆1 ∨ 𝑆2 .
Property (3): by induction on 𝑖 . Case 𝑖 = 1: we want to prove that

𝐼𝑛𝑑 (𝐶) ≤ 𝑛 − 1 ⇒ 𝐶 ⊢S 𝐽 ? { "$ref" : "urn:start#quant.x"· (𝑛) } → 𝑇 ⇔ 𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙1 . 𝜙, 𝐴𝐶)
By definition, 𝑇𝑎𝑖𝑙1 . 𝜙 = 𝑄𝑛𝑥𝑛 .𝜙 ; we assume that 𝑄𝑛 = ∀; the case for 𝑄𝑛 = ∃ is analogous.

From 𝑄𝑛 = ∀ we get:
𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙1. 𝜙, 𝐴𝐶) ⇔ (𝑉𝑎𝑙𝑖𝑑 (𝜙,𝐴𝐶 [𝑥𝑛 ← 𝑇]) ∧𝑉𝑎𝑙𝑖𝑑 (𝜙,𝐴𝐶 [𝑥𝑛 ← 𝐹]))

Since 𝑄𝑛 = ∀, then the body of "urn:start#quant.x"·𝑛 is

"allOf" : [{"$ref" : "urn:setvar"·𝑛 ·"#afterq"·𝑛} , {"$ref" : "urn:start#afterq"·𝑛}]
The body of "urn:setvar"·𝑛·"#afterq"·𝑛 is "$ref" : "urn:close#phi", and the body of "urn:start#afterq"·
𝑛 is equal. Hence, the assertion "$ref" : "urn:setvar"·𝑛·"#afterq"·𝑛 evaluates "$ref" : "urn:close#phi"
in a context 𝐶𝑇

which is 𝐶 extended with "$ref" : "urn:setvar" ·𝑛; by definition, 𝐴𝐶𝑇 is equal to

𝐴𝐶 [𝑥𝑛 ← 𝑇]. Hence, by property (2),

𝐶𝑇 ⊢S 𝐽 ? { "$ref" : "urn:close#phi" } → 𝑇 ⇔ 𝑉𝑎𝑙𝑖𝑑 (𝜙,𝐴𝐶𝑇) ⇔ 𝑉𝑎𝑙𝑖𝑑 (𝜙,𝐴𝐶 [𝑥𝑛←𝑇])

111:36

The assertion "$ref" : "urn:start#afterq" ·𝑛 evaluates "$ref" : "urn:close#phi" in the same

context 𝐶 , hence 𝐴𝐶 sets 𝑥𝑛 to 𝐹 , since 𝐼𝑛𝑑 (𝐶) ≤ 𝑛 − 1. Hence, by property (2),

𝐶 ⊢S 𝐽 ? { "$ref" : "urn:close#phi" } → 𝑇 ⇔ 𝑉𝑎𝑙𝑖𝑑 (𝜙,𝐴𝐶) ⇔ 𝑉𝑎𝑙𝑖𝑑 (𝜙,𝐴𝐶 [𝑥𝑛←𝐹])
We can then conclude that

"allOf" : [{"$ref" : "urn:setvar"·𝑛 ·"#afterq"·𝑛} , {"$ref" : "urn:start#afterq"·𝑛}]
evaluates to𝑇 if, and only if𝑉𝑎𝑙𝑖𝑑 (𝜙,𝐴𝐶 [𝑥𝑛 ← 𝑇])∧𝑉𝑎𝑙𝑖𝑑 (𝜙,𝐴𝐶 [𝑥𝑛 ← 𝐹]), that is,𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙1. 𝜙, 𝐴𝐶).

Case 2 ≤ 𝑖 ≤ 𝑛: we want to prove that

𝐼𝑛𝑑 (𝐶) ≤ 𝑛−𝑖 ⇒ 𝐶 ⊢S 𝐽 ? { "$ref" : "urn:start#quant.x"· (𝑛 − 𝑖 + 1) } → 𝑇 ⇔ 𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙𝑖 . 𝜙, 𝐴𝐶)
By definition,𝑇𝑎𝑖𝑙𝑖 . 𝜙 = 𝑄𝑛−𝑖+1𝑥𝑛−𝑖+1.𝑇𝑎𝑖𝑙𝑖−1 . 𝜙 ; we assume that𝑄𝑛−𝑖+1 = ∀; the case for𝑄𝑛−𝑖+1 = ∃
is analogous.

From 𝑄𝑛−𝑖+1 = ∀ we get:
𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙𝑖 . 𝜙, 𝐴𝐶) ⇔ (𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙𝑖−1. 𝜙, 𝐴𝐶 [𝑥𝑛−𝑖+1 ← 𝑇]) ∧𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙𝑖−1 . , 𝐴𝐶 [𝑥𝑛−𝑖+1 ← 𝐹]))
Since 𝑄𝑛−𝑖+1 = ∀, then the body of "urn:start#quant.x"· (𝑛 − 𝑖 + 1) is

"allOf" : [{"$ref" : "urn:setvar"·(𝑛−𝑖+1)·"#afterq"·(𝑛−𝑖+1)·} , {"$ref" : "urn:start#afterq"·(𝑛−𝑖+1)}]
The body of "urn:setvar"·(𝑛− 𝑖 + 1)·"#afterq"·(𝑛− 𝑖 + 1) is "$ref" : "urn:start#quant.x"·(𝑛− 𝑖 + 2) ,
and the body of "urn:start#afterq"·(𝑛 − 𝑖 + 1) is equal. Hence, the assertion "$ref" : "urn:setvar"·
(𝑛 − 𝑖 + 1) ·"#afterq"· (𝑛 − 𝑖 + 1) evaluates "urn:start#quant.x"· (𝑛 − 𝑖 + 2) in a context𝐶𝑇

which is

𝐶 extended with "$ref" : "urn:setvar"· (𝑛 − 𝑖 + 1); by definition, 𝐴𝐶𝑇 is equal to 𝐴𝐶 [𝑥𝑛−𝑖+1 ← 𝑇].
Hence, by property (2),

𝐶𝑇 ⊢S 𝐽 ? { "$ref" : "urn:close#phi" } → 𝑇 ⇔ 𝑉𝑎𝑙𝑖𝑑 (𝜙,𝐴𝐶 [𝑥𝑛−𝑖+1←𝑇])
The assertion "$ref" : "urn:start#afterq"· (𝑛 − 𝑖 + 1) evaluates "urn:start#quant.x"· (𝑛 − 𝑖 + 2)

in the same context 𝐶 with 𝐼𝑛𝑑 (𝐶) ≤ 𝑛 − 𝑖 , hence 𝐴𝐶 sets 𝑥𝑛−𝑖+1 to 𝐹 , by definition of 𝐴𝐶 .

We rewrite (𝑛 − 𝑖 + 2) as (𝑛 − (𝑖 − 1) + 1) and we observe that 𝐼𝑛𝑑 (𝐶) ≤ 𝑛 − 𝑖 implies that

𝐼𝑛𝑑 (𝐶 + "urn:setvar"·(𝑛 − 𝑖 + 1)) ≤ 𝑛 − (𝑖 − 1), so that we can apply induction on 𝑖 , which provides

the following inductive hypothesis:

𝐶 + "urn:setvar"· (𝑛 − 𝑖 + 1) ⊢S 𝐽 ? { "$ref" : "urn:start#quant.x"· (𝑛 − 𝑖 + 2) } → 𝑇

⇔ 𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙𝑖−1 . 𝜙, 𝐴𝐶 [𝑥𝑛−𝑖+1 ← 𝑇])
and:

𝐶 ⊢S 𝐽 ? { "$ref" : "urn:start#quant.x"· (𝑛 − 𝑖 + 2) } → 𝑇 ⇔ 𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙𝑖−1. 𝜙, 𝐴𝐶 [𝑥𝑛−𝑖+1 ← 𝐹])
We can then conclude that

"allOf" : [{"$ref" : "urn:setvar"·(𝑛−𝑖+1)·"#afterq"·(𝑛−𝑖+1)·} , {"$ref" : "urn:start#afterq"·(𝑛−𝑖+1)}]
evaluates to 𝑇 if, and only if

𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙𝑖−1. 𝜙, 𝐴𝐶 [𝑥𝑛−𝑖+1 ← 𝑇]) ∧𝑉𝑎𝑙𝑖𝑑 (𝑇𝑎𝑖𝑙𝑖−1. , 𝐴𝐶 [𝑥𝑛−𝑖+1 ← 𝐹])
which concludes the proof. □

From Section 6:

Theorem 4. For any closed schema 𝑆 and instance 𝐽 whose total size is less than 𝑛, Algorithm 1

applied to 𝐽 and 𝑆 requires an amount of space that is polynomial in 𝑛.

Proof. We first prove that the call stack has a polynomial depth, thanks to the following

properties, where we use 𝑛 for the size of the input instance, and𝑚 for the size of the input schema.

Validation of Modern JSON Schema: Formalization and Complexity 111:37

(1) The depth of the call stack is always less than |StopList | × 3.
(2) Each StopList generated during validation can be divided in𝑀 distinct sublists 𝑠𝑙1, . . . , 𝑠𝑙𝑀 ,

such that all elements in the same sublist have the same context, and the context of the sublist

𝑠𝑙𝑖+1, with 𝑖 ≥ 1, contains one more URI than the context of the sublist 𝑠𝑙𝑖 .

(3) The size of each sublist 𝑠𝑙𝑖 is at most 𝑛 ×𝑚.

Property (1) holds since SchemaValidate(. . . ,StopList) invokes KeywordValidate with a stoplist

with length |StopList | + 1, and KeywordValidate invokes a rule-specific function that may invoke

SchemaValidate with the same stoplist, so that the StopList grows by 1 every time the call stack

grows by 3, and vice versa.

Property (2) holds by induction: the function SchemaValidate passes to KeywordValidate the same

context it receives, and the function KeywordValidate passes to SchemaValidate either the same

context it receives or a context that contains one more URI, which happens when the keyword

analyzed is either "$ref" or "$dynamicRef" and the target URI was not yet in the context.

Property (3) holds since no two elements of the stoplist can be equal, since a failure is raised

when the input is already in the StopList parameter. All elements in a sublist have the same context,

hence they must differ either in the instance or in the schema. The instance must be a sub-instance

of the input instance, hence we have at most 𝑛 choices. The schema must must be a sub-schema of

the input schema, hence we have at most𝑚 choices. Hence, the size of each sublist 𝑠𝑙𝑖 is at most

𝑛 ×𝑚.

The combination of these three properties implies that the StopList parameter contains at most

(𝑛 ×𝑚) × (𝑚 + 1) elements, since it can be decomposed in at most𝑚 + 1 sublists, which implies

that this parameter has a polynomial size, and that the call stack, by property (1), has a polynomial

depth.

We now provide the rest of the proof, which is quite straightforward.

We observe that SchemaValidate (Context,Instance,Schema,StopList) scans all keywords inside

Schema in sequence, and it only needs enough space to keep the pair (Result,Eval) between one call

and the other one, and the size of this pair is in 𝑂 (𝑛), since the list Eval of evaluated properties

or items cannot be bigger than the instance. Since we reuse the same space for all keywords, we

only need to prove that each single keyword can be recursively evaluated in polynomial space,

including the space needed for the call stack and for the parameters.

Every keyword has its own specific algorithm, some of which are exemplified in Figure 1.

We first analyze "patternProperties". All the four parameters can be stored in polynomial space;

Context since it is a list of URIs that belong to the schema and because it contains no repetition, and

the other parameters have already be discussed. Each matching pair can be analyzed in polynomial

space, apart from the recursive call. For the recursive call, the call stack has a polynomial length,

and every called function employs polynomial space.

We need to repeat the same analysis for all rules, but none of them is more complex than

"patternProperties". For example, the dependent keywords such as "unevaluatedProperties" have

one extra parameter that contains the already evaluated properties and items, but it only takes

polynomial space, as already discussed.

This completes the proof of the fact that the algorithm runs in polynomial space, hence the

problem of validation for JSON Schema 2020-12 is PSPACE-complete. □

Theorem 5. Algorithm 2 applied to (𝐶, 𝐽 , 𝑆, ∅, ∅) returns (𝑟, 𝜅, 𝑑), for some 𝑑 , if, and only if, 𝐶 ⊢S
𝐽 ? 𝑆 → (𝑟, 𝜅).

Proof. In the following proof, we use the following metavariables conventions:

• 𝑠𝑙 (stoplist) denotes a list of triples (𝐶, 𝐽 , 𝑆)

111:38

• 𝑑 (DFragSet) is a list of fragments f

• 𝑂 (Output) is a triple (𝑟, 𝜅, 𝑑)
• 𝑢𝑠 (UpdatableStore) is a list of quadruples (𝐶, 𝐽 , 𝑆,𝑂)

This means that when we say “for any 𝑠𝑙 . . . ” we actually mean “for any list 𝑠𝑙 of tuples (𝐶, 𝐽 , 𝑆). . . ”
We first define an enriched version of the typing rules, that defines a judgment 𝐶 ⊢Sd 𝐽 ? 𝑆 →
(𝑟, 𝜅, 𝑑) that returns in 𝑑 the fragment names of the dynamic references that are resolved. The most

important rule is ($dynamicRef𝑑), that adds the resolved f to the list 𝑑 .

dget(load(absURI), f) ≠ ⊥ fURI = fstURI(𝐶+?absURI , 𝑓)
𝑆 ′ = dget(load(fURI), f) 𝐶+?fURI ⊢S 𝐽 ? 𝑆 ′→ (𝑟, 𝜅, 𝑑)
𝐶 ⊢K 𝐽 ? "$dynamicRef" : absURI ·"#"·f → (𝑟, 𝜅, 𝑑 ∪ {| f |})

($dynamicRef𝑑)

All the applicators pass the evaluated dynamic references to their result, and a schema passes all

the evaluated dynamic references even when it fails. We present here the failing schema rule and

the rule for (patternProperties𝑑), (schema-false𝑑), and (klist-(𝑛 + 1)𝑑), the other rules are analogous.

𝐽 = { 𝑘 ′
1
: 𝐽1, . . . , 𝑘

′
𝑛 : 𝐽𝑛 } {| (𝑖1, 𝑗1), . . . , (𝑖𝑙 , 𝑗𝑙) |} = {| (𝑖, 𝑗) | 𝑘 ′𝑖 ∈ 𝐿(𝑝 𝑗) |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 𝑗𝑞 → (𝑟𝑞, 𝜅𝑞, 𝑑𝑞) 𝑟 = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢Kd 𝐽 ? "patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 } → (𝑟, {| 𝑘 ′𝑖1 , . . . , 𝑘

′
𝑖𝑙
|},⋃𝑞∈{| 1...𝑙 |} 𝑑𝑞)
(patternProperties𝑑)

𝐶 ⊢Ld 𝐽 ? [|𝐾1, . . . , 𝐾𝑛 |] → (𝐹, 𝜅, 𝑑)
𝐶 ⊢Sd 𝐽 ? {𝐾1, . . . , 𝐾𝑛 } → (𝐹, ∅, 𝑑)

(schema-false𝑑)

𝑘 : 𝐽 ′ ∈ IndKeyOrT 𝐶 ⊢Ld 𝐽 ? ®𝐾 → (𝑟𝑙 , 𝜅𝑙 , 𝑑𝑙) 𝐶 ⊢Kd 𝐽 ? 𝐾 → (𝑟, 𝜅, 𝑑)

𝐶 ⊢Ld 𝐽 ? (®𝐾 + 𝐾) → (𝑟𝑙 ∧ 𝑟, 𝜅𝑙 ∪ 𝜅,𝑑𝑙 ∪ 𝑑)
(klist-(𝑛 + 1)𝑑)

These new judgments just return some extra information with respect to the basic judgment,

hence the following facts are immediate.

𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅) ⇔ ∃𝑑. 𝐶 ⊢Kd 𝐽 ? 𝐾 → (𝑟, 𝜅, 𝑑)
𝐶 ⊢S 𝐽 ? 𝑆 → (𝑟, 𝜅) ⇔ ∃𝑑. 𝐶 ⊢Sd 𝐽 ? 𝑆 → (𝑟, 𝜅, 𝑑)
𝐶 ⊢L 𝐽 ? ®𝐾 → (𝑟, 𝜅) ⇔ ∃𝑑. 𝐶 ⊢Ld 𝐽 ? ®𝐾 → (𝑟, 𝜅, 𝑑)

We define an equivalence relation 𝐶 ∼𝑑 𝐶 ′ defined as:

𝐶 ∼𝑑 𝐶 ′ ⇔ ∀f ∈ 𝑑. fstURI(𝐶, 𝑓) = fstURI(𝐶 ′, 𝑓)

We prove the following property:

𝐶 ∼𝑑 𝐶 ′ ∧ 𝐶 ⊢Kd 𝐽 ? 𝐾 → (𝑟, 𝜅, 𝑑 ′) ∧ 𝑑 ′ ⊆ 𝑑 ⇒ 𝐶 ′ ⊢Kd 𝐽 ? 𝐾 → (𝑟, 𝜅, 𝑑 ′)
𝐶 ∼𝑑 𝐶 ′ ∧ 𝐶 ⊢Ld 𝐽 ? ®𝐾 → (𝑟, 𝜅, 𝑑 ′) ∧ 𝑑 ′ ⊆ 𝑑 ⇒ 𝐶 ′ ⊢Ld 𝐽 ? ®𝐾 → (𝑟, 𝜅, 𝑑 ′)
𝐶 ∼𝑑 𝐶 ′ ∧ 𝐶 ⊢Sd 𝐽 ? 𝑆 → (𝑟, 𝜅, 𝑑 ′) ∧ 𝑑 ′ ⊆ 𝑑 ⇒ 𝐶 ′ ⊢Sd 𝐽 ? 𝑆 → (𝑟, 𝜅, 𝑑 ′)

We prove it by induction on the rules. The proof is immediate for the terminal rules. For the

applicators, consider rule (patternProperties𝑑).

Validation of Modern JSON Schema: Formalization and Complexity 111:39

𝐽 = { 𝑘 ′
1
: 𝐽1, . . . , 𝑘

′
𝑛 : 𝐽𝑛 } {| (𝑖1, 𝑗1), . . . , (𝑖𝑙 , 𝑗𝑙) |} = {| (𝑖, 𝑗) | 𝑘 ′𝑖 ∈ 𝐿(𝑝 𝑗) |}

∀𝑞 ∈ {| 1 . . . 𝑙 |}. 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 𝑗𝑞 → (𝑟𝑞, 𝜅𝑞, 𝑑𝑞) 𝑟 = ∧({| 𝑟𝑞 |}𝑞∈{| 1...𝑙 |})
𝐶 ⊢Kd 𝐽 ? "patternProperties" : { 𝑝1 : 𝑆1, . . . , 𝑝𝑚 : 𝑆𝑚 } → (𝑟, {| 𝑘 ′𝑖1 , . . . , 𝑘

′
𝑖𝑙
|},⋃𝑞∈{| 1...𝑙 |} 𝑑𝑞)
(patternProperties𝑑)

From the hypothesis that

⋃
𝑞∈{| 1...𝑙 |} 𝑑𝑞 ⊆ 𝑑 we immediately deduce that for 𝑞 ∈ {| 1 . . . 𝑙 |} we

have 𝑑𝑞 ⊆ 𝑑 , hence we can apply the inductive hypothesis to each 𝐶 ⊢S 𝐽𝑖𝑞 ? 𝑆 𝑗𝑞 → (𝑟𝑞, 𝜅𝑞, 𝑑𝑞), and
conclude. All the rules that do not modify the context are proved in the same way. We are left with

the rules that modify the context, which are ($ref𝑑) and ($dynamicRef𝑑). This is rule ($ref𝑑).

𝑆 ′ = get(load(absURI), f) 𝐶+?absURI ⊢Sd 𝐽 ? 𝑆 ′→ (𝑟, 𝜅, 𝑑)
𝐶 ⊢Kd 𝐽 ? "$ref" : absURI ·"#"·f → (𝑟, 𝜅, 𝑑)

($ref𝑑)

We prove now that 𝐶 ∼𝑑 𝐶 ′ implies 𝐶+?absURI ∼𝑑 𝐶 ′+?absURI . Consider any f ∈ 𝑑 ; if

fstURI(𝐶, 𝑓) are both different from ⊥ we have:

fstURI(𝐶+?absURI , 𝑓) = fstURI(𝐶, 𝑓) = fstURI(𝐶 ′, 𝑓) = fstURI(𝐶 ′+?absURI , 𝑓)
if fstURI(𝐶, 𝑓) are both equal to ⊥ we have:

fstURI(𝐶+?absURI , 𝑓) = absURI = fstURI(𝐶 ′+?absURI , 𝑓).
Hence 𝐶+?absURI ∼𝑑 𝐶 ′+?absURI , and we can apply induction to the ($ref) rule.

Consider finally rule ($dynamicRef𝑑), applied to 𝐶 and to 𝐶 ′.

dget(load(absURI), f) ≠ ⊥ fURI = fstURI(𝐶+?absURI , 𝑓)
𝑆0 = dget(load(fURI), f) 𝐶+?fURI ⊢S 𝐽 ? 𝑆0 → (𝑟, 𝜅, 𝑑0)
𝐶 ⊢K 𝐽 ? "$dynamicRef" : absURI ·"#"·f → (𝑟, 𝜅, 𝑑0 ∪ {| f |})

($dynamicRef𝑑)

dget(load(absURI), f) ≠ ⊥ fURI
′ = fstURI(𝐶 ′+?absURI , 𝑓)

𝑆 ′
0
= dget(load(fURI ′), f) 𝐶 ′+?fURI ′ ⊢S 𝐽 ? 𝑆 ′

0
→ (𝑟 ′, 𝜅 ′, 𝑑 ′

0
)

𝐶 ′ ⊢K 𝐽 ? "$dynamicRef" : absURI ·"#"·f → (𝑟 ′, 𝜅 ′, 𝑑 ′
0
∪ {| f |})

($dynamicRef𝑑)

By hypothesis, (𝑑0 ∪ {| f |}) ⊆ 𝑑 , hence f ∈ 𝑑 . By reasoning as for rule ($ref), we deduce

that fstURI(𝐶+?absURI , 𝑓) = fstURI(𝐶 ′+?absURI , 𝑓), hence fURI = fURI
′
, hence 𝑆 ′

0
= 𝑆0. By

reasoning as for rule ($ref), absURI = absURI
′
implies that 𝐶+?fURI ∼𝑑 𝐶 ′+?fURI ′. Hence, since

𝑑0 ⊆ (𝑑0∪{| f |}) ⊆ 𝑑 , we can apply the induction hypothesis, and deduce that (𝑟 ′, 𝜅 ′, 𝑑 ′0) = (𝑟, 𝜅, 𝑑0),
from which we deduce that

(𝑟 ′, 𝜅 ′, 𝑑 ′
0
∪ {| f |}) = (𝑟, 𝜅, 𝑑0 ∪ {| f |})

Hence, we have proved that the following deduction rule is sound, that is, that its application

does not allow any new judgment to be deduced:

𝐶 ⊢Sd 𝐽 ? 𝑆 → (𝑟, 𝜅, 𝑑) 𝐶 ∼𝑑 𝐶 ′

𝐶 ′ ⊢Sd 𝐽 ? 𝑆 → (𝑟, 𝜅, 𝑑)
(reuse𝑑)

Our algorithm applies the rules of𝐶 ⊢Sd 𝐽 ? 𝑆 plus (reuse𝑑) that is sound, hence it can only prove

correct statements. On the other direction, completeness of the algorithm follows from the fact

that it is correct and that it always terminates. □

111:40

We can now prove that Algorithm 2 runs in polynomial time when we have a constant bound on

the number of dynamic references.

Theorem 6. Consider a family of closed schemas 𝑆 and judgments 𝐽 such that (|𝑆 | + |𝐽 |) ≤ 𝑛, and let
𝐷 be the set of different fragments 𝑓 that appear in the argument of a "$dynamicRef" : initURI ·"#"·f
in 𝑆 . Then, Algorithm 2 runs on 𝑆 and 𝐽 in time 𝑂 (𝑛𝑘+|𝐷 |) for some constant 𝑘 .

Proof. Consider 𝑆 , 𝐽 , 𝑛, and 𝐷 , as in the statement of the Theorem. Consider the call tree of

a run of Algorithm 2 applied to the tuple (𝐶, 𝐽 , 𝑆, ∅, ∅), with 𝑆 . The top node of this tree is a call

to SchemaValidateAndStore, from now on abbreviates as SVAS, applied to (𝐶, 𝐽 , 𝑆, ∅, ∅), which
in turn invokes from 0 to 𝑛 times KeywordValidate(𝐶, 𝐽 , 𝐾𝑖 , . . .), each applying one specific rule,

each rule invoking a certain number of times SVAS(𝐶 ′, 𝐽 ′, 𝑆 ′, 𝑠𝑙 ′, 𝑢𝑝 ′).
We first observe that, for any invocation SVAS(𝐶 ′, 𝐽 ′, 𝑆 ′, 𝑠𝑙 ′, 𝑢𝑝 ′) in the call tree rooted in SVAS(𝐶, 𝐽 , 𝑆, ∅, ∅),

with 𝑆 closed, 𝐽 ′ is a subtree of 𝐽 , 𝑆 ′ is a subschema of 𝑆 , and 𝐶 ′ is a list of URIs of resources in 𝑆
with no repetitions. We also observe that the call tree is finite, since any infinite call tree would

have an infinite branch, every infinite branch would contain two different invocations of SVAS with
the same triple (𝐶, 𝐽 , 𝑆), and this possibility is prevented by the test executed on 𝑠𝑙 .

We observe that every two nodes labeledwith SVAS(𝐶 ′, 𝐽 ′, 𝑆 ′, 𝑠𝑙 ′, 𝑢𝑝 ′) and SVAS(𝐶 ′′, 𝐽 ′′, 𝑆 ′′, 𝑠𝑙 ′′, 𝑢𝑝 ′′)
in that call tree either differ in 𝐽 ′, or they differ in 𝑆 ′, or they enjoy the property that 𝐶 ≁𝐷 𝐶 ′,
since the check performed on 𝑢𝑠 prevents a second call to SVAS with the same 𝐽 and 𝑆 when

𝐶 ∼𝑑′ 𝐶 ′ where 𝑑 ′ is the DFragSet returned for (𝐶, 𝐽 , 𝑆), hence, for any two calls with the same

(𝐽 , 𝑆), the corresponding 𝐶 and 𝐶 ′ enjoy 𝐶 ≁𝑑′ 𝐶
′
for some 𝑑 ′ ⊆ 𝐷 , hence they enjoy 𝐶 ≁𝐷 𝐶 ′.

Each equivalence class of the relation 𝐶 ∼𝐷 𝐶 ′ is characterized by a different function that maps

each f ∈ 𝐷 to a URI, or to ⊥; if we have 𝑛 different URIs in 𝑆 , the equivalence relation has at most

(𝑛 + 1) |𝐷 | distinct classes, since we have at most 𝑛 + 1 possible different choices for each fragment

identifier. We have at most 𝑛 subschemas of 𝑆 and subterms of 𝐽 , and (𝑛+1) |𝐷 | different equivalence
classes for 𝐶 , hence the call tree for SVAS(𝐶, 𝐽 , 𝑆, ∅, ∅) has at most (𝑛 + 1) |𝐷 | × 𝑛 × 𝑛 nodes labeled

with SVAS. The time needed to invoke the at most 𝑛 instances of SVAS that are immediately invoked

by a call to SVAS is polynomial — the most complicated case is (patternProperties) where each of the

𝑛 label in 𝐽 must be matched against each of the 𝑛 regular expressions of the patterns of 𝐾 , hence

SVAS(𝐶, 𝐽 , 𝑆, ∅, ∅) runs in time 𝑂 (𝑛𝑘+|𝐷 |) for some constant 𝑘 . □

From Section 8:

Theorem 8 (Encoding correctness). Let 𝑆 be a closed schema with base URI b. Then:

[| b |] ⊢S 𝐽 ? Static(𝑆) → (𝑟, 𝜅) ⇔ [| b |] ⊢S 𝐽 ? 𝑆 → (𝑟, 𝜅)

Proof. For any schema 𝑆0 with base URI 𝑏, we want to prove that

[| b |] ⊢S 𝐽0 ? Static(𝑆0) → (𝑟0, 𝜅0) ⇔ [| b |] ⊢S 𝐽0 ? 𝑆0 → (𝑟0, 𝜅0)
Our validation rules are deterministic, hence for each triple 𝐶, 𝐽 , 𝑆 or 𝐶, 𝐽 , 𝐾 we can define its

“standard proof”, that is just the only proof obtained by the application of the rules.

We then consider the standard proof for

[| b |] ⊢S 𝐽0 ? 𝑆0 → (𝑟0, 𝜅0)
and we prove that, for any judgment 𝐶 ⊢S 𝐽 ? 𝑆 → (𝑟, 𝜅) in that proof, we have that:

𝐶 ⊢S 𝐽 ? 𝑆 → (𝑟, 𝜅) ⇔ 𝐶 ⊢S 𝐽 ? CI(𝐶, 𝑆) → (𝑟, 𝜅)
and similarly that for any judgment 𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅) in that proof, we have that:

𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅) ⇔ 𝐶 ⊢K 𝐽 ? CI(𝐶,𝐾) → (𝑟, 𝜅).

Validation of Modern JSON Schema: Formalization and Complexity 111:41

We prove that by mutual induction on the size of the proof. The base cases are trivial, since

CI(𝐶,𝐾) is equal to 𝐾 when 𝐾 is not a reference operator and does not contain any subschema. All

the applicators different from references, such as "anyOf", are immediate by induction.

The only interesting cases are those for "$ref" and "$dynamicRef".

CI(𝐶, "$dynamicRef" : absURI ·"#"·f) = "$ref" : fstURI(𝐶+?absURI , f) ·"#"·𝐶 ·f
CI(𝐶, "$ref" : absURI ·"#"·f) = "$ref" : absURI ·"#"·𝐶 ·f

Let us consider the ("$dynamicRef") case. Let this be the root of the proof of 𝐶 ⊢K 𝐽 ? 𝐾 → (𝑟, 𝜅):

dget(load(absURI), f) ≠ ⊥ fURI = fstURI(𝐶+?absURI , 𝑓)
𝑆 ′ = dget(load(fURI), f) 𝐶+?fURI ⊢S 𝐽 ? 𝑆 ′→ (𝑟, 𝜅)

𝐶 ⊢K 𝐽 ? "$dynamicRef" : absURI ·"#"·f → (𝑟, 𝜅)
($dynamicRef)

By definition,

CI(𝐶, "$dynamicRef" : absURI ·"#"·f) = "$ref" : fstURI(𝐶+?absURI , f) ·"#"·𝐶 ·f
That is

CI(𝐶, "$dynamicRef" : absURI ·"#"·f) = "$ref" : fURI ·"#"·𝐶 ·f

Hence, the proof for 𝐶 ⊢K 𝐽 ? CI(𝐶,𝐾) → (𝑟, 𝜅) is the following one.

𝑆 ′
1
= get(load(fURI),C ·f) 𝐶+?fURI ⊢S 𝐽 ? 𝑆 ′

1
→ (𝑟1, 𝜅1)

𝐶 ⊢K 𝐽 ? "$ref" : fURI ·"#"·𝐶 ·f → (𝑟1, 𝜅1)
($ref)

By definition of Static(𝑆0), if 𝑆 ′ is the schema identified by fURI ·"#"·f , then fURI ·"#"·𝐶 ·f refers

to CI(𝐶, 𝑆 ′), hence 𝑆 ′
1
= CI(𝐶, 𝑆 ′), and we conclude by induction.

The case for ($ref) is similar but simpler.

□

111:42

E ALGORITHM 2, PART 2
From Section 7.

Algorithm 3: Polynomial Time Validation - part 2

/* Apply a keyword and return a new output based on PrevOutput */

1 KeywordValidate(Context,Instance, Keyword, PrevOutput, StopList, Up)
2 switch Keyword do
3 case “anyOf”: List do
4 return (AnyOf (Context,Instance,List,PrevOutput,StopList,Up));

5 case “dynamicRef”: absURI “#” fragmentId do
6 return (DynamicRef (Context,Instance,absURI,fragmentId,PrevOutput,StopList,Up));

7 . . .

8

9 AnyOf(Context, Instance, List, PrevOutput, StopList, Up)
10 (PrevRes, PrevEval, PrevDFragSet) := PrevOutput;

11 Result := True; Eval := EmptySet; DFragSet := EmptySet;

12 for Schema in List do
13 SchemaOutput := SchemaValidateAndStore (Context, Instance, Keyword, StopList, Up) ;

14 (SchemaRes,SchemaEval,SchemaDFragSet) := SchemaOutput ;

15 Result := Or (Result,SchemaRes);

16 Eval := Union (Eval,SchemaEval);

17 DFragSet := Union (DFragSet,SchemaDFragSet);

18 return (And (PrevResult,Result), Union (PrevEval,Eval), Union (PrevDFragSet,DFragSet));

19

20 DynamicRef(Context, Instance, AbsURI, fragmentId, PrevOutput, StopList, Up)
21 (PrevRes, PrevEval, PrevDFragSet) := PrevOutput;

22 if (dget(load(AbsURI),fragmentId) = bottom)) then StaticRef (...);

23 fstURI := FirstURI (Context+?AbsURI,fragmentId) ;

24 fstSchema := get(load(fstURI),fragmentId);

25 SchOutput := SchemaValidateAndStore(Saturate (Context,fstURI),Instance,fstSchema,StopList,Up);

26 (SchRes,SchEval,SchDT) := SchOutput;

27 return (And (PrevRes,SchRes), Union (PrevEval,SchEval), Union (SchDT, Singleton (fragmentId)));

28

29 FirstURI (context,fragmentId)

30 for URI in context do
31 if (dget(load(URI),fragmentId) != bottom) then { return (URI); }

32 return (Bottom);

Validation of Modern JSON Schema: Formalization and Complexity 111:43

F UNFOLDING OF THE EXAMPLE
We report here the complete unfolding of the running example, using the procedure defined in

Section 8. It is the following document, where contexts are represented inside anchors using the

abbreviations "urn:psi"→ "p", "urn:start"→ "s", "urn:setvar1"→ "sv1", "urn:setvar2"→ "sv2",

and "urn:close"→ "c". This is the first part.

1 { " $schema ": " https :// json − schema .org/ draft /2020 −12/ schema ",
2 "$id": "urn:psi",
3 "$ref": "urn: start # p_s_forall .x1",
4 " $defs ": {
5 "urn: start ": {
6 "$id": "urn: start ",
7 " $defs ": {
8 " p_s_forall .x1" : {
9 " $anchor ": " p_s_forall .x1",
10 " allOf ": [{ "$ref": "urn: setvar1 # p_s_afterq1 " },
11 { "$ref": "urn: start # p_s_afterq1 " }] },
12 " p_s_exists .x2": {
13 " $anchor ": " p_s_exists .x2",
14 " anyOf ": [{ "$ref": "urn: setvar2 # p_s_afterq2 " },
15 { "$ref": "urn: start # p_s_afterq2 " }] },
16 " p_s_sv1_exists .x2": {
17 " $anchor ": " p_s_sv1_exists .x2",
18 " anyOf ": [{ "$ref": "urn: setvar2 # p_s_sv1_afterq2 " },
19 { "$ref": "urn: start # p_s_sv1_afterq2 " }]
20 },
21 " p_s_afterq1 ": { " $anchor ": " p_s_afterq1 ", "$ref": "urn: start # p_s_exists .x2" },
22 " p_s_afterq2 ": { " $anchor ": " p_s_afterq2 ", "$ref": "urn: close # p_s_phi " },
23 " p_s_sv1_afterq2 ": { " $anchor ": " p_s_sv1_afterq2 ", "$ref": "urn: close #

p_s_sv1_phi " }
24 }
25 },
26 "urn: setvar1 ": {
27 "$id": "urn: setvar1 ",
28 " $defs ": {
29 " p_s_afterq1 ": { " $anchor ": " p_s_afterq1 ", "$ref": "urn: start # p_s_sv1_exists .x2"

},
30 " p_s_sv1_sv2_c_x1 ": { " $anchor ": " p_s_sv1_sv2_c_x1 ", " anyOf ": [true] },
31 " p_s_sv1_c_x1 ": { " $anchor ": " p_s_sv1_c_x1 ", " anyOf ": [true] },
32 " p_s_sv1_sv2_c_not .x1": { " $anchor ": " p_s_sv1_sv2_c_not .x1", " anyOf ": [false] },
33 " p_s_sv1_c_not .x1": { " $anchor ": " p_s_sv1_c_not .x1", " anyOf ": [false] }
34 }
35 },
36 "urn: setvar2 ": {
37 "$id": "urn: setvar2 ",
38 " $defs ": {
39 " p_s_sv1_afterq2 ": { " $anchor ": " p_s_sv1_afterq2 ",
40 "$ref": "urn: close # p_s_sv1_sv2_phi " },
41 " p_s_afterq2 ": { " $anchor ": " p_s_afterq2 ",
42 "$ref": "urn: close # p_s_sv2_phi " },
43 " p_s_sv1_sv2_c_x2 ": { " $anchor ": " p_s_sv1_sv2_c_x2 ", " anyOf ": [true] },
44 " p_s_sv2_c_x2 ": { " $anchor ": " p_s_sv2_c_x2 ", " anyOf ": [true] },
45 " p_s_sv1_sv2_c_not .x2": { " $anchor ": " p_s_sv1_sv2_c_not .x2", " anyOf ": [false] },
46 " p_s_sv2_c_not .x2": { " $anchor ": " p_s_sv2_c_not .x2", " anyOf ": [false] }
47 }
48 },
49 "urn: close ": {
50 "$id": "urn: close ",
51 " $defs ": {
52 " p_s_sv2_c_x1 ": { " $anchor ": " p_s_sv2_c_x1 ", " anyOf ": [false] },
53 " p_s_c_x1 ": { " $anchor ": " p_s_c_x1 ", " anyOf ": [false] },
54 " p_s_sv2_c_not .x1": { " $anchor ": " p_s_sv2_c_not .x1", " anyOf ": [true] },
55 " p_s_c_not .x1": { " $anchor ": " p_s_c_not .x1", " anyOf ": [true] },
56 " p_s_sv1_c_x2 ": { " $anchor ": " p_s_sv1_c_x2 ", " anyOf ": [false] },
57 " p_s_c_x2 ": { " $anchor ": " p_s_c_x2 ", " anyOf ": [false] },
58 " p_s_sv1_c_not .x2": { " $anchor ": " p_s_sv1_c_not .x2", " anyOf ": [true] },
59 " p_s_c_not .x2": { " $anchor ": " p_s_c_not .x2", " anyOf ": [true] },
60 " p_s_sv1_sv2_phi ": {...

111:44

Here is the last part; since "urn:close#phi" can be reached from four different contexts, we need

four different definitions, as follows. In the four cases, the way the dynamic variables "x1" and "x2"

are resolved varies depending on the context 𝐶 , encoded in the anchor 𝐶 · 𝑓 .
1 "urn: close #urn: psi_urn : start_urn : setvar1_urn : setvar2_phi ": {
2 " $anchor ": "urn: psi_urn : start_urn : setvar1_urn : setvar2_phi ",
3 " anyOf ": [
4 {" allOf ": [{"$ref": "urn: setvar1 #... _urn: setvar1_urn : setvar2_urn : close_x1 "},
5 {"$ref": "urn: setvar2 #... _urn: setvar1_urn : setvar2_urn : close_not .x2"}] },
6 {" allOf ": [{"$ref": "urn: setvar1 #... _urn: setvar1_urn : setvar2_urn : close_not .x1"},
7 {"$ref": "urn: setvar2 #u... _urn: setvar1_urn : setvar2_urn : close_x2 "}] }
8]
9 },
10 "urn: close #urn: psi_urn : start_urn : setvar1_phi ": {
11 " $anchor ": "urn: psi_urn : start_urn : setvar1_phi ",
12 " anyOf ": [
13 {" allOf ": [{"$ref": "urn: setvar1 #urn: psi_urn : start_urn : setvar1_urn : close_x1 "},
14 {"$ref": "urn: close #urn: psi_urn : start_urn : setvar1_urn : close_not .x2"}] },
15 {" allOf ": [{"$ref": "urn: setvar1 #urn: psi_urn : start_urn : setvar1_urn : close_not .x1"},
16 {"$ref": "urn: close #urn: psi_urn : start_urn : setvar1_urn : close_x2 "}] }
17]
18 },
19 "urn: close #urn: psi_urn : start_urn : setvar2_phi ": {
20 " $anchor ": "urn: psi_urn : start_urn : setvar1_urn : setvar2_phi ",
21 " anyOf ": [
22 {" allOf ": [{"$ref": "urn: close #urn: psi_urn : start_urn : setvar2_urn : close_x1 "},
23 {"$ref": "urn: setvar2 #urn: psi_urn : start_urn : setvar2_urn : close_not .x2"}] },
24 {" allOf ": [{"$ref": "urn: close #urn: psi_urn : start_urn : setvar2_urn : close_not .x1"},
25 {"$ref": "urn: setvar2 #urn: psi_urn : start_urn : setvar2_urn : close_x2 "}] }
26]
27 },
28 "urn: close #urn: psi_urn : start_phi ": {
29 " $anchor ": "urn: psi_urn : start_urn : setvar1_phi ",
30 " anyOf ": [
31 {" allOf ": [{"$ref": "urn: close #urn: psi_urn : start_urn : close_x1 "},
32 {"$ref": "urn: close #urn: psi_urn : start_urn : close_not .x2"}] },
33 {" allOf ": [{"$ref": "urn: close #urn: psi_urn : start_urn : close_not .x1"},
34 {"$ref": "urn: close #urn: psi_urn : start_urn : close_x2 "}] }
35]
36 }
37 }}}}

Validation of Modern JSON Schema: Formalization and Complexity 111:45

G WHAT DOES EVALUATED MEAN?
The keyword "unevaluatedProperties" is applied to the instance properties that have not been

evaluated by adjacent keywords, as discussed in Section 1.3, but, unfortunately, the definition in

[30] of what counts as evaluated presents some ambiguities.

The successful application of a "properties" keyword evaluates all instance properties whose

name appears in the value of the "properties" keyword; in Figure 1, these are the properties named

"data" or "children". Moreover, a property is evaluated by the successful application of a keyword

that invokes a schema that evaluates that property, as happens in Figure 1 with the keyword

"$ref" : "https://example.com/simple-tree#tree".

If, however, the "properties" keyword fails, then the specifications of Draft 2020-12 ([30]) are

ambiguous. They state without any ambiguity that validation will fail, but they give contradictory

indications about which instance fields are evaluated, which is a problem, since it affects the error

messages and the annotations returned by the validation tool. Consider the following example.

Example 1. The following schema expresses the fact that a property "a", if present, must have

type "integer", and that no other property, neither equal to "b" nor different from "a" and "b", may

appear.

1 {
2 "$id": " https :// frml.edu/ onlya_no_b .json",
3 "type": " object ",
4 " properties ": {
5 "a": {"type": " integer "} ,
6 "b": false
7 },
8 " unevaluatedProperties " : false
9 }

When applied to the instance { "a" : 0, "b" : 0, "c" : 0 }, this schema fails, because of properties "b"

and "c". While this is clear, it is not clear which properties count as evaluated by the "properties"

keyword, hence, which error messages should be produced by "unevaluatedProperties". This is

testified by the discussion in [24], by that in [20], and by several more that are cited therein.

We tested the above schemas with the json-everything validator [2], Jim Blackler’s JSON tools

[14], the jschon.dev validator [1], and Hyperjump [4], in the online-versions on 10/30/2022. These

are established well-known validators that support Draft 2019-09 and Draft 2020-12. By analyzing

their output, reported respectively in Figures 10, 11, 12, and 13, (Appendix I), we observe that the

first two validators apply "unevaluatedItems" to "c" only, hence they regard every matching field

as evaluated even when "properties" fails; we call it the failure-tolerating interpretation: every

property that matches is evaluated, even if the keyword fails, and even if the subschema applied to

that property fails, as happens here to "b". However, jschon.dev applies "unevaluatedProperties" to

"a", "b", and "c", hence it considers no property as evaluated; we call it the success-only interpretation:

when the keyword fails no property is regarded as evaluated, neither "a", whose value satisfies the

"type" : "integer" assertion, neither "b". Finally, Hyperjump does not apply "properties" to any

object property, because it adopts an interpretation where the failure of "properties" produces a

special null annotation that completely prevents the execution of "unevaluatedProperties"; we call

it the null-annotation interpretation.

In this paper we formalize the failure-tolerating interpretation, since it seems the one that is

currently more accepted by the community. Moreover, we provide a formal framework where these

different interpretations can be formalized and discussed.

It is important to clarify that these ambiguities do not affect validation, since they only arise

with failing schemas, but they are still very relevant, because they affect the error messages and,

more importantly, the mental model of the specification reader. Whoever reads the specification

https://github.com/json-schema-org/json-schema-spec/issues/1172
https://github.com/orgs/json-schema-org/discussions/57

111:46

document builds a mental model about the internal logics of JSON Schema, and the way they define

a schema, or the way they implement a validator, are guided by this mental model. If the mental

model is unclear, or ambiguous, their work becomes more complicated then it should be.

H LIST OF DOWNLOADED VALIDATORS
List of the validators from Section 9.

Table 2. Validators used in our experiments, first listing active open-source projects, then two academic
implementations. Stating programming language and supported drafts. (×) means that draft is officially
supported, but logical or runtime errors occurred in our experiments.

Validator Language Draft4 Draft 2020 Origin/Version

clojure-json-schema clojure × Bowtie, release tag b07e5

cpp-valijson C++ × Bowtie, release tag b07e5

go-jsonschema go × × Bowtie, release tag b07e5

js-ajv javascript × (×) Bowtie, release tag b07e5

js-hyperjump javascript (×) × Bowtie, release tag b07e5

lua-jsonschema lua × Bowtie, release tag b07e5

ruby-json_schemer ruby × Bowtie, release tag b07e5

rust-boon python × (×) Bowtie, release tag 992c2

rust-jsonschema rust × × Bowtie, release tag b07e5

python-fastjsonschema python × Bowtie, release tag b07e5

python-jschon python × Bowtie, release tag b07e5

python-jsonschema python × × Bowtie, release tag b07e5

ts-vscode-json-languageservice typescript × (×) Bowtie, release tag b07e5

dotnet-jsonschema-net dotnet × Bowtie, release tag b07e5

foundations-jsonsonschema python × Code from [21], integrated into Bowtie

modern-jsonschema Scala × Algorithm 2, integrated into Bowtie

Validation of Modern JSON Schema: Formalization and Complexity 111:47

I OUTPUT EXAMPLES

Instance:

{ "a": 0, "b": 0, "c": 0 }

Schema:

1 {
2 "$id": " https :// formalize .edu/ onlya_no_b .json",
3 "type": " object ",
4 " properties ": {
5 "a": {"type": " integer "} ,
6 "b": false
7 },
8 " unevaluatedProperties " : false
9 }

Output:

1 {
2 " valid ": false ,
3 " keywordLocation ": "",
4 " absoluteKeywordLocation ": " https :// formalize .edu/ onlya_no_b .json #",
5 " instanceLocation ": "",
6 " errors ": [
7 {
8 " valid ": true,
9 " keywordLocation ": "/ properties /a",
10 " absoluteKeywordLocation ": " https :// formalize .edu/ onlya_no_b .json #/ properties /a",
11 " instanceLocation ": "/a"
12 },
13 {
14 " valid ": false ,
15 " keywordLocation ": "/ properties /b",
16 " absoluteKeywordLocation ": " https :// formalize .edu/ onlya_no_b .json #/ properties /b",
17 " instanceLocation ": "/b",
18 " error ": "All values fail against the false schema "
19 },
20 {
21 " valid ": false ,
22 " keywordLocation ": "/ unevaluatedProperties ",
23 " absoluteKeywordLocation ": " https :// formalize .edu/ onlya_no_b .json #/ unevaluatedProperties ",
24 " instanceLocation ": "/c",
25 " error ": "All values fail against the false schema "
26 }
27]
28 }

Fig. 10. Annotations returned by json-everything, example 1.

111:48

Instance:

{ "a": 0, "b": 0, "c": 0 }

Schema:

1 {
2 "$id": " https :// formalize .edu/ onlya_no_b .json",
3 "type": " object ",
4 " properties ": {
5 "a": {"type": " integer "} ,
6 "b": false
7 },
8 " unevaluatedProperties " : false
9 }

Output:

1 {
2 " valid ": false ,
3 " keywordLocation ": " https :// formalize .edu/ onlya_no_b .json",
4 " absoluteKeywordLocation ": "",
5 " instanceLocation ": "",
6 " errors ": [
7 {
8 " valid ": false ,
9 " error ": " False ",
10 " keywordLocation ": " https :// formalize .edu/ onlya_no_b .json #/ properties /b",
11 " absoluteKeywordLocation ": "#/ properties /b",
12 " instanceLocation ": "#/b"
13 },
14 {
15 " valid ": false ,
16 " error ": " False ",
17 " keywordLocation ": " https :// formalize .edu/ onlya_no_b .json #/ unevaluatedProperties ",
18 " absoluteKeywordLocation ": "#/ unevaluatedProperties ",
19 " instanceLocation ": "#/c"
20 }
21]
22 }

Fig. 11. Annotations returned by Jim Blackler’s JSON tools, example 1.

Validation of Modern JSON Schema: Formalization and Complexity 111:49

Instance:

{ "a": 0, "b": 0, "c": 0 }

Schema:

1 {
2 "$id": " https :// formalize .edu/ onlya_no_b .json",
3 "type": " object ",
4 " properties ": {
5 "a": {"type": " integer "} ,
6 "b": false
7 },
8 " unevaluatedProperties " : false
9 }

Output:

1 {
2 " valid ": false ,
3 " instanceLocation ": "",
4 " keywordLocation ": "",
5 " absoluteKeywordLocation ": " https :// formalize .edu/ onlya_no_b .json #",
6 " errors ": [
7 {
8 " instanceLocation ": "/b",
9 " keywordLocation ": "/ properties /b",
10 " absoluteKeywordLocation ": " https :// formalize .edu/ onlya_no_b .json #/ properties /b",
11 " error ": "The instance is disallowed by a boolean false schema "
12 },
13 {
14 " instanceLocation ": "",
15 " keywordLocation ": "/ unevaluatedProperties ",
16 " absoluteKeywordLocation ": " https :// formalize .edu/ onlya_no_b .json #/

unevaluatedProperties ",
17 " error ": [
18 "a",
19 "b",
20 "c"
21]
22 }
23]
24 }

Fig. 12. Annotations returned by jschon.dev, example 1.

Instance:

{ "a": 0, "b": 0, "c": 0 }

Schema:

1 {
2 "$id": " https :// formalize .edu/ onlya_no_b .json",
3 "type": " object ",
4 " properties ": {
5 "a": {"type": " integer "} ,
6 "b": false
7 },
8 " unevaluatedProperties " : false
9 }

Output:

1 # fails schema constraint https :// formalize .edu/ onlya_no_b .json #/ properties
2 #/b fails schema constraint https :// formalize .edu/ onlya_no_b .json #/ properties /b

Fig. 13. Annotations returned by Hyperjump, example 1.

	Abstract
	1 Introduction
	2 Formalizing JSON Schema syntax
	3 JSON Schema Validation
	4 Dynamic references as a parametrization mechanism
	5 PSPACE hardness: using dynamic references to encode a QBF sentence
	6 Validation is in PSPACE
	7 Polynomial time validation for static references
	8 PTIME data complexity through elimination of dynamic references
	9 Experiments
	10 Related Work
	11 Conclusions and Open Problems
	References
	A Complete list of rules
	B Functions get(S,f) and dget(S,f)
	C Where to search for dynamic anchors
	D Proofs
	E Algorithm 2, part 2
	F Unfolding of the example
	G What does evaluated mean?
	H List of downloaded validators
	I Output examples

