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Abstract

Unsupervised optical flow estimation relies on the as-
sumption that pixels characterizing the same observed ob-
ject should exhibit a stable appearance across video frames.
With this assumption, the long-standing principle behind
flow estimation consists in optimizing a photometric loss
that maximizes the similarity between paired pixels in suc-
cessive frames. However, these frames could be subject to
strong brightness changes due to the radiometric properties
of scenes as well as their viewing conditions.
In this paper, we present BrightFlow, a new method to
train any optical flow estimation network in an unsuper-
vised manner. It consists in training two networks that
jointly estimate optical flow and brightness changes. These
changes are then compensated in the photometric loss so
that reconstruction errors due to shadows or reflections
will not affect negatively the training. As this compensa-
tion mechanism is only used at training stage, our method
does not impact the number of parameters or the complex-
ity at inference. Extensive experiments conducted on stan-
dard datasets and optical flow architectures show a con-
sistent gain of our method. Source code is available at
https://github.com/CEA-LIST/BrightFlow.

1. Introduction

Optical flow measures the relative motion of each pixel
in a given scene acquired at successive instants. This
task has many applications including motion segmentation
[51, 50, 48], anomaly detection in videos [25, 26, 1] or
video representation [11, 32]. While traditional methods
[3, 6, 5, 35] are based on optimization problems with hand-
crafted features, geometric and statistical criteria, more re-
cent ones rely on deep learning approaches [13, 42, 43] that
require to train a neural network on a large dataset. Their
principle consists in learning a mapping that minimizes a

Figure 1: Diagram of the photometric loss to show how it
is impacted by brightness changes. Here the rear side of the
car has left the shadow in the second image causing a major
brightness change. It induces a peak in the photometric loss
whereas the optical flow is well estimated.

supervised loss between the estimated flow and its underly-
ing ground truth. However, the success of these regression
models is highly reliant on the availability of large labeled
collections. While densely labeled synthetic collections are
abundant [9, 7, 28], they are powerless to capture the inher-
ent variability of real-world scenes, and this may result in
deep networks with weak cross-domain generalization. On
the contrary, labeled realistic video collections are scarce
because their labeling is time/effort-demanding.

Unsupervised optical flow estimation is an alternative
that circumvents the lack of labeled data. In these meth-
ods, training is achieved by minimizing a photometric loss
that measures brightness consistency between original and
warped frames in videos. Nonetheless, brightness consis-
tency may not hold in practice; on the one hand, the intrin-
sic content of scenes varies leading to occlusions. On the
other hand, acquired scenes are subject to strong changes,
even on successive frames due to reflections, shadows,
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Figure 2: Performances in EPE (a) and ER (b) as a func-
tion of brightness changes. All non-occluded pixels in the
Sintel final dataset have been divided into four groups de-
pending on the magnitude of brightness changes (from the
25% pixels with the lowest to the 25% pixels with the high-
est ones). It shows that higher brightness changes lead to
worse results.

sensor orientations, etc. In the following, we will group
all these appearance variations under the generic term of
brightness changes that refers to any changes in the ap-
pearance of an element of the first image that is still visible
in the second one. Hence, occluded pixels are not consid-
ered as a part of brightness changes. The issue of occlusion
has been widely studied in the literature: there are different
ways to estimate them [4, 45]; several methods use knowl-
edge distillation to supervise flow predictions in artificially
occluded areas [22, 23] and others have dedicated tech-
niques to estimate optical flow in occluded areas [37, 24].
Comparatively, brightness changes have received much
less attention whereas they mislead optical flow estimation
because with different appearances, finding corresponding
pixels is harder (see figure 2). In this paper, we will focus
on preventing brightness changes to affect the photomet-
ric loss. Current state-of-the-art unsupervised optical flow
estimation methods use the soft census loss [10] in the pho-
tometric loss to compare an image and its reconstruction. It
is a differentiable version of [53, 36] so it can be used as
a loss function to train a neural network. However, whilst
being globally robust to many brightness changes (such as
multiplicative rescaling and gamma correction), this loss is

only invariant to global additive changes; making it subop-
timal in some cases of brightness changes (see figure 1).
Therefore, brightness changes would still induce errors in
the photometric loss, being responsible for unsuitable up-
dates of the optical flow network weights.

Considering the aforementioned issues, we introduce
in this paper a novel framework that models brightness
changes thanks to a neural network dedicated to this task
and whose training is unsupervised. Its output correction
map compensates for brightness changes in the photomet-
ric loss. The goal is to help the optical flow network to han-
dle brightness changes by reducing the bias induced in the
photometric loss. Note that our method does not rely on
any rendering model [2, 31] which may require additional
information about light source localization or 3D structures
of the scenes. Considering the above issues, the proposed
work includes the following contributions:

• The brightness correction network, a neural network
that takes as input the source image, the warped target
image and the underlying occlusion map. It predicts
a pixel-wise brightness change map of the source with
respect to the target. It is optimized with an unsuper-
vised photometric loss that measures the discrepancy
between warped and original frames.

• A novel photometric loss that includes a mechanism
of brightness correction gating to make the most of the
brightness correction map.

• The proposed method is applicable to any optical flow
architecture. Besides, it is considered only during
training to enhance the generalization of the optical
flow network. This makes run-time and memory foot-
print of our method similar to the original optical flow
network at inference.

• Finally, the consistent gain of our method is shown
through extensive experiments involving different
datasets and optical flow architectures. We also high-
light a better cross-domain generalization.

2. Related work
2.1. Supervised optical estimation

Progress in deep learning has had a major impact in the
field of optical flow estimation. Early solutions are based
on convolutional networks including the pioneering work
of FlowNet [13] as well as its multi-stacked variant [14].
[33] proceeds iteratively by warping images with the optical
flow estimated at a lower scale. PWC-Net and LiteFlowNet
[42, 12] use cost volumes to measure similarities between
feature maps inferred from successive images. Many works
have improved PWC-Net [42]: using different correlations
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in the cost volumes [49, 44] or exploiting occlusion pre-
dictions [55]. Whereas the aforementioned methods are
coarse-to-fine, a more recent solution RAFT [43] evaluates,
at once, a cost volume involving all the paired pixels in suc-
cessive frames, then refines the flow at a unique resolution
using gated recurrent units [8]. Subsequent contributions
have either improved RAFT (with attention [17], sparse and
more sophisticated cost volumes [18, 38, 54, 56]) or ad-
dressed optical flow estimation using transformers [15, 47].

2.2. Unsupervised Optical Flow estimation methods

Due to the prohibitive cost of optical flow ground truth,
many unsupervised approaches have been developed. Early
works [52, 34] leverage a photometric and a smoothness
loss only. Subsequent methods achieve better accuracy by
exploiting occlusions [29, 45], forward-backward consis-
tency criteria [29], more than two frames as inputs [16] or
knowledge distillation [22, 23]. Handling the optical flow
of occluded pixels has also been investigated by OIFlow
[24] which proposes a particular architecture to inpaint oc-
clusions and SMURF [37] which inverses the optical flow
toward the previous image in order to estimate the motion
of occluded objects. SMURF [37] also applies warping on
the full image instead of the cropped one in the photomet-
ric loss to reduce the amount of boundary occlusions. Ar-
chitectures are also tuned in unsupervised methods with im-
proved upsampling modules [27] or lighter networks, nor-
malized cost volumes and dropout [19]. Recent approaches
rely on complex data augmentation [21] or the generation of
a highly varied dataset from the superposition of randomly
shaped masks of images [41].

2.3. Brightness changes

Optical flow estimation methods are built upon the as-
sumption that pixels characterizing the same physical ob-
jects should exhibit similar appearances across frames in
videos. However, this hypothesis becomes wrong in case
of photo-realistic datasets since shadows and reflections in-
duce brightness changes (alteration of the appearance of
corresponding pixels in different frames). Both supervised
and unsupervised optical flow methods are subject to bright-
ness changes through the optical flow network that directly
processes images. To get the network agnostic to bright-
ness changes, asymmetric data-augmentation is employed
[43, 37]. It consists in exposing the flow estimator to im-
ages with artificially generated strong brightness changes,
in order to make it resilient to a wide range of brightness
changes. More specifically, the two input images receive
different photometric data augmentation. In the case of un-
supervised learning of optical flow, the photometric loss is
also exposed to brightness changes. This may induce false
negatives in the photometric loss that could harm the train-
ing of the optical flow network. While occlusions have

been sufficiently well addressed in the literature, bright-
ness changes have comparatively received much less at-
tention [23, 37]. Our method focuses on the latter issue.
Since asymmetric data augmentation emphasizes brightness
changes, it could not be a sufficient solution. Commonly
used solutions are functions designed to be resilient to some
extent to brightness changes like SSIM [46] or the soft cen-
sus loss [10] that is currently used in state-of-the-art meth-
ods. Nevertheless, these functions are handcrafted and can
be limited to handle some brightness changes. In this paper,
we propose a novel method, BrightFlow, to make the soft
census loss in the photometric loss dynamic thanks to a net-
work trained to model brightness changes.

3. Method
3.1. Preliminaries on Unsupervised Optical Flow

Let T = {Vi}i be a collection of videos with each one
being an ordered sequence of frames denoted as Vi = {Iit}t
where Iit ∈ RH×W×C and H , W , C stand for frame
height, width and number of channels respectively. Im-
ages of T can be rearranged into the union of consecutive
frames I. Let (I1, I2) be an element of I, estimating opti-
cal flow from I1 to I2 consists in inferring the vector field
F1 ∈ RH×W×2 that explains the 2D relative motion of
each pixel in I1 w.r.t the corresponding pixel in I2. This
field may capture rigid/non-rigid movement of objects and
sensors. It is estimated using a mapping function ψθ so that
ψθ(I1, I2) = F1. In practice, ψθ corresponds to a deep
neural network with learnable parameters θ. Details about
the architectures and the training procedure are given sub-
sequently and in the experiments. We define the forward
direction when optical flow prediction is made from I1 to
I2 and the backward direction from I2 to I1.

Following an unsupervised setting, and considering a
training set I of consecutive images without optical flow
ground truth, one may find the optimal parameters θ∗ of ψθ

as θ∗ = argminθ L(θ) where L is a global loss defined as

L(θ) = γphLph1(θ) + γsmLsm1(θ) + γselfLself1(θ) (1)

where Lph1, Lsm1, Lself1 stand respectively for photomet-
ric, smoothness and self-supervised forward losses; γph,
γsm, γself are their respective weights. Each loss is then
computed in the backward direction but (for short) in the
rest of the section, we describe only the forward version of
each loss. The corresponding backward expression is ob-
tained by swapping indices 1 and 2, then both forward and
backward losses are averaged.

Photometric loss. Without ground truth, optical flow can
be learned because warping I2 with the optical flow F1 pro-
vides a reconstruction of I1: Î1 = w(I2, F1) ≈ I1, being
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Figure 3: Overall BrightFlow training architecture Both optical flow and brightness correction network blocks share
weights (more details available in figure 4). They predict the optical flow F1 and the correction map C1 from image I1 and I2
in the forward direction. Symmetrically, they also predict the optical flow F2 and the correction map C2 from image I2 and
I1 in the backward direction. Then, in the photometric loss Lph1 the image I1 is compared to the corrected image I2 + C2

warped with the optical flow F1. Likewise, photometric loss Lph2 takes as inputs the image I2 and the corrected image
I1 + C1 warped with the optical flow F2.

w the warping function of an image with an optical flow.
The loss Lph penalizes photometric error between an image
and its reconstruction. However, the consistency of this loss
holds only when paired pixels are visible both in I1 and I2,
so the exact definition of this loss is given as

Lph1(θ) = ∥O1 ⊙ ρ(Î1, I1)∥1/∥O1∥1, (2)

where ∥.∥1 denotes the ℓ1-norm and ⊙ the Hadamard prod-
uct. ρ stands for an entry-wise distance, here the soft census
loss [10], which measures the discrepancy between two im-
ages (more details about our implementation of the soft cen-
sus loss are available in the supplementary material). O1

refers to a binary occlusion mask whose given pixel entry
is set to one if and only if the underlying observed point is
visible both in I1 and I2; otherwise, the entry is set to zero.
More information about the computation of the occlusion
maps is provided in the implementation detail section.

Smoothness loss. In order to promote object-wise optical
flow consistency, the smoothness loss is leveraged

Lsm1(θ) =
1

HW

∥∥∥∥ exp{− λ

3

∑
c∈{r,g,b}

∣∣∣∣∂I1c∂x

∣∣∣∣}⊙
∣∣∣∣∂kF1

∂xk

∣∣∣∣
+ exp

{
− λ

3

∑
c∈{r,g,b}

∣∣∣∣∂I1c∂y

∣∣∣∣}⊙
∣∣∣∣∂kF1

∂yk

∣∣∣∣∥∥∥∥
1

,

where λ is a scalar, k is the smoothness order, I1c is the c-
th channel of I1 and the exponential is applied entry-wise.
With this smoothness term, pixels with low gradient norms
make the exponential high and thereby the gradient of the
flow is encouraged to take small values. Put differently, pix-
els belonging to the same object (i.e., with low gradients)

should convey similar motion fields; this behavior is dis-
abled on highly textured areas and object boundaries.

Self-supervised loss. A specific solution addresses the is-
sue of pixels that go out of the image frame (boundary oc-
clusions). It relies on the supervision of a student predic-
tion FS

1 by a teacher prediction FT
1 considered as pseudo-

ground truth. The teacher prediction FT
1 is obtained by

passing through the network ψθ images I1 and I2 without
any data augmentation. The same images are then cropped
and augmented with photometric data augmentation only.
These images are used as inputs to predict FS

1 . The self-
supervision loss involves c the generalized Charbonnier
function [39, 40], its expression is:

Lself1(θ) =
1

HW
||c(FT

1 , F
S
1 )||1,

3.2. Brightness Change Correction

The aforementioned losses enable to train an optical flow
estimation model in an unsupervised way with specific so-
lutions to deal with occluded pixels. However, the handling
of brightness changes in the loss remains overlooked de-
spite their impact on performances as shown in figure 2. In-
deed, the soft census loss, while robust, is still sensitive to
some brightness changes, misleading the photometric loss
that would interpret them as errors in the optical flow esti-
mation. It concerns mainly strong brightness changes, those
that induce over/underexposure or very complex ones due
to shadows for instance. To address this weakness, we pro-
pose BrightFlow, a new optical flow framework that handles
brightness changes with no supervision (see figure 3). This
method can be built on top of any optical flow network with
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Figure 4: Detailed functioning of the "Optical flow &
brightness correction network" block in figure 3. The opti-
cal flow network takes as input images I1 and I2 to predict
optical flow F1. To return the correction mapC1, the bright-
ness correction network is fed with image I1, the warped
image I2 with optical flow F1 and occlusion map O1.

no impact on its architecture, so at inference, its properties
remain the same in terms of computational cost and memory
consumption for better performances. The method consists
in jointly learning optical flow and a pixel-wise brightness
change correction map. The corrections are then used in
the photometric loss to compensate for brightness changes.
The goal is to prevent the photometric loss to raise recon-
struction errors that are due to brightness changes when the
flow is well-estimated. To the best of our knowledge, this is
the first method with a dynamic photometric loss handling
brightness changes.

3.2.1 Brightness Correction Network

The brightness correction network models brightness
changes between successive frames. This module, denoted
ϕθc , takes as inputs (I1, Î1,O1) with Î1 = w(I2, F1) and
predicts a dense brightness correction map C1 ∈ RH×W×3

on the three RGB channels as illustrated in figure 4. C1

compensates for illumination changes from I1 to I2 on non-
occluded pixels. One may train BrightFlow by plugging
I1 + C1 in Lph1 (equation 2) instead of I1. Thus, C1 =

Î1 − I1 will minimize Lph1. However, since Î1 and I1 are
in the inputs of the brightness correction network, the latter
simply has to infer the difference between Î1 and I1. So at
the end, the flow estimator will collapse. To address this is-

sue, we propose to re-write the photometric loss as:

Lph1(θ, θc) = ∥O1 ⊙ ρ(Îc1 , I1)∥1/∥O1∥1, (3)

being Îc1 = w(I2 + C2, F1) instead of Î1 = w(I2, F1)
in equation 2. I2 is replaced by I2 + C2 so, the photomet-
ric loss requires both forward and backward optical flows.
The former (F1) is directly used in the warping operation in
Lph1 while the latter (F2) is used to get the correction C2.
Now, the trivial solution that minimize Lph1 with only C2

is C2 = w−1(I1, F1) − I2 which is not accessible to ϕθc
since F1 is not in its inputs. However, when the forward and
backward flows are consistent then, w−1(., F1) = w(., F2)
on non-occluded pixels. Hence, one may expect that the
model would favor the consistency of F1 and F2 at the ex-
pense of their ability to model motion, so that minimizing
Lph1 could be achieved by predicting C2 = Î2 − I2. To
overcome this issue, making forward-backward consistency
impossible with a constraint is counter-productive because
the true flows are consistent. So our solution is to detach
Î2 from the computational graph of the model in the inputs
of ϕθc . Thus the optimization of ϕθc does not impact and
potentially tamper with the optical flow network. Photo-
metric errors raised by equation 3 will be back-propagated
based on flow F1 and corrections C2 but not on flow F2. Fi-
nally, other elements of the model impact the optical flow
network in a way that can be incompatible with an exces-
sive forward-backward consistency. It includes the smooth-
ness and self-supervised loss, and the fact that the photo-
metric loss is applied to every prediction of the optical flow
network whereas the brightness changes are only estimated
from the last prediction of the optical flow network.

3.2.2 Brightness correction gating

In case of errors in the estimation of F2, warping image
I1 may not reconstruct properly I2 even in non-occluded
areas. Therefore, pixels that do not match would have the
same coordinate in I2 and Î2. Such inputs could deceive the
brightness correction network leading to errors in the cor-
rection map C2. To mitigate their impact in the loss Lph1

(equation 3), only pixels which minimize a reconstruction
error ρ′ are kept. However, masking poorly estimated cor-
rections prevents their penalization in the loss and so the
proper training of the correction estimator. This is why an-
other loss Lc

ph1 is added to the previously described pho-
tometric loss for the flow estimator (renamed Lf

ph1). This
new photometric loss is specifically dedicated to the opti-
mization of the corrections estimator. To this end, a gradi-
ent stopping is applied to the optical flows F1 used in the
warping of Îc1 . The final photometric loss with correction
of brightness changes is:

Lph1(θ, θc) = Lf
ph1(θ) + γcphLc

ph1(θc) (4)
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Dataset Sintel clean Sintel final KITTI
Architecture EPE ER EPE ER EPE ER

RAFT 3.93 8.24 3.97 11.22 2.87 8.39
RAFT + BrightFlow (Ours) 3.25 7.49 3.33 10.26 2.88 7.98

GMA 3.20 7.42 3.66 10.52 3.47 8.73
GMA + BrightFlow (Ours) 3.24 7.09 3.44 10.02 3.24 8.23

SCV 3.40 6.77 3.84 10.32 5.00 10.62
SCV + BrightFlow (Ours) 3.28 6.74 3.71 10.29 4.41 9.85

Table 1: Comparison of performances of unsupervised learning without and with our brightness correction network on RAFT
[43], GMA [17] and SCV [18] architectures for Sintel and KITTI datasets

Lf
ph1(θ) = ∥O1⊙ρ(M1⊙Îc1+M1⊙Î1, I1)∥1/∥O1∥1 (5)

being M1 = 1{ρ′(Îc
1 ,I1)≤ρ′(Î1,I1)} (with the indicator

function 1{.≤.} applied entrywise), M1 its complement,
and

Lc
ph1(θc) = ∥O1 ⊙ ρ′(Îc1 , I1)∥1/∥O1∥1. (6)

Again ρ is the soft census loss and ρ′ corresponds to the ℓ1-
norm in practice. Despite this selection mechanism, some
corrections could still be over-estimated leading some pixel
intensities to exceed the range values of normal images. To
prevent this behavior without impacting the optimization of
the brightness correction network, pixel values of the cor-
rected images are clipped in the photometric loss of the opti-
cal flow estimator Lf

ph1 (equation 5). Also, in practice, Lc
ph1

uses augmented images but not Lf
ph1 (for more details see

BrightFlow pseudo-code in the supplementary material).

4. Experiments
4.1. Datasets

We evaluate the performances of our method on standard
datasets, namely Sintel [7], KITTI 2015 [30] and HD1K
which exhibit strong brightness changes. These datasets
only provide ground truth for the training data. So, we inter-
changed train and test sets as commonly operated in the re-
lated work [19, 37]. Like SMURF [37] dimensions of input
images are 296× 696 for KITTI, and 368× 496 for Sintel;
evaluation is performed at the original image dimensions.

4.2. Implementation Details

We apply BrightFlow on top of the three following archi-
tectures of optical flow network: RAFT [43], GMA [17] and
SCV [18]. The brightness correction network architecture
includes an encoder and an upsampler taken from RAFT to
return correction maps at the same resolution as input im-
ages. We conducted all experiments from scratch (base-
lines and training with BrightFlow). We use the same data-

augmentation as RAFT which includes spatial augmenta-
tions (flipping, stretching, rescaling, cropping) and pho-
tometric augmentations (random variation of brightness,
contrast, saturation and hue) that can be carried indepen-
dently for each input image. Occlusion masks are estimated
with Wang’s range-map method [45] for Sintel and Brox’s
method [4] for KITTI. Similarly to SMURF [37], models
are optimized for 75k iterations with a batch size settled to
8 and Adam [20] optimizer. The learning rate initially set to
2× 10−4 decays exponentially until 2× 10−7 over the last
20% of the total number of iterations.

The optical flow network is first pretrained for 20k itera-
tions (till reaching decent optical flow performances). Then,
for 5k iterations, we include the brightness correction net-
work in the training without applying its corrections in the
photometric loss Lf

ph to initialize the brightness correction
network. From step 25k we use the corrections in the photo-
metric loss Lf

ph. In all the experiments, γfph = 1 and γfph =
0.1 unless otherwise stated. The coefficient γself is set to 0
over the first 40% iterations then is increased linearly to 0.3
during the subsequent 10% iterations and remains constant
afterward. Hyperparameters of the smoothness loss depend
on the dataset: 1st order smoothness and γsm = 2.5 for Sin-
tel; 2nd order smoothness and γsm = 4 for KITTI. Only the
edge sensibility remains constant: λ = 150. All losses but
Lc
ph are applied on every flow prediction of RAFT, GMA or

SCV in the manner of SMURF sequence losses [37]. Lc
ph

is only applied with the last optical flow prediction.

4.3. Results

We evaluate the performances of our method using the
average End-Point-Error (EPE) in pixel, and Error Rate
(ER) in percent. With the latter measure, a flow estimation
is considered erroneous at a given pixel if its distance ex-
ceeds 3 pixels or 5% w.r.t. its ground truth.

Quantitative results are summarized in table 1, we also
provide qualitative results in figure 5 and the supplementary
material. It shows that training the RAFT, GMA or SCV
optical flow architectures as a part of BrightFlow provide
better results than training these networks without bright-
ness correction. This is observed on synthetic datasets like
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Figure 5: Qualitative results for RAFT trained with or without BrightFlow on KITTI (best viewed in color). From top to
bottom, images are I1, I2, I2 + C2, C2, F1 predicted by RAFT trained without BrightFlow and then with BrightFlow.

Sintel as well as on photo-realistic data including KITTI.
On average BrightFlow enhances unsupervised learning by
7% in EPE and 5% in ER with an improvement peak with
RAFT of 11% in EPE and 8% in ER. Two configurations
(KITTI+RAFT and Sintel+GAM) perform slightly worse
with BrightFlow in terms of EPE metric. It is easily explain-
able as we conducted our ablation study on Sintel dataset
with RAFT architecture only (see 4.4), the hyperparameter
γcph may not be the best for other configurations even if at
least it always enables to improve ER metrics.

It is worth noticing that the performance ranking of the
optical flow architectures with unsupervised training differs
from results reported in the related work when their training
is supervised (see for instance [18, 17]). Indeed, GMA does
not outperform the other architectures on all benchmarks;
GMA overtakes the others on synthetic data (Sintel) but un-
dertakes RAFT on the photo-realistic data (KITTI). Like-
wise, the ranking of SCV against the other architectures is
also disparate whereas its performances are expected to be
inferior to RAFT and GMA.

Figure 6 illustrates the impact of the brightness cor-
rection network on performances depending on different
amounts of brightness changes. Whatever their magni-
tude, training the model with the brightness correction net-
work improves performance. The gain is further ampli-
fied on pixels with higher brightness changes. This clearly
shows the ability of our method to bridge the accuracy gap
between pixels that satisfy brightness consistency and the
other (more challenging) pixels.

We present the cross-domain generalization results in

table 2. It shows that BrightFlow is still beneficial w.r.t
a standard unsupervised training of optical flow network.
The average improvement of 2% is observed for both EPE
and ER. This corroborates the robustness of our method on
a more difficult task namely cross dataset evaluation.

4.4. Ablation Study

In this section, we study the impact of each compo-
nent of BrightFlow on performance, including the bright-
ness correction network, the gradient stopping applied to its
inputs, the clipping of corrected images in the photometric
loss Lf

ph1 and the brightness correction gating mechanism.
In order to show their benefit on our method, several train-
ings have been conducted with each contribution added one
at a time. The impact of all these components on the perfor-
mances is shown in table 3. According to the observed re-
sults, leveraging brightness changes in the photometric loss
already outperforms the setting without corrections. Be-
sides, when the gradient stopping, the clipping of corrected
images and the gating mechanism are enabled, extra gains
are also observed. A study for different values of γcph is also
provided in table 4.

In order to get a better understanding of what the bright-
ness correction network learns we conducted extra exper-
iments (see supplementary material for more details). As
none of these experiments exceed our method, these re-
sults confirm the importance of data-augmentation and that
the brightness correction network does not simply learn the
trivial solution of section 3.2.1 nor a threshold to filter cen-
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Optical flow
Architecture BrightFlow KITTI−→Sintel clean KITTI−→Sintel final KITTI−→HD1K Sintel−→KITTI

EPE ER EPE ER EPE ER EPE ER
RAFT 3.49 8.38 3.97 11.22 1.17 5.12 15.12 23.63
RAFT ✓ 3.82 8.35 4.67 11.76 1.04 4.93 13.69 23.32
GMA 4.05 8.61 4.71 12.04 1.25 5.40 15.92 24.56
GMA ✓ 3.82 8.38 4.53 11.6 1.18 5.25 13.88 23.57
SCV 3.25 7.53 4.75 12.38 1.19 4.97 16.81 23.56
SCV ✓ 3.31 7.46 4.65 12.15 1.12 4.54 17.13 23.74

Table 2: Cross-domain generalization. These results compare the ability of optical flow networks trained with or without
BrightFlow to make predictions on frames from a different dataset rather than the training one.
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Figure 6: Relative gain in %EPE (a) and ER (b) as a func-
tion of brightness change when training RAFT with Bright-
Flow on Sintel dataset. All non-occluded pixels of final
Sintel have been divided into four groups depending on the
magnitude of brightness change (from the 25% pixels with
the lowest to the 25% pixels with the highest ones).

sus loss outliers. Following these results, we believe that
it learns to recognize situations where presumed brightness
changes are real (due to shadows or reflections) or errors in
the flow estimation and how to handle them.

5. Conclusion

We introduced in this paper BrightFlow, a novel unsu-
pervised method that trains deep neural networks for optical
flow estimation. The strength of the proposed method re-
sides in its ability to model brightness changes. An optical

Sintel clean Sintel final
BCN GS CCI GM EPE ER EPE ER

3.93 8.24 3.97 11.22
✓ 3.87 7.94 3.67 10.70
✓ ✓ 3.58 7.81 3.47 10.75
✓ ✓ ✓ 3.78 7.89 3.41 10.39
✓ ✓ ✓ 3.57 7.83 3.36 10.34
✓ ✓ ✓ ✓ 3.25 7.49 3.33 10.26

Table 3: Impact of each component of our method. It in-
cludes the brightness correction network (BCN), the gradi-
ent stopping on its inputs (GS), the clipping of corrected
images in the photometric loss of the flow (CCI) and the
brightness correction gating mechanism (GM). These ex-
periments have been carried out with RAFT as optical flow
network on Sintel Dataset.

γcph Sintel clean Sintel final
EPE ER EPE ER

0.01 3.66 7.64 3.38 10.22
0.1 3.25 7.49 3.33 10.26
1 3.51 7.65 3.43 10.48

10 3.30 7.92 3.43 10.78

Table 4: Effect of varying γcph on performances of RAFT
trained with BrightFlow on Sintel dataset.

flow network is jointly trained with the brightness correc-
tion network which model photometric discrepancies due
to shadows and reflections to compensate them in the loss.
As the latter network is used during training only, it has
no impact on time/memory footprint of optical flow estima-
tion during inference. Extensive experiments, conducted on
standard datasets, highlight the effectiveness and the consis-
tent gain of our proposed solution w.r.t. the related works.
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