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Propagation of acoustic waves in ducts with flow using the
multimodal formulation

Bruno Mangin∗, Majd Daroukh†,
DAAA, ONERA, Paris Saclay University F-92322 Châtillon, France

Gwénaël Gabard‡

Acoustics Laboratory of the University of Le Mans (LAUM), UMR 6613, Institute of Acoustics - Graduate School
(IA-GS), CNRS, Le Mans University, France

This paper presents a multimodal method for the computation of the acoustic field in an

axisymmetric varying duct with or without liner and in the presence of mean flow. The original

three-dimensional equations are rearranged into a set of coupled one-dimensional equations by

projecting the acoustic field over transverse basis functions. To maintain the computational

efficiency of the original multimodal method (applicable without flow), only the leading-order

effects of the mean flow are modelled using a multiple-scales approach. A matching procedure

is also given to deal with liner discontinuities in such a duct. Two different transverse bases are

used: one is based on Fourier-Bessel functions to evaluate the effect of modal scattering and

the other is based on Fourier-Chebyshev polynomials to improve the method efficiency. The

formulation is evaluated against analytical models based on the Wentzel–Kramers–Brillouin

technique and against finite-element solutions. It is shown to give consistent results for minor

computational cost for modes propagating in ducts with or without acoustic liners. This method

can be easily adapted to take into account more complex flows and geometries.

I. Introduction
Despite the development of analytical and numerical models for guided-wave problems, efficiently solving them

remains a major challenge in turbomachinery for complex cases, such as critical reflections [1], cut-off waves [2].

Analytical methods have been developed to solve these guided wave problems in the case of constant ducts

([3], chapter 4, pp. 192-208) or in the case of varying ducts by introducing some simplifications on the geometry

and the flow [4–8]. These studies take advantage of the fundamental aspect of in-duct acoustic propagation to

separate the bounded transverse problem from the resolution in the axial propagation direction. They describe the

solution as a transverse eigenmode multiplied by an axially varying amplitude, the shape of which is driven by a
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Wentzel–Kramers–Brillouin (WKB) ansatz. These methods provide fast results and allow a better understanding of the

underlying physics. Despite their usefulness, they are not capable of predicting scattering phenomena caused by liner

discontinuities or by changes in the duct geometry and flow. To overcome these difficulties, fully numerical simulations

based on the linearized Euler equations or on the potential equation, such as the finite-element methods (FEM), can be

used. Among them, commercial codes, like Actran-TM, which solves the potential equation (scalar equation) [9], are

often chosen to solve this kind of propagation problems [10–12]. They allow to calculate precisely the solutions to these

propagation problems, but they do not take fully advantage of the in-duct modal structure of the acoustic solution.

To do so it is possible to use an eigenmode decomposition in the transverse plane and to solve numerically the axial

evolution of modes and their interaction. Several studies have been conducted with that idea (see for example [13, 14])

and demonstrate that the complexity comes from estimating the shape of the acoustic fluctuations in the axial direction.

This idea is also the basis of the multimodal method (MM), which consists in rearranging the acoustic problem in a set

of coupled one-dimensional (1D) equations describing the evolution of the mode amplitudes. However, two problems

emerge when this method is used. First, the acoustic equation with evanescent modes is unstable, making it particularly

difficult to solve. Then, the problem is not just an initial value problem since there is a strong coupling between

the duct inlet and outlet. For two-dimensional (2D) ducts with varying cross-section, Pagneux et al. [15] overcame

these difficulties by introducing an admittance matrix representing the medium’s refraction and reflection index. They

showed that the evolution of the admittance satisfies a Riccati equation which can be solved using a Magnus-Moebius

scheme [16]. This method was then extended to curved ducts [17, 18] and proves to be fast and accurate. However,

multimodal models have been restricted to solutions of the Helmholtz equation without mean flow.

The current paper extends this methodology to compute acoustic fields in axisymmetric ducts with potential mean

flows. However, using an exact solution for the mean flow would significantly increase the complexity and calculation

time of the method. This issue is addressed by using a simplified description of the flow, which is found using

multiple-scales assumptions. This allows to account for the first-order effects of both convection and flow-induced

scattering mechanisms, while maintaining the low calculation time of the standard multimodal formulation. The problem

is solved by using Fourier series in the azimuthal direction and Chebyshev polynomials or Bessel functions in the radial

direction to represent the perturbation variables.

The paper is organized as follows. In Section II, we provide a brief overview of the equations that govern the

flow and acoustic fields, which serve as a basis to construct the proposed formulation. In Section III, the multimodal

formulation with a multiple scales potential flow is developed, and the basis of transverse modes is defined. In Section

IV, a matching procedure on the admittance is proposed to deal with impedance discontinuities. The developed method

is then validated against analytical solutions in section V for an infinite uniform duct, and against FEM results and WKB

results in section VI for a realistic engine geometry. Conclusions and discussions are provided in section VII.
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II. Description of the problem

A. Governing equations

We consider the acoustic propagation inside a turbofan inlet represented by an axisymmetric waveguide with an

axially slowly-varying annular cross-section, as shown in figure 1. Viscous and thermal effects are neglected. Vorticity

is considered to be negligible, and no shock wave is expected. As a result, the flow is considered to be a perfect

homentropic subsonic compressible irrotational gas flow. Note that it is quite common to use such a potential flow for

aero-engine inlet ducts [4].

In the following, all the parameters are transformed to be dimensionless: densities are normalized by a reference

density 𝜌∞, velocities are normalized by a reference sound speed 𝑐∞, spatial dimensions by the typical duct radius 𝑅∞,

velocity potentials by 𝑅∞𝑐∞, and pressures by 𝜌∞𝑐2
∞. We define the cylindrical coordinate system (𝑥, 𝑟, \) with the

associated basis vectors (e𝑥 , e𝑟 , e\ ), and the slowly-varying axial coordinate 𝑋 = 𝜖𝑥 where 𝜖 is a small parameter. The

hub and tip radii are written 𝑅1 (𝑋) and 𝑅2 (𝑋), and their slow variations are defined as d𝑅1/d𝑥 = 𝜖d𝑅1/d𝑋 +𝑂 (𝜖2)

and d𝑅2/d𝑥 = 𝜖d𝑅2/d𝑋 + 𝑂 (𝜖2). The analysis is performed in the frequency domain and the angular frequency

of the source 𝜔 is introduced. The velocity vector, density, speed of sound and pressure variables are written:

ṽ = V + Re(v e𝑖𝜔𝑡 ) = (𝑈,𝑉,𝑊) + Re((𝑢, 𝑣, 𝑤) e𝑖𝜔𝑡 ), �̃� = 𝐷 + Re(𝜌 e𝑖𝜔𝑡 ), 𝑐 = 𝐶 + Re(𝑐 e𝑖𝜔𝑡 ), 𝑝 = 𝑃 + Re(𝑝 e𝑖𝜔𝑡 )

respectively. Capital letters denote time-averaged values, and lower-case letters represent unsteady harmonic perturbations.

These notations are identical to those used by Rienstra [4].

In this framework, the steady Euler equations for the mean flow are:

∇ · (𝐷V) = 0,

𝐷 (V · ∇)V = −∇𝑃,

𝐶2 =
𝛾𝑃

𝐷
= 𝐷𝛾−1,

(1)

where 𝛾 is the ratio of specific heats. For the perturbation variables, the linearized Euler equations are written:

𝑖𝜔𝜌 + ∇ · (𝜌V + 𝐷v) = 0,

𝐷 (𝑖𝜔 + V · ∇)v + 𝐷 (v · ∇)V + 𝜌(V · ∇)V = −∇𝑝,

𝑝 = 𝐶2𝜌.

(2)

Hard-walled boundary conditions for the mean flow and lined wall boundary conditions for the acoustics (Myers

3



𝑥

𝑟

𝑍2

𝑅1 (𝑥)

𝑅2 (𝑥)

Fa
n

Spinner

Nacelle

Liner

Liner

𝑍1

Fig. 1 Sketch of a generic turbofan and the associated wave-guide problem. The acoustic liner is shown in red,
the dashed line corresponds to the axis of revolution and the computational area is filled in dark grey.

formulation [19]) are considered at the hub and tip. They write:

V · n𝑖 = 0,

(v · n𝑖) =
1
i𝜔

(i𝜔 + V · ∇ − n𝑖 · (n𝑖 · ∇V)) 𝑝
𝑍𝑖

,

(3)

at 𝑟 = 𝑅𝑖 (𝑋), with n𝑖 the unit outgoing vector normal to the surface, 𝑍𝑖 the impedance of the liner and 𝑖 = 1, 2.

B. Base flow

Following Rienstra [4], the equations for the mean flow are solved by assuming that it varies slowly with the axial

coordinate 𝑥. Noting that 𝜕𝐴/𝜕𝑥 = 𝜖𝜕𝐴/𝜕𝑋 + 𝑂 (𝜖2) for any slowly-varying variable 𝐴, a reasoning on orders of

magnitude then shows that the flow variables take the form:

V(𝑋, 𝑟; 𝜖) = 𝑈0 (𝑋)e𝑥 + 𝜖𝑉1 (𝑋, 𝑟)e𝑟 +𝑂 (𝜖2),

[𝐷, 𝑃, 𝐶] (𝑋, 𝑟; 𝜖) = [𝐷0, 𝑃0, 𝐶0] (𝑋) +𝑂 (𝜖2).
(4)

4



Injecting these expressions into equation (1) gives:

1
2

(
𝐹

𝐷0 (𝑅2
2 − 𝑅2

1)

)2

+ 1
𝛾 − 1

𝐷
𝛾−1
0 = 𝐸 +𝑂 (𝜖2),

𝑈0 =
𝐹

𝐷0 (𝑅2
2 − 𝑅2

1)
+𝑂 (𝜖2),

𝑃0 =
1
𝛾
𝐷

𝛾

0 ,

𝐶0 = 𝐷
(𝛾−1)/2
0 ,

𝑉1 = 𝑉𝑎
1 (𝑋)𝑟 +𝑉𝑏

1 (𝑋)
1
𝑟
= − 𝐹

2𝐷0

𝜕

𝜕𝑋

(
1

𝑅2
2 − 𝑅2

1

)
𝑟 + 𝐹

2𝐷0

𝜕

𝜕𝑋

(
𝑅2

1

𝑅2
2 − 𝑅2

1

)
1
𝑟
+𝑂 (𝜖),

(5)

where 𝐸 and 𝐹 are two constants (Bernoulli’s constant and the cross-sectional mass flow rate, respectively). The

numerical solution (e.g. calculated with a Newton algorithm) of the density’s leading order 𝐷0 allows to have access to

the variation of all other mean flow quantities along the duct axis.

III. Multimodal formulation with a potential flow

A. Modified wave equation

In the standard multimodal formulation, the wave equation is solved using the acoustic pressure and axial velocity as

primary variables. Solving the equation for pressure can be particularly complex in a case with flow, therefore we work

here with the velocity potential 𝜙 such that v = ∇𝜙. In the cylindrical coordinates, the velocity potential satisfies, from

equations (2) and (3):

∇ · (𝐷∇𝜙) − 𝐷 (𝑖𝜔 + V · ∇)
[

1
𝐶2 (𝑖𝜔 + V · ∇)𝜙

]
= 0, (6)

i𝜔(∇𝜙 · n𝑖) = −(i𝜔 + V · ∇ − n𝑖 · (n𝑖 · ∇V))
[
𝐷

𝑍𝑖
(i𝜔 + V · ∇)𝜙

]
at 𝑟 = 𝑅𝑖 (𝑋) with i = 1, 2. (7)

Using the flow expressions of equation (5) and keeping only the first-order terms yields:

𝜕

𝜕𝑥

(
(1 − 𝑀2

0 )𝑢
)
=

(
−Δ⊥ −

(
𝜔

𝐶0

)2
− 2i𝜖

𝐶3
0

d𝐶0
d𝑋

𝜔𝑈0 + 2i𝜔
𝜖𝑉1

𝐶2
0

𝜕

𝜕𝑟

)
𝜙

+
(
2i
𝜔𝑈0

𝐶2
0

+ 2
𝜖𝑈0𝑉1

𝐶2
0

𝜕

𝜕𝑟

)
𝑢 +𝑂 (𝜖2𝜔2𝑈0),

(8)

with 𝑀0 (𝑋) = 𝑈0/𝐶0 the axial Mach number, Δ⊥ the transverse Laplacian operator and 𝑢 =
𝜕𝜙

𝜕𝑥
the acoustic axial
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velocity.∗ As for equation (7), it can be written:

i𝜔(∇𝜙 · n𝑖) = −
(
−𝜔2 𝐷0

𝑍𝑖
+ i𝜔𝑈0𝜖

d
d𝑋

(
𝐷0
𝑍𝑖

)
+ 2i𝜖𝑉1

𝐷0
𝑍𝑖

𝜔
𝜕

𝜕𝑟
− i𝜔

𝐷0
𝑍𝑖

𝜕𝜖𝑉1
𝜕𝑟

)
𝜙

−
(
2i𝜔𝑈0

𝐷0
𝑍𝑖

+𝑈0𝜖
d

d𝑋

(
𝐷0𝑈0
𝑍𝑖

)
+ 2𝜖𝑈0𝑉1

𝐷0
𝑍𝑖

𝜕

𝜕𝑟
− 𝐷0

𝑍𝑖

𝜕𝜖𝑉1
𝜕𝑟

𝑈0

)
𝑢

− 𝐷0
𝑍𝑖

𝑈2
0
𝜕𝑢

𝜕𝑥
+𝑂 (𝜖2𝜔2𝑈0).

(9)

B. Multimodal approach

The next step consists in projecting the acoustic variables 𝜙 and 𝑢 on linearly independent transverse cross-section

functions so that the problem can be written as a set of first-order coupled differential equations. This basis is denoted

(𝜑 𝑗 ) 𝑗∈N, and the acoustic potential and its axial derivative write 𝜙 =
∑

𝑗 𝜙 𝑗 (𝑥)𝜑 𝑗 (𝑋, 𝑟, \) and 𝑢 =
∑

𝑗 𝑢 𝑗 (𝑥)𝜑 𝑗 (𝑋, 𝑟, \)

respectively. Note that the basis is assumed to vary slowly in the axial direction.

Equation (8) is multiplied by a test function 𝜑∗
𝑖
, chosen to be the complex conjugate of a basis function, and is

integrated over the duct cross section 𝑆 bounded by the boundary Λ. Then, by applying the divergence theorem, we

obtain: ∫
𝑆

𝜑∗
𝑖

𝜕

𝜕𝑥

(
(1 − 𝑀2

0 )𝑢
)

d𝑆 =∫
𝑆

[
∇⊥𝜑

∗
𝑖∇⊥𝜙 + 𝜑∗

𝑖

(
−𝑘2 − 2i𝜖

𝐶0

d𝐶0
d𝑋

𝑘𝑀0 + 2i𝑘
𝜖𝑉1
𝐶0

𝜕

𝜕𝑟

)
𝜙 +𝜑∗

𝑖

(
2i𝑘𝑀0 + 2

𝜖𝑉1
𝐶0

𝑀0
𝜕

𝜕𝑟

)
𝑢

]
d𝑆

−
∫
Λ

𝜑∗
𝑖∇⊥𝜙 · dΛΛΛ +𝑂 (𝜖2𝜔2𝑈0),

(10)

with 𝑘 = 𝜔/𝐶0. The equation is transformed by using the mass conservation equation on the projection of 𝜙 and 𝑢 over

the basis (𝜑 𝑗 ) 𝑗∈N and becomes:

d
d𝑥

(
(1 − 𝑀2

0 )
∫
𝑆

𝜑∗
𝑖 𝜑 𝑗𝑑𝑆𝑢 𝑗

)
=

[∫
𝑆

∇⊥𝜑
∗
𝑖∇⊥𝜑 𝑗 − 𝑘2𝜑∗

𝑖 𝜑 𝑗 + i𝑘𝜖
(
−𝑀0

(
1
𝑆

d𝑆
d𝑋

+ 2
𝐶0

d𝐶0
d𝑋

)
𝜑∗
𝑖 𝜑 𝑗

−𝑀0
𝜕

𝜕𝑋
(𝜑∗

𝑖 𝜑 𝑗 ) +𝑉1
𝐶0

(
𝜑∗
𝑖

𝜕

𝜕𝑟
(𝜑 𝑗 ) − 𝜑 𝑗

𝜕

𝜕𝑟
(𝜑∗

𝑖 )
)

d𝑆 +𝑀0
d

d𝑋

(∫
𝑆

𝜑∗
𝑖 𝜑 𝑗d𝑆

))]
𝜙 𝑗

+
[∫

𝑆

2i𝑘𝑀0𝜑
∗
𝑖 𝜑 𝑗 + 𝜖

(
𝑉1𝑀0
𝐶0

(
𝜑∗
𝑖

𝜕

𝜕𝑟
(𝜑 𝑗 ) − 𝜑 𝑗

𝜕

𝜕𝑟
(𝜑∗

𝑖 )
)
− 𝑀2

0
1
𝑆

d𝑆
d𝑋

𝜑∗
𝑖 𝜑 𝑗d𝑆

+(1 − 𝑀2
0 )

𝜕

𝜕𝑋
(𝜑∗

𝑖 )𝜑 𝑗

)
d𝑆

]
𝑢 𝑗 −

∫
Λ

𝜑∗
𝑖∇𝜙 · dΛΛΛ +𝑂 (𝜖2𝜔2𝑈0).

(11)

When the acoustic boundary is hard-walled,
∫
Λ
𝜑∗
𝑖
∇𝜙 ·dΛΛΛ = 0. Otherwise the equation (9) is injected into the previous

equation. This leads to new equations governing the axial variation of the base function amplitudes (𝜙𝜙𝜙, u) = (𝜙 𝑗 , 𝑢 𝑗 ) 𝑗∈N,
∗The remaining terms are of order 𝜖 2, but we want to highlight the mean flow velocity and the frequency scaling (valid for 𝜔 > 1).

6



which accounts for both the boundary conditions and the propagation operator:

©«
𝐴11 0

0 𝐴22

ª®®®¬
d
d𝑥

©«
𝜙𝜙𝜙

u

ª®®®¬ =

©«
𝑀11 𝑀12

𝑀21 𝑀22

ª®®®¬
©«
𝜙𝜙𝜙

u

ª®®®¬ +𝑂 (𝜖2𝜔2𝑈0), (12)

with:

𝐴11 = 𝑀12 = (1 − 𝑀2
0 )A,

𝐴22 = (1 − 𝑀2
0 )A + i𝐷0

𝜔
𝑈2

0P,

𝑀11 = −𝜖 (1 − 𝑀2
0 )B,

𝑀21 = D − 𝑘2A + i𝑘𝜖
(
−𝑀0

((
1
𝑆

d𝑆
d𝑋

+ 2
𝐶0

d𝐶0
d𝑋

)
A − d

d𝑋
(A)

)
+ ((C − C∗) − 𝑀0 (B + B∗))

)
− i𝐷0

𝜔

(
−𝜔2P + 𝜖

(
i
𝑈0
𝐷0

d𝐷0
d𝑋

𝜔P + i𝑈0𝜔Q + 2i𝜔R − i𝜔S
))

,

𝑀22 = 2i𝑘𝑀0A + 𝜖

(
(1 − 𝑀2

0 )B
∗ − d

d𝑋

(
(1 − 𝑀2

0 )A
)
+ 𝑀0 (C − C∗) −

𝑀2
0
𝑆

d𝑆
d𝑋

A
)

− i𝐷0
𝜔

(
2i𝜔𝑈0P + 𝜖

(
𝑈2

0T −
𝑈2

0
𝑆

d(𝑆)
d𝑋

P +𝑈2
0Q + 2𝑈0R −𝑈0S

))
,

(13)

and where ∗ denotes the complex conjugate. The matrices (A,B, C,D,P,Q,R,S,T) are defined by:

A𝑖 𝑗 =

∫
𝑆

𝜑∗
𝑖 𝜑 𝑗d𝑆, B𝑖 𝑗 =

∫
𝑆

𝜑∗
𝑖

𝜕𝜑 𝑗

𝜕𝑋
d𝑆,

C𝑖 𝑗 =

∫
𝑆

𝑉1
𝐶0

𝜑∗
𝑖

𝜕𝜑 𝑗

𝜕𝑟
d𝑆, D𝑖 𝑗 =

∫
𝑆

∇⊥𝜑
∗
𝑖∇⊥𝜑 𝑗d𝑆,

P𝑖 𝑗 =

∫ 2𝜋

0

(
𝑅2/𝑍2

(
𝜑∗
𝑖 𝜑 𝑗

) ��
𝑟=𝑅2

+𝑅1/𝑍1
(
𝜑∗
𝑖 𝜑 𝑗

) ��
𝑟=𝑅1

)
d\,

Q𝑖 𝑗 =

∫ 2𝜋

0

(
𝑅2

d[1/𝑍2]
d𝑋

(
𝜑∗
𝑖 𝜑 𝑗

) ��
𝑟=𝑅2

+𝑅1
d[1/𝑍1]

d𝑋
(
𝜑∗
𝑖 𝜑 𝑗

) ��
𝑟=𝑅1

)
d\, (14)

R𝑖 𝑗 =

∫ 2𝜋

0

(
𝑅2/𝑍2

(
𝑉1𝜑

∗
𝑖

𝜕𝜑 𝑗

𝜕𝑟

)����
𝑟=𝑅2

+𝑅1/𝑍1

(
𝑉1𝜑

∗
𝑖

𝜕𝜑 𝑗

𝜕𝑟

)����
𝑟=𝑅1

)
d\,

S𝑖 𝑗 =

∫ 2𝜋

0

(
𝑅2/𝑍2

(
𝜕𝑉1
𝜕𝑟

𝜑∗
𝑖 𝜑 𝑗

)����
𝑟=𝑅2

+𝑅1/𝑍1

(
𝜕𝑉1
𝜕𝑟

𝜑∗
𝑖 𝜑 𝑗

)����
𝑟=𝑅1

)
d\,

T𝑖 𝑗 =
∫ 2𝜋

0

(
𝑅2/𝑍2

(
𝜑∗
𝑖

𝜕𝜑 𝑗

𝜕𝑋

)����
𝑟=𝑅2

+𝑅1/𝑍1

(
𝜑∗
𝑖

𝜕𝜑 𝑗

𝜕𝑋

)����
𝑟=𝑅1

)
d\.

The matrices (P,Q,R,S,T) are associated with the radial boundary conditions and characterize the attenuation due to

the liner. In the case of a hard-walled duct, all these matrices are equal to zero.

It is important to note that the terms that have been neglected are scaled by 𝑈0𝜔
2. This means that the higher the
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mean velocity and the frequency, the worse the expected results.

C. Admittance calculation

Equation (12) is unstable and cannot be integrated directly because of the presence of evanescent modes [1]. The

multimodal method allows to solve this issue by defining an admittance matrix 𝑌 such that u(𝑥) = 𝑌 (𝑥)𝜙𝜙𝜙(𝑥). This

admittance links the acoustic potential and its axial derivative and is therefore representative of the reflection and

refraction index of the medium (Poincaré–Steklov operator). This matrix is governed by a Riccati equation:

d𝑌
d𝑥

= −𝑌 𝐴−1
11 𝑀11 − 𝑌 𝐴−1

11 𝑀12𝑌 + 𝐴−1
22 𝑀21 + 𝐴−1

22 𝑀22𝑌 +𝑂 (𝜖2𝜔2𝑈0) (15)

which is solved using a Magnus-Moebius scheme [1, 16] and an initial value 𝑌𝑒.

One possibility to define the initial value is to consider a constant cross-section duct termination with only outgoing

waves at the exit. In such a termination, all the global geometry and flow variables do not vary axially which implies

that the admittance is a fixed point of the Riccati equation. To find this admittance, the acoustic variables are written

using a summation of modes that propagate or decay exponentially with the axial distance:

©«
𝜙𝜙𝜙(𝑥)

u(𝑥)

ª®®®¬ =
∑︁
𝑖

𝛼𝑖

©«
w𝑖1

w𝑖2

ª®®®¬ 𝑒
i_𝑖 𝑥 , (16)

where (w𝑖1,w𝑖2) are the eigenvectors representing the weights associated with the distribution over the cross-sectional

basis functions 𝜑𝑖 , _𝑖 are the associated axial wavenumbers and 𝛼𝑖 are constants. By injecting the expression (16)

into the propagation equation (12), by using the basis properties of the eigenvectors and by imposing that all the axial

derivatives vanish, the following eigenvalue problem is obtained:

i_𝑖
©«

𝐴11 0

0 𝐴22

ª®®®¬
©«

w𝑖1

w𝑖2

ª®®®¬ =

©«
0 𝑀12

𝑀21 𝑀22

ª®®®¬
©«

w𝑖1

w𝑖2

ª®®®¬ , (17)

with:
𝐴11 = 𝑀12 = (1 − 𝑀2

0 )A, 𝑀21 = D − 𝑘2A + i𝐷0𝜔P,

𝐴22 = (1 − 𝑀2
0 )A + i𝐷0

𝜔
𝑈2

0P, 𝑀22 = 2i𝑘𝑀0A + 2𝐷0𝑈0P .

(18)

At the termination, only outgoing waves are propagating so that only the eigenvalues and eigenvectors associated to

forward waves are kept. The propagation direction is given by the sign of Re(_𝑖) − 𝑘𝑀0/(1 − 𝑀2
0 ): if negative, the
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wave goes forward; otherwise, it goes backward [4]. This allows to construct the forward matrix:

©«
𝜙𝜙𝜙+

q+

ª®®®¬ ∝
©«
𝑊+

1

𝑊+
2

ª®®®¬ 𝑒
Λ+𝑥 , (19)

with𝑊+
1 = (w11, ...,w𝑛1) , 𝑊+

2 = (w12, ...,w𝑛2) andΛ+ = diag(i_1, ..., i_𝑛) and where_1, ..., _𝑛 and w11,w12, ...,w𝑛1,w𝑛2

are the eigenvalues and eigenvectors associated to forward waves.

The resulting admittance matrix at the duct exit therefore writes:

𝑌𝑒 = 𝑊+
2

(
𝑊+

1
)−1

= 𝑊+
1 Λ

+ (
𝑊+

1
)−1

. (20)

D. Potential calculation

The admittance is calculated from the exit to the source by integrating the equation (15). Injecting the expression of

the admittance into equation (12) gives us the following equation for the acoustic potential:

𝐴11
d
d𝑥

(𝜙𝜙𝜙) = 𝑀11𝜙𝜙𝜙 + 𝑀12𝑌𝜙𝜙𝜙. (21)

It can then be calculated from the source to the exit given an initial value 𝜙𝜙𝜙𝑖 . Let us assume that we want to specify an

incoming acoustic wave represented by its potential distribution 𝜙𝜙𝜙+
𝑖
. If no reflection is expected inside the duct, this can

be the value kept for the imposed potential 𝜙𝜙𝜙𝑖 . Nevertheless, apart from rare cases, there are always waves travelling in

the opposite direction, noted 𝜙𝜙𝜙−
𝑖

, due to geometrical or flow reflections.

Let us define the reflection matrix 𝑅 such as 𝜙𝜙𝜙−
𝑖
= 𝑅𝜙𝜙𝜙+

𝑖
. To obtain the reflection matrix 𝑅 from the admittance matrix

𝑌 , the acoustic potential and its axial derivative are decomposed at the entry into a right and left propagating wave as:

𝜙𝜙𝜙𝑖 = 𝜙𝜙𝜙+𝑖 + 𝜙𝜙𝜙−
𝑖 and u𝑖 = u+

𝑖 + u−
𝑖 . (22)

Using the value of the admittance at the entrance and continuity conditions for the acoustic potential field and its axial

derivative, the following relation is obtained:

𝑌 (𝜙𝜙𝜙+𝑖 + 𝜙𝜙𝜙−
𝑖 ) = 𝑌+𝜙𝜙𝜙+𝑖 + 𝑌−𝜙𝜙𝜙−

𝑖 , (23)

with 𝑌+/− corresponding to the admittance matrix associated to the waves propagating forwards or backwards at the

entrance. Since the previous relation is true for any injected field 𝜙𝜙𝜙+
𝑖
, we obtain 𝑅 = (𝑌 −𝑌−)−1 (𝑌+ −𝑌 ) and the forced

potential is (𝐼𝑑 + 𝑅)𝜙𝜙𝜙+
𝑖
, with 𝐼𝑑 the identity matrix.
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E. Transverse mode basis

If an arbitrary basis is chosen for 𝜑 𝑗 , computing the matrices in equation (12) is time-consuming and the method

would not bring a significant benefit compared to a fully numerical code. Therefore it is important to use a basis leading

to analytical expressions for integrals in equation (14).

1. Standard hard-walled modes - Fourier-Bessel basis

Most multimodal studies [1, 15, 17, 20] use standard basis functions composed of local hard-walled transverse

eigenmodes, solutions to the following eigenvalue problem:

−Δ⊥𝜑 𝑗 = 𝛼2𝜑 𝑗 , (24)

𝜕𝜑 𝑗

𝜕𝑟
= 0 at 𝑟 = 𝑅𝑖 (𝑋) with 𝑖 = 1, 2. (25)

For axisymmetric ducts, we associate a pair (𝑚, 𝑛) ∈ (Z,N) to each index 𝑗 such that the basis functions 𝜑 𝑗 = 𝜑𝑚𝑛 are

written [4]:

𝜑𝑚𝑛 = 𝑁𝑚𝑛 [J𝑚 (𝛼𝑚𝑛𝑟) + Γ𝑚𝑛Y𝑚 (𝛼𝑚𝑛𝑟)] e−i𝑚\ , (26)

with 𝑚 the azimuthal order, 𝑛 the radial order, J𝑚 and Y𝑚 the 𝑚th-order Bessel function of the first kind and second kind

respectively and where the coefficient Γ𝑚𝑛 and the transverse eigenvalue 𝛼𝑚𝑛 can be found using the following relations:

Γ𝑚𝑛 = − J′𝑚 (𝛼𝑚𝑛𝑅2)
Y′

𝑚 (𝛼𝑚𝑛𝑅2)
= − J′𝑚 (𝛼𝑚𝑛𝑅1)

Y′
𝑚 (𝛼𝑚𝑛𝑅1)

. (27)

The normalisation factor 𝑁𝑚𝑛 is chosen to be:

𝑁𝑚𝑛 =

(
2𝜋

∫ 𝑅2

𝑅1

[J𝑚 (𝛼𝑚𝑛𝑟) + Γ𝑚𝑛Y𝑚 (𝛼𝑚𝑛𝑟)]2 𝑟d𝑟
)−0.5

. (28)

As there is no possible coupling between different circumferential orders, we consider that the value of the azimuthal

order 𝑚 is fixed. In the following, no distinction is therefore made between 𝑗 and 𝑛.

For a hard-walled duct, this basis has four major advantages:

1) analytical expressions for both A𝑖 𝑗 = 𝛿𝑖 𝑗 and D𝑖 𝑗 = 𝛼2
𝑖
𝛿𝑖 𝑗 are available,

2) it gives an analytical solution for the acoustic field in regions without scattering,

3) it is a complete basis, which means that any transverse shape can be recovered if a sufficient number of modes is

used,

4) the matrix 𝑊+
1 in equation (20) is the identity matrix and the admittance matrix is a diagonal matrix with the

axial wavenumbers on the diagonal at the exit.
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However, this basis presents a major weakness which leads to slow convergence for hardwalled ducts: the derivatives

of all the basis functions are equal to zero at the wall, whereas the acoustic boundary condition (equation (3)) imposes a

non-zero derivative for the potential gradient for a curved wall. Adding a non-physical supplementary Dirichlet mode

inside the modal basis [18] allows to overcome this issue, but this is case-dependent.

The matrices A and D are diagonal and represent the propagation in the straight parts of the duct (isolated mode

propagation). The matrices B and C have non-diagonal terms that are equal to zero only when there is no wall

variationand can therefore be related to geometrical/flow scattering. The modal scattering can be artificially turned off

by imposing that B and C are equal to zero. In this case, all the matrices are diagonal and the modes do not interact (the

method can thus be referred to as multimodal without scattering).

It is worth noting that the multiple-scales approximation weakly impacts the self-propagation terms since the

neglected terms (𝑂 (𝜖2𝜔2𝑈0)) are flow-scattering terms.

2. Fourier-Chebyshev basis

To overcome the limitations of standard hard-walled modes which struggle to satisfy the wall boundary conditions,

a new type of basis function is employed. A Fourier series again represents the acoustic field in the circumferential

direction, while a set of Chebyshev polynomials is used in the radial direction to take advantage of their good convergence

properties [7, 21, 22]. A first choice would be to take:

𝜑 𝑗 = 𝜑𝑚
𝑝 = 𝑇𝑝

(
𝑟 − 𝑅1
𝑅2 − 𝑅1

)
𝑒−i𝑚\ , (29)

with 𝑇𝑝 a shifted Chebyshev polynomial of the first kind of order 𝑝 ∈ N. However in the case of circular ducts (𝑅1 = 0),

some integrals in the matrix 𝐷 are not defined when 𝑚 ≠ 0 ( lim𝛿→0
∫ 𝑅2
𝛿

𝑟−1d𝑟 = ∞). One solution is to replace 𝑅1 by

a small, non-zero value in the case of a circular duct, typically the spacing between two central collocation points. Due

to the proprieties of the duct modes (behaviour as 𝑟 |𝑚 | when 𝑟 → 0 [23]), this choice means the matrix 𝐷 is poorly

conditioned. A better solution would be to add a constraint on the coefficients of Fourier expansions to have basis

functions of the form 𝑟 𝑓 (𝑟)𝑒−i𝑚\ when 𝑚 ≠ 0. We therefore choose, for all 𝑚:

𝜑𝑚
𝑝 =

(
𝑟

𝑅2 − 𝑅1

)min( |𝑚 | ,1)
𝑇𝑝

(
𝑟 − 𝑅1
𝑅2 − 𝑅1

)
𝑒−i𝑚\ . (30)

With this basis, the matrix 𝐷 is well defined and the physical behaviour is better respected in the case of circular ducts.

In addition, the expressions of the matrices given in equation (14) can be developed (see Appendix A) such that all the

integrals that remain are independent of frequency, flow, geometry and azimuthal order, which is a major benefit of the

chosen basis. These integrals only need to be computed once and can then be stored, thus allowing for fast computations.
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Note that there is again no possible coupling between different circumferential Fourier modes. Therefore we consider

that the value of the azimuthal order 𝑚 is fixed, and, in the rest of the paper, no distinction is made between 𝜑𝑚
𝑝 and 𝜑𝑝 .

For convenience, this basis is called Chebyshev basis in the following.

IV. Impedance discontinuities
The equation (12) derived in the multimodal approach is valid as long as the impedance is represented by a

differentiable function. However, in practice, the liner is only applied on a finite portion of the duct, which induces

impedance discontinuities. They result in a non-defined matrix Q𝑖 𝑗 , making the standard Magnus-Moebius scheme

impossible to use. To solve this issue, several solutions are available. The first option is to impose a continuity of the

acoustic potential and acoustic axial velocity (or the acoustic pressure and acoustic axial velocity) at both sides of

a discontinuity, which is equivalent to impose a continuity of the admittance. The second option is to consider the

duct as completely treated, but with an impedance that is regularized according to the axial coordinate. The third

option is to use the conservation equations of mass and momentum to determine an admittance connection formula.

The first option is incomplete, as it ignores reflections that occur at the axial location of the discontinuities [24]. The

second option requires significant over-mesh of the "discontinuity" regions in order to correctly represent the rapidly

varying impedance. In this paper, the third option is therefore preferred. The formula for the admittance across such a

discontinuity is obtained in the following by deriving the admittance jump using the weak formulation of the acoustic

equation over a vanishingly small control volume.

A. Formulation of the problem

The case of a slowly-varying duct with at least one impedance discontinuity, which can be located either on the

hub or the tip, is studied. Let us consider one of these discontinuities, where the impedance varies from 𝑍− to 𝑍+, by

defining a thin volume 𝑉 that surrounds it. We assume that the impedance 𝑍 varies continuously from 𝑍− to 𝑍+ over a

transition region of size 2𝛿, as sketched in figure 2. Note that the original problem is recovered when taking the limit

𝛿 → 0. The computational domain 𝑉 is enclosed by the surfaces 𝑆𝑤 , 𝑆+, and 𝑆− . 𝑆+ and 𝑆− are located respectively

at 𝑥 = 𝑥𝑑 + 𝛿 and 𝑥 = 𝑥𝑑 − 𝛿, where 𝑥𝑑 is the axial location of the discontinuity, and 𝑆𝑤 corresponds to the duct wall

surfaces. Finally, Λ± denote the contours along the perimeter of the duct at 𝑥 = 𝑥𝑑 ± 𝛿.

B. Governing equations

Let us start by recalling the continuity equation and the mass equation for the perturbation variables:

i𝜔𝐷𝜙 + 𝐷V · ∇𝜙 + 𝑝 = 0,

∇ · (𝐷∇𝜙) − 𝐷 (i𝜔 + V · ∇)
[

1
𝐶2 (i𝜔 + V · ∇)𝜙

]
= 0.

(31)
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Fig. 2 Sketch of a generic liner discontinuity.

The weak formulation of these equations obtained through partial integration over the computational domain 𝑉

writes: ∫
𝑉

i𝜔𝐷𝜙𝜑∗
𝑖 + 𝐷V · ∇𝜙𝜑∗

𝑖 + 𝑝𝜑∗
𝑖 d𝑉 = 0,∫

𝑉

∇ · (𝐷∇𝜙) − 𝐷 (i𝜔 + V · ∇)
[

1
𝐶2 (i𝜔 + V · ∇)𝜙

]
d𝑉 = 0,

(32)

for a test function 𝜑∗
𝑖

defined on 𝑉 . The mass flow conservation, ∇ · 𝐷V = 0, is used to write 𝐷V · ∇𝜙 = ∇ · 𝜙𝐷V.

Then, by applying the divergence theorem, it is straightforward to show that:∫
𝑉

i𝜔𝐷𝜙𝜑∗
𝑖 − 𝐷V𝜙 · ∇𝜑∗

𝑖 + 𝑝𝜑∗
𝑖 d𝑉 = −

∫
𝑆

𝐷V𝜙𝜑∗
𝑖 · n d𝑆,∫

𝑉

𝐷∇𝜑∗
𝑖 · ∇𝜙 − 𝐷

𝐶2 (V · ∇𝜙 + i𝜔𝜙) (V · ∇𝜑∗
𝑖 − i𝜔𝜑∗

𝑖 ) d𝑉 =

∫
𝑆

𝐷𝜑∗
𝑖

(
∇𝜙 − 1

𝐶2 (V · ∇𝜙 + i𝜔𝜙) V
)
· n d𝑆,

(33)

with n the unit outgoing normal vector. By reminding that a hard-walled boundary condition is used for the mean flow,

V · n = 0, the right-hand side of both equations can be developed as:∫
𝑆

𝐷V𝜙𝜑∗
𝑖 · n d𝑆 =

∫
𝑆+

𝐷𝑈𝜑∗
𝑖 𝜙 d𝑆 −

∫
𝑆−

𝐷𝑈𝜑∗
𝑖 𝜙 d𝑆,∫

𝑆

𝐷𝜑∗
𝑖

(
∇𝜙 − 1

𝐶2 (V · ∇𝜙 + i𝜔𝜙) V
)
· n d𝑆 =

∫
𝑆𝑤

𝐷𝜑∗
𝑖

𝜕𝜙

𝜕𝑛
d𝑆+∫

𝑆+
𝐷𝜑∗

𝑖 𝑢 d𝑆 −
∫
𝑆−

𝐷𝜑∗
𝑖 𝑢 d𝑆 +

∫
𝑆−

𝑈𝐷

𝐶2 (V · ∇𝜙 + i𝜔𝜙) 𝜑∗
𝑖 d𝑆 −

∫
𝑆+

𝑈𝐷

𝐶2 (V · ∇𝜙 + i𝜔𝜙) 𝜑∗
𝑖 d𝑆.

(34)
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Further simplification can be done using Stokes’ theorem to write (see Eversmann’s paper [25] for more details):∫
𝑆𝑤

𝐷𝜑∗
𝑖

𝜕𝜙

𝜕𝑛
d𝑆 =

i
𝜔

∫
𝑆𝑤

𝐷2

𝑍
(V · ∇𝜙 + i𝜔𝜙) (V · ∇𝜑∗

𝑖 − i𝜔𝜑∗
𝑖 ) d𝑆+

i
𝜔

∫
Λ+

𝐷2

𝑍
(V · ∇𝜙 + i𝜔𝜙) 𝜑∗

𝑖 (n × V) · dΛΛΛ + i
𝜔

∫
Λ−

𝐷2

𝑍
(V · ∇𝜙 + i𝜔𝜙) 𝜑∗

𝑖 (n × V) · dΛΛΛ.
(35)

C. Matching procedure

To obtain a matching condition, we take the limit of the above expressions when 𝛿 → 0, which represents a liner

discontinuity. We assume that the singularities of the acoustic potential axial derivative are finite, ensuring that the

volume integrals of expression (33) vanish when the volume vanishes. By combining all of the previous equations, we

obtain: ∫
𝑆+

𝐷𝑈𝜑∗
𝑖 𝜙 d𝑆 −

∫
𝑆−

𝐷𝑈𝜑∗
𝑖 𝜙 d𝑆 = 0.∫

𝑆+
𝐷 (1 − 𝑀2)𝜑∗

𝑖 𝑢 d𝑆 −
∫
𝑆−

𝐷 (1 − 𝑀2)𝜑∗
𝑖 𝑢 d𝑆 =

i
𝜔

∫
Λ+

𝐷2

𝑍
(V · ∇𝜙 + i𝜔𝜙) 𝜑∗

𝑖 (n × V) · dΛΛΛ

+ i
𝜔

∫
Λ−

𝐷2

𝑍
(V · ∇𝜙 + i𝜔𝜙) 𝜑∗

𝑖 (n × V) · dΛΛΛ.

(36)

By reminding that the surface, the mean axial velocity and the mean density are continuous, the previous general

equation show that the acoustic potential is continuous across the liner discontinuity. It also indicates that its axial

derivative is not continuous if 𝑍 is not, which confirms that the admittance is not continuous across the discontinuity.

To find its variation across the transition region, we project the velocity potential and its axial derivative over the basis

(𝜑 𝑗 ) 𝑗∈N. It yields:

∫
𝑆

𝐷 (1 − 𝑀2)𝜑∗
𝑖 𝜑 𝑗d𝑆

[
u+ − u−] = i

𝜔

∫
Λ

𝐷2

𝑍+

(
𝑈𝜑 𝑗u+ +

(
𝑉
𝜕𝜑 𝑗

𝜕𝑟
+ i𝜔𝜑 𝑗

)
𝜙𝜙𝜙+

)
𝜑∗
𝑖 (n × V) · dΛΛΛ

+ i
𝜔

∫
Λ

𝐷2

𝑍−

(
𝑈𝜑 𝑗u− +

(
𝑉
𝜕𝜑 𝑗

𝜕𝑟
+ i𝜔𝜑 𝑗

)
𝜙𝜙𝜙−

)
𝜑∗
𝑖 (n × V) · dΛΛΛ,

(37)

where 𝜙𝜙𝜙± and u± refer to the amplitudes of the acoustic potential and the acoustic axial velocity at 𝑥𝑑 ± 𝛿. By using the

multiple-scales flow expressions of equation (5), this equation can be reduced to:

(1 − 𝑀2
0 )A(u+ − u−) =

𝐷0𝑈
2
0

i𝜔
(P+u+ − P−u−)+

𝐷0𝑈0
i𝜔

(i𝜔P+𝜙𝜙𝜙+ − i𝜔P−𝜙𝜙𝜙− + 𝜖
(
R+𝜙𝜙𝜙+ − R−𝜙𝜙𝜙− )) +𝑂 (𝜖2𝜔2𝑈0),

(38)

where A,P,R are the matrices defined in section III. Finally, by writing u+ = 𝑌+𝜙𝜙𝜙+ and u− = 𝑌−𝜙𝜙𝜙− the admittance
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jump, 𝑌− = L (𝑌+), across the impedance discontinuity can be found:

𝑌− =

((
1 − 𝑀2

0

)
A −

𝐷0𝑈
2
0

i𝜔
P−

)−1 (
𝐷0𝑈0

i𝜔
(
i𝜔P− − i𝜔P+ + 𝜖

(
R− − R+) )

+
((

1 − 𝑀2
0

)
A −

𝐷0𝑈
2
0

i𝜔
P+

)
𝑌+

)
+𝑂 (𝜖2𝜔2𝑈0),

(39)

Note that the above expression shows that the admittance (and therefore the acoustic axial velocity) is continuous across

the liner discontinuity when there is no mean flow.

V. Validation for an infinite uniform duct
For an infinite annular uniform duct with lined walls, the propagation problem reduces to the eigenvalue problem

given in equation (17).

The resolution of this problem is checked for parameters representative of a modern engine inlet, with a unit nacelle

radius 𝑅2, a spinner radius 𝑅1 equal to 0.3, a wall impedance 𝑍2 equal to 2 − i. The flow is uniform, 𝐷0 and 𝐶0 equal to

1 and 𝑀0 equal to 0.5. The acoustic variables are computed at 𝜔 = 25 and for an azimuthal mode 𝑚 = 24 [26].

At first, both the distribution of the upstream eigenvalues in the complex plane and the shape of an upstream

transverse function for the radial order 𝑛 = 5 are computed using a Chebyshev basis, the results are plotted in figures 3a

and 3b, to show the ability of this basis to correctly represents the duct modes. Excellent agreement is obtained when

fifteen or twenty polynomials are used. However, with fewer polynomials, the solution quickly deteriorates, and with ten

polynomials, the radial distribution of the mode is lost. When enough basis functions are used, there are only minor

differences between the eigenvalues obtained numerically and the analytical ones. Note that this required number of

basis functions is strongly dependent on the radial mode order.

Then, to evaluate the benefit of the Chebyshev basis over a standard hard-walled transverse basis, the reduction of

the error with the increase of the number of basis functions is investigated using both bases. The evolution of the error

on the radial eigenmode is defined by:

𝜖𝑝 =

( ∫
|𝜙𝑝 − 𝜙∞ |2𝑟d𝑟∫

|𝜙∞ |2𝑟d𝑟

)1/2

, (40)

with 𝜙𝑝 the potential obtained with 𝑝 basis functions and 𝜙∞ the reference semi-analytical solution (computed as in [4]).

The convergence of the Chebyshev and hard-walled Bessel bases is assessed in figure 3c. As expected, for a lined

duct, the Chebyshev basis outperforms the Bessel basis when many polynomials are used, with an exponential error

convergence rate. However, when few basis functions are used, the Bessel basis better represents the eigenmodes. These

results confirm that the method has excellent convergence and accuracy if enough Chebyshev polynomials are used. As

a rule of thumb, when 2𝑛 + 10 polynomials are used, with 𝑛 the highest radial mode order, the results are only weakly
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(a) Radial evolution of the eigenmode 𝑛 = 5 (real part) (b) First five radial computed eigenvalues in the complex plane

(c) Evolution of the error with the number of basis functions

Fig. 3 Validation of the eigenvalue resolution inside a constant waveguide with (𝑅1, 𝑅2) = (0.3, 1), 𝑀0 = 0.5,
𝜔 = 25, 𝑚 = 24 and 𝑍2 = 2 − i.

sensitive to the inclusion of further polynomials. This criterion is used in the remainder of the paper.

VI. Validation for a slowly-varying duct

A. Validation methodology

1. Test case geometry and flow conditions

For all the following test cases, a geometry representative of the CFM56 engine is used. We consider the engine to

be axisymmetric, so its geometry is entirely defined by the spinner radius 𝑅1 and the nacelle radius 𝑅2 [27]:

𝑅1 (𝑥) = max
(
0, 0.64212 −

(
0.04777 + 0.98234𝑦2

)0.5
)
,

𝑅2 (𝑥) = 1 − 0.18453𝑦2 + 0.10158
e−11(1−𝑦) − e−11

1 − e−11 ,

0 ≤ 𝑥 ≤ 𝐿, 𝑦 = 𝑥/𝐿 and 𝐿 = 2.

(41)
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The fan is located at the axial position 𝑥 = 0 and the duct exit is at 𝑥 = 𝐿. The flow characteristics are specified at the fan

location, with a zero or non zero axial velocity and a unit value for both the density and speed of sound. The acoustic

source is also specified at the same position and propagates against the flow. Infinite duct conditions are assumed at

both ends, which means that they have zero reflection coefficients.

For test cases with a liner, a constant impedance 𝑍2 = 2 − i is applied between 𝑥 = 0.2 and 𝑥 = 1.8.

2. Numerical procedure

The method is first evaluated against a method where the axial variation of the acoustic variables is determined

analytically. In the case of slowly varying ducts, a leading order approximation of the exact solution can be found using

the Wentzel–Kramers–Brillouin (WKB) method when mode transitions (change of mode behaviour from cut-on to cut-off

or vice-versa) do not occur. This has been proposed by Rienstra [4] and validated numerically [28]. In the case of single

or double transition, other expressions can be derived and are added here to strengthen the comparisons [27, 29, 30].

These first comparisons aim to evaluate the benefit from using the present method instead of an analytical models,

noting that the calculation time is similar.

Then, the validation is pursued using a finite-element model (FEM) [31] which computes both the steady potential

flow and the acoustic field. The solver is based on a weak formulation of equations (1) and (2) over a volume 𝑉 bounded

by a surface 𝑆. In this solver, the lined wall boundary condition is also implemented using the Myers formulation [19].

For the injection/exit boundary conditions, a representation over transverse hard-walled modes is used, which allows to

specify the incoming mode and to avoid any spurious reflection on the source/exit plane. Quadratic elements (6 nodes

triangles) are used to represent the solutions.

When the FEM is used, two cases can be distinguished. FEM computations are performed using the flow computed

with the MS approximation (referred to as FEM/MS) to check that our method is correctly implemented and that

the 𝑂 (𝜖2) terms neglected in equation (8) do not impact the solution. Then, FEM solutions that use the complete

flow obtained by solving equation (1) (referred to as FEM/CFD) are compared to the MM results. This allows us to

understand the limitation brought by the use of a MS flow and the impact of the neglected 𝑂 (𝜖2𝜔2𝑈0) terms. It is

unlikely that these terms can be neglected at high frequencies when a high-velocity mean flow is used. Typically for

frequencies 𝜔 ∼ 𝜖−1 and high velocities 𝑈0 ∼ 1, the neglected scattering terms could be, in theory, of the same order of

magnitude as one of the computed scattering terms. Note that the error is expected to be equal to numerical precision in

all the cases without flow (𝑀0 = 0).

For the MM calculations, two different bases can be applied (see section III.E). The Chebyshev one is preferred since

it gives shorter calculation times than the Bessel functions. Nevertheless, the multimodal method is also used with the

Bessel basis since the modal scattering can be artificially turn-off (see section III.E). In that case, there is no interaction

between modes and their resolution can be dissociated. Therefore, the problem reduces to a scalar integration, which
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Fig. 4 Visualization of the mesh used when there is a liner (under-meshed for the sake of visibility).

drastically decreases the calculation time. This multimodal method without scattering is referred to as MMWS in the

following. Comparisons with the MM results (with Chebyshev basis) allow understanding the improvement brought by

a formulation that captures the scattering mechanisms.

3. Numerical details

Details about the numerical resolution are defined here and will be applied to all the test cases. For the developed

multimodal method, the Riccati equation for the admittance matrix is integrated using a Magnus-Moebius scheme of

order four [32]. The number of basis functions used in the radial direction is 2𝑛 + 10 polynomials, with 𝑛 the radial

order of the injected mode (see section V). For the axial discretization, twenty points per free field wavelength are used.

This resolution can be insufficient for highly evanescent modes as it does not correctly recover for their rapid decay

but this is not problematic in this paper because the errors related to the multiple-scale assumption are higher. Note

that the discretization does not need to be refined near a liner discontinuity since the admittance jump is given by the

expression (39).

With these criteria, all the test cases that are presented took less than one second to run with the developed multimodal

method.

For the FEM, the acoustic potential field is interpolated on an unstructured, triangular mesh generated using

Gmsh [33]. The terminal plane needs to be located far enough from regions of non-uniformities. Therefore, the duct is

extended by 0.5 to have an exit condition where the flow can be assumed uniform. A mesh convergence process is

carried out to evaluate if the acoustic field is correctly represented. When using the FEM solver, there is also a need to

refine the sharp edges and the liner discontinuities to have an accurate solution. An example of a numerical mesh is

shown in figure 4.
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4. Flow computation

For cases with flow, 𝑀0, 𝐶0 and 𝐷0 values are specified at the axial location of the fan (with 𝐶0 = 1 and 𝐷0 = 1 in

all case). The steady axial velocity and the velocity streamlines obtained with the FEM are represented in figure 5a for

a specified Mach number 𝑀0 = −0.4. The axial velocity averaged over successive cross-sections is also shown and

is compared with the flow computed by the multiple-scales (MS) method (see section II.B) in figure 5b. Even if the

averaged axial velocity obtained with both methods is almost identical, there are important radial variations that are not

predicted by the MS method (𝑈 = 𝑈0 (𝑥) +𝑂 (𝜖2)). This is particularly the case near the exit (𝑥 = 𝐿) of the duct where

the geometry is not slowly-varying (𝜖 ≈ d𝑅2/d𝑥 ≈ 0.3).

(a) Contours of normalized axial velocity, with the streamlines
plotted as dotted black lines

(b) Cross-averaged axial velocity obtained with the
FEM solver (solid line) and with the MS approximation
(dotted line)

Fig. 5 Flow computed for a specified Mach number 𝑀0 = −0.4 at 𝑥 = 0.

B. Hard-walled cases

The intention here is to explore both the model’s ability to represent the physics and the numerical stability of the

implementation for cases without wall acoustic treatment.

1. Cut-on mode

First, the benefit of using the model is shown at a low frequency (𝜔 = 3) by computing the propagation of the mode

(𝑚, 𝑛) = (1, 1) for a specified Mach number 𝑀0 = −0.4 at the fan level. This is illustrated in figure 6 by comparing the

pressure contours over the meridional plane given by the WKB, the MM, the MMWS and the FEM results.

The WKB and the MMWS results are in excellent agreement. In cases where few reflections are expected inside the

duct, the two methods give similar results. However, the results of both methods differ from the cases where scattering

is accounted for. The agreement between the MM and the FEM/MS is excellent, and the minor differences that can be

observed come from the neglected 𝑂 (𝜖2) flow terms in the equation governing the acoustics. The MM results slightly

differ from the FEM/CFD ones, and this is to be related to the 𝑂 (𝜖2𝜔2𝑈0) scattering terms that have been neglected.
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(a) WKB (b) Multimodal without scattering

(c) Multimodal (d) Finite-element method with MS flow

(e) Finite-element method with CFD flow

Fig. 6 Pressure magnitude associated to the mode (1,1) at 𝜔 = 3 and 𝑀0 = −0.4.
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Note that the fact that the CFD flow considers a constant duct at the outlet also tends to artificially reduce the radial flow

velocity values near the exit, increasing the discrepancies between both methods.

2. Transition mode (cut-on/cut-off)

The stability close to a transition (change of mode behaviour from cut-on to cut-off or vice-versa.), which corresponds

to a singularity of the admittance matrix [1], is evaluated by performing the same analysis but at a frequency of 𝜔 = 31.0

and for a mode (𝑚, 𝑛) = (20, 3). The results are plotted in figure 7. The MMWS and the WKB are in good agreement,

which indicates that the Magnus-Moebius scheme avoids numerical instability despite the quasi-singularity of the

admittance matrix and can capture total reflection phenomena, such as the ones obtained at the axial location of turning

points. Note that this means that any number of transition and near transition phenomena can be captured without the

need to modify the model. This makes the MMWS typically suited to study amplification or resonance caused by

trapped modes (see [30]). In this case, the inclusion of modal scattering and of a complete flow is not significant as all

the methods give similar results.

3. Frequency evolution

In order to evaluate more precisely the accuracy of all the methods, we compute the evolution of the error as the

frequency and flow velocity increase for three different modes: (𝑚, 𝑛) = (1, 1), (𝑚, 𝑛) = (20, 1) and (𝑚, 𝑛) = (20, 3).

The error is evaluated using the 𝐿2 norm:

E =
©«
∫ 𝐿

0

∫ 𝑅2
𝑅1

|𝜙 − 𝜙∞ |2𝑟d𝑟d𝑥∫ 𝐿

0

∫ 𝑅2
𝑅1

|𝜙∞ |2𝑟d𝑟d𝑥
ª®¬

1/2

, (42)

with 𝜙 the potential obtained with the MM, the MMWS and the WKB method, and 𝜙∞ the reference FEM solution

(Using a 𝐿2 norm instead of a 𝐿1 norm is penalizing but is kept for coherence with section V).

The results obtained when using the FEM/MS as reference solution are given in figure 8.

Given the approximations of the method, there is a good quantitative agreement between the MM formulation and the

FEM/MS, with discrepancies always inferior to 10% (of order 𝑂 (𝜖2)). If the expected flow is close to the MS flow, the

MM method will give accurate results in a calculation time almost identical to a semi-analytical model. The scattering

and convection effects of this flow are encapsulated without deteriorating the computational efficiency of standard

multimodal methods.

The results obtained when the FEM/CFD is used as the reference solution and compared to the MM, the MMWS

and the WKB method are plotted in figure 9.
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(a) WKB (b) Multimodal without scattering

(c) Multimodal (d) Finite-element method with MS flow

(e) Finite-element method with CFD flow

Fig. 7 Pressure magnitude associated to the mode (20,3) at 𝜔 = 31 and 𝑀 = −0.4.
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(a) (𝑚, 𝑛) = (1, 1) (b) (𝑚, 𝑛) = (20, 1) (c) (𝑚, 𝑛) = (20, 3)

Fig. 8 Relative error between the FEM/MS as the reference solution and the MM method, for various flows and
frequencies.

(a) (𝑚, 𝑛) = (1, 1) (b) (𝑚, 𝑛) = (20, 1) (c) (𝑚, 𝑛) = (20, 3)

Fig. 9 Relative error between the FEM/CFD as the reference solution and the MM, the MMWS and the WKB
method, for various flows and frequencies.
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A key observation from the comparison between the FEM/CFD and MMWS results and the FEM/CFD and WKB

results is that the MMWS and WKB method are equivalent in both cut-off and cut-on regions. The only region where the

two methods differ is where reflection phenomena can occur typically near transition regions [34]. When the FEM/CFD

results are compared to the MM results, the agreement is still excellent for low flow velocities where the MM model

is particularly suited. However when strong flow velocities are used, the agreement deteriorates, especially for high

frequencies. Even if the evolution of the errors is highly dependent on the mode injected, some general trends are visible

for the three computed cases:

• In regions where the mode is cut-on (approximately 𝜔 > 𝑚), the error increases with the frequency and flow

velocity. The distance to the transition region mainly drives this error. Therefore the increase of the azimuthal

mode order is favourable to the model.

• In regions where the mode is cut-off, the MM results perfectly fit the FEM results. The model captures the high

attenuation of the mode. For this case, there is few scattering, which explains the observed agreement.

• The results deteriorate when the mode encounters at least one transition in the duct. This comes from the fact that

transitions are very sensitive to small parameter changes so that even a minute error on the flow can change the

response of the overall system [27].

C. Lined wall cases

Eight test cases are used to validate the capability of the model to predict sound attenuation in lined turbofan inlets.

Since the transverse mode differs before and after the liner, the models that neglect the scattering cannot be used here.

Therefore only the MM and the FEM can represent the propagation in such a duct.

The validation is shown in terms of the power attenuation predicted by each method, defined by:

Δ𝑃 = 10 log10

(
𝑃𝑠𝑜𝑢𝑟𝑐𝑒

𝑃𝑒𝑥𝑖𝑡

)
, (43)

where 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑃𝑒𝑥𝑖𝑡 refer to the acoustic power at the source plane and the exit plane respectively.

1. No-flow cases

The first test cases are done without flow where we expect the MM model to be perfectly accurate. The attenuation

obtained with our method and both FEM computations is given for all the test cases in table 1. All the methods agree

and the model appears to be a powerful tool to compute an estimated attenuation.
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Case (𝑚, 𝑛) 𝜔 MM FEM/MS FEM/CFD

1 (10,1) 16 44.1 dB 44.1 dB 44.1 dB
2 (12,1) 20 47.5 dB 47.5 dB 47.5 dB
3 (20,7) 44.5 24.5 dB 24.5 dB 24.5 dB
4 (30,2) 50 21.8 dB 21.8 dB 21.8 dB

Table 1 Summary of the lined test case parameters and results for 𝑀0 = 0.

2. Flow cases

Then test cases are done with a specified Mach number 𝑀0 = −0.4. Here the model should give approximate results.

The attenuation obtained are summarised in table 2.

Case (𝑚, 𝑛) 𝜔 MM FEM/MS FEM/CFD Δ(𝑀𝑀 − 𝐹𝐸𝑀/𝐶𝐹𝐷)

1 (10,1) 16 49.7 dB 50.1 dB 49.0 dB 0.7dB
2 (12,1) 20 25.3 dB 25.1 dB 24.8 dB 0.5dB
3 (20,7) 44.5 30.7 dB 28.9 dB 31.9 dB -1.2dB
4 (30,2) 50 14.3 dB 15.5 dB 14.0 dB 0.3dB

Table 2 Summary of the lined test case parameters and results for 𝑀0 = −0.4.

Discrepancies appear between all methods (even the FEM/MS and MM results differ) and no global trend appears.

Nevertheless, the MM still estimates the expected attenuation correctly and the prediction rarely differs by more than

1dB from the reference FEM/CFD results.

To understand the slight difference predicted by all the methods, pressure plots associated with test case 4 are shown

in figure 10. We first notice a good agreement regarding pressure contours and that the junction condition proposed for

the admittance gives consistent results. As expected by the formulation derived in section IV, there is a reflection at the

axial location of the liner discontinuity (visible at 𝑥 = 0.2). Even if the impact of the liner is overestimated with the MM

method, no major contrasts are observed. The flow-induced scattering phenomena are of an order of magnitude inferior

to the impact of the liner, and the attenuation predicted by our model is accurate.

VII. Conclusion
In this paper, a multimodal method for the computation of the acoustic field in an axisymmetric duct with a multiple

scales potential mean flow has been developed. The acoustic problem has been solved by transforming the acoustic

potential equation into a set of coupled one-dimensional equations on the amplitude of base functions. A procedure has

also been added to deal with liner discontinuity. The method uses two basis types: one based on Chebyshev polynomials,

which proved to be effective at solving the wall boundary condition issue of most multimodal methods and allows for fast
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(a) Multimodal (b) Finite-element method with MS flow

(c) Finite-element method with CFD flow

Fig. 10 Pressure magnitude associated to the mode (30,2) at 𝜔 = 50 for 𝑀 = −0.4 and 𝑍2 = 2 − i.

26



calculations; and the other based on Bessel functions, which allows to dissociate the self-propagation of modes from the

scattering phenomena. When a Chebyshev basis is used, the method is very efficient because all the radial integrations

of the multimodal formulation are independent of the frequency, the flow, the geometry and the azimuthal order.

Comparisons with a WKB method, a finite-element method which uses the same approximate flow, and one which

uses a complete flow, have been carried out for a model of a turbofan inlet duct over a large range of flows and frequencies.

The comparisons were made on pressure contours for the hard-walled test cases, and on power attenuation for the

lined-wall ones. The agreement between the proposed multimodal method and the FEM that uses an approximate

flow is excellent in most cases, but it deteriorates for high frequencies and Mach numbers when compared to the FEM

that uses a complete flow. Therefore, improving the flow representation would be necessary since some flow-induced

scattering are not present when using the multiple-scales approximation for the flow. Still, the present multimodal

formulation appears very efficient for studying propagation inside realistic turbofan engine inlets. In particular, the error

made by our model is always inferior to the one made by the WKB method which neglects the modal scattering.

The efficiency and numerical cost can be improved drastically by parallelizing the axial integration, but this appeared

not to be necessary for a 2D geometry, with all the test cases running in less than one second. This paper demonstrates

the efficiency of the multimodal method which allows to compute acoustic propagation inside lined ducts with simplified

potential flows without additional cost when compared to no-flow multimodal methods.

A. Multimodal matrices formulation when the Fourier-Chebyshev basis is used
By introducing:

𝐼𝑘 ( 𝑓 , 𝑔) =
∫ 1

0
𝑓 (𝑟)𝑔(𝑟)𝑟𝑘d𝑟, (44)

and the symbol ′ to represent the first derivative of the Chebyshev polynomial, the matrices defined in equation (14)

write:
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A𝑖 𝑗 = 2𝜋

(
(𝑅2 − 𝑅1)2𝐼3 (𝑇𝑖 , 𝑇𝑗 ) + 3(𝑅2 − 𝑅1)𝑅1𝐼2 (𝑇𝑖 , 𝑇𝑗 ) + 3𝑅2

1 𝐼1 (𝑇𝑖 , 𝑇𝑗 ) +
𝑅3

1
𝑅2 − 𝑅1

𝐼0 (𝑇𝑖 , 𝑇𝑗 )
)
,

B𝑖 𝑗 = 2𝜋
(
− 1
𝑅2 − 𝑅1

d(𝑅2 − 𝑅1)
d𝑋

A𝑖 𝑗 − (𝑅2 − 𝑅1)
d(𝑅2 − 𝑅1)

d𝑋
𝐼4 (𝑇𝑖 , 𝑇 ′

𝑗 ) +
(
4𝑅1

d𝑅1
d𝑋

− 3
d𝑅2
d𝑋

𝑅1 − 𝑅2
d𝑅1
d𝑋

)
𝐼3 (𝑇𝑖 , 𝑇 ′

𝑗 )

−
(

3𝑅2
1

𝑅2 − 𝑅1
d(𝑅2 − 𝑅1)

d𝑋
+ 3𝑅1

d𝑅1
d𝑋

)
𝐼2 (𝑇𝑖 , 𝑇 ′

𝑗 ) −
(

𝑅3
1

(𝑅2 − 𝑅1)2
d(𝑅2 − 𝑅1)

d𝑋
+

3𝑅2
1

𝑅2 − 𝑅1
d𝑅1
d𝑋

)
𝐼1 (𝑇𝑖 , 𝑇 ′

𝑗 )

−
𝑅3

1
(𝑅2 − 𝑅1)2

d𝑅1
d𝑋

𝐼0 (𝑇𝑖 , 𝑇 ′
𝑗 )
)
,

C𝑖 𝑗 = 2𝜋
𝑉𝑎

𝐶

(
A𝑖 𝑗 + (𝑅2 − 𝑅1)2𝐼4 (𝑇𝑖 , 𝑇 ′

𝑗 ) + 4(𝑅2 − 𝑅1)𝑅1𝐼3 (𝑇𝑖 , 𝑇 ′
𝑗 ) + 6𝑅2

1 𝐼2 (𝑇𝑖 , 𝑇
′
𝑗 )

+
4𝑅3

1
𝑅2 − 𝑅1

𝐼1 (𝑇𝑖 , 𝑇 ′
𝑗 ) +

𝑅4
1

(𝑅2 − 𝑅1)2 𝐼0 (𝑇𝑖 , 𝑇
′
𝑗 )
)

+ 2𝜋
𝑉𝑏

𝐶

(
𝐼1 (𝑇𝑖 , 𝑇𝑗 ) +

𝑅1
𝑅2 − 𝑅1

𝐼0 (𝑇𝑖 , 𝑇𝑗 ) + 𝐼2 (𝑇𝑖 , 𝑇 ′
𝑗 ) +

2𝑅1
𝑅2 − 𝑅1

𝐼1 (𝑇𝑖 , 𝑇 ′
𝑗 ) +

𝑅2
1

(𝑅2 − 𝑅1)2 𝐼0 (𝑇𝑖 , 𝑇
′
𝑗 )
)
,

D𝑖 𝑗 =
2𝜋

𝑅2 − 𝑅1

(
(𝑅2 − 𝑅1) (1 + 𝑚2)𝐼1 (𝑇𝑖 , 𝑇𝑗 ) + 𝑅1 (1 + 𝑚2)𝐼0 (𝑇𝑖 , 𝑇𝑗 ) + (𝑅2 − 𝑅1) (𝐼2 (𝑇𝑖 , 𝑇 ′

𝑗 ) + 𝐼2 (𝑇𝑖 , 𝑇 ′
𝑗 )∗)+

2𝑅1 (𝐼1 (𝑇𝑖 , 𝑇 ′
𝑗 ) + 𝐼1 (𝑇𝑖 , 𝑇 ′

𝑗 )∗) +
𝑅2

1
𝑅2 − 𝑅1

(𝐼0 (𝑇𝑖 , 𝑇 ′
𝑗 ) + 𝐼0 (𝑇𝑖 , 𝑇 ′

𝑗 )∗) + (𝑅2 − 𝑅1)𝐼3 (𝑇 ′
𝑖 , 𝑇

′
𝑗 ) + 3𝑅1𝐼2 (𝑇 ′

𝑖 , 𝑇
′
𝑗 )

+
3𝑅2

1
𝑅2 − 𝑅1

𝐼1 (𝑇 ′
𝑖 , 𝑇

′
𝑗 ) +

𝑅3
1

(𝑅2 − 𝑅1)2 𝐼0 (𝑇
′
𝑖 , 𝑇

′
𝑗 )
)
,

(45)

when 𝑚 ≠ 0 and:

A𝑖 𝑗 = 2𝜋
(
(𝑅2 − 𝑅1)2𝐼1 (𝑇𝑖 , 𝑇𝑗 ) + 𝑅1 (𝑅2 − 𝑅1)𝐼0 (𝑇𝑖 , 𝑇𝑗 )

)
,

B𝑖 𝑗 = 2𝜋

(
−(𝑅2 − 𝑅1)

d(𝑅2 − 𝑅1)
d𝑋

𝐼2 (𝑇𝑖 , 𝑇 ′
𝑗 ) +

d
(
𝑅2

1 − 𝑅2𝑅1
)

d𝑋
𝐼1 (𝑇𝑖 , 𝑇 ′

𝑗 ) − 𝑅1
d𝑅1
d𝑋

𝐼0 (𝑇𝑖 , 𝑇 ′
𝑗 )
)
,

C𝑖 𝑗 = 2𝜋
𝑉𝑎

𝐶

(
(𝑅2 − 𝑅1)2𝐼2 (𝑇𝑖 , 𝑇 ′

𝑗 ) + 2𝑅1 (𝑅2 − 𝑅1)𝐼1 (𝑇𝑖 , 𝑇 ′
𝑗 ) + 𝑅2

1 𝐼0 (𝑇𝑖 , 𝑇
′
𝑗 )
)

+ 2𝜋
𝑉𝑏

𝐶
𝐼0 (𝑇𝑖 , 𝑇 ′

𝑗 ),

D𝑖 𝑗 = 2𝜋
(
𝐼1 (𝑇 ′

𝑖 , 𝑇
′
𝑗 ) +

𝑅1
𝑅2 − 𝑅1

𝐼0 (𝑇 ′
𝑖 , 𝑇

′
𝑗 )
)
,

(46)

when 𝑚 = 0.
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