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Abstract. Recent years have seen a shift from a pattern mining process that has
users define constraints before-hand, and sift through the results afterwards, to an
interactive one. This new framework depends on exploiting user feedback to learn
a quality function for patterns. Existing approaches have a weakness in that they
use static pre-defined low-level features, and attempt to learn independent weights
representing their importance to the user. As an alternative, we propose to work
with more complex features that are derived directly from the pattern ranking
imposed by the user. Those features are used to learn weights to be aggregated
with low-level features and help to drive the quality function in the right direction.
Experiments on UCI datasets show that using higher-complexity features leads to
the selection of patterns that are better aligned with a hidden quality function
while being competitively fast when compared to state-of-the-art methods.

1 Introduction

Constraint-based pattern mining is a fundamental data mining task, extracting locally
interesting patterns to be either interpreted directly by domain experts, or to be used as
descriptors in downstream tasks, such as classification or clustering. Since the publica-
tion of the seminal paper [1], two problems have limited the usability of this approach:
1) how to translate user preferences and background knowledge into constraints, and 2)
how to deal with the large result sets that often number in the thousands or even mil-
lions of patterns. Replacing the original support-confidence framework with other qual-
ity measures [14] does not address the pattern explosion. Post-processing results via
condensed representations still typically leaves many patterns, while pattern set mining
[11] just pushes the problem further down the line.

In recent years, research on interactive pattern mining has proposed to alter the min-
ing process itself: instead of specifying constraints once, mining a result set, and then
post-processing it, interactive pattern mining performs an iterative loop [12]. This loop
involves three repeating main steps: (1) pattern extraction in which a relatively small set
of patterns is extracted; (2) interaction in which the user expresses his preferences w.r.t.
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those patterns; (3) preference learning in which the expressed preferences are translated
into a quality assessment function for mining patterns in future iterations.

The most recent proposal to dealing with the question of finding interesting patterns
involves the user, via interactive pattern mining [12] often involving sampling [3], with
LETSIP [4] one of the end points of this development. Other interactive methods have
been proposed, APLE [5], another approach based on active preference learning to
learn a linear ranking function using RANKSVM [8], and IPM [3], an MCMC-based
interactive sampling framework. However, existing approaches have a short-coming:
to enable preference learning, they represent patterns by independent descriptors, such
as included items or covered transactions, and expect the learned function, usually a
regression or multiplicative weight model, to handle relations.

In this paper, we propose a new interactive pattern mining approach that introduces
more complex class of descriptors for explainable ranking, thereby allowing to capture
the importance of item interactions. These descriptors exploit the concept of discrimi-
nating sub-patterns, which separate patterns that are given low rank by the user from
those with high rank. By temporarily adding those descriptors, we can learn weights
for them, which are then apportioned to involved items without blowing up the feature
space. Results on UCI datasets show favourable trade-offs in quality–time of learning.

2 Preliminaries

Pattern Mining. Given a database D, a language L defining subsets of the data and
a selection predicate q that determines whether an element ϕ ∈ L, the task is to find
the theory T h(L,D, q) = {ϕ ∈ L | q(D, ϕ) is true}. A well-known pattern mining
task is frequent itemset mining [1]. Let I be a set of n items, an itemset (or pattern)
X is a non-empty subset of I. The language of itemsets corresponds to LI = 2I\∅.
A transactional dataset D is a bag (or multiset) of transactions over I, where each
transaction t is a subset of I, i.e., t ⊆ I; T = {1, ...,m} a set of m transaction indices.
An itemset X occurs in a transaction t, iff X ⊆ t. The cover of X in D is the bag of
transactions in which it occurs: VD(X) = {t ∈ D | X ⊆ t}. The support of X in D is
the size of its cover: supD(X) = |VD(X)|.
Learning from Preferences. An algorithmic template of the Mine, Interact, Learn,
Repeat framework is listed in Algorithm 1. The interactive process proceeds iteratively
for some reasonable number of iterations T , which depends on the task at hand. Let
Φ : LI → R denote the true, unobserved preferences function of the user. The algorithm
maintains an internal estimate φt of the true function, where t ∈ [T ] is the iteration
index. At each iteration, it selects a query X t to be posed to the user. The user’s feedback
is then used (possibly along with all the feedback received so far) to compute a new
estimate φt+1 of Φ. Key questions concerning instantiations of the Mine, interact, learn,
repeat framework include 1) feature representations of patterns to be ranked and the
feedback format, 2) learning user’s preferences from feedback, 3) mining with learned
preferences, and crucially, 4) selecting the patterns to show to the user.
a) User Interaction & Pattern Representations. User feedback w.r.t. patterns takes
the form of providing a total order over a (small) set of patterns [4,12], called a query.
User feedback {X1 ≻ X3 ≻ X2}, for instance, indicates that the user prefers X1 over
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Algorithm 1: Template algorithm for interactive pattern mining

1 In: DatasetD, set of patterns X
2 Parameters: Query size k, number of steps T , feature pattern representations F
3 Out: φ : Ranking function

4 begin
5 U ← ∅, φ0 ← initial function estimates
6 for t = 1, 2 . . . T do
7 select a query X t based on φt−1 ▷ Mine
8 ask query X t to the user and get feedback R̂t ▷ Interact
9 U ← U ∪ R̂t, compute φt based on φt−1 and U ▷ Learn φ

10 return φ;

X3, which they prefer over X2 in turn, and so on. Pattern representations determines
how the user characterizes patterns of interest to him. Patterns are commonly repre-
sented using a vector of static features (also called descriptors) F = ⟨F1, . . . , Fn⟩.
The description of a pattern X w.r.t. F is given by the vector P = ⟨P1, . . . ,Pn⟩,
where Pi is the value associated to Fi. Examples of features include numerical de-
scriptors like Len(X) = |X|/|I|, Freq(X) = supD(X)/|D|, in which case the
corresponding Pi is truly in R, or binary descriptors Items(i,X) = [i ∈ X]; and
Trans(ti, X) = [X ⊆ ti], where [.] denotes the Iverson bracket, leading to (partial)
feature vectors ∈ {0, 1}|I| and ∈ {0, 1}|D|, respectively.
b) Learning from Feedback. Evaluating patterns in terms of quality function is a very
natural way of representing preferences. In the object preferences scenario [9], such
a function is a mapping φ : X → R that assigns a score φ(X) to each pattern X
and, thereby, induces an order on X . As in [4], we use a parametrized logistic func-
tion to measure the interestingness/quality of a given pattern X: φlogistic(X;w,A) =
A+ 1−A

1+e−wF·P , where P the afore-mentioned description of a pattern X , wF the weight
vector associated to descriptors F reflecting feature contributions to pattern interest-
ingness, and A is a parameter that controls the range of the interestingness measures,
i.e. φlogistic ∈ (A, 1). However, setting feature weights manually is tedious, thus we
present in section 3 an algorithm that learns the weights based on easy-to-provide feed-
back with respect to patterns. Given a user feedback U = {X1 ≻ X3 ≻ X2} which
is translated into pairwise rankings {(X1 ≻ X3), (X1 ≻ X2), . . .}, each ranked pair
Xi ≻ Xj corresponds to a classification example (Pi−Pj ,+) of a training dataset. We
use Stochastic Coordinate Descent (SCD) [13] for minimizing logistic loss stemming
from this training dataset, and use the learned weights in φlogistic.

3 DiSPaLe: Discriminating Sub-Pattern Feature Learning

We present DISPALE, an instantiation of the framework described by Algorithm 1,
which exploits more complex descriptors in combination with static low-level features
to learn logistic functions. These new descriptors are learned from discriminating sub-
patterns. The sequel describes how discriminating sub-pattern are extracted from the
user-defined pattern ranking and how they are used in the learning component of DIS-
PALE (see Algorithm 2). Table 1b summarizes the different notations used in this paper.
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Algorithm 2: DISPALE (Discriminating Sub-Pattern feature Learning)

1 In: DatasetD, set of patterns X
2 Parameters: Query size k, number of steps T , range A, query retention ℓ, feature pattern representations F
3 Out: φ : Ranking function;

4 begin
5 U ← ∅, w0

F ← 0, X 0 ← ∅, φ0 = φlogistic(w
0
F , A)

6 for t = 1, 2 . . . T do
7 X t ← TOP(X t−1, ℓ) ∪ (SAMPLEPATTERNS(D, φt−1)× (k − ℓ))

8 R̂t ← RANK(X t), disc← MINEDISCRIMINATING(X t, R̂t), U ← U ∪ R̂t

9 ⟨wt
F , wt

Fdisc
⟩ ← LEARNWEIGHTS(U,F ∪ Fdisc)

10 wt
F ← UPDATEWEIGHTS(wt

F , wt
Fdisc

)

11 φt ← φlogistic(w
t
F , A)

12 return φT

3.1 Towards More Expressive and Learnable Pattern Descriptions

Features for pattern representation involve indicator variables for included items or sub-
graphs, or for covered transactions [3,4], or pattern length, etc. The issue is that such
features are treated as if they were independent, whether in the logistic function men-
tioned above, or multiplicative functions [3,12]. While this allows to identify pattern
components that are globally interesting for the user, it is impossible to learn relation-
ships such as ”the user is interested in item i1 if item i3 is present but item i4 is absent”.
In addition, the pattern elements whose inclusion is indicated are defined before-hand,
and the user feedback has no influence on them. We therefore propose to learn more ex-
pressive features in order to improve the learning of user preferences. In this work, we
propose to consider discriminating sub-patterns that better capture (or explain) these
preferences. Those features exploit ranking-correlated patterns, i.e., patterns that influ-
ence the user ranking either by allowing some patterns to be well ranked or the opposite.
a) Interclass Variance. As explained above, our goal is to mine sub-patterns that dis-
criminate between patterns that have been given a high user ranking and those that
received a low one. An intuitive way of modelling this problem consists of considering
the numerical ranks given to individual patterns as numerical labels and the mining set-
ting as akin to regression. We are not aiming to build a full regression model but only
to mine an individual pattern that correlates with the numerical label. For this purpose,
we use the interclass variance measure as proposed by [10].

Definition 1. Let X be a query, R̂ the user ranked patterns, XY the subset of patterns
X in X containing the sub-pattern Y , and X Y = X − XY . The interclass variance
of the sub-pattern y is defined by: ICV (Y, R̂) = |XY | · (µ(X ) − µ(XY ))

2 + |X Y | ·
(µ(X )−µ(X Y ))

2, where µ(X ) = 1
|X | ·

∑
X∈X r(X), and r(X) is the rank of X in R̂.

b) Extracting Discriminating Sub-patterns. To find the sub-pattern Y ⊆ X ∈ X
with the greatest interclass variance ICV , we systematically search the pattern space
spanned by the items involved in patterns of the user’s query X . Semantically, this is
the sub-pattern whose presence in one or more patterns X has influenced their ranking.
So, if Y ⊆ X , we can say that the ranking of X at the r(X)th position in R̂ is more
likely to be explained by the presence of sub-pattern Y .
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Algorithm 3: Extracting discriminating sub-patterns

1 Function MineDiscriminating(X , R̂)
2 ICVmax ← 0, disc← ∅
3 IX ← {i ∈ X |X ∈ X}
4 S ← IX
5 For each i ∈ IX do
6 If ICV (i, R̂) ≥ ICVmax then
7 ICVmax ← ICV (i, R̂), disc← {i}

8 For each Y ∈ S do
9 While (∃i ∈ IX ∧ ∃X ∈ X st. Y ∪ {i} ⊆ X ∧ i /∈ Y ) do

10 If ICV (Y ∪ {i}, R̂) ≥ ICVmax then
11 ICVmax ← ICV (Y ∪ {i}, R̂), disc← Y ∪ {i} , S ← S ∪ disc

12 return disc

Algorithm 3 implements the function MINEDISCRIMINATING (see Algorithm 2,
line 8), which learns the best discriminating pattern as a descriptor. Its accepts as in-
put the query X and the ranked patterns R̂ by the user, and returns the sub-itemset
with the highest ICV. Its starts by computing the ICV of all items of the patterns in X
(loop 5−7). Then, it iteratively combines the items to form a larger and finer-grained
discriminating sub-pattern (loop 8-11). Obviously, before combining sub-itemsets, we
should ensure that the resulting sub-pattern belongs to an existing pattern X ∈ X
(line 9). If such a sub-pattern exists, we update the value of ICVmax, we save the
best discriminating sub-pattern computed so far and we update with disc the set of sub-
itemsets that can be extended for further improvements (lines 10-11). Finally, the best
discriminating pattern is returned at line 12.

Example 1. Consider a dataset with items I = {1, . . . , 7}. Let’s consider a user query
X = {X1, X2, X3, X4}, with X1 = {5, 7}, X2 = {2, 7}, X3 = {1}, X4 = {4} and
let R̂ = {X2 ≻ X1 ≻ X3 ≻ X4}. For Y = {2}, we have XY = {X2}, X Y =
{X1, X3, X4}, µ(XY ) = 1, µ(X Y ) = 3 and µ(X ) = 2.5. Applying definition 1 gives
ICV (2, R̂) = 3. After the first loop of Algorithm 3, ICVmax = 4 and disc = {7}.

3.2 Discriminating Sub-patterns as Descriptors

Exploiting discriminating sub-patterns as a new descriptors in DISPALE brings mean-
ingful knowledge to consider during an interactive preference learning. In fact, this
sub-pattern correlated with the user’s ranking emphasizes the items of interest related
to his ranking. Now, we describe how these discriminating patterns can be used in order
to improve the learning function φlogistic for patterns.

A direct way of exploiting discriminating sub-patterns consists of adding them as
new descriptors to the initial features F during the iterations. However, this will increase
the size of F , introduces additional cost and most probably leads to over-fitting and
generalization issues of the learning function φlogistic. Instead, we propose to use the
discriminating sub-pattern disc extracted at each iteration as a temporary descriptor
Fdisc that can be added to F in order to learn a weight wFdisc

(see Algorithm 2, line 9).
We propose three types of discriminating descriptors:
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- FdiscX : a binary descriptor used to assess the presence/absence of disc in a pattern

X ∈ X ; its associated value PdiscX
=

{
1 if disc ⊆ X
0 otherwise

- FdiscT : a numerical descriptor representing the frequency of the discriminating sub-

pattern disc; its associated value PdiscT =

{
supD(disc)/|D| if disc ⊆ X
0 otherwise

- FdiscI : a numerical descriptor representing the relative size of the discriminating sub-

pattern disc; its associated value PdiscI =

{
|disc|/|I| if disc ⊆ X
0 otherwise

By denoting Fdisc the set of discriminating descriptors added to F , we obtain the
following temporary vector of descriptors: ⟨F1, . . . , Fn︸ ︷︷ ︸

F

, FdiscX , FdiscT , FdiscI︸ ︷︷ ︸
Fdisc

⟩.

Given the user-defined pattern ranking R̂t at iteration t on query X t, we learn two
weight vectors : the weight vector wt

F associated to F and the weight vector wt
Fdisc

associated to Fdisc. As descriptors Fdisc are added temporary, the weights learned for
wt
Fdisc

are used back to update the weights wt
F in order to be exploited for the next

iteration. This new learning schema can be summarized as follows (see Fig. 1 in [7]):
(i) each pattern X ∈ X t is converted into a vector P = ⟨P1, . . . ,Pn,PdiscX

,PdiscT ,
PdiscI ⟩, where Pi is the value associated to a feature/descriptor Fi ∈ F ∪ Fdisc.
(ii) new weights wt

Fi
are learned for each descriptor Fi ∈ F ∪ Fdisc. The learned

weights wt
Fdisc

are then used back to update the weights wt
F using a multiplicative

weight method (see Algorithm 2, line 10).
(iii) finally, a new estimate φt is computed using the new wt

F (see Algorithm 2, line 11).

3.3 Updating the Weights of Feature Pattern Representations

Let disc be the discriminating sub-pattern extracted from the query X t. We propose
two rules to update the weight vector wt

F from the weight vector wt
Fdisc

:

– for binary features Fi ∈ F (items and transactions):
o Fi ≡ items(i, disc), wt

Fi
= fag(wt

Fi
, wt

FdiscX
)

o Fi ≡ Trans(ti, disc) ∧ ti ∈ VD(disc), wt
Fi

= fag(wt
Fi
, wt

FdiscX
)

– for numerical features Fi ∈ F (frequency, length, . . .):
o Fi ≡ Freqency : wt

Fi
= fag(wt

Fi
, wt

FdiscT
)

o Fi ≡ Lenght : wt
Fi

= fag(wt
Fi
, wt

FdiscI
)

The Multiplicative Weights Method [2] is a simple idea which has been repeatedly dis-
covered in fields as diverse as Machine Learning, and Optimization. The setting for
this method is the following: A decision maker (DM) has a choice of n decisions, and
needs to repeatedly make a decision. The method assigns initial weights to the DM, and
updates these weights multiplicatively and iteratively according to the feedback of how
well an expert performed. Following this idea, we propose, at each iteration, to update
the feature weights wt

F by multiplying them with factors which depend on the learned
weights of discriminating descriptors in that iteration. Intuitively, this updating scheme
tend to focus higher weight on features that better explain patterns ranked by the user
in the long run, thus increasing the probability of being present in patterns of the next
iterations. We propose to multiplicative updating rules:
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Dataset |D| |I| θ #P
Anneal 812 89 660 149 331

Chess 3 196 75 2 014 155118

German 1 000 110 350 161 858

Heart-cleveland 296 95 115 153 214

Hepatitis 137 68 35 148 289

Kr-vs-kp 3 196 73 2 014 155118

Lymph 148 68 48 146 969

Mushroom 8 124 112 813 155657

Soybean 630 50 28 143 519

Vote 435 48 25 142 095

Zoo-1 101 36 10 151 806

(a) Dataset Characteristics.

Notation Significance
t ∈ [T ] Iteration index
X t User query
R̂t User-defined feedback on X t

F Vector of feature representations of patterns
Fdisc Vector of discriminating descriptors of patterns
P Pattern description w.r.t (F ∪ Fdisc)

disc Discriminating sub-pattern extracted from R̂t

FdiscX Binary descriptor related to the presence/absence of disc in X
FdiscT Numerical descriptor related to the frequency of disc
FdiscI Numerical descriptor related to the relative size disc
wt

F Weight vector associated to static features F
wt

Fdisc
Weight vector associated to dynamic features Fdisc

η Regularization parameter
φlogistic Learned logistic function

(b) Notations.
Table 1: θ represents an absolute value.

– by a linear factor: fag(wt
Fi
, wt

Fdisc
) = wt

Fi
× (1 + η · wt

Fdisc
)

– by an exponential factor: fag(wt
Fi
, wt

Fdisc
) = wt

Fi
× expη·w

t
Fdisc

where η ∈]0, 1
2 ] is regularization parameter used to control the increase in weights re-

sulting from this update. In our experiments (see Section 4), we compare both updating
rules for learning weights.

Example 2. Let us consider example 1 and disc = {7}. Let us assume that F represents
items and frequency features and Fdisc = ⟨FdiscX , FdiscT ⟩. Suppose that Freq(X1) =
0.54, Freq(X3) = 0.36 and Freq(disc) = 0.63. According to F , X1 = {5, 7} is
represented by the vector P1 = ⟨0, 0, 0, 0, 1, 0, 1, 0.54⟩, while X3 = {1} by P3 =
⟨1, 0, 0, 0, 0, 0, 0, 0.36⟩. Using additionally features Fdisc, we obtain the new vector
P1 = ⟨0, 0, 0, 0, 1, 0, 1, 0.54, 1, 0.63⟩ since disc ⊂ X1. Similarly, for X3 = {1},
P3 = ⟨0, 0, 0, 0, 1, 0, 1, 0.36, 0, 0⟩. Let t = 1, to learn the weights w1

F and w1
Fdisc

,
the user’s feedback is translated into pairwise rankings and distances between vectors
Pi for each pair are calculated (see Section 2). After the learning step, we obtain w1

F =
⟨−0.33, 0.99, 0,−0.99, 0.33, 0, 1.33, 0.15⟩ and w1

Fdisc
= ⟨1.33, 0.84⟩. Using the linear

factor with η = 0.2, we update the weight w1
F7

associated to item 7 (since 7 ∈ disc) and
the weight w1

FdiscT
associated to frequency as follows: w1

F7
= w1

F7
×(1+η ·w1

FdiscX
) =

1.68; w1
FdiscT

= w1
FdiscT

× (1 + η · w1
discT

) = 0.175. After the updating step, the re-
sulting weight vector w1

F = ⟨−0.33, 0.99, 0,−0.99, 0.33, 0,1.68,0.175⟩.

4 Experiments

a) Evaluation Methodology and Pattern Selection. To experimentally evaluate our
approach DISPALE, we emulate user feedback using a (hidden) quality measure Φ,
which is not known to the learning algorithm. We follow the same protocol used in [4]:
for each dataset, a set P of frequent patterns is mined without prior user knowledge. We
assume that there exists a user ranking R̂ on the set P , derived from Φ, i.e. X ≻ Y ⇔
Φ(X) > Φ(Y ). Thus, the task is to learn a logistic function φlogistic to sample frequent
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(c) Regretmax: LIN vs. EXP
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(d) RegretAvg : EXP
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(e) RegretAvg : LIN
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Fig. 1: Effects of the parameter η of DISPALE on Regretmax, RegretAvg and ℓ = 0.
Results are aggregated over data sets and the three feature combinations (I, IT, ILFT).
Regret values are normalized to the range [0,1] based on the maximum regret value.

patterns which approximates Φ. We use surprisingness surp as Φ, where surp(X) =

max{supD(X)−
∏|X|

i=1 supD({i}), 0}.
To compare the performance of the different approaches, we use cumulative regret,

which is the difference between the ideal value of a certain measure M and its observed
value, summed over iterations for each dataset. At each iteration t, we evaluate the regret
of ranking pattern Xi by Φ as follows: we compute the percentile rank pct.rank(Xi)
by Φ of each pattern Xi ∈ X t (1 ≤ i ≤ k) as pct.rank(Xi) = (DI + DE

2 )/|P| where
DI = |Y ∈ P, Φ(Y ) < Φ(Xi)| and DE = |Y ∈ P, Φ(Y ) = Φ(Xi)|. The percentile
rank over all patterns of X t measures the ability of the learnable function φlogistic

to extract interesting patterns, i.e. patterns Xi for which Φ(Xi) is higher. Thus, the
ideal value is 1 (e.g., the highest possible value of Φ over all frequent patterns has the
percentile rank of 1). The regret is then defined as 1−M(1≤i≤k)(pct.rank(Xi)) where
M ∈ {max, Avg} and k = |X t|. We repeat each experiment 10 times with different
random seeds; the average cumulative regret is reported. We ensure that all compared
methods are sampled on the same pattern bases at each iteration.

For the evaluation, we used UCI data-sets, available at the CP4IM repository4. For
each dataset, we set the minimal support threshold such that the size of P is approxi-

4 https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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0.1
3

0.1
5

0.1
7
0.1

8 0.2 0.2
3

0.2
5

0.3
3

Regularization parame er η

0.9
0

0.9
2

0.9
4

0.9
6

0.9
8

1.0
0

No
rm

ali
ze

d R
eg

re 
 Va

lue
s

RegretAVG - DiSPaLe− Lin

k=5
k=10

(e) RegretAvg : LIN
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Fig. 2: Effects of the parameter η of DISPALE on Regretmax, RegretAvg and ℓ = 1.

mately 145, 000 frequent patterns. Table 1a shows the data set statistics. Each experi-
ment involves 100 iterations. We compare DISPALE with two state-of-the-art interac-
tive methods, LETSIP [4], an interactive sampling method to learn a logistic function,
and an active preference learning to learn a linear ranking function using RANKSVM.
We address the following two research questions: (i) What effect do DISPALE ’s pa-
rameters have on the quality of learned patterns? (ii) How does DISPALE compares to
LETSIP and RANKSVM?

To select the k patterns to show to the user, we use EFLEXICS [6] to draw the
k weighted random samples proportional to φlogistic as in [4] (see Suppl. Mat. [7]
for more details). These patterns are selected according to a TOP(m) strategy, which
picks the m highest-quality patterns. The same procedure is also used in RANKSVM.
Moreover, to help users to relate the queries to each other, we retain the top ℓ patterns
from the previous query and only sample (k−ℓ) new patterns. We use the default values
suggested by [4] for the parameters in EFLEXICS: λ = 0.001, κ = 0.9, A = 0.1 and
TOP(1).
b) Parameter Settings of DISPALE. We evaluate the effects of different parameter
settings on DISPALE: the query size k ∈ {5, 10}, the updating rule and the regular-
ization parameter η. We use the following feature combination: Items (I); Items +
Transactions (IT); and Items + Length + Frequency + Transactions (ILFT).
We consider two settings for ℓ: ℓ = 0 and ℓ = 1. Figure 1 shows the evolution of the



10 A. Hien et al.

Table 2: Evaluation of the importance of pattern features and comparison of DISPALE-
EXP (η = 0.13) with LETSIP and RANKSVM for k = 10. Results are aggregated over
all datasets. (1): LETSIP, (2): DISPALE-EXP, (3): RANKSVM. Detailed values of the
regret for each dataset and results of DISPALE-LIN are given in [7].

ℓ = 0 ℓ = 1

Regret: Regretmax Regret: RegretAvg Regret: Regretmax Regret: RegretAvg

Descriptors (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

I 112.137 114.567 123.130 554.816 553.050 582.303 10.438 11.438 11.465 496.918 499.151 521.634
IT 108.446 91.528 101.635 543.556 492.967 542.595 10.761 11.465 9.192 483.689 449.444 491.014
ITLF 106.006 88.391 100.162 538.848 487.537 540.844 11.275 11.579 9.601 490.818 450.202 490.649

values of Regretmax and RegretAvg for different values of η and for ℓ = 0. Figures 1a
and 1b show that both updating rules (LIN and EXP) ensure the lowest quality regrets
with k = 10 w.r.t. Regretmax. This indicates that our approach is able to identify the
properties of the target ranking from ordered lists of patterns even when the query size
increases. Additionally, the lowest regret values are obtained with η = 0.13. Regarding
RegretAvg (see Figures 1d and 1e), k = 10 continues to be the better query size and
η = 0.13 gives the lowest regret values. Finally, Figures 1c and 1f compares the regret
values of DISPALE-EXP and DISPALE-LIN for k = 10. As we can seen, DISPALE-
EXP allows to achieve the best regrets. Figure 2 shows the effect of DISPALE’s param-
eters on regret values for ℓ = 1. Retaining one highest-ranked pattern from the previous
query w.r.t. Regretmax does not affect the conclusions drawn previously: k = 10 being
the better query size. However, we can see the opposite behaviour w.r.t. RegretAvg (see
Figures 2d and 2e): querying 5 patterns allows attaining low regret values. Interestingly,
as Figure 2f shows, DISPALE-EXP outperforms DISPALE-LIN on almost all values of
η. Based on these findings, we set k = 10 and η = 0.13 for the next experiments.
c) Evaluating the Importance of Pattern Features. Table 2 compare different combi-
nation of feature representations of patterns for two settings of query retention ℓ. As we
can see, additional features provide valuable information to learn more accurate pattern
rankings, particularly for DISPALE-EXP where the regrets decrease when adding the
feature T. However, the importance of features depends on the pattern type and the target
measure Φ [5]. For surprising pattern mining, Length is the most likely to be included
in the best feature set, because long patterns tend to have higher values of Surpris-
ingness. Items are important as well, because individual item frequencies are directly
included in the formula of Surprisingness. Transactions are important because this
feature set helps capture interactions between other features, albeit indirectly.
d) Comparing DISPALE with LETSIP and RANKSVM. Table 2 reports the regret
values. When considering Items as a feature, LETSIP performs the best. However,
selecting queries uniformly at random allows DISPALE-EXP to improve slightly the
RegretAvg . Moreover, regarding the other features (IT and ITLF), DISPALE-EXP al-
ways outperforms LETSIP and RANKSVM. When retaining one highest-ranked pattern
(ℓ = 1), RANKSVM exhibits the lowest Regretmax values, while LETSIP and DIS-
PALE-EXP perform very similarly. However, for RegretAvg , DISPALE-EXP performs
the best. These results indicate that the learned ranks by DISPALE-EXP in the target
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(a) GERMAN-CREDIT: cumulative Regretmax values.

0 20 40 60 80 100
Iterations

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

0.1
6

0.1
8

No
n-C

um
ula

tiv
e R

egr
ets

RegretMAX - german-credit - l=0 - k=10 - Item

LetSIP
Dispale-EXP
Dispale-LIN
RankSVM

0 20 40 60 80 100
Iterations

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

No
n-C

um
ula

tiv
e R

egr
ets

RegretMAX - german-credit - l=0 - k=10 - IT

LetSIP
Dispale-EXP
Dispale-LIN
RankSVM

0 20 40 60 80 100
Iterations

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

No
n-C

um
ula

tiv
e R

egr
ets

RegretMAX - german-credit - l=0 - k=10 - ITFL

LetSIP
Dispale-EXP
Dispale-LIN
RankSVM

(b) GERMAN-CREDIT: non-cumulative Regretmax values.
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Fig. 3: A detailed view of comparison for different pattern features, k = 10 and ℓ = 0.

ranking are more accurate compared to those learned by the alternatives. This confirm
the advantage of using discriminants sub-patterns as descriptors.

Figure 3 presents a detailed view of comparison on GERMAN-CREDIT dataset (other
results are given in [7]). Curves show the evolution of the regret (cumulative and non
cumulative) over 100 iterations of learning for different combination of features. The
results confirm again the capacity of DISPALE-EXP to identify frequent patterns with
lowest regrets. Figures 3c and 3d compares the performance of the three approaches
in terms of CPU-times on two datasets. Overall, learning more complex descriptors
from the user-defined pattern ranking does not add significantly to the runtimes of our
approach: on most of the data sets considered, DISPALE-EXP and LETSIP behave very
similarly, and the difference is very negligible (see Suppl. Mat [7] for other results).
However, RANKSVM requires much more time to learn a linear ranking function.
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5 Conclusion

In this paper, we have proposed a new approach to the state-of-the art of interactive pat-
tern mining: instead of using static low-level features that have been pre-defined before
the process starts, our approach learns more complex descriptors from the user-defined
pattern ranking. These features allow to capture the importance of item interactions,
and, as shown experimentally, lead to lower cumulative and individual regret than us-
ing low-level features. We have explored two multiplicative updating rules for mapping
weights learned for complex features back to their component items, and find that the
exponential factor gives better results on most of the data sets we worked with. We have
evaluated our proposal only on itemset data so far since the majority of existing work
is defined for this kind of data. But the importance of using complex dynamic features
can be expected to be even higher when interactively mining complex, i.e. sequential,
tree, or graph-structured data. We will explore this direction in future work.
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