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Widespread spring phenology effects on 
drought recovery of Northern Hemisphere 
ecosystems

Yang Li    1,2, Wen Zhang3, Christopher R. Schwalm    4, Pierre Gentine    5, 
William K. Smith    3, Philippe Ciais    6, John S. Kimball7, Antonio Gazol    8, 
Steven A. Kannenberg    9,10, Anping Chen    10, Shilong Piao    11, Hongyan Liu    11, 
Deliang Chen    12 & Xiuchen Wu    1,13 

The time required for an ecosystem to recover from severe drought is a 
key component of ecological resilience. The phenology effects on drought 
recovery are, however, poorly understood. These effects centre on how 
phenology variations impact biophysical feedbacks, vegetation growth 
and, ultimately, recovery itself. Using multiple remotely sensed datasets, 
we found that more than half of ecosystems in mid- and high-latitudinal 
Northern Hemisphere failed to recover from extreme droughts within a 
single growing season. Earlier spring phenology in the drought year slowed 
drought recovery when extreme droughts occurred in mid-growing season. 
Delayed spring phenology in the subsequent year slowed drought recovery 
for all vegetation types (with importance of spring phenology ranging from 
46% to 58%). The phenology effects on drought recovery were comparable to 
or larger than other well-known postdrought climatic factors. These results 
strongly suggest that the interactions between vegetation phenology and 
drought must be incorporated into Earth system models to accurately 
quantify ecosystem resilience.

Increasing frequency and severity of extreme droughts can criti-
cally damage the stability and health of terrestrial ecosystems and 
weaken the land carbon sink1–3. The time required for an ecosystem to 
recover from severe drought and return to its predrought functional 
state (hereafter termed drought recovery) is an important component 

of ecosystem resilience4–7. Drought recovery from a single extreme 
drought event, within the growing season, has been widely studied7–10. 
However, interactions between vegetation phenology (the start and 
end of the growing season) and drought timing and intensity have 
been understudied and remain largely unknown (Fig. 1)11–13. Vegetation 
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Here, we quantify the vegetation phenology effects on drought 
recovery over the mid- and high-latitudinal Northern Hemisphere—a 
region with pronounced seasonality and susceptibility to drought21. 
Changes in vegetation greenness caused by droughts are identified by 
satellite observations of normalized difference vegetation index (NDVI; 
1982–2015)22, complemented by two additional independent ecophysi-
ological proxies of vegetation dynamics—contiguous sun-induced 
fluorescence (CSIF; 2001–2015)23,24 and microwave-based vegetation 
optical depth (VOD; 2003–2015)25 (Methods). Extreme drought events 
are defined using the multiscalar standardized precipitation evapo-
transpiration index (SPEI26; Methods). The main objectives are: (1) 
to identify the divergent trajectories in drought recovery (Fig. 1a) 
and (2) to quantify the impacts of vegetation phenology on drought 
recovery (Fig. 1b). We further quantify the role of multiple bioclimatic 
factors, including pre- and postdrought climatic conditions, preceding 
growth status, ecophysiological traits and soil properties in mediating 
the vegetation phenology effects on drought recovery. We test the 
overarching hypothesis that spring phenology has critical effects on 
drought recovery that depends on the timing of drought. Specifically, 
we hypothesize that: (1) an earlier spring phenology in the drought 
year will drive longer drought recovery across vegetation types due to 
the dominant role of seasonal biophysical feedbacks and (2) a delayed 
spring phenology in the subsequent year will postpone vegetation 
growth, resulting in longer drought recovery across vegetation types 
due to the dominant role of biological processes (Fig. 1).

Drought recovery pattern
We first quantified and compared the spatial pattern in the two trajec-
tories of drought recovery: RSGS and RMGS (Fig. 2 and Supplementary 
Fig. 1; Methods). Unexpectedly, our analysis revealed that in ~50% 
(ranging from 45% to 51% among evergreen forests, deciduous for-
ests, shrubs and grasses) of early-growing season extreme drought 

phenology can have crucial effects on drought recovery through bio-
physical mechanisms. For instance, changes in spring phenology drive 
evapotranspiration and thus alter the amount of water available to 
support vegetation growth in subsequent seasons14. Vegetation phenol-
ogy can also impact drought recovery through biological processes, 
whereby changes in spring phenology directly influence the health and 
physiology of vegetation, which mediates the ability of vegetation to 
recover from drought15.

Vegetation phenology effects on drought recovery are probably 
pervasive in the mid- and high-latitudinal Northern Hemisphere, 
where vegetation growth is characterized by a marked phenological 
cycle12,16,17. Drought recovery is sensitive to and dependent on multi-
ple complex and interacting factors including vegetation phenology, 
drought timing and anomalies in seasonal bioclimatic factors. These 
factors impact the overall timing of drought recovery which can occur 
relatively quickly over a single growing season (RSGS) or persist to sub-
sequent growing seasons (within multiple growing seasons) (RMGS) 
(Methods). Vegetation phenology interacts with drought timing and 
thus determines subsequent vegetation growth11,14,15 (Fig. 1). On the 
one hand, spring phenology strongly governs vegetation growth and 
soil water consumption in the growing season11–13,18, thus influenc-
ing drought recovery. On the other hand, changes in temperature 
and snow accumulation (snow water equivalent (SWE)), during the 
non-growing season can directly determine subsequent spring phenol-
ogy through biological processes19,20, thus influencing drought recov-
ery (Fig. 1). Vegetation phenology is already being rapidly impacted by 
climate warming12,21 and factors such as shifting drought seasonality 
are already reshaping the vulnerability of ecosystems to intensified 
extreme drought events to a currently unknown degree. Quantifying 
these complex feedbacks requires a systematic understanding of the 
interactions between vegetation phenology, drought timing, biocli-
matic factors and drought recovery (Fig. 1).
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Fig. 1 | Schematic diagram to quantify drought recovery and the governing 
processes. Two different trajectories of drought recovery (time required for an 
ecosystem to recover to its predrought functional state from extreme drought 
events) were specified depending on the interacting effects of vegetation 
phenology, drought timing and other bioclimatic and soil factors. a, Drought 
recovery can occur within a single growing season (RSGS) or extends to the 
subsequent growing season (drought recovery within multiple growing seasons) 
(RMGS). Under RMGS, the drought recovery is suspended by vegetation dormancy 
and is strongly dependent on climate conditions during the dormancy period. 
Both the climate and vegetation growth conditions in the 6 months preceding 

extreme drought events (predrought) were considered. Drought response lag 
was defined as the duration (months) between the onset of extreme drought 
event and the deepest suppression of vegetation growth induced from the 
drought events. b, Vegetation phenology effects on drought recovery through 
both biophysical and biological effects, interacted with multiple bioclimatic 
and soil factors as well as the drought sensitivity. SOSdrought_year and SOSsubsequent_year 
are the start of growing season in the drought year and the subsequent year, 
respectively, and EOSdrought_year is the end of growing season in the drought year. 
The progression of seasons is from left to right in a and b. Only single extreme 
drought events are considered in this study (Methods).
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events, NDVI-based vegetation greenness did not fully recover to the 
predrought condition within a single growing season (Fig. 2f). This 
percentage increased to more than 60% and 80% when extreme drought 
events occurred in the mid- and late-growing season, respectively (Fig. 
2f). Longer drought recovery was found in central North America, the 
Mediterranean and central Eurasia under both RSGS and RMGS trajectories 
(Fig. 2a–c). Across these regions, mean growing season NDVI, CSIF 
and VOD exhibited consistent and significantly positive correlation 
with mean growing season SPEI over a variety of timescales (Extended 
Data Fig. 1). By contrast, in the northern latitudes (>50° N), in 84% of 
extreme drought events, NDVI-based vegetation greenness recovered 
in <3 months (Fig. 2a). Our analysis further revealed that mean drought 
recovery time decreased with latitude and aridity (Extended Data Fig. 
2 and Supplementary Fig. 2). Consistent spatial patterns in drought 
recovery were also obtained from different definitions of extreme 
drought events using SPEI aggregated over timescales of 1, 6, 9 or 
12 months (Supplementary Fig. 3). Additionally, consistent patterns 
in drought recovery were observed from the independent vegetation 
growth proxies of CSIF and VOD (Extended Data Fig. 3).

Overall, drought recovery following early-growing season 
droughts was on average longer than that following mid- and 
late-growing season droughts. Under RSGS, drought recovery fol-
lowing early-growing season droughts was 0.4 months longer than 
that of mid-growing season droughts (P < 0.05) (Fig. 2d). Under RMGS, 
drought recovery following early-growing season droughts was 0.6 and 
1.8 months longer than that of mid- and late-growing season droughts, 
respectively (P < 0.05) (Fig. 2e). Across vegetation types, drought 
recovery was the longest in deciduous forests compared to evergreen 
forests, grasses and shrubs in early-, mid- and late-growing season 
droughts under both RSGS and RMGS (Fig. 2d,e).

Drivers of drought recovery
We tested the hypothesis that spring phenology had significant effects 
on drought recovery by quantifying the drivers governing drought 
recovery among different vegetation types under both RSGS and RMGS. 
The random forest (RF) models were applied to attribute drought recov-
ery to NDVI-derived vegetation canopy phenology, drought sensitiv-
ity (the dependency of mean growing season NDVI on mean growing 
season drought condition during 1982–2015) and multiple bioclimatic 
and soil factors (Methods). Separate RF models were built for each of 
the eight groups including two recovery modes (RSGS and RMGS) and four 
vegetation types (evergreen forests, deciduous forests, shrubs and 
grasses). The RF models performed well in capturing drought recovery, 
with better performance for RMGS (R2 ranged from 0.86 to 0.90 across 
vegetation types) than for RSGS (R2 ranged from 0.71 to 0.75).

The analyses identified significant but differentiated phenologi-
cal effects on drought recovery among different vegetation types and 
between RSGS and RMGS. For RSGS, in supporting the first hypothesis, 
spring phenology was found to strongly impact drought recovery (Fig. 
3e,g). However, the effect of spring phenology on drought recovery 
displayed a bimodal response: both earlier and delayed spring phe-
nology in drought year postponed drought recovery within a single 
growing season for all vegetation types (Fig. 3e). We further tested 
whether this bimodal pattern was caused by the interaction between 
spring phenology and drought timing. Alternative RF models were 
constructed for each vegetation type under RSGS, while accounting 
for different drought timings. The analyses showed that earlier spring 
phenology during the drought year led to shorter drought recovery 
when extreme drought occurred in the early-growing season but it led 
to longer drought recovery when extreme drought occurred during 
the mid-growing season (Extended Data Fig. 4).
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Fig. 2 | Spatial patterns in drought recovery in mid- and high-latitudinal 
Northern Hemisphere. a–c, The spatial pattern of mean drought recovery 
(months) averaging both RSGS and RMGS (a), drought recovery under RSGS (b) and 
drought recovery under RMGS (c). d,e, Drought recovery in different combinations 
of drought timing with different vegetation types and all vegetated area under 
RSGS (d) and RMGS (e) scenarios. f, Percentage (%) of extreme drought events 
that vegetation growth fails to fully recover within a single growing season for 
different combinations of drought timing and vegetation types. The drought 
recovery from late-growing season drought under RSGS was not considered to 

prevent the inaccuracy possibly caused by insufficient training dataset samples 
(d). Error bars in d and e indicate the 95% CIs of the mean drought recovery. 
Different capital letters in d and e indicate statistical significance (P < 0.05) in 
drought recovery among vegetation types with the same drought timing, while 
different lower-case letters indicate the same vegetation type but different 
drought timing by two-sided Student’s t-test. We grouped extreme drought 
events into early-growing season drought (early-GS), mid-growing season 
drought (mid-GS) and late-growing season drought (late-GS).
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We next tested the second hypothesis that a delayed spring phe-
nology in the subsequent year will postpone drought recovery. For 
RMGS, in support of the second hypothesis, delayed spring phenology 
in the subsequent year consistently delayed drought recovery, while 
earlier spring phenology shortened drought recovery, with impor-
tance of spring phenology ranging from 46% to 58% across vegetation 
types (Fig. 4a,i). Climate conditions during the dormancy period also 
played important roles for RMGS but were less important than spring 
phenology (Fig. 4e,f,i). A negative temperature anomaly during the dor-
mancy period tended to delay drought recovery for all vegetation types  
(Fig. 4f). Interestingly, both negative and positive anomalies in SWE 
led to longer drought recovery, with this effect more prominent in 

deciduous forests and shrubs (with importance of 20% and 19%, respec-
tively) (Fig. 4i). We further found that a longer dormant season was 
associated with shorter drought recovery (Fig. 4d). Negative anomalies 
in precipitation (with importance of 52% and 34%, respectively) and 
positive anomalies in VPD (with importance of 39% and 23%, respec-
tively) during the postdrought period delayed drought recovery under 
both RSGS and RMGS (Figs. 3a,b and 4b,c). Higher mean annual tempera-
ture led to longer drought recovery for both RSGS and RMGS, irrespective 
of vegetation types (Figs. 3d and 4h). However, total precipitation in 
the 6 months preceding extreme drought events and the multiyear 
mean water balance and precipitation only exerted marginal effects on 
drought recovery (Figs. 3g and 4i). We did not find important effects of 
either a drought response lag (the time lag between onset of extreme 
drought and the maximum vegetation growth reduction) or precipi-
tation and VPD during this lag period, on drought recovery for either 
RSGS or RMGS. The interannual variability of mean annual temperature 
and mean annual precipitation also showed no significant effects on 
drought recovery for either RSGS or RMGS (Figs. 3g and 4i).

Finally, we found that the NDVIpre (mean NDVI anomaly in the 
6 months within growing season preceding extreme drought) exerted 
important effects on drought recovery, with more prominent effects in 
RSGS (with importance of 25–31% across vegetation types). For instance, 
negative anomalies in NDVIpre tended to delay drought recovery under 
both RSGS and RMGS (Figs. 3c,g and 4g,i). Soil type (sand fraction) or 
drought sensitivity did not exert significant effects on drought recov-
ery (Figs. 3g and 4i). To test whether these findings were spatially 
dependent, we additionally investigated the relationships between 
drought recovery and different bioclimatic factors across diverse 
combinations of vegetation types and Köppen–Geiger climate zones 
for both RSGS and RMGS. Consistent patterns in the relationships between 
drought recovery and different bioclimatic factors further confirmed 
that our findings were robust and not dependent on climate zones 
(Extended Data Figs. 5 and 6).

Discussion
The findings supported the hypothesis that vegetation phenology 
significantly impacted drought recovery. These impacts were strongly 
dependent on the interplay between vegetation phenology, drought 
timing and vegetation type. The effects of spring phenology on drought 
recovery included biophysical feedbacks, carbon and nutrient allo-
cation and other seasonal biological processes11,12,15. We found that 
earlier spring phenology during the drought year postponed drought 
recovery when extreme drought events occurred in the mid-growing 
season (Extended Data Fig. 4). Earlier spring phenology probably led to 
a longer growing season and enhanced spring vegetation growth, which 
increased evapotranspiration and thus increased the drawdown of soil 
moisture, resulting in progressive water stress11,14,27. Consequently, 
this early-spring phenology-associated biophysical process probably 
caused more negative effects on the water supply for summer and 
autumn, a period when vegetation growth is most sensitive to water 
availability (Extended Data Fig. 7) and thus postponed vegetation 
recovery from mid- and late-growing season drought. This potential 
mechanism was supported by our findings that: (1) vegetation growth 
cannot fully recover from an extreme drought event within a single 
growing season for more than 60% of extreme drought events when 
they occur in the mid-growing season (Fig. 2); and (2) the spring phe-
nology and drought recovery maintained a negative relationship when 
extreme droughts occurred in mid-growing season irrespective of 
vegetation types (Extended Data Fig. 4). Earlier spring phenology could 
also increase the risk of spring frost damage and further deplete the 
carbohydrate storage for woody plants, leading to a negative imbal-
ance in carbon supply for sustaining drought recovery28. By contrast, 
we found that earlier spring phenology during the drought year short-
ened drought recovery, whereas delayed spring phenology length-
ened drought recovery when extreme drought events occurred in the 
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early-growing season (Extended Data Fig. 4). This was probably because 
the effects of spring phenology on vegetation physiology outweighed 
the biophysical effects on drought recovery. Earlier spring phenology 
during the drought year enhanced spring vegetation growth and led 
to stronger positive effects on subsequent vegetation growth15. The 
effects of phenology on soil moisture were probably weaker when 
extreme drought events occur in the early-growing season relative to 
the mid-growing season, due to weaker progressive water consumption 
from the start of spring to the beginning of the extreme drought event.

For drought recovery in the subsequent growing season (RMGS), 
delayed spring phenology in the subsequent year slowed down vegeta-
tion growth and led to longer drought recovery (Fig. 4a,i). This effect 
of spring phenology in the subsequent year appeared to be a major 
process governing drought recovery under RMGS for all vegetation 
types regardless of drought timing (Fig. 4 and Extended Data Figs. 4 
and 8). We further found that climatic factors during the drought year 

only had a marginal effect on spring phenology in the subsequent year 
(Supplementary Text and Extended Data Fig. 8). The direct effects of 
climate anomalies in the drought year on RMGS were much less impor-
tant than the effect of spring phenology in the subsequent year (Fig. 4i 
and Extended Data Figs. 4 and 8). Higher SWE and lower temperature 
in the non-growing season dormancy period further delayed drought 
recovery in the subsequent year (Fig. 4 and Extended Data Fig. 8). This 
finding was consistent with previous studies indicating that more snow 
cover and lower winter temperature were expected to delay snowmelt 
and spring phenology and thus vegetation growth, particularly at high 
latitudes20,29–31. Alternatively, less winter snow cover may decrease soil 
moisture availability and limit vegetation growth, particularly in the 
mid-latitudes32–34. In the mid-latitudes, climate warming had induced 
earlier snowmelt leading to drier soils in the growing season35, thereby 
decreasing vegetation growth and productivity. Additionally, low 
winter temperature would probably expose soil to freezing, which can 
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during dormant period (SWEdorm) (e), mean temperature during dormant period 
(Tempdorm) (f), mean NDVI in 6 months preceding the extreme drought events 
(NDVIpre) (g) and mean annual temperature in period 1982–2015 (MAT, °C) (h). 
Shaded areas of different colours in a–h are the 95% CIs for different vegetation 
types. The bootstrap method was used to compute the average over all the 
predictions of drought recovery and the 95% CI. The y axis in a–h shows the 
drought recovery (months). i, Normalized variable importance (unitless) for 

the drought recovery of different vegetation types. Four kinds of vegetation 
types were considered and compared, including evergreen forests, deciduous 
forests, shrubs and grasses (Methods). Precippre, total precipitation in 6 months 
preceding the extreme drought events; SOSdrought_year, the start of growing 
season of drought year; MAP, mean annual precipitation; PrecipCV, coefficient 
of variation of mean annual precipitation; TempCV, coefficient of variation of 
mean annual temperature; VPDpre, mean VPD in 6 months preceding the extreme 
drought events; Preciplag, total precipitation during the drought response lag 
period; and VPDlag, mean VPD during the drought response lag period. Numbers 
in the legend indicate the sampling size. z-scores were calculated for Precippost, 
VPDpost, SWEdorm, Tempdorm, NDVIpre, Precippre, VPDpre, Preciplag and VPDlag before 
the RF analysis.
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prevent infiltration of snowmelt water and reduce spring and summer 
soil moisture supply. This reduction in spring and summer soil moisture 
in turn reduced vegetation growth and postponed subsequent growing 
season drought recovery. Low winter temperature could also increase 
frost injury thus reducing vegetation growth in the subsequent grow-
ing season36.

There was an important role of preceding growth condition on 
drought recovery (Figs. 3c and 4g). As expected, this effect was more 
prominent in woody plants (forests and shrubs), particularly when 
drought recovery extended into the subsequent growing season (Fig. 
4g). On the one hand, more favourable preceding growth conditions 
were normally associated with higher drought resistance37,38. On the 
other hand, favourable preceding growth conditions could increase 
plant photosynthesis and produce more non-structural carbohydrates, 
which provided a vital carbon resource supporting more rapid vegeta-
tion postdrought recovery39–41. Better preceding growth condition could 
also stimulate root growth which can aid vegetation access to deeper 
groundwater resources and shorten drought recovery42. Divergent 
effects of preceding growth conditions on drought recovery among 
different vegetation types (Fig. 4g) were probably associated with the 
difference in anatomical structures of plant organs and the seasonal 
dynamics of non-structural carbohydrates. Nevertheless, the physi-
ological basis of these divergent effects remained poorly understood.

The analyses further revealed that vegetation phenology effects 
were compounded by high temperatures. More specifically, increased 
mean annual temperature was significantly associated with a slowdown 
of drought recovery (Figs. 3d and 4h). This was probably due to the 
negative impacts of higher temperatures on plant water availability, 
which can lead to significant reductions in vegetation growth43. This 
finding implied that a projected future warmer climate could intensify 
the effects of spring phenology on vegetation recovery from extreme 
droughts, which were increasing in both frequency and severity21.

Although some studies indicated that the interannual climate vari-
ability may reshape the climate sensitivity of vegetation growth44,45, we 
did not observe significant effects of interannual variability of tempera-
ture and precipitation on drought recovery. We also did not find that 
drought sensitivity or drought response lags impacted drought recov-
ery (Methods), although vegetation with higher drought sensitivity 
and shorter drought response lags was mainly distributed in warm dry 
regions (Extended Data Figs. 1 and 9) that were more subject to reduced 
levels of soil water availability and more vulnerable to drought6,46.

In summary, we reported two different trajectories in drought 
recovery, one occurring within a single growing season and another 
where recovery persists to the subsequent growing season. It showed 
that vegetation growth could not fully recover within a single growing 
season for more than 50% of extreme drought events. These findings 
highlighted crucial vegetation phenology effects on drought recov-
ery, particularly emphasizing the important ramifications of shifts 
in spring phenology on drought recovery in the subsequent year. We 
highlighted that the importance of vegetation phenology effects on 
drought recovery was comparable to, or even larger than, other more 
well-known pre- and postdrought climatic factors. These findings 
added new insights toward better understanding terrestrial ecosys-
tem resistance and resilience to extreme climate events. We further 
highlighted that the interactions between vegetation phenology and 
drought needed to be well represented in Earth system models to bet-
ter predict the future trajectories of terrestrial ecosystems in a more 
extreme climate regime.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-022-01584-2.
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Methods
Vegetation growth proxies
Three complimentary vegetation growth proxies were used to quan-
tify drought recovery, including the NDVI as a measure of vegetation 
greenness, CSIF as a metric of photosynthesis and microwave-based 
VOD as a measure of canopy biomass change. The third-generation 
NDVI, derived from the advanced very high-resolution radiometer 
(AVHRR), is provided by the Global Inventory Modelling and Map-
ping Studies group (GIMMS NDVI3g; https://climatedataguide.ucar.
edu/climate-data/ndvi-normalized-difference-vegetation-index
-3rd-generation-nasagfsc-gimms). The biweekly GIMMS NDVI3g 
has a spatial resolution of 0.083° and covers 1982–2015. For GIMMS 
NDVI3g, errors and noise effects have been corrected for inconsisten-
cies resulting from atmospheric aerosols, sensor degradation, orbit 
drift, cloud contaminations, solar zenith angle, viewing angle effects 
due to satellite drift and volcanic aerosols22,47. GIMMS NDVI3g data 
have been widely used in monitoring changes in vegetation activ-
ity48,49, vegetation phenology50,51 and productivity52 both regionally 
and globally. Regions with multiyear mean annual NDVI values <0.2 
during 1982–2015 were discarded from the final analyses. The global 
gridded CSIF dataset was obtained from https://osf.io/8xqy6/ (ref. 53). 
The CSIF dataset was trained by a machine learning approach based 
on surface reflectance from the moderate resolution imaging spec-
troradiometer (MODIS) aiming at reproducing SIF from the Orbiting 
Carbon Observatory-2. Two products are available, including clear-sky 
instantaneous SIF and the all-sky daily SIF. In this study, we used the 
all-sky daily SIF product, which covers 2000–2016 and has a 0.05° 
spatial resolution and 4 d temporal resolution. The microwave-based 
VOD data are an indicator of total vegetation water content in above-
ground biomass and thus strongly connect to aboveground biomass, 
especially at seasonal timescales25. VOD is derived using microwave 
remote sensing and is thus mostly independent from the vegetation 
proxies based on visible and near-infrared remote sensing. The VOD 
is less affected by sun illumination and atmospheric effects than are 
optical vegetation indices, such as NDVI. The VOD is also sensitive to 
vegetation phenology54 and has been used to investigate soil mois-
ture and drought-related impacts on vegetation growth25,55,56. In this 
study, the X-band (10.7 GHz) VOD was obtained from the advanced 
microwave scanning radiometer (AMSR) land parameter data record 
(LPDR, v.2, http://files.ntsg.umt.edu/data/LPDR_v2/)56. The LPDR was 
generated using calibrated, multifrequency daily brightness tem-
perature retrievals from the AMSR for end of growing season (EOS) 
(AMSR-E, 2003–2010) and AMSR2 (2013–2015). The resulting LPDR 
dataset provides a long-term ( June 2002–December 2015) gridded 
VOD record with a daily temporal resolution and a spatial resolution 
of 0.25°. In this study, we analysed VOD data during 2003–2015. The 
three vegetation growth proxies were resampled into a spatial resolu-
tion of 0.5° to match the other datasets.

Climate, drought and soil datasets
Gridded monthly climate data for the period 1982–2015 were obtained 
from the Climatic Research Unit (CRU TS4.02, http://www.cru.uea.
ac.uk/cru/data/hrg/), including precipitation (Precip), temperature 
(Temp) and potential evapotranspiration (PET) at a spatial resolu-
tion of 0.5° (ref. 57). The vapour pressure deficit (VPD) was calculated 
based on the CRU climate datasets, following the method of Wu et al.7. 
The gridded monthly SWE during 1982–2015 with a spatial resolution 
of 25 km was obtained from the European Space Agency (ESA) Glob-
Snow dataset (https://www.globsnow.info/). GlobSnow combines SWE 
retrieved from multisatellite microwave observations with forward 
snow emission model simulations and ground-based weather station 
observations for non-mountainous regions of the Northern Hemi-
sphere. Because of the improved accuracy achieved by assimilating 
independent sources of information, this is considered the best SWE 
product currently available for climate analysis58.

The SPEI59 was used as a drought metric in this study. SPEI is a 
simple and physiologically relevant drought index based on a water 
budget (difference between potential evapotranspiration and pre-
cipitation), which makes it more relevant to ecosystem water stress 
than meteorological drought indices based only on precipitation 
and temperature26. Besides, its multiscalar characteristics represent-
ing temporally lagged (for example, 1–24 month) integration times 
(for example, 3 month SPEI integrates water status over the previ-
ous 3 months) enable identification of different drought types and 
impacts48. Here, gridded monthly SPEI in the period 1982–2015 with 
a spatial resolution of 0.5° was extracted from the Global SPEI data-
set (https://spei.csic.es). In our main analyses, we defined extreme 
droughts using SPEI at timescale of 3 months (SPEI3) because vegeta-
tion growth in the Northern Hemisphere responds predominantly 
to SPEI within timescales of 2–4 months7,48. The findings derived 
from different definitions of extreme droughts using SPEI at time-
scales of 1, 6, 9 and 12 months were further compared. Gridded 
soil sand content data were obtained from the Harmonized World 
Soil Database v.1.2 (https://www.fao.org/soils-portal/data-hub/
soil-maps-and-databases/harmonized-world-soil-database-v12/
en/)60. This database has 30 arcsec spatial resolution and >15,000 dif-
ferent soil mapping units that combine existing regional and national 
updates of soil information worldwide.

Climate zones and vegetation types
Six major climate zones were defined from the Köppen–Geiger climate 
classification61, including arid (AR), warm dry (WD), warm humid (WH), 
cold dry (CD), cold humid (CH) and polar regions (Supplementary 
Table 1 and Supplementary Fig. 4). The classifications of four vegeta-
tion types, including evergreen forests, deciduous forests, shrubs and 
grasses, are based on the GLC 2000 land use/land cover dataset from 
the European Commission Joint Research Center (https://forobs.jrc.
ec.europa.eu/products/glc2000/glc2000.php). The land cover map 
discriminates 17 land cover types on the basis of the IGBP (International 
Geosphere–Biosphere Programme) classification scheme. In this study, 
the evergreen broadleaf forests and evergreen needleleaf forests were 
grouped into a single ‘evergreen forests’ class; and the deciduous 
needleleaf forests and deciduous broadleaf forests were grouped 
into a ‘deciduous forests’ class. The categories of closed shrublands, 
open shrublands, woody savannas and savannas were grouped into a 
single ‘shrubs’ class. Grasslands are denoted as ‘grasses’. The regrouped 
vegetation map was further resampled to a 0.5° spatial resolution to 
match the other datasets (Supplementary Fig. 4).

Vegetation phenology
The HANTS-Maximum method was applied to filter and interpolate the 
biweekly NDVI into daily time series62. Then, a threshold-based method 
was used to retrieve the start of growing season (SOS) and the end of 
growing season (EOS). This method has been widely used and proven 
to be an effective tool to capture the vegetation phenology at large 
scale63,64. In this study, the analyses were concentrated on regions with 
a single growing season occurring in each calendar year, featured by 
a nearly normal NDVI distribution with a summer peak. Therefore, we 
first discarded pixels having multiple growing seasons occurring in a 
single year or without clear phenological cycles. Then, we extracted 
the SOS and EOS dates for each pixel using a pixel-specific threshold 
of minimum value plus 30% of the seasonal amplitude fitting for mul-
tiyear averaged smoothed NDVI24 (Supplementary Fig. 5). The growing 
season was then defined as the period from SOS to EOS for each pixel. 
The mid-growing season (mid-GS) was defined as the two consecu-
tive months with the largest NDVI value but occurring no earlier than 
April or later than October15. The early-growing season (early-GS) was 
defined as the period from the month when SOS occurred to the begin-
ning of the mid-GS and the late-growing season (late-GS) is defined as 
the period from the end of the mid-GS to the EOS. The dormant season 
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was defined as the period from the EOS of the current year to the SOS 
of the next year. Overall, about 81% (NDVI-based) of vegetated land was 
analysed following this screening process.

Identification of drought events
An extreme drought event is defined as a period with SPEI3 < −2 and 
reduced vegetation greenness and productivity (lower average NDVI 
during drought period than the long-term mean value in the period 
1982–2015) in early-GS, mid-GS and late-GS, respectively. An extreme 
drought event ends when SPEI3 > −2 (ref. 4). Only single extreme drought 
events within one growing season are considered in this study to avoid 
longer legacy effects on recovery from repeated extreme climate 
events65; another extreme climate event (either extreme drought or 
extreme wetness) occurring within 4 yr before and after a given drought 
event was not included in this analysis. Extreme drought events were 
alternatively defined by the SPEI at timescales of 1, 6, 9 and 12 months. 
The drought recovery from different extreme drought definitions 
using SPEI at a variety of timescales was then quantified and compared.

Drought response and drought recovery
The drought response was quantified by two parameters: drought 
response lag and drought sensitivity. Drought response lag was meas-
ured by the duration (months) between the minimal SPEI3 anomalies 
and the deepest suppression of NDVI induced from the drought events. 
Drought sensitivity was determined by the Pearson’s correlation coef-
ficient between mean growing season NDVI and SPEI3 in the period 
1982–2015. Both drought response lag and drought sensitivity were 
included into the RF model to quantify their effects on drought recov-
ery. Pearson’s correlation analysis was additionally performed to evalu-
ate the responses of seasonal mean NDVI to SPEI3 in early-, mid- and 
late-GS. The seasonal mean NDVI and SPEI3 were linearly detrended 
before the Pearson’s correlation analysis.

Drought recovery is defined as the duration (months) starting 
from the month with the deepest suppression of NDVI to the month 
when NDVI returns to within 95% of the long-term average baseline. The 
monthly SPEI3 and NDVI time series were first smoothed by a 3 month 
forward moving window. They were then sequentially deseasonalized 
and linearly detrended. The multiyear mean value of the detrended 
NDVI in the period 1982–2015 was calculated as the long-term average 
baseline for each pixel. Thus, at each pixel, there is a location-specific, 
stationary baseline for the whole period 1982–2015. In this study, two 
different drought recovery trajectories were identified, including: (1) 
vegetation recovering in the same year of a drought event and before the 
dormant season (RSGS); and (2) vegetation recovery extending through 
the dormant season and into subsequent year (RMGS; Fig. 1a and Supple-
mentary Fig. 1). To avoid lengthening the drought recovery duration due 
to algorithm design, in the RMGS, the drought recovery was calculated as 
the total length of the recovery period minus the length of the dormant 
season. Severe drought events and subsequent drought recovery were 
pixel specific and calculated for every combination of NDVI and SPEI3. 
Only drought and recovery events that were fully contained in the period 
1982–2015 were analysed. The drought recovery derived from CSIF and 
VOD using the same protocol was additionally compared (Extended Data 
Fig. 3). The comparison of three different vegetation metrics allows for 
validating the NDVI-based findings and confirming whether the drought 
recovery patterns are consistent for different vegetation proxies.

Factors affecting drought recovery
Separate RF models were built for attributing drought recovery to 
vegetation phenology, different bioclimatic and soil factors under 
either RSGS (with sample size of 29,614 events) or RMGS (with sample size 
of 42,733 events). For drought recovery under RSGS, 15 variables were 
included as predictive factors. These factors can be stratified into four 
groups representing unique processes and properties. First, the start of 
the growing season in the drought year (SOSdrought_year) was introduced 

into the model to capture the spring phenology effects on drought 
recovery. Second, multiple climatic variables during the predrought 
period, drought response lag period and postdrought recovery period 
were considered, including the precipitation (Precippre, Preciplag and 
Precippost, respectively) and mean VPD (VPDpre, VPDlag and VPDpost, 
respectively). The mean NDVI anomaly in the 6 months within growing 
season before an extreme drought event (NDVIpre) was also included 
in the model. Moreover, the effects of long-term climate conditions 
were considered, including mean annual precipitation (MAP), mean 
annual temperature (MAT) and the multiyear mean water balance 
(calculated as mean annual precipitation minus mean annual potential 
evapotranspiration) and the variance of hydroclimatic conditions, 
including the coefficient of variation (CV) of annual precipitation 
(PrecipCV) and annual temperature (TempCV) in the period 1982–2015. 
Third, drought sensitivity, which capture the response of vegetation 
growth to drought, were also included into the final model. Fourth, the 
soil sand content was incorporated. For the drought recovery under 
RMGS, we additionally considered the effects of SOS in the subsequent 
year (SOSsubsequent_year), the length of dormant period (dormant length), 
the SWE and the mean temperature (Tempdormant) in the dormant period 
and drought response lag. Anomalies in these bioclimatic variables 
in different periods corresponding to individual extreme drought 
event were calculated on the basis of the deseasonalized and linearly 
detrended series.

Three complementary approaches were used to determine which 
factors were most important for drought recovery. First, the Pearson’s 
correlation between explanatory variables and the drought recovery 
was calculated. Second, to avoid multicollinearity among the variables, 
a matrix of pairwise correlation was calculated and any variable with 
high correlation (R > 0.5) with other predictor variables was removed. 
Each pairwise correlation was performed and the variable with the 
lower correlation with the dependent variable was removed. Finally, 
the RF model was applied to estimate the importance of each explana-
tory variable.

The RF extends the standard classification and regression tree 
(CART) method by creating a collection of classification trees through 
binary divisions66,67. Here, we defined that each RF had 500 binary trees 
with one covariate chosen at random from the full set to determine 
the splitting rule, with a minimal terminal node size of 5. With the RF 
mode, variable importance ranking was also calculated by the permuta-
tion importance method. Permutation feature importance is a model 
inspection technique used for any fitted models, which is especially 
useful for nonlinear models. The importance of permutation features 
is defined as the decrease in the model accuracy when a single feature 
value is randomly scrambled. The larger the decrease after the permuta-
tion, the greater the importance of this variable in the forest and in the 
prediction accuracy68. The response function of drought recovery to 
each individual factor independent of other covariates is shown as a 
partial dependent plot. Partial dependence gives the marginal effect of 
a covariate on the response variable. The bootstrap method was used 
to compute the average over all the predictions of drought recovery 
and the 95% confidence interval (CI).

Data availability
All gridded vegetation growth proxies and climate data are 
freely accessible at the following websites: the GIMMS NDVI3g,  
https://climatedataguide.ucar.edu/climate-data/ndvi-normalized- 
difference-vegetation-index-3rd-generation-nasagfsc-gimms; the grid-
ded contiguous SIF dataset, https://osf.io/8xqy6/; the microwave-based 
VOD data, http://files.ntsg.umt.edu/data/LPDR_v2/; the gridded 
monthly temperature, precipitation, VPD and potential evapotran-
spiration data, http://www.cru.uea.ac.uk/cru/data/hrg/; the gridded 
monthly SWE data, https://www.globsnow.info/; and the SPEI data, 
https://spei.csic.es/. The world map of Köppen–Geiger climate classi-
fication was freely obtained from http://koeppen-geiger.vu-wien.ac.at/
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present.htm. The global vegetation map GLC 2000 was freely accessible 
from https://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php. 
The gridded soil sand content data were obtained from the Harmonized 
World Soil Database v.1.2, https://www.fao.org/soils-portal/data-hub/
soil-maps-and-databases/harmonized-world-soil-database-v12/en/. 
The shapefile of the world continents was publicly obtained from 
https://hub.arcgis.com/datasets/esri::world-continents/about. Source 
data are provided with this paper.

Code availability
All codes69 used to analyse data and create figures are avail-
able through the GitHub at https://github.com/leeyang1991/
phenology-effects-on-drought-recovery.
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Extended Data Fig. 1 | Spatial pattern in the Pearson’s correlation coefficient 
between mean growing season NDVI (1982–2015), CSIF (2001–2015) and VOD 
(2003–2015) and mean growing season SPEI at a variety of timescales. The 
growing season is determined specifically by a threshold-based method applied 

to the NDVI time-series data at each pixel (see Methods). The results derived  
from SPEI at timescales of 3- (SPEI3), 6- (SPEI6), 9- (SPEI9), and 12-months (SPEI12) 
are displayed.
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Extended Data Fig. 2 | Drought recovery as a function of aridity index over 
the mid- and high-latitudinal Northern Hemisphere. Aridity index (AI) is 
calculated as the ratio of annual total precipitation to annual total potential 
evapotranspiration using the gridded climate data of CRU TS4.02 (http://www.
cru.uea.ac.uk/cru/data/hrg/). The spatial pattern in the multiyear mean aridity 
index in the period of 1982–2015 was shown in a. The relationship between 
drought recovery (averaging of both of that within a single growing season and 
that within the subsequent growing season) and multiyear mean aridity index in 

the mid- and high-latitudinal Northern Hemisphere was shown in b. Blue bars in 
b denote the percentage of area with corresponding AI interval to the total study 
region. Shaded area in b indicates the 95% confidence interval for the average 
drought recovery in different AI bins. According to the classification of UNEP 
(1992), areas with AI > 0.6, 0.65-0.5, 0.5–0.2, 0.2–0.05, and < 0.05 are defined as 
humid region, sub-humid region, semi-arid region, arid region, and hyper-arid 
region, respectively.
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Extended Data Fig. 3 | Spatial pattern in drought recovery derived from 
different vegetation growth proxies. Extreme drought events are defined 
by the Standardized Precipitation Evapotranspiration Index (SPEI) at 3-month 
timescale. Three kinds of functionally independent vegetation growth proxies 

are compared, including normalized difference vegetation index (NDVI) (a), 
contiguous solar-induced chlorophyll fluorescence (CSIF) (b) and vegetation 
optical depth (VOD) (c).
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Extended Data Fig. 4 | Contributions of different factors to the drought 
recovery. Contribution of different factors was estimated by random forest 
models dependent on drought timing and vegetation types for drought recovery 
occurring within a single growing season (a, RSGS) or within the subsequent 
growing season (b, RMGS), respectively. Red and blue colours in a and b indicate 
positive and negative correlation coefficients between predicting variables and 
drought recovery, and darker colours indicate stronger correlation. Only factors 
with contribution >2% (averaged contribution of all factors) are displayed. The 
predrought period represents the six months preceding the extreme drought 
events. We did not consider the vegetation recovery under late-growing season 
drought for the RSGS scenario, to prevent the problem of overfitting caused 
by insufficient training dataset samples. We regrouped the extreme drought 
events into early-growing season (Early-GS) droughts, mid-growing season 
(Mid-GS) droughts, and late-growing season (Late-GS) droughts. Four kinds 

of vegetation types were considered, including evergreen forests (Evergreen), 
deciduous forests (Deciduous), shrubs, and grasses. A variety of bioclimatic and 
edaphic factors were introduced into this analysis, including start of growing 
season of drought year (SOSdrought_year), start of growing season of subsequent 
year (SOSsubsequent_year), total precipitation in preceding drought period (Precippre), 
postdrought period (Precippost) and drought response lag period (Preciplag), 
vapour pressure deficit in preceding drought period (VPDpre), postdrought 
period (VPDpost), and drought response lag period (VPDlag), NDVI during 
preceding drought period (NDVIpre), dormant length, mean temperature and 
snow water equivalent during dormancy period (Tempdorm and SWEdorm), both 
mean values and variability of mean annual temperature (MAT and TempCV) and 
mean annual precipitation (MAP and PrecipCV), multiyear mean water balance, 
drought sensitivity, drought response lag, as well as sand fraction.
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Extended Data Fig. 5 | Relationship between drought recovery within a 
single growing season and different bioclimatic factors across different 
combinations of climate zones and vegetation types. Four different kinds 
of vegetation types were considered, including evergreen forests (Evergreen), 
deciduous forests (Deciduous), shrubs and grasses. In this analysis, we divided 
our study region into six major Köppen–Geiger climate zones, including 
arid (AR), warm humid (WH), warm dry (WD), cold humid (CH), cold dry (CD) 
and polar regions (Table S1). Lines in a-f are the linear fits. Error bars for each 
data point in a-f represent the standard deviations of the data in different 

combinations of climate zones and vegetation types. Grey shaded areas in a-f 
represent the 95% confidence intervals for the linear fits. The sample number 
is 24 for each linear fit. Six important factors were considered in this analysis, 
including total precipitation in the postdrought recovery period (Precippost), the 
mean vapour pressure deficit in both postdrought recovery period (VPDpost) and 
drought response lag period (VPDlag), the mean NDVI in six months preceding the 
extreme drought (NDVIpre), mean annual temperature (MAT, °C) and the start of 
growing season in drought year (SOSdrought_year, days).
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Extended Data Fig. 6 | Relationship between drought recovery within 
the subsequent growing season and different bioclimatic factors across 
different combinations of climate zones and vegetation types. Four 
different kinds of vegetation types were considered, including evergreen 
forests (Evergreen), deciduous forests (Deciduous), shrubs and grasses. In this 
analysis, we divided our study region into six major Köppen–Geiger climate 
zones, including arid (AR), warm humid (WH), warm dry (WD), cold humid (CH), 
cold dry (CD) and polar regions (Table S1). Lines in a-h are the linear fits. Error 
bars for each data point in a-h represent the standard deviations of the data in 

different combinations of climate zones and vegetation types. Grey shaded 
areas in a-h represent the 95% confidence intervals for the linear fits. The sample 
number is 24 for each linear fit. Eight important factors were considered in this 
analysis, including the start of growing season of subsequent year (SOSsubsequent_

year, days), total precipitation (Precippost) and mean vapour pressure deficit 
during postdrought period (VPDpost), dormant length (days), mean snow water 
equivalent (SWEdorm) and temperature during dormancy period (Tempdorm), the 
mean NDVI in six months preceding the extreme drought events (NDVIpre), and 
mean annual temperature (MAT, °C).
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Extended Data Fig. 7 | Spatial pattern in the Pearson’s correlation coefficient between seasonal mean NDVI and the SPEI at the 3-month timescale (SPEI3) in 
different seasons. The correlation coefficients between the seasonal mean NDVI and the SPEI3 were calculated in a) early-growing season, b) mid-growing season and 
c) late-growing season.
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Extended Data Fig. 8 | Structural equation model for the direct and indirect 
effects of climate variations in preceding periods on the subsequent drought 
recovery. The direct effects of climate anomalies during drought year (including 
mean temperature, Tempdrought_year, total precipitation, Precipdrought_year, and mean 
vapour pressure deficit, VPDdrought_year), during the dormant period (including 
the mean temperature, Tempdormant, and snow water equivalent, SWEdormant), 
and during the spring of the subsequent year (including mean temperature, 
Tempsubsequent_year_spring, and total precipitation, Precipsubsequent_year_spring), on drought 
recovery within the subsequent growing season were considered. The indirect 
effects of Tempdrought_year, Precipdrought_year, VPDdrought_year, Tempdormant, and SWEdormant 

on the spring phenology of subsequent year and then the drought recovery 
was considered. The arrows indicate the hypothesized direction of causation, 
with positive and negative relationships in blue and red, respectively. Coloured 
lines represent significant (p < 0.05) relationships by the two-sided t-test. 
Line thickness is proportional to the strength of the relationship and to the 
standardized path coefficients adjacent to each arrow. We used the χ2 test (and 
associated p values), goodness-of-fit index (GFI), an adjusted goodness-of-fit 
index (AGFI), and the root mean square error of approximation (RMSEA), to 
evaluate the fit of the established structural equation model. The SEM model is 
with a χ2 = 0.002, RMSEA = 0.000, GFI=1.000, and AGFI=1.000.
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Extended Data Fig. 9 | Distribution of drought sensitivity and the response 
lag in the hydrothermal space for different vegetation types. The 
hydrothermal space is characterized by the mean annual temperature (MAT, °C) 
and precipitation (MAP, mm) in the period of 1982–2015. Drought sensitivity 
was determined by the Pearson’s correlation coefficient between mean growing 

season NDVI and SPEI at timescale of 3 months. Drought response lag was 
measured by the duration (months) between the minimal SPEI3 anomalies and 
the deepest suppression of NDVI induced from drought events. Four different 
kinds of vegetation types were considered, including evergreen forests 
(Evergreen), deciduous forests (Deciduous), shrubs and grasses.
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