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Abstract: Despite a large and
multifaceted effort to understand
the vast landscape of phenotypic
data, their current form inhibits
productive data analysis. The lack
of a community-wide, consensus-
based, human- and machine-inter-
pretable language for describing
phenotypes and their genomic and
environmental contexts is perhaps
the most pressing scientific bottle-
neck to integration across many
key fields in biology, including
genomics, systems biology, devel-
opment, medicine, evolution, ecol-
ogy, and systematics. Here we
survey the current phenomics land-
scape, including data resources and
handling, and the progress that has
been made to accurately capture
relevant data descriptions for phe-
notypes. We present an example of
the kind of integration across
domains that computable pheno-
types would enable, and we call
upon the broader biology commu-
nity, publishers, and relevant fund-
ing agencies to support efforts to
surmount today’s data barriers and
facilitate analytical reproducibility.

Introduction

Phenotypes, i.e., observable traits above

the molecular level, such as anatomy and

behavior, underlie, and indeed drive,

much of the research in the life sciences.

For example, they remain the primary

data we use to define most species and to

understand their phylogenetic history.

Phenotype data are also used to recognize,

define, and diagnose pathological condi-

tions in plants, animals, and other organ-

isms. As such, these data represent much

of what we know of life and are, in fact,

necessary for building a comprehensive

tree of life [1]. Our observations of

organismal phenotypes also inspire science

aimed at understanding their develop-

ment, functions, evolution, and interac-

tions with the environment. Research in

these realms, for example, has uncovered

phenotypes that could be used to create

antimicrobial materials [2] and efficient

microrobots [3], yield novel approaches

for drug delivery [4], treat the adverse

effects of aging [5], and improve crop

traits [6], among many other applications.

Disease phenotypes, likewise, provoke us

to research their genomic and environ-

mental origins, often through manipula-

tions of model organisms and/or by

exploring the wild populations and ances-

tors, especially in the case of plants. The

gamut of research on phenotype is very

broad, but given the lack of computability

across phenotype data (Fig. 1, bottom

panel), there exists minimal cross-domain

interaction. By not investing in the infra-

structure needed to share phenotype data,

we are missing opportunities for extraor-

dinary discoveries.

Annotation strategies for genomes, in

contrast to phenomes, are well advanced,

with common methodologies, tools, syn-

taxes, and standards for articulating a

precise description of nearly every type of

genomic element [7–12]. Genomic data

are also aggregated into large datasets,

e.g., NCBI [7], EBI [8], DDBJ [9], and

others [10–13]. Researchers lack these

similarly well-established, linked, and con-

solidated resources for describing pheno-

types and the contexts in which they arise,

despite previous calls for more investment

in this area [14–17]. Phenotype data

(Table 1), although abundant and accu-

mulating rapidly—e.g., species descrip-

tions, image databases, analyses of induced

variation, physiological measurements,

whole genome knockout studies, high-

throughput assays, electronic health rec-

ords—are extremely heterogeneous, large-

ly decentralized, and exist predominantly

as free text. Thus, phenotype data are

difficult to locate and impractical to

interpret. In some areas of research, such

as crop genetics and patient care, a great

majority of the phenotype data underlying

published research is not publicly available

[18]. There also exists a divide between

quantitative data and qualitative pheno-

type data, requiring reference measures or

populations and statistical cutoffs to sup-

port interoperability (for example, ‘‘large

head’’ versus a head circumference mea-

surement). Finally, phenotypes change

over time—be it evolutionary time, dis-

ease-course time, or developmental time—

and the timing and ordering of phenotypic

presentation is specific in any given

context yet is rarely communicated. In

short, while phenotype data are as com-

plex, diverse, and nuanced as genomic

data, they have not seen data standardi-

zation and analyses applied with the same

broad strokes as we have seen for geno-

mics.

Nevertheless, a small quantity of phe-

notype data, for a handful of species, is

indeed formalized, such that it can be

reliably searched, compared, and analyzed

computationally (see below). However,

with many disparate approaches to for-

malizing phenotypes, including different

annotation strategies, the use of unrelated

vocabularies, and the use of incomparable

models and formats—these data are not

fully unified or interoperable between

taxa.

Given the latent potential of phenotype

data and the emerging approaches to

representing and computing across phe-

notypes, we members of the Phenotype

Research Coordination Network (Pheno-

type RCN) [19], feel that the time is ripe

for system-wide investment in the devel-

opment of the needed tools and standards.

As described in Box 1, many projects,

sometimes working together but often

independently, have begun building the

foundation. There is now an opportunity

for the large cross-domain phenomics

research community to take advantage of

new technologies for analyzing and man-

aging the vast and diverse landscape of

phenotype data, if attention and resources

are applied to build in a consistent fashion

on the current foundation.

Building a Phenomics Discovery
Environment

How do we develop an environment in

which researchers can readily make dis-

coveries concerning the intimate connec-

tions among phenotypes, environment,

and genetics? Three requirements must
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Fig. 1. How to discover branching phenotypes? (Bottom panel) Phenotype data exhibiting various forms of branchiness are not easily
discerned from diverse natural language descriptions. (A) Bee hairs are different from most other insect hairs in that they are plumose, which
facilitates pollen collection. (B) A mutant of Drosophila melanogaster exhibits forked bristles, due to a variation in mical. (C) In zebrafish larvae (Danio
rerio), angiogenesis begins with vessels branching. (D) Plant trichomes take on many forms, including trifurcation. (Top) Phenotypes involving some
type of ‘‘branched’’ are easily recovered when they are represented with ontologies. In a semantic graph, free text descriptions are converted into
phenotype statements involving an anatomy term from animal or plant ontologies [56,118] and a quality term from a quality ontology [106],
connected by a logical expression (‘‘inheres_in some’’). Anatomy (purple) and quality (green) terms (ontology IDs beneath) relate phenotype
statements from different species by virtue of the logic inherent in the ontologies, e.g., plumose, bifurcated, branched, and tripartite are all subtypes

PLOS Biology | www.plosbiology.org 3 January 2015 | Volume 13 | Issue 1 | e1002033



be met for this vision to become a reality

across large-scale data. First, phenotype

descriptions must be rendered in a com-

putable format, which usually involves the

use of appropriate ontology terms (via

Uniform Resource Identifiers [URIs]) to

represent the phenotypic descriptions

found in narrative text or data sources.

Each bit of text is thereby imbued with

properties and relationships to other terms

(Fig. 1, top panel). Second, these seman-

tically represented phenotype data, which

integrate the phenotypes (Fig. 1, top

panel) across species and also with their

genetic and environmental contexts, must

be stored in a way that is broadly

accessible on the Internet in a nonpropri-

etary format, e.g., in a Resource Descrip-

tion Framework (RDF). The third require-

ment is to grow a set of algorithms that

enable users to analyze the data. That is,

these algorithms combine the logical

connections inherent in the ontologies

with statistical analyses to, for example,

identify similar phenotypes and their

correlations with specific genetic or envi-

ronmental factors.

Examples of systems that have the

potential to transform their fields come

from several domains. For instance, by

computing from natural species pheno-

types to the phenotypes resulting from

gene disruption in model organisms, the

Phenoscape project [20] demonstrated

that genes underlying evolutionarily novel

phenotypes can be proposed for experi-

mental testing [21–23]. Uniting these

previously unlinked data from evolution-

ary and biomedical domains provided a

way to virtually automate the formulation

of evolutionary developmental (evo-devo)

hypotheses. The reinvention of descriptive

taxonomy as a 21st century information

science, likewise, requires computable

phenotypic data and resources [24], in-

cluding those for taxonomy [25] and for

evolutionary biology [26–28]. This process

is an active research focus of the Hyme-

nopteran Anatomy Ontology project [29],

which is developing computational meth-

ods to allow descriptions of species’

phenotypes to be made in explicit and

searchable forms [30,31]. Other successes

have come from linking human disease

phenotypes to annotated genetic data from

model organisms, thus yielding insights

into the genes involved in human disease

[32,33]. Similarly, the Gramene project

[34] developed the plant Trait Ontology

(TO) to annotate the Quantitative Trait

Locus (QTL) [35] for several crop plants,

including rice, maize, and wheat.

Remarkably, and despite their signifi-

cantly different aims, much of the pheno-

typic data that have been amassed through

these projects can be made comparable—

an outcome that until recently would have

been impossible—because each of these

groups shared common ontologies (i.e.,

semantics) and data annotation strategies.

The systems they used are thus logically

interoperable, and the bodies of pheno-

typic data emerging from their work can

be compared and aggregated without

further intervention. For these limited

and domain-specific successes to be

brought to bear more generally, approach-

es to ontology development and data

annotation must be scaled up.

Several hurdles must be overcome.

First, only a small fraction of the pheno-

typic diversity of life is currently repre-

sented in phenotype ontologies. Ontology

development is time-consuming, requires

expert knowledge and community buy-in,

and is ideally paired with data-driven

research that iteratively checks the sound-

ness of the ontology as it simultaneously

seeks discovery. New approaches are

needed to expedite ontology development.

Second, current methods of phenotypic

data annotation are largely manual, thus

requiring substantial resources for person-

nel to translate data from the published

literature into a computable format. Semi-

automated approaches for extracting phe-

notypes and other data from text [36–38]

must be further developed. Though time-

consuming, the transformation of legacy

data in relation to these resources should

be a one-time investment. It is only

possible, however, if current and future

projects co-develop and adopt common

standards, and actively contribute to their

ongoing development and maintenance,

of ‘‘branched.’’ Image credits: bumble bee with pollen by Thomas Bresson, seta with pollen by István Mikó, Arabidopsis plants with hair-like structures
(trichomes) by Annkatrin Rose, Drosophila photo by John Tann, Drosophila bristles redrawn from [119], scanning electron micrograph of Arabidopsis
trichome by István Mikó, zebrafish embryos by MichianaSTEM, zebrafish blood vessels from [120]. Figure assembled by Anya Broverman-Wray.
doi:10.1371/journal.pbio.1002033.g001

Table 1. Finding phenotypes.

Phenotype data source Characteristics Example/Reference

published literature from
biological and biomedical
domains

highly dispersed corpus, mainly digitized, but still in
natural language; contains abundant phenotypes

publisher websites, reviews that summarize important reference
phenotype datasets [79,80]

supplementary data spreadsheets, text files publisher repositories, open repositories (e.g., Dryad [81])

trait databases and large
corpora

relational databases containing free text phenotype
descriptions

phenotype repositories specific to a particular field of study [82],
Biodiversity Heritage Library [83], Encyclopedia of Life [62], Plant
Trait Database [84], morphology databases [85–87]

images annotated with keywords (free text); dispersed across
many databases and repositories; phenotype or genotype
data contained in these images are not computationally
accessible [78].

biodiversity image stores [85–89], patient MRI images, X-rays, bright-
field micrographs, image-bases of plant phenotypes [90]

natural history collections .3,000,000,000 biological specimens worldwide,
some with free text descriptions and associated images

iDigBio [91]

auto-generated data quantitative data from satellite tracking devices,
environmental sensors, and high-throughput
phenotyping processes

National Ecological Observatory Network (NEON) [92], high
throughput [26–28], tracking sensors [93]

The rich legacy of research in the life sciences includes a wealth of phenotype data contained in many sources, for millions of extinct and extant species. Some
important sources of phenotypes date from more than 250 years ago [74–77]. With very few exceptions, phenotype data are not computationally accessible [78].
doi:10.1371/journal.pbio.1002033.t001
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and if researchers avoid practices that may

create errors [39] by writing their descrip-

tions in ambiguous or locally idiosyncratic

ways. Thus we must involve authors,

editors, publishers, and funding agencies

in the entire scholarly communication

process in establishing the needed resourc-

es needed for data interoperability.

Predicting an individual organism’s

phenotypic characteristics based on the

combination of its genetic heritage, devel-

opment, and environmental context is a

challenge for research at the intersection

of the physical and life sciences [40] and is

a driving force behind a major cyberin-

frastructure investment by the United

States National Science Foundation

(NSF) [41]. With focused attention on

the requirements for a phenomics-based

system, we can expedite this goal. Inte-

grating species phenotypes with data

across all levels of the biological hierarchy

is possible if strategies for data manage-

ment are co-developed and coordinated.

Achieving Data Integration

Researchers who attempt to explore

biological data using a multidisciplinary

approach are aware that it is nearly

impossible to integrate comparable data

from multiple species and multiple publi-

cations. We manually assemble an exam-

ple (Fig. 2) of how large-scale availability

of logically structured phenotype descrip-

tions could inform and relate disparate

fields of research and help address this

significant problem. Past efforts, however,

have largely involved manual integration

of limited datasets. In the future, the study

of phenotypic causality will be increasingly

reliant on large and rapidly growing data

stores that can only be effectively searched

with automated or semi-automated meth-

ods. At this juncture, discoveries in many

areas of biology rely on integrating

genomic data with phenotypic data, and

such integration is at an impasse because

of the lack of computable and accessible

phenotypic data within and across species

[42].

Linking Phenotypes to Genomic and
Genetic Variation Data

Given that genomic data are now

relatively inexpensive to collect (approxi-

mately US$5,000 per individual genome

and rapidly approaching US$100 [43]), a

growing number of independent projects

are explicitly linking genetic variants to

related phenotypes at costs upwards of

US$1 million per species genome. For

example, the NCBI databases [7,44]

capture data concerning human variants

related to disease using semantic terms

[45–47]. Large-scale integration of such

variants, including computable descrip-

tions of disease phenotypes in humans,

model and non-model organisms, are

collected and semantically integrated to

help support disease diagnosis and mech-

anism discovery by the Monarch Initiative

[33]. The National Institutes of Health

(NIH) Undiagnosed Disease Program [48]

captures individual patient phenotype

profiles using the Human Phenotype

Ontology (HPO) and submits these phe-

notype data to the database of Genotypes

and Phenotypes (dbGaP) [49] and to

PhenomeCentral [50] to aid patient

matching based on semantic comparisons.

Multiple projects and institutions have

collaborated to develop an approach for

the capture of standardized human path-

ogen and vector sequencing metadata

designed to support epidemiologic and

genotype–phenotype association studies

[51]. The NIH Knockout Mouse Pheno-

typing Program (KOMP2) [52] and the

International Mouse Phenotype Consor-

tium (IMPC) [53] provide both their

quantitative and qualitative phenotype

assay data for the mouse using the

Mammalian Phenotype Ontology (MP)

[54]. Both HP and MP classes (i.e.,

descriptive terms) are linked to upper-level

classes in the UBERON anatomy ontology

[55,56]. Thus, the phenotypes and associ-

ated variations from these autonomous

projects can be compared automatically,

as evident in cross-species resources such

as PhenomeNET [57] and others [58,59].

Similarly, the Gramene project [34] de-

veloped the plant Trait Ontology (TO) to

annotate the Quantitative Trait Locus

(QTL) [35] for several crop plants, includ-

ing rice, maize, and wheat. As noted

above, however, the paths between geno-

type and phenotype are not one-to-one.

Any successful strategy must also account

for environmental contributions, and, as

with phenotypes and genotypes, a well-

structured, consistent means of describing

environmental differences is essential.

Linking Phenotypes to Environment
An organism’s phenotypes result from

the interplay of environment with genetics

and developmental processes. The mean-

ing of ‘‘environment’’ differs according to

biological context. For biodiversity, envi-

ronment refers to the specific conditions

and geographical location in which any

given organism is found. For model

organisms, environment comprises the

experimental perturbations relative to

what is ‘‘normal’’ for an organism of that

time, for example, changes in exposure to

a drug or in the concentration of salt in the

water that serves as an organism’s home.

For epidemiological studies, environment

may refer to features in the physical

proximity, such as to a nuclear plant, or

relate to prior personal behavior, such as a

history of smoking. Although the pheno-

Box 1. Methodologies to Make Phenotypes Computable

The prospects of computable phenotype data have slowly improved over the
past several years, with several domain-specific initiatives yielding results
[21,30,32,94,95] and a larger framework of data integration resources [96–100].
These pioneering projects have achieved several goals: (i) more standardized
measurements of complex phenotypes (e.g., PhenX [101]); (ii) an integrative
phenotype semantic representation (in Web Ontology Language [OWL] [102]) and
its use [103–105] to capture the genetic and environmental context of an
observed phenotype [106]; (iii) an ontology of classes defining the anatomical,
behavioral, and biological function terms and the relevant phenotypic qualities
needed to describe phenotypes effectively in detail; and (iv) algorithms, such as
OWLSim [107,108], combining the logical connections inherent in the ontologies
with statistical analyses to identify phenotypes that are correlated with specific
genetic makeups.

These tools have been used effectively in both the model organism biomedical
and biodiversity domains, for example to discover new genes involved in gene
networks underlying human disease [95,109–111], to prospect for candidate
genes associated with crop improvement using Genome-Wide Association
Studies (GWAS) experiments [112,113], to propose candidate genes for
evolutionary novelties [21], to integrate and organize diverse functional data
[114], to understand the characteristics used to diagnose species [30,31] and,
when combined with systems biology data such as protein–protein interactions
or pathway resources, to augment the analysis used in a clinical setting for
diagnostics [95,115–117]. The use of computable phenotypes is expected to be a
powerful approach to discovery of the genetic contribution to phenotypes, and it
applies across all categories of genetic elements.

PLOS Biology | www.plosbiology.org 5 January 2015 | Volume 13 | Issue 1 | e1002033



Fig. 2. Phenotypes shared across biology. Phenotype data are relevant to many different domains, but they are currently isolated in data ‘‘silos.’’
Research from a broad array of seemingly disconnected domains, as outlined here, can be dramatically accelerated with a computable data store. (A)
Domains: Diverse fields such as evolutionary biology, human disease and medicine, and climate change relate to phenotypes. (B) Phenotypes:
insects, vertebrates, plants, and even forests all have features that are branched in some way, but they are described using different terms. For a
computer to discover this, the phenotypes must be annotated with unique identifiers from ontologies that are logically linked. Under ‘‘shape’’ in the
PATO quality ontology [106], ‘‘branchiness’’ is an encompassing parent term with subtypes ‘‘branched’’ and ‘‘increased branchiness.’’ From left to
right, top layer, insects, vertebrates and plants have species that demonstrate phenotypes for which the genetic basis is not known. Often their
companion model species, however, have experimental genetic work that is relevant to proposing candidate genes and gene networks. Insects (1):
An evolutionary novelty in bees (top layer) is the presence of branched setae used for pollen collection. Nothing is known about the genetic basis of
this feature. One clue to the origin of this evolutionary feature comes from studies of Drosophila (bottom layer), where Mical overexpression in
unbranched wild-type bristles generates a branched morphology [119]. Mical directly links semaphorins and their plexin receptors to the precise
control of actin filament dynamics [119]. Vertebrates (2): In humans, aberrant angiogenesis, including excessive blood vessel branching (top layer), is
one of the six central hallmarks of cancer [121]. Candidate genes have been identified using data from model organisms. In zebrafish (middle layer),
studies of the control of sprouting in blood vessel development show that signaling via semaphorins [122] and their plexin receptors is required for
proper abundance and distribution [123]; disruption of plxnd1 results in increased branching [120,124,125]. In mouse (bottom layer), branching of
salivary glands is dependent on semaphorin signaling [126], as is the branching of various other epithelial organs [127]. Plants (3): The uppermost
canopy of trees of the rainforest (top layer) undergo a marked increase in branching associated with climate change [128]. Nothing is known about
the genetic basis of this feature. The branching of plant trichomes (bottom layer), tiny outgrowths with a variety of functions including seed dispersal,
has been studied in the model Arabidopsis thaliana. Branching occurs in association with many MYB-domain genes [129], transcription factors that
are found in both plants and animals [130]. (C) Environment: Diverse input from the environment influences organismal phenotype. (D) Genes: At
the genetic level, previously unknown associations with various types of ‘‘branchiness’’ between insects and vertebrates are here made to possibly a
common core or network of genes (the semaphorin-plexin signaling network). No association between genes associated with plant branching (Myb
transcription factors) and animal branching is obvious from the literature. Image credit: Anya Broverman-Wray.
doi:10.1371/journal.pbio.1002033.g002
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type data collected in these different types

of environments may at first glance seem

mutually irrelevant, there is, in fact, often

a need to combine them. Exposure to an

environmental toxin, for example, could

similarly affect the phenotype of local flora

and fauna populations and of human

patients, and it could be related to

phenotypic outcomes identified via exper-

iments involving perturbation of the envi-

ronments of model organisms. Neither

environment nor phenotype is a static

entity; both change over developmental

and evolutionary time [15,16]. Very few

efforts have attempted to relate phenotypic

data captured in these varied contexts, in

part due to the vastly different mecha-

nisms by which the environmental vari-

ables and measures are described.

Building blocks to capture these pieces

include the Environment Ontology

(EnvO) [60] and the Exposure Science

Ontology (ExO) [61], which provide

controlled, structured vocabularies de-

signed to enable representation of the

relationships between organisms and bio-

logical samples to their environment.

EnvO has been used by projects as

disparate as the Encyclopedia of Life

[62] and the International Census of

Marine Microbes [63]. It is also one of

the ontologies incorporated into the Ex-

perimental Factor Ontology (EFO) [64]

used for systematic description of experi-

mental variables available in European

Bioinformatics Institute (EBI) databases

[8] and for National Human Genome

Research Institute’s catalog of published

GWAS [65]. Ontologies and associated

tools provide a powerful, rational means

for discovering connections between data

from multiple projects. This potential can

only be realized by reusing and combining

classes from core primary ontologies. This

is the strategy used by numerous successful

cases, such as the EFO’s incorporation of

EnvO and other ontologies, and has dual

benefits. It allows projects to tailor their

ontology to suit their own particular needs,

while retaining the powerful capability to

semantically integrate their data with data

from multiple other projects. This ap-

proach brings convergence, avoids dupli-

cation of effort and enables joint analysis

of combined data.

Remarkable advances are being made

in measuring environmental data, ranging

from fine-scale measurements across the

surface of a leaf to variation across a

planted field to high-resolution environ-

mental layers at a global scale (e.g.,

[66,67]). As environmental data rapidly

accumulate as a result of these new

technologies, now is an opportune mo-

ment to ensure the usability and longevity

of these data by adopting systematic

standards. Towards this end, recent work-

shops funded by NSF [68] and National

Institute of Environmental Health Scienc-

es (NIEHS) [69] brought together diverse

sets of experts to aid in developing

vocabularies and standards for describing

environment.

Recommendations
Recommendation 1

We urge all biologists, data managers,

and clinicians to actively support the

development, evaluation, refinement, and

adoption of methodologies, tools, syntaxes,

and standards for capturing and comput-

ing over phenotypic data and to collabo-

rate in bringing about a coordinated

approach. And we urge university lectur-

ers to introduce their students to these

tools and concepts and integrate them into

the standard basic curriculum in all

relevant fields. The resultant increase in

interoperability will enhance broad access

to large stores of phenotypic data required

or already existing across many areas of

biology. It will accelerate discoveries

across biological domains and increase

significantly the return on the huge past

and present investment made to generate

the data. Although there are daunting

challenges to this critical and enormous

undertaking, its success will increase effi-

ciency, greatly reduce the loss of data and

duplication of effort, and facilitate reuse of

phenotype data [70].

Recommendation 2
We urge publishers to require contribu-

tion of structured phenotype data in

semantic-enabled ways as the technology

is developed, to enable us to compute

beyond the impasse of the free-text

narrative. Moreover, funding agencies

should request appropriate metadata for

phenotypic descriptions, and they should

require that all phenotypic screening made

with their funds result in open and

interoperable data.

Recommendation 3
With the community, conceptual, and

methodological framework falling into

place, the next steps require a new set of

resources for phenotypes, including tools

for the conversion of important legacy

phenotype datasets to the newly estab-

lished computable formats, putting into

place mechanisms to scale up acquisition

of new phenotypes, methods that ensure

appropriate mark-up and deposition of

phenotypic data upon publication [71],

organization of the data into accessible

online resources, new tools to visualize and

analyze the data, and the development of

a comprehensive cross-species and cross-

domain phenotypic resource.

These needs are urgent and reach

across the research spectrum, from under-

standing biodiversity loss and decline, to

interpreting genomes of the new ‘‘non-

model’’ systems that are coming online, to

elevating the health of the expanding

human population. The use of computable

phenotypes is expected to be a powerful

approach to discovery of the genetic

contribution to phenotypes [72,73], and

it applies across all categories of genetic

elements.

Science revolves around gathering facts

and making theories, a repeating cycle of

improvement and increasing knowledge.

In the history of science, the iterative

accumulation of well-integrated facts—

starting with the creation of a common

system of units—has over and over again

determined accelerated growth in scientif-

ic understanding. As our base of pheno-

typic knowledge grows ever larger, it will

only become ever more difficult to navi-

gate and comprehend, without the coor-

dinated improvements in infrastructure

and culture that will expedite scientific

discovery.
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