Camille Gobert
email: gobert@lri.fr

Projeter les Langages Informatiques pour une Interaction Sémantique Projecting Computer Languages for a Semantic Interaction

Keywords: CCS CONCEPTS, Human-centered computing → User studies, Graphical user interfaces, • Software and its engineering → General programming languages, • Applied computing → Markup languages Computer language, Semantic interaction, Projection, i-L A T E X, Lorgnette

Despite its limitations, our interaction with computer languages is still based mostly on their syntax. In my Ph.D., I study the interaction with their semantics, i.e., with the concepts expressed using these languages, through alternative representations I call projections. I critique the current design paradigms of the latter and motivate, develop and evaluate new approaches by using a user-centred design methodology that I apply to document description languages and programming languages.

MOTS CLÉS

Langage informatique, Interaction sémantique, Projection, i-L A T E X, Lorgnette

INTRODUCTION

L'avènement du numérique a rendu les langages informatiques omniprésents. Un langage informatique est ici défini en tant que système symbolique doté de règles de composition de symboles qui, par opposition à un langage dit naturel, est compréhensible par une machine dans un contexte particulier. Cette définition inclut par exemple les langages de programmation tels que JavaScript et Python, qui font partie des langages les plus utilisés par les développeurs dans le monde, 1 ainsi que les langages 1. C'est ce que montrent deux analyses parues en 2022 : l'une des dépôts de la plateforme GitHub (https://octoverse.github.com/) ; l'autre d'un sondage de la communauté des utilisateurs du StackOverflow (https://survey. stackoverflow.co/2022/). de description de document tels que L A T E X pour les productions scientifiques [START_REF] Reis | Merging SaaS Products In A User-Centered Way -A Case Study of Overleaf and ShareLaTeX[END_REF] et Markdown pour le web [START_REF] Conlen | Idyll : A Markup Language for Authoring and Publishing Interactive Articles on the Web[END_REF]. Ces langages occupent désormais une place importante dans l'industrie, sont exploités par des artistes [START_REF] Mclean | Artist-Programmers and Programming Languages for the Arts[END_REF], et sont en voie de devenir des connaissances courantes attendues de tous, comme en atteste l'enseignement de Python au lycée au France. 2 Afin d'interagir avec ces langages, de nombreux 2. C'est officiellement le cas depuis l'introduction de l'enseignement de l'informatique au lycée en 2019 (https://www.education.gouv.fr/ bo/19/Special1/MENE1901641A.htm). environnements d'édition ont été conçus. On peut distinguer deux grands paradigmes d'interaction dans les techniques qu'ils mettent en oeuvre : l'interaction syntaxique et l'interaction sémantique. Interaction syntaxique. L'interaction syntaxique implique d'interagir avec les concepts du langage lui-même, tels que ses symboles et les structures que ceux-ci forment. C'est le paradigme employé par les éditeurs textuels, les éditeurs structurés tels que le Cornell program synthesizer [START_REF] Teitelbaum | The Cornell Program Synthesizer : A Syntax-Directed Programming Environment[END_REF], ainsi que des systèmes hybrides tels que Stride [START_REF] Kölling | Frame-Based Editing[END_REF] qui combinent l'édition textuelle et la manipulation de structures syntaxiques. Les variantes textuelles de ce paradigme le rendent générique et adapté à des technologies qui perdurent (claviers, utilitaires Unix), tandis que les variantes structurées permettent aux utilisateurs de se prémunir des erreurs de syntaxe.

3. Je propose d'emprunter ce terme aux éditeurs projectionnels [START_REF] Simonyi | Intentional Software[END_REF] -dans lesquels l'utilisateur manipule directement les noeuds de l'arbre de syntaxe qui peuvent être représentés (« projetés ») de manière arbitraire -afin de désigner un concept dont la littérature en IHM fait défaut. Les concept de notation auxiliaire [START_REF] Thomas | Cognitive Dimensions of Notations[END_REF], d'augmentation du code [START_REF] Sulír | Visual Augmentation of Source Code Editors : A Systematic Mapping Study[END_REF] et de flexibilité code/interface graphique [START_REF] Beth Kery | Mage : Fluid Moves Between Code and Graphical Work in Computational Notebooks[END_REF] sont trop généraux ou imprécis, tandis que ceux de « patch » [START_REF] Mclean | Artist-Programmers and Programming Languages for the Arts[END_REF], « palette » [START_REF] Omar | Active Code Completion[END_REF], « codelet » [START_REF] Oney | Codelets : Linking Interactive Documentation and Example Code in the Editor[END_REF] et « livelit » [START_REF] Omar | Filling Typed Holes with Live GUIs[END_REF] sont trop spécifiques.

Interaction sémantique. L'interaction sémantique, quant à elle, implique d'interagir avec les concepts exprimés avec un langage, notamment au travers de représentations alternatives adaptées à chaque concept que je nomme projections. 3 Dans ce paradigme, une structure contenant trois nombres pourrait ainsi être visualisée et manipulée comme une position dans l'espace ou comme une couleur selon la situation, là où l'approche syntaxique n'y voit qu'une construction générique permise par le langage. Il existe des projections pour des concepts très variés : tableaux de données [START_REF] Beth Kery | Mage : Fluid Moves Between Code and Graphical Work in Computational Notebooks[END_REF][START_REF] Omar | Filling Typed Holes with Live GUIs[END_REF], parallélisation de boucle [START_REF] Zinenko | Manipulating Visualization, Not Codes[END_REF], expressions régulières [START_REF] Omar | Active Code Completion[END_REF], plateaux de jeux [START_REF] Andersen | Adding Interactive Visual Syntax to Textual Code[END_REF][START_REF] Pit-Claudel | Untangling Mechanized Proofs[END_REF], etc. En donnant forme aux concepts exprimés par les utilisateurs d'un langage, ces projections leur permettent de bénéficier de représentations plus proches de leurs modèles mentaux, réduisant ainsi les gouffres de l'évaluation et de l'exécution identifiés par Norman [START_REF] Norman | The Design of Everyday Things[END_REF]. En dépit des avantages théoriques des projections, les environnements d'édition de langages informatiques qui en disposent sont rares, rendant leur potentiel et leurs effets réels difficiles à étudier. La littérature à leur sujet est moins fournie que celle sur l'interaction syntaxique et se concentre sur les dix dernières années. Bien que certaines évaluations suggèrent que les projections facilitent certaines tâches, telles que l'optimisation polyédrique avec les diagrammes de Clint [START_REF] Zinenko | Manipulating Visualization, Not Codes[END_REF], ces études sont rares et ne permettent donc pas l'émergence de méta-analyses et de conclusion claire.

La difficulté de créer et d'étudier les projections de manière écologique (par exemple, en les appliquant à des langages couramment utilisés) tient également des paradigmes des systèmes permettant de les concevoir. Ceux-ci incluent notamment les environnements de programmation malléable tels que Smalltalk [START_REF] Goldberg | Smalltalk-80 : The Language and Its Implementation[END_REF] et Pharo [START_REF] Bergel | Deep into Pharo[END_REF], les language workbenches tels que Barista [START_REF] Ko | Barista : An Implementation Framework for Enabling New Tools, Interaction Techniques and Views in Code Editors[END_REF] et JetBrains MPS [START_REF] Voelter | Supporting Diverse Notations in MPS' Projectional Editor[END_REF], et les macros visuelles tels que celles pour Racket [START_REF] Andersen | Adding Interactive Visual Syntax to Textual Code[END_REF] et Hazel [START_REF] Omar | Filling Typed Holes with Live GUIs[END_REF]. Or, ces paradigmes sont souvent pensés pour un langage unique, rendant la réutilisation de projections difficile et multipliant inutilement le nombre d'outils à maîtriser. En outre, ils ne permettent que rarement aux utilisateurs finaux de s'approprier les projections ou d'en concevoir de nouvelles pour leurs besoins personnels sans que cela ne requière un investissement prohibitif de leur part.

Ces limitations forment un frein à une utilisation plus répandue des projections pour interagir avec les langages informatiques. Tandis que l'utilisation de ces langages est croissante, la volatilité des besoins des utilisateurs [START_REF] Neff | Permanently Beta : Responsive Organization in the Internet Era[END_REF], l'aspect exploratoire de la programmation [START_REF] Rein | Exploratory and Live, Programming and Coding : A Literature Study Comparing Perspectives on Liveness[END_REF], les utilisations inattendues des langages [START_REF] Dix | Designing for Appropriation[END_REF] ou encore les différences culturelles [START_REF] Arawjo | To Write Code : The Cultural Fabrication of Programming Notation and Practice[END_REF] requièrent une flexibilité des représentations alternatives permettant une interaction sémantique qui n'est pas atteinte par les systèmes actuels. Ma thèse s'inscrit dans le sillage de ces observations et vise à contribuer à l'étude et à la conception de systèmes dotés de projections pour des langages informatiques largement répandus, ainsi qu'à faciliter leur appropriation par les utilisateurs finaux. Mes questions de recherche sont les suivantes : Q1 À quels besoins les projections peuvent-elles répondre et de quelles façons le peuvent-elle ? Q2 Comment permettre aux utilisateurs d'un langage de créer et s'approprier des projections ? Q3 Quelles sont les dimensions de l'espace de conception des projections et quel est son potentiel ?

CONTRIBUTIONS

Afin de répondre à ces questions, j'utilise la méthodologie de la conception centrée sur l'utilisateur. Je m'intéresse plus particulièrement à deux classes de langages informatiques, les langages de description de document et les langages de programmation, pour lesquels (1) j'analyse les besoins des utilisateurs de ces langages, (2) je développe des systèmes dotés de projections et (3) j'évalue les effets, fonctionnalités et limitations de ceux-ci. Ce travail s'articule autour de deux projets principaux déjà complétés, ainsi que d'un projet annexe sur lequel je souhaite encore travailler, résumés ci-dessous.

i-L A T E X -Un environnement d'édition de documents L A T E X doté de projections Mon premier projet porte sur l'utilisation de projections pour le langage de description de documents L A T E X. J'ai d'abord interviewé 11 utilisateurs de L A T E X afin de comprendre leurs besoins et leurs difficultés, mis en exergue par une analyse thématique des transcrits. J'ai ensuite conçu i-L A T E X, un prototype d'éditeur L A T E X doté de projections pour les formules mathématiques, les tableaux, les images, et les grilles de mise en page, que j'ai également théorisées sous le terme de représentations transitionnelles (Figure 1). J'ai utilisé ce prototype dans une expérimentation contrôlée avec 16 participants afin d'évaluer l'effet de la disponibilité de ces représentations pour effectuer plusieurs tâches d'édition courantes. Les résultats montrent que ces représentations réduisent le temps de résolution des tâches (Figure 2a), le nombre de compilations nécessaires (Figure 2b), la charge de travail des participants ; mais aussi qu'elles affectent les stratégies employées pour résoudre les tâches. Ce projet a donné lieu à deux publications scientifiques : une première publication à la conférence IHM 2021 [START_REF] Gobert | Représentations Intermédiaires Interactives Pour La Manipulation de Code L A T E X. In 32e Conférence Francophone Sur[END_REF] et une version étendue à la conférence ACM CHI 2022 [START_REF] Gobert | X : Manipulating Transitional Representations between L A T E X Code and Generated Documents[END_REF]. Lorgnette -Un système de conception de projections appropriable par ses utilisateurs Mon second projet porte sur la création d'un paradigme permettant aux programmeurs de créer et de s'approprier plus facilement des projections. J'ai conçu Lorgnette, un prototype d'un système mettant en oeuvre ce paradigme, afin de tester sa faisabilité technique et de créer plusieurs exemples de projections. En sus d'une analyse des projections de la littérature, j'ai ensuite organisé un atelier de conception participative avec 9 programmeurs afin de leur faire concevoir des projections adaptées à leurs besoins personnels dans le but d'évaluer les propriétés des projections et les contraintes techniques qui en découlent. Je souhaite comparer mon approche aux autres approches de la littérature à travers l'implémentation de multiples projections (issues de l'atelier participatif, de la littérature et d'idées personnelles) afin de mettre en avant les avantages de mon système concernant (1) la réutilisation d'une même représentation dans plusieurs langages et contextes et (2) la conception et l'appropriation de projections par les utilisateurs finaux. Je prévois de soumettre un article scientifique sur ce sujet dans la première moitié de l'année 2023.

Description et exploration critique de l'espace de conception des projections

Mon dernier projet est une synthèse du reste de mon travail, sur lequel je prévois de travailler durant la rédaction de mon manuscrit de thèse. Je souhaite proposer un ensemble de dimensions décrivant l'espace de conception des projections pour les langages informatiques, à la façon des dimensions techniques des systèmes permettant de programmer [START_REF] Jakubovic | Technical Dimensions of Programming Systems[END_REF]. Celui-ci a pour objectif d'aider à identifier (1) le potentiel de certains sous-espaces peu explorées et (2) les pré-requis techniques et les propriétés qu'un langage doit avoir pour pouvoir y être projeté.

 MOTIVATIONS (a) Code L A T E X d'un tableau. (b) Représentation transitionnelle du code. (c) Rendu du tableau dans le PDF.

Figure 1 .

 1 Figure 1. i-L A T E X permet d'interagir avec le code d'un tableau à la fois (a) en l'éditant en tant que texte et (b) en manipulant la grille qu'il décrit à l'aide d'une projection sémantique affichée en cliquant sur (c) le tableau généré dans le PDF (d'où le halo bleu).

 Nombre moyen de compilations.

Figure 2 .

 2 Figure 2. L'évaluation contrôlée de i-L A T E X montre que le fait d'avoir accès aux représentations transitionnelles a permis aux participants de compléter des tâches d'édition courantes (trois de chaque type) plus rapidement et en compilant leur document moins souvent. Les barres d'erreurs correspondent à des intervalles de confiance à 95%. Les détails sur la méthodologie et l'analyse des données sont disponibles dans l'article [7].