Arnold Hien
email: arnold.hien@imt-atlantique.fr

Samir Loudni
email: samir.loudni@imt-atlantique.fr

Noureddine Aribi
email: aribi.noureddine@univ-oran1.dz

Abdelkader Ouali
email: abdelkader.ouali@unicaen.fr

Albrecht Zimmermann
email: albrecht.zimmermann@unicaen.fr

Interactive Pattern Mining using Discriminant Sub-patterns as Dynamic Features

Recent years have seen a shift from a pattern mining process that has users define constraints before-hand, and sift through the results afterwards, to an interactive one. This new framework depends on exploiting user feedback to learn a quality function for patterns. Existing approaches have a weakness in that they use static pre-defined low-level features, and attempt to learn independent weights representing their importance to the user. As an alternative, we propose to work with more complex features that are derived directly from the pattern ranking imposed by the user. Those features are used to learn weights to be aggregated with low-level features and help to drive the quality function in the right direction. Experiments on UCI datasets show that using higher-complexity features leads to the selection of patterns that are better aligned with a hidden quality function while being competitively fast when compared to state-of-the-art methods.

Introduction

Constraint-based pattern mining is a fundamental data mining task, extracting locally interesting patterns to be either interpreted directly by domain experts, or to be used as descriptors in downstream tasks, such as classification or clustering. Since the publication of the seminal paper [START_REF] Agrawal | Fast algorithms for mining association rules in large databases[END_REF], two problems have limited the usability of this approach: 1) how to translate user preferences and background knowledge into constraints, and 2) how to deal with the large result sets that often number in the thousands or even millions of patterns. Replacing the original support-confidence framework with other quality measures [START_REF] Tan | Selecting the right interestingness measure for association patterns[END_REF] does not address the pattern explosion. Post-processing results via condensed representations still typically leaves many patterns, while pattern set mining [START_REF] Raedt | Constraint-based pattern set mining[END_REF] just pushes the problem further down the line.

In recent years, research on interactive pattern mining has proposed to alter the mining process itself: instead of specifying constraints once, mining a result set, and then post-processing it, interactive pattern mining performs an iterative loop [START_REF] Rüping | Ranking interesting subgroups[END_REF]. This loop involves three repeating main steps: [START_REF] Agrawal | Fast algorithms for mining association rules in large databases[END_REF] pattern extraction in which a relatively small set of patterns is extracted; [START_REF] Arora | The multiplicative weights update method: a meta-algorithm and applications[END_REF] interaction in which the user expresses his preferences w.r.t. those patterns; [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF] preference learning in which the expressed preferences are translated into a quality assessment function for mining patterns in future iterations.

The most recent proposal to dealing with the question of finding interesting patterns involves the user, via interactive pattern mining [START_REF] Rüping | Ranking interesting subgroups[END_REF] often involving sampling [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF], with LETSIP [START_REF] Dzyuba | Learning what matters -sampling interesting patterns[END_REF] one of the end points of this development. Other interactive methods have been proposed, APLE [START_REF] Dzyuba | Interactive learning of pattern rankings[END_REF], another approach based on active preference learning to learn a linear ranking function using RANKSVM [START_REF] Joachims | Optimizing search engines using clickthrough data[END_REF], and IPM [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF], an MCMC-based interactive sampling framework. However, existing approaches have a short-coming: to enable preference learning, they represent patterns by independent descriptors, such as included items or covered transactions, and expect the learned function, usually a regression or multiplicative weight model, to handle relations.

In this paper, we propose a new interactive pattern mining approach that introduces more complex class of descriptors for explainable ranking, thereby allowing to capture the importance of item interactions. These descriptors exploit the concept of discriminating sub-patterns, which separate patterns that are given low rank by the user from those with high rank. By temporarily adding those descriptors, we can learn weights for them, which are then apportioned to involved items without blowing up the feature space. Results on UCI datasets show favourable trade-offs in quality-time of learning.

Preliminaries

Pattern Mining. Given a database D, a language L defining subsets of the data and a selection predicate q that determines whether an element ϕ ∈ L, the task is to find the theory T h(L, D, q) = {ϕ ∈ L | q(D, ϕ) is true}. A well-known pattern mining task is frequent itemset mining [START_REF] Agrawal | Fast algorithms for mining association rules in large databases[END_REF]. Let I be a set of n items, an itemset (or pattern) X is a non-empty subset of I. The language of itemsets corresponds to L I = 2 I \∅. A transactional dataset D is a bag (or multiset) of transactions over I, where each transaction t is a subset of I, i.e., t ⊆ I; T = {1, ..., m} a set of m transaction indices. An itemset X occurs in a transaction t, iff X ⊆ t. The cover of X in D is the bag of transactions in which it occurs:

V D (X) = {t ∈ D | X ⊆ t}. The support of X in D is the size of its cover: sup D (X) = |V D (X)|.
Learning from Preferences. An algorithmic template of the Mine, Interact, Learn, Repeat framework is listed in Algorithm 1. The interactive process proceeds iteratively for some reasonable number of iterations T , which depends on the task at hand. Let Φ : L I → R denote the true, unobserved preferences function of the user. The algorithm maintains an internal estimate φ t of the true function, where t ∈ [T] is the iteration index. At each iteration, it selects a query X t to be posed to the user. The user's feedback is then used (possibly along with all the feedback received so far) to compute a new estimate φ t+1 of Φ. Key questions concerning instantiations of the Mine, interact, learn, repeat framework include 1) feature representations of patterns to be ranked and the feedback format, 2) learning user's preferences from feedback, 3) mining with learned preferences, and crucially, 4) selecting the patterns to show to the user. a) User Interaction & Pattern Representations. User feedback w.r.t. patterns takes the form of providing a total order over a (small) set of patterns [START_REF] Dzyuba | Learning what matters -sampling interesting patterns[END_REF][START_REF] Rüping | Ranking interesting subgroups[END_REF], called a query. User feedback {X 1 ≻ X 3 ≻ X 2 }, for instance, indicates that the user prefers X In the object preferences scenario [START_REF] Kamishima | A Survey and Empirical Comparison of Object Ranking Methods[END_REF], such a function is a mapping φ : X → R that assigns a score φ(X) to each pattern X and, thereby, induces an order on X . As in [START_REF] Dzyuba | Learning what matters -sampling interesting patterns[END_REF], we use a parametrized logistic function to measure the interestingness/quality of a given pattern X: φ logistic (X; w, A) = A+ 1-A 1+e -w F •P , where P the afore-mentioned description of a pattern X, w F the weight vector associated to descriptors F reflecting feature contributions to pattern interestingness, and A is a parameter that controls the range of the interestingness measures, i.e. φ logistic ∈ (A, 1). However, setting feature weights manually is tedious, thus we present in section 3 an algorithm that learns the weights based on easy-to-provide feedback with respect to patterns. Given a user feedback U = {X 1 ≻ X 3 ≻ X 2 } which is translated into pairwise rankings {(X 1 ≻ X 3), (X 1 ≻ X 2), . . .}, each ranked pair X i ≻ X j corresponds to a classification example (P i -P j , +) of a training dataset. We use Stochastic Coordinate Descent (SCD) [START_REF] Shalev-Shwartz | Stochastic methods for l 1 -regularized loss minimization[END_REF] for minimizing logistic loss stemming from this training dataset, and use the learned weights in φ logistic .

DiSPaLe: Discriminating Sub-Pattern Feature Learning

We present DISPALE, an instantiation of the framework described by Algorithm 1, which exploits more complex descriptors in combination with static low-level features to learn logistic functions. These new descriptors are learned from discriminating subpatterns. The sequel describes how discriminating sub-pattern are extracted from the user-defined pattern ranking and how they are used in the learning component of DIS-PALE (see Algorithm 2). Table 1b summarizes the different notations used in this paper.

4 begin 5 U ← ∅, w 0 F ← 0, X 0 ← ∅, φ 0 = φ logistic (w 0 F , A) 6 for t = 1, 2 . . . T do 7 X t ← TOP(X t-1 , ℓ) ∪ (SAMPLEPATTERNS(D, φ t-1) × (k -ℓ)) 8 R t ← RANK(X t), disc ← MINEDISCRIMINATING(X t , R t), U ← U ∪ R t 9 ⟨w t F , w t F disc ⟩ ← LEARNWEIGHTS(U , F ∪ F disc) 10 w t F ← UPDATEWEIGHTS(w t F , w t F disc) 11 φ t ← φ logistic (w t F , A)
12 return φ T

Towards More Expressive and Learnable Pattern Descriptions

Features for pattern representation involve indicator variables for included items or subgraphs, or for covered transactions [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF][START_REF] Dzyuba | Learning what matters -sampling interesting patterns[END_REF], or pattern length, etc. The issue is that such features are treated as if they were independent, whether in the logistic function mentioned above, or multiplicative functions [START_REF] Bhuiyan | Interactive knowledge discovery from hidden data through sampling of frequent patterns[END_REF][START_REF] Rüping | Ranking interesting subgroups[END_REF]. While this allows to identify pattern components that are globally interesting for the user, it is impossible to learn relationships such as "the user is interested in item i 1 if item i 3 is present but item i 4 is absent". In addition, the pattern elements whose inclusion is indicated are defined before-hand, and the user feedback has no influence on them. We therefore propose to learn more expressive features in order to improve the learning of user preferences. In this work, we propose to consider discriminating sub-patterns that better capture (or explain) these preferences. Those features exploit ranking-correlated patterns, i.e., patterns that influence the user ranking either by allowing some patterns to be well ranked or the opposite. a) Interclass Variance. As explained above, our goal is to mine sub-patterns that discriminate between patterns that have been given a high user ranking and those that received a low one. An intuitive way of modelling this problem consists of considering the numerical ranks given to individual patterns as numerical labels and the mining setting as akin to regression. We are not aiming to build a full regression model but only to mine an individual pattern that correlates with the numerical label. For this purpose, we use the interclass variance measure as proposed by [START_REF] Morishita | Traversing itemset lattices with statistical metric pruning[END_REF].

Definition 1. Let X be a query, R the user ranked patterns, X Y the subset of patterns X in X containing the sub-pattern Y , and X Y = X -X Y . The interclass variance of the sub-pattern y is defined by:

ICV (Y, R) = |X Y | • (µ(X) -µ(X Y)) 2 + |X Y | • (µ(X) -µ(X Y)) 2 , where µ(X) = 1 |X | • X∈X r(X)
, and r(X) is the rank of X in R. b) Extracting Discriminating Sub-patterns. To find the sub-pattern Y ⊆ X ∈ X with the greatest interclass variance ICV , we systematically search the pattern space spanned by the items involved in patterns of the user's query X . Semantically, this is the sub-pattern whose presence in one or more patterns X has influenced their ranking. So, if Y ⊆ X, we can say that the ranking of X at the r(X) th position in R is more likely to be explained by the presence of sub-pattern Y .

Algorithm 3: Extracting discriminating sub-patterns

1 Function M ineDiscriminating(X , R) 2 ICVmax ← 0, disc ← ∅ 3 I X ← {i ∈ X | X ∈ X } 4 S ← I X 5 For each i ∈ I X do 6 If ICV (i, R) ≥ ICVmax then 7 ICVmax ← ICV (i, R), disc ← {i} 8 For each Y ∈ S do 9 While (∃i ∈ I X ∧ ∃X ∈ X st. Y ∪ {i} ⊆ X ∧ i / ∈ Y) do 10 If ICV (Y ∪ {i}, R) ≥ ICVmax then 11 ICVmax ← ICV (Y ∪ {i}, R), disc ← Y ∪ {i} , S ← S ∪ disc 12 return disc
Algorithm 3 implements the function MINEDISCRIMINATING (see Algorithm 2, line 8), which learns the best discriminating pattern as a descriptor. Its accepts as input the query X and the ranked patterns R by the user, and returns the sub-itemset with the highest ICV. Its starts by computing the ICV of items of the patterns in X (loop 5-7). Then, it iteratively combines the items to form a larger and finer-grained discriminating sub-pattern (loop 8-11). Obviously, before combining sub-itemsets, we should ensure that the resulting sub-pattern belongs to an existing pattern X ∈ X (line 9). If such a sub-pattern exists, we update the value of ICV max , we save the best discriminating sub-pattern computed so far and we update with disc the set of subitemsets that can be extended for further improvements (lines 10-11). Finally, the best discriminating pattern is returned at line 12.

Example 1. Consider a dataset with items I = {1, . . . , 7}. Let's consider a user query

X = {X 1 , X 2 , X 3 , X 4 }, with X 1 = {5, 7}, X 2 = {2, 7}, X 3 = {1}, X 4 = {4} and let R = {X 2 ≻ X 1 ≻ X 3 ≻ X 4 }. For Y = {2}, we have X Y = {X 2 }, X Y = {X 1 , X 3 , X 4 }, µ(X Y) = 1, µ(X Y) = 3

Discriminating Sub-patterns as Descriptors

Exploiting discriminating sub-patterns as a new descriptors in DISPALE brings meaningful knowledge to consider during an interactive preference learning. In fact, this sub-pattern correlated with the user's ranking emphasizes the items of interest related to his ranking. Now, we describe how these discriminating patterns can be used in order to improve the learning function φ logistic for patterns.

A direct way of exploiting discriminating sub-patterns consists of adding them as new descriptors to the initial features F during the iterations. However, this will increase the size of F, introduces additional cost and most probably leads to over-fitting and generalization issues of the learning function φ logistic . Instead, we propose to use the discriminating sub-pattern disc extracted at each iteration as a temporary descriptor F disc that can be added to F in order to learn a weight w F disc (see Algorithm 2, line 9). We propose three types of discriminating descriptors:

-F disc X : a binary descriptor used to assess the presence/absence of disc in a pattern X ∈ X ; its associated value P disc X = 1 if disc ⊆ X 0 otherwise -F disc T : a numerical descriptor representing the frequency of the discriminating subpattern disc; its associated value P disc T = sup D (disc)/|D| if disc ⊆ X 0 otherwise -F disc I : a numerical descriptor representing the relative size of the discriminating subpattern disc; its associated value

P disc I = |disc|/|I| if disc ⊆ X 0
otherwise By denoting F disc the set of discriminating descriptors added to F, we obtain the following temporary vector of descriptors:

⟨F 1 , . . . , F n F , F disc X , F disc T , F disc I F disc ⟩.
Given the user-defined pattern ranking R t at iteration t on query X t , we learn two weight vectors : the weight vector w t F associated to F and the weight vector w t F disc associated to F disc . As descriptors F disc are added temporary, the weights learned for w t F disc are used back to update the weights w t F in order to be exploited for the next iteration. This new learning schema can be summarized as follows (see Fig. 1 in [START_REF] Hien | Code and supplementary material[END_REF]): (i) each pattern X ∈ X t is converted into a vector P = ⟨P 1 , . . . , P n , P disc X , P disc T , P disc I ⟩, where P i is the value associated to a feature/descriptor F i ∈ F ∪ F disc . (ii) new weights w t Fi are learned for each descriptor F i ∈ F ∪ F disc . The learned weights w t F disc are then used back to update the weights w t F using a multiplicative weight method (see Algorithm 2, line 10). (iii) finally, a new estimate φ t is computed using the new w t F (see Algorithm 2, line 11).

Updating the Weights of Feature Pattern Representations

Let disc be the discriminating sub-pattern extracted from the query X t . We propose two rules to update the weight vector w t F from the weight vector w t F disc : for binary features F i ∈ F (items and transactions):

o F i ≡ items(i, disc), w t Fi = f ag (w t Fi , w t F disc X) o F i ≡ T rans(t i , disc) ∧ t i ∈ V D (disc), w t Fi = f ag (w t Fi , w t F disc X) -for numerical features F i ∈ F (frequency, length, . . .): o F i ≡ F reqency : w t Fi = f ag (w t Fi , w t F disc T) o F i ≡ Lenght : w t Fi = f ag (w t Fi , w t F disc I)
The Multiplicative Weights Method [START_REF] Arora | The multiplicative weights update method: a meta-algorithm and applications[END_REF] is a simple idea which has been repeatedly discovered in fields as diverse as Machine Learning, and Optimization. The setting for this method is the following: A decision maker (DM) has a choice of n decisions, and needs to repeatedly make a decision. The method assigns initial weights to the DM, and updates these weights multiplicatively and iteratively according to the feedback of how well an expert performed. Following this idea, we propose, at each iteration, to update the feature weights w t F by multiplying them with factors which depend on the learned weights of discriminating descriptors in that iteration. Intuitively, this updating scheme tend to focus higher weight on features that better explain patterns ranked by the user in the long run, thus increasing the probability of being present in patterns of the next iterations. We propose to multiplicative updating rules: by a linear factor:

f ag (w t Fi , w t F disc) = w t Fi × (1 + η • w t F disc) -by an exponential factor: f ag (w t Fi , w t F disc) = w t Fi × exp η•w t F disc
where η ∈]0, 1 2] is regularization parameter used to control the increase in weights resulting from this update. In our experiments (see Section 4), we compare both updating rules for learning weights.

Example 2. Let us consider example 1 and disc = {7}. Let us assume that F represents items and frequency features and F disc = ⟨F disc X , F disc T ⟩. Suppose that F req(X 1) = 0.54, F req(X 3) = 0.36 and F req(disc) = 0.63. According to F, X 1 = {5, 7} is represented by the vector P 1 = ⟨0, 0, 0, 0, 1, 0, 1, 0.54⟩, while X 3 = {1} by P 3 = ⟨1, 0, 0, 0, 0, 0, 0, 0.36⟩. Using additionally features F disc , we obtain the new vector P 1 = ⟨0, 0, 0, 0, 1, 0, 1, 0.54, 1, 0.63⟩ since disc ⊂ X 1 . Similarly, for X 3 = {1}, P 3 = ⟨0, 0, 0, 0, 1, 0, 1, 0.36, 0, 0⟩. Let t = 1, to learn the weights w 1 F and w 1 F disc , the user's feedback is translated into pairwise rankings and distances between vectors P i for each pair are calculated (see Section 2). After the learning step, we obtain w 1 F = ⟨-0.33, 0.99, 0, -0.99, 0.33, 0, 1.33, 0.15⟩ and w 1 F disc = ⟨1.33, 0.84⟩. Using the linear factor with η = 0.2, we update the weight w 1 F7 associated to item 7 (since 7 ∈ disc) and the weight w 1 F disc T associated to frequency as follows:

w 1 F7 = w 1 F7 ×(1+η•w 1 F disc X) = 1.68; w 1 F disc T = w 1 F disc T × (1 + η • w 1 disc T) = 0.175.
After the updating step, the resulting weight vector w 1 F = ⟨-0.33, 0.99, 0, -0.99, 0.33, 0, 1.68, 0.175⟩.

4 Experiments a) Evaluation Methodology and Pattern Selection. To experimentally evaluate our approach DISPALE, we emulate user feedback using a (hidden) quality measure Φ, which is not known to the learning algorithm. We follow the same protocol used in [START_REF] Dzyuba | Learning what matters -sampling interesting patterns[END_REF]: for each dataset, a set P of frequent patterns is mined without prior user knowledge. We assume that there exists a user ranking R on the set P, derived from Φ, i.e. X ≻ Y ⇔ Φ(X) > Φ(Y). Thus, the task is to learn a logistic function φ logistic to sample frequent patterns which approximates Φ. We use surprisingness surp as Φ, where surp(X) = max{sup D (X) -|X| i=1 sup D ({i}), 0}. To compare the performance of the different approaches, we use cumulative regret, which is the difference between the ideal value of a certain measure M and its observed value, summed over iterations for each dataset. At each iteration t, we evaluate the regret of ranking pattern X i by Φ as follows: we compute the percentile rank pct.rank(X i) by Φ of each pattern

X i ∈ X t (1 ≤ i ≤ k) as pct.rank(X i) = (DI + DE 2)/|P| where DI = |Y ∈ P, Φ(Y) < Φ(X i)| and DE = |Y ∈ P, Φ(Y) = Φ(X i)|.
The percentile rank over all patterns of X t measures the ability of the learnable function φ logistic to extract interesting patterns, i.e. patterns X i for which Φ(X i) is higher. Thus, the ideal value is 1 (e.g., the highest possible value of Φ over all frequent patterns has the percentile rank of 1). The regret is then defined as 1 -M (1≤i≤k) (pct.rank(X i)) where M ∈ {max, Avg} and k = |X t |. We repeat each experiment 10 times with different random seeds; the average cumulative regret is reported. We ensure that all compared methods are sampled on the same pattern bases at each iteration.

For the evaluation, we used UCI data-sets, available at the CP4IM repository 4 . For each dataset, we set the minimal support threshold such that the size of P is approxi- mately 145, 000 frequent patterns. Table 1a shows the data set statistics. Each experiment involves 100 iterations. We compare DISPALE with two state-of-the-art interactive methods, LETSIP [START_REF] Dzyuba | Learning what matters -sampling interesting patterns[END_REF], an interactive sampling method to learn a logistic function, and an active preference learning to learn a linear ranking function using RANKSVM. We address the following two research questions: (i) What effect do DISPALE 's parameters have on the quality of learned patterns? (ii) How does DISPALE compares to LETSIP and RANKSVM? To select the k patterns to show to the user, we use EFLEXICS [START_REF] Dzyuba | Flexible constrained sampling with guarantees for pattern mining[END_REF] to draw the k weighted random samples proportional to φ logistic as in [START_REF] Dzyuba | Learning what matters -sampling interesting patterns[END_REF] (see Suppl. Mat. [START_REF] Hien | Code and supplementary material[END_REF] for more details). These patterns are selected according to a TOP(m) strategy, which picks the m highest-quality patterns. The same procedure is also used in RANKSVM. Moreover, to help users to relate the queries to each other, we retain the top ℓ patterns from the previous query and only sample (k-ℓ) new patterns. We use the default values suggested by [START_REF] Dzyuba | Learning what matters -sampling interesting patterns[END_REF] for the parameters in EFLEXICS: λ = 0.001, κ = 0.9, A = 0.1 and TOP(1). b) Parameter Settings of DISPALE. We evaluate the effects of different parameter settings on DISPALE: the query size k ∈ {5, 10}, the updating rule and the regularization parameter η. We use the following feature combination: Items (I); Items + T ransactions (IT); and Items + Length + F requency + T ransactions (ILFT). We consider two settings for ℓ: ℓ = 0 and ℓ = 1. Figure 1 shows the evolution of the ranking are more accurate compared to those learned by the alternatives. This confirm the advantage of using discriminants sub-patterns as descriptors.

Figure 3 presents a detailed view of comparison on GERMAN-CREDIT dataset (other results are given in [START_REF] Hien | Code and supplementary material[END_REF]). Curves show the evolution of the regret (cumulative and non cumulative) over 100 iterations of learning for different combination of features. The results confirm again the capacity of DISPALE-EXP to identify frequent patterns with lowest regrets. Figures 3c and3d compares the performance of the three approaches in terms of CPU-times on two datasets. Overall, learning more complex descriptors from the user-defined pattern ranking does not add significantly to the runtimes of our approach: on most of the data sets considered, DISPALE-EXP and LETSIP behave very similarly, and the difference is very negligible (see Suppl. Mat [START_REF] Hien | Code and supplementary material[END_REF] for other results). However, RANKSVM requires much more time to learn a linear ranking function.

Conclusion

In this paper, we have proposed a new approach to the state-of-the art of interactive pattern mining: instead of using static low-level features that have been pre-defined before the process starts, our approach learns more complex descriptors from the user-defined pattern ranking. These features allow to capture the importance of item interactions, and, as shown experimentally, lead to lower cumulative and individual regret than using low-level features. We have explored two multiplicative updating rules for mapping weights learned for complex features back to their component items, and find that the exponential factor gives better results on most of the data sets we worked with. We have evaluated our proposal only on itemset data so far since the majority of existing work is defined for this kind of data. But the importance of using complex dynamic features can be expected to be even higher when interactively mining complex, i.e. sequential, tree, or graph-structured data. We will explore this direction in future work.

Algorithm 2 :

 2 DISPALE (Discriminating Sub-Pattern feature Learning) 1 In: Dataset D, set of patterns X 2 Parameters: Query size k, number of steps T , range A, query retention ℓ, feature pattern representations F 3 Out: φ : Ranking function;

 and µ(X) = 2.5. Applying definition 1 gives ICV (2, R) = 3. After the first loop of Algorithm 3, ICV max = 4 and disc = {7}.

Fig. 1 :

 1 Fig. 1: Effects of the parameter η of DISPALE on Regret max , Regret Avg and ℓ = 0. Results are aggregated over data sets and the three feature combinations (I, IT, ILFT). Regret values are normalized to the range [0,1] based on the maximum regret value.

Fig. 2 :

 2 Fig. 2: Effects of the parameter η of DISPALE on Regret max , Regret Avg and ℓ = 1.

 Fig. 3: A detailed view of comparison for different pattern features, k = 10 and ℓ = 0.

 X 3 , which they prefer over X 2 in turn, and so on. Pattern representations determines how the user characterizes patterns of interest to him. Patterns are commonly represented using a vector of static features (also called descriptors)F = ⟨F 1 , . . . , F n ⟩.The description of a pattern X w.r.t. F is given by the vector P = ⟨P 1 , . . . , P n ⟩, where P i is the value associated to F i . Examples of features include numerical descriptors like Len(X) = |X|/|I|, F req(X) = sup D (X)/|D|, in which case the corresponding P i is truly in R, or binary descriptorsItems(i, X) = [i ∈ X]; and T rans(t i , X) = [X ⊆ t i],where [.] denotes the Iverson bracket, leading to (partial) feature vectors ∈ {0, 1} |I| and ∈ {0, 1} |D| , respectively. b) Learning from Feedback. Evaluating patterns in terms of quality function is a very natural way of representing preferences.

	Algorithm 1: Template algorithm for interactive pattern mining	
	1 In: Dataset D, set of patterns X	
	2 Parameters: Query size k, number of steps T , feature pattern representations F	
	3 Out: φ : Ranking function	
	4 begin	
	5	U ← ∅, φ 0 ← initial function estimates	
	6	for t = 1, 2 . . . T do	
	7	select a query X t based on φ t-1	▷ Mine
	8	ask query X t to the user and get feedback R t	▷ Interact
	9	U ← U ∪ R t , compute φ t based on φ t-1 and U	▷ Learn φ
	10	return φ;	
			1 over

Table 1 :

 1 Fdisc X Binary descriptor related to the presence/absence of disc in X Fdisc T Numerical descriptor related to the frequency of disc Fdisc I Numerical descriptor related to the relative size disc w t θ represents an absolute value.

				Notation Significance
	Dataset Anneal Chess German Heart-cleveland 296 95 115 153 214 |D| |I| θ #P 812 89 660 149 331 3 196 75 2 014 155118 1 000 110 350 161 858 Hepatitis 137 68 35 148 289 Kr-vs-kp 3 196 73 2 014 155118	t ∈ [T] Iteration index X t User query R t User-defined feedback on X t F Vector of feature representations of patterns Fdisc Vector of discriminating descriptors of patterns P Pattern description w.r.t (F ∪ Fdisc) disc Discriminating sub-pattern extracted from R t
	Lymph	148 68	48 146 969		
	Mushroom	8 124 112 813 155657		
	Soybean Vote Zoo-1	630 50 435 48 101 36	28 143 519 25 142 095 10 151 806	F w t Fdisc η	Weight vector associated to static features F Weight vector associated to dynamic features Fdisc Regularization parameter
	(a) Dataset Characteristics.	φlogistic Learned logistic function
					(b) Notations.

https://dtai.cs.kuleuven.be/CP4IM/datasets/

Acknowledgements A. Hien and S. Loudni were financially support by the ANR project InvolvD (ANR-20-CE23-0023).

Table 2: Evaluation of the importance of pattern features and comparison of DISPALE-EXP (η = 0.13) with LETSIP and RANKSVM for k = 10. Results are aggregated over all datasets. (1): LETSIP, (2): DISPALE-EXP, (3): RANKSVM. Detailed values of the regret for each dataset and results of DISPALE-LIN are given in [START_REF] Hien | Code and supplementary material[END_REF].