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Reducing metastable continuous-space Markov chains
to Markov chains on a finite set

Nils Berglund

Abstract

We consider continuous-space, discrete-time Markov chains on Rd , that admit a finite
number N of metastable states. Our main motivation for investigating these processes
is to analyse random Poincaré maps, which describe random perturbations of ordinary
differential equations admitting several periodic orbits. We show that under a few general
assumptions, which hold in many examples of interest, the kernels of these Markov chains
admit N eigenvalues exponentially close to 1, which are separated from the remainder of
the spectrum by a spectral gap that can be quantified. Our main result states that these
Markov chains can be approximated, uniformly in time, by a finite Markov chain with
N states. The transition probabilities of the finite chain are exponentially close to first-
passage probabilities at neighbourhoods of metastable states, when starting in suitable
quasistationary distributions.
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1 Introduction and informal statement of results

In this work, we are concerned with continuous-space, discrete-time Markov chains, depend-
ing on a small parameter σ⩾ 0, which reduce to a deterministic map when σ = 0. Our main
motivation for considering these processes is related to the notion of random Poincaré maps.
Consider a stochastic differential equation (SDE) in Rd , which is a weak-noise perturbation of
an ordinary differential equation (ODE), admitting a finite number of asymptotically stable pe-
riodic orbits. In the deterministic limiting case, it is useful to introduce a surface of section
Σ, transverse to the flow, and to study the sequence of returns of an orbit to Σ. This allows in
particular to study stability and bifurcations of periodic orbits in a systematic way.

A similar notion can be introduced in the stochastic case, taking some care in defining what
one means by returns to Σ: one has to require that sample paths make some excursion away
from Σ between returns, in order to avoid accumulation of intersection points. To our knowl-
edge, this notion appeared first in the works [WK90] by Weiss and Knobloch, and [HM09] by
Hitczenko and Medvedev. In [BL12], random Poincaré maps were used to study the distribution
of small oscillations in the stochastic FitzHugh–Nagumo equation. In [HM13], they allowed to
characterise the effect of noise on elliptic bursting. Random Poincaré maps also proved use-
ful in the analysis of mixed-mode oscillations in systems such as the stochastic Koper model,
featuring a folded-node singularity [BGK15], and in determining the distribution of transition
points through an unstable periodic orbit [BG14].

The work [BB17] initiated a more systematic study of random Poincaré maps, from the
point of view of spectral theory. Its main result is that under a metastable hierarchy assumption
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on the N stable periodic orbits, the kernels describing random Poincaré maps have exactly N
eigenvalues that are exponentially close to 1. In addition, the remaining part of the spectrum
is separated from those N leading eigenvalues by a spectral gap, scaling like the logarithm of
the noise intensity. Asymptotic expressions for the leading eigenvalues and eigenfunctions in
terms of commitor functions were also obtained in [BB17].

The present work concerns a more general class of continuous-space Markov chains, which
contain random Poincaré maps as a particular case, but are not limited to them. For instance,
they also include randomly perturbed deterministic maps, of the form

Xn+1 =Π(Xn)+σξn+1 ,

where Π is a deterministic map defined on a subset of Rd , and the ξn are independent, iden-
tically distributed random variables. Deterministic iterated maps are common in applications
such as population dynamics and epidemiology, and it is natural to study their perturbation by
weak noise.

Main results. We now give an informal statement of the main assumptions and results of this
work. A precise formal statement is given in Sections 2 and 3 below. We consider Markov chains
on X0 ⊂ Rd , with kernel Kσ, where σ measures the noise intensity. In the deterministic case
σ= 0, we assume that

K0(x, A) = 1{Π(x)∈A} ,

for a deterministic map Π : X0 →X0. Our main assumptions are the following.

1. Deterministic limit: The deterministic map Π leaves a compact set X ⊂X0 invariant. It
has N asymptotically stable fixed points in X , and all its other limit sets are unstable fixed
points. The aim of this assumption is to ensure that the asymptotic dynamics spends
most of the time near a finite set of fixed points.

2. Large-deviation principle: For positive σ, the kernel Kσ has a smooth density, and it
obeys a large-deviation principle with good rate function I . The rate function I will be
used to define a notion of quasipotential, that describes the exponential asymptotics of
transition times between metastable sets.

3. Recurrence: For σ > 0, the Markov chain is positive Harris recurrent. This means in
particular that it will reach any open set in a time having finite expectation. In particular,
when starting anywhere in the compact set X , the expected return time to X is bounded
by a finite quantity EX (σ). This assumption is needed for the existence of a spectral gap,
between the N leading eigenvalues, and the remainder of the spectrum of Kσ.

4. Positivity: The process satisfies a uniform positivity condition in the neighbourhood of
the stable fixed points of Π. This is a more technical property, defined in Section 2.6
below, which essentially amounts to a lower bound of Doeblin type on transition den-
sities. This assumption guarantees that the process conditioned on remaining near a
stable fixed point relaxes to a so-called quasistationary distribution.

While the first two assumptions are quite natural, it may seem more difficult to ensure the
last two assumptions. However, we will show in Section 4 that they are actually satisfied under
quite weak conditions for the processes we are interested in, namely random Poincaré maps
and randomly perturbed iterated maps. In particular, we will show that EX (σ) is at most of
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order log(σ−1) in these cases, while the large-deviation principle implies that it is always at
least sub-exponential in σ, in the sense that e−η/σ2

EX (σ) → 0 as σ→ 0 for any η> 0.
Our first main result reads as follows.

Proposition 1.1 (Proposition 3.1). For sufficiently small positive σ, the kernel Kσ has exactly
N eigenvalues which are exponentially close to 1. All remaining eigenvalues have a modulus
smaller than ϱ= e−c/EX (σ) for some constant c > 0.

Note that [BB17, Thm. 3.2] provides sharper bounds on the N leading eignvalues, under
a more restrictive metastable hierarchy assumption (essentially, all transitions between fixed
points should happen on different exponential timescales). In that case, those eigenvalues can
also be shown to be real. Here, however, we do not make such an assumption.

The existence of a spectral gap already shows that after a time of order 1/EX (σ), the process
will be close to a finite-dimensional subspace of the space of measures on X0. The difficulty
is that it is not straightforward to connect this finite-dimensional space to quantities that have
a probabilistic interpretation. Our second main result provides such a connection. To state it,
we introduce the trace process (Xτ+,n )n⩾0 of the Markov chain. Here τ+,n denotes the time of
nth return of the chain to a suitably defined neighbourhood M of the set of stable fixed points,
given by a union of neighbourhoods Bi of these points.

Theorem 1.2 (Theorem 3.3). Let m(σ) be a function satisfying

lim
σ→0

σ2 logm(σ) = θ

for a sufficiently small parameter θ > 0. Then the probability of Xτ+,nm(σ) belonging to B j , when
starting in Bi , is well-approximated by the probability of a Markov chain (Yn)n⩾0 with values
in {1, . . . , N } being in state j . The transition probabilities of this Markov chain are given, up to
exponentially small multiplicative errors, by the probability of the trace process first hitting B j at
time m(σ), when starting in a quasistationary distribution on Bi .

More precisely, we will show that there exists a linear map L between measures on M and
measures on {1, . . . , N }, such that PY −1

n =L (PX −1
τ+,nm(σ) ) for all n ∈N0.

We refer to the statement of Theorem 3.3 below for a precise formulation of what we mean
by being well-approximated. Essentially, the difference between the distributions of the two
processes is bounded uniformly in time by an exponentially small quantity. The result is thus
mostly useful on long timescales, when the process has had an opportunity to explore several
metastable states. Then our result states that whenever the finite Markov chain Yn is in state j
with a probability that is not exponentially small, the process Xτ+,nm(σ) will belong to B j with a
probability that is exponentially close to it.

Related results. The problem of approximating Markov processes by Markov chains on a fi-
nite set has been investigated for a long time, in particular in the case of SDEs. The idea is al-
ready present in the monograph [FW98] by Freidlin and Wentzell, where Markov chain approx-
imations are used for instance to investigate the exit problem, and to approximate invariant
measures. There is however no quantitative statement on how well the Markov chain approxi-
mates the original process directly.

The works [BEGK04, BGK05] by Bovier, Eckhoff, Gayrard and Klein investigate reversible
diffusion processes, governed by gradient SDEs of the form

dxt =−∇V (xt )dt +σdWt , (1.1)
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where V is a confining multiwell potential. These articles use a potential-theoretic approach,
that was originally limited to the reversible case, but was extended by Landim, Mariani and Seo
to more general diffusions [LMS19]. One result in [BGK05] is that under a metastable hierarchy
assumption, the expectations of transition times between certain well-chosen metastable sets
are close to expectations of similar transitions in a finite Markov chain.

Because of their importance in simulation algorithms in molecular dynamics, in particu-
lar in kinetic Monte Carlo algorithms [Vot07], these results prompted a series of works aim-
ing at obtaining precise descriptions of the exit location of solutions of SDEs from metastable
sets, see in particular the works by Di Gesù, Lelièvre, Le Peutrec and Nectoux [DGLLPN19,
DGLLPN20, LLPN22]. These authors also emphasized the importance of quasistationary dis-
tributions (QSDs) in metastable states for the reduction problem [DGLLPN16]. See for instance
the work [CV23] by Champagnat and Villemonais for a recent review on QSDs. In parallel, re-
sults on the spectrum of reversible diffusions of the form (1.1) have been extended to non-
reversible diffusions by Le Peutrec and Michel [LPM20], using methods from semiclassical
analysis.

In a different direction, many works have investigated the metastable behaviour of conti-
nuous-time Markov chains on countable sets, arising either in statistical physics, or as spatial
discretisation of SDEs. In [BL10], Beltrán and Landim introduced in particular the idea of a
trace process to obtain a reduced description of the dynamics, while in [BL15] they introduced
a martingale method to study the convergence of sequences of such processes with increas-
ingly large state spaces. In [LLM18], Landim, Loulakis and Mouragui obtained convergence of
finite-dimensional distributions of the so-called order parameter to those of a finite Markov
chain. See [Lan19] for an overview of these results, and [LS18] for related results on sequences
of discretisations of SDEs.

Finally, a recent approach based on solutions of Poisson equations managed to show con-
vergence of time-rescaled solutions to metastable SDEs to finite Markov chains, in the limit of
the noise intensity going to zero. See the work [RS18] by Rezakhanlou and Seo for the reversible
case, and the work [LS22] by Lee and Seo for non-reversible cases with known invariant mea-
sure, of Gibbs type. An overview is found in [Seo20].

The main difference between the present work and those mentioned above, apart from
the fact that it concerns continuous-time Markov chains instead of SDEs or Markov chains
on countable spaces, is that it splits the approximation question into two separate problems.
The first one, which is the main focus of this work, is to show that there exists a finite Markov
chain that provides a good approximation to the metastable process. The second one is to
obtain sharp asymptotics on transition probabilities of the finite Markov chain. This question
is addressed here only in the sense of logarithmic equivalence, which naturally follows from
the large-deviation principles. Sharper asymptotics will hopefully be determined in the future.
The present results show, however, that it is sufficient to obtain such sharper asymptotics when
starting in suitable QSDs.

We finally remark that there are many works analysing the dynamics of singularly perturbed
Markov chains, such as (Yn)n⩾0. See for instance [Sch68, HH92, AL99, YZ05, BLR16, FK17].

Structure of the paper. Section 2 contains the detailed set-up of the Markov processes we
are interested in, states the four main assumptions, and introduces useful objects such as the
trace process and quasistationary distributions. Section 3 contains the precise statements of
the two main results mentioned above. In Section 4, we show that most of the main assump-
tions do hold quite generally in the case of the two main applications we have in mind, namely
randomly perturbed iterated maps and random Poincaré maps. Sections 5 and 6 contain the
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proofs of the two main results. Finally, the appendix contains the proofs of some auxiliary re-
sults used in Sections 2 and 4.

Acknowledgments. The author would like to thank Manon Baudel for useful discussions that
inspired the early stages of this work. This work was supported by the ANR project PERISTOCH,
ANR–19–CE40–0023.

2 Set-up and assumptions

Let X0 ⊂Rd be an open, connected domain, and denote its Borel σ-algebra B(X0) by S0. Our
object of study are families {Kσ}0⩽σ<σ0 of Markov kernels on (X0,S0), such that K0 is a singular
kernel, called the deterministic limit, while for σ > 0 the kernel Kσ is positive Harris recurrent
and admits a continuous density.

We denote by (Xσ
n )n⩾0 = (Xn)n⩾0 the Markov chain with kernel Kσ, starting from some spec-

ified initial distribution µ, and write Pµ{·} and Eµ[·] for the associated law and expectations. If
µ= δx , we simply write Px {·} and Ex [·]. Given A ∈S0 we will sometimes use the notation

E
A[·]= sup

x∈A
E

x[·] .

For any set A ∈S0, we denote by

τA(x) = inf
{
n ⩾ 0: Xn ∈ A

}
and τ+A(x) = inf

{
n ⩾ 1: Xn ∈ A

}
the hitting time of A and return time to A of (Xn)n⩾0 starting in x (with the convention that
inf∅ =∞). Note that τ+A(x) = τA(x) whenever x ∉ A, while 0 = τA(x) < τ+A(x) when x ∈ A. We
will drop the argument x whenever it is clear from the context.

The kernel Kσ induces two Markov semigroups in the standard way: for any bounded mea-
surable test function ϕ ∈ L∞, we have

(Kσϕ)(x) =
∫
X0

Kσ(x,dy)ϕ(y) = Ex[
ϕ(X1)

]
,

while for any (signed) measure µ ∈ L1 we have

(µKσ)(dy) =
∫
X0

µ(dx)Kσ(x,dy) =Pµ{X1 ∈ dy
}

.

For n ∈N, we denote by K n
σ the n-fold kernel, defined by K 1

σ = Kσ and

K n+1
σ (x, A) =

∫
X0

K n
σ (x,dz)Kσ(z, A) =Px{

Xn+1 ∈ A
}

.

We are going to need a number of more precise assumptions, which are detailed in the next
subsections. These concern the deterministic limit kernel K0, a large-deviation principle for
σ→ 0, as well as positive Harris recurrence and local uniform positivity assumptions guaran-
teeing convergence to a unique invariant distribution.
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2.1 Singular deterministic limit

Let Π : X0 → X0 be a map of class C 2. Note that we do not assume that Π is invertible. We
would like K0 to describe the deterministic dynamical system Xn+1 =Π(Xn), which amounts to
setting

K0(x, A) = 1{Π(x)∈A} ∀A ∈S0 .

The forward semigroup then takes the form of the composition operator

(K0ϕ)(x) =
∫
X0

1{Π(x)∈dy}ϕ(y) = (ϕ◦Π)(x) ,

sometimes called Koopman operator in the physics literature. The backward semigroup is given
by the pushforward operator

(µK0)(A) =
∫
X0

µ(dx)1{Π(x)∈A} =µ(Π−1(A)) ,

which is known as the transfer operator or Ruelle–Perron–Frobenius operator in dynamical sys-
tems theory.

For A ∈ S0, we write Π0(A) = A, and define inductively, for any n ⩾ 1, Πn(A) =Π◦Πn−1(A)
andΠ−n(A) = {

x ∈X0 : Πn(x) ∈ A
}

(note that the last set may be empty). Theω-limit set ω(x) of
x ∈X0 is the set of accumulation points of the forward orbit (Πn(x))n⩾0 as n →∞. The α-limit
set α(x) of x is defined as the set of accumulation points of the backward orbit (Π−n(x))n⩾0.

A fixed point x⋆ ofΠ (that is, a point x⋆ ∈X0 satisfyingΠ(x⋆) = x⋆) is called linearly asymp-
totically stable if the Jacobian matrix ∂xΠ(x⋆) has a spectral radius strictly smaller than 1, and
linearly unstable if it has a spectral radius strictly larger than 1.

Assumption DET (Deterministic limit). There exists a bounded, open connected set X ⊂ X0

such that Π(X ) ⊂X . The map Π admits finitely many limit sets in X , which are either linearly
asymptotically stable fixed points, denoted x⋆1 , . . . , x⋆N , or linearly unstable fixed points. ♣

For each j = 1, . . . , N , we let B j be a closed set, containing x⋆j in its interior, and such that
Π(B j ) ⊂ B j . We will assume that the diameter of all B j is bounded by a constant δ > 0, which
we are going to take small, but which is independent of σ. We denote by

M =
N⋃

j=1
B j

the metastable set of the process.

Remark 2.1. The case of Π admitting finitely many periodic points x⋆i of bounded minimal
period mi asω-limit sets (i.e.,Πmi (x⋆i ) = x⋆i andΠn(x⋆i ) ̸= x⋆i for 1⩽ n ⩽mi −1) can be covered
by considering the iterated kernel K m

σ instead of Kσ, where m is the least common multiple of
the periods mi of all periodic points. ♢

2.2 Large-deviation principle

Our second assumption concerns the behaviour of the the kernel Kσ for small positive σ.

Assumption LDP (Large-deviation principle). The kernel Kσ satisfies a large-deviation prin-
ciple (LDP) with good rate function I . That is, there exists a lower semi-continuous function
I : X0 ×X0 →R+, with compact level sets, such that

liminf
σ→0

σ2 logKσ(x,O)⩾− inf
y∈O

I (x, y) (2.1)
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holds for any open set O ∈S0 and any x ∈X0, and

limsup
σ→0

σ2 logKσ(x,C )⩽− inf
y∈C

I (x, y) (2.2)

holds for any closed set C ∈S0 and any x ∈X0. Furthermore, I (x, y) = 0 if and only if y =Π(x),
and I is continuous at (x⋆, x⋆) whenever Π(x⋆) = x⋆. ♣

With any sequence (x0, x1, . . . , xn) of points in X0, we associate the rate function

I (x0, x1, . . . , xn) =
n∑

j=1
I (x j−1, x j ) .

Then the probability of the Markov chain visiting small neighbourhoods of x0, . . . , xn in this
particular order is logarithmically equivalent to e−I (x0,...,xn )/σ2

. The quasipotential between two
points x and y is then defined as

V (x, y) = inf
n⩾1

inf
x1,...,xn−1∈X0

I (x, x1, . . . , xn−1, y) . (2.3)

It represents the cost of going from x to y in arbitrary time.
For 1⩽ i ̸= j ⩽ N , we denote by

H(i , j ) =V (x⋆i , x⋆j ) (2.4)

the quasipotential between the stable fixed points x⋆i and x⋆j , and we define

H0 = min
i ̸= j

H(i , j ) . (2.5)

An important role will be played by the so-called committor functions Px {τ+B j
< τ+Bi

} between
different balls Bi and B j . The following standard consequence of the LDP shows that for start-
ing points x ∈ Bi , Px {τ+B j

< τ+Bi
} behaves like e−H(i , j )/σ2

. We give its proof in Appendix A.

Proposition 2.2 (Large-deviation estimates on committor functions). For any η> 0, there exists
δ0 > 0 such that, if the diameter of the sets Bi satisfies δ< δ0, then

liminf
σ→0

σ2 logP
x{
τ+B j

< τ+Bi

}
⩾−H(i , j )−η ,

limsup
σ→0

σ2 logP
x{
τ+B j

< τ+Bi

}
⩽−H(i , j )+η

holds for all x ∈ Bi .

2.3 Positive Harris recurrence

Properties of irreducibility, recurrence and positive recurrence can be defined in terms of hit-
ting and return times, as discussed in [MT92]. Given a σ-finite reference measure µ such that
µ(X0) > 0, the process (Xn)n⩾0 is µ-irreducible if Px {τ+A <∞} > 0 whenever µ(A) > 0. It is Harris
recurrent if Px {τ+A < ∞} = 1 whenever µ(A) > 0, which is equivalent to the process visiting A
infinitely often. In this case, it is known [Num84] that the process admits an essentially unique
invariant measure π0, and for any A ∈S0 with π0(A) > 0 and any measurable f ⩾ 0, one has

π0( f ) :=
∫
X0

f (x)π0(dx) =
∫

A
π0(dx)E

x

[
τ+A∑

n=1
f (Xn)

]
. (2.6)
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If π0 can be normalized to a probability measure, the process is called positive Harris recurrent.
Setting f = 1 in (2.6) shows that this is the case if EA

[
τ+A

]<∞ for some A with 0 <µ(A) <∞. An
important role will be played by the quantity

EX (σ) := EX
[
τ+X

]= sup
x∈X

Ex[
τ+X

]
. (2.7)

Here we will make the simplifying assumption, which is motivated by the applications we have
in mind, that for σ > 0, Kσ(x, ·) is absolutely continuous with respect to Lebesgue measure.
This will allow us to take Lebesgue measure as reference measure. By further assuming that the
density kσ of Kσ is continuous and strictly positive in X ×X , we guarantee that Kσ(x, A) > 0
whenever A ⊂X has positive Lebesgue measure, which amounts to an ellipticity condition. In
addition, these A are petite sets in the sense of [MT92, Sect. 3].

Assumption REC (Density and positive Harris recurrence). Whenever σ> 0, Kσ admits a den-
sity kσ with respect to Lebesgue measure, that is,

Kσ(x, A) =
∫

A
kσ(x, y)dy

for any x ∈X0 and any A ∈S0. The density kn
σ of K n

σ is continuous and strictly positive in X for
all n ∈N. Furthermore, Kσ is positive Harris recurrent (with respect to Lebesgue measure), and
there exists σ0 > 0 such that EX (σ) <∞ for all σ ∈ (0,σ0]. ♣

It follows from [MT92, Thm. 4.6] that a sufficient condition for positive Harris recurrence
is that there exist a Lyapunov function U : X0 → R+, going to infinity as x →∞, and constants
ε> 0, a ⩾ 0 satisfying the discrete drift condition

(KσU )(x)⩽U (x)−ε+a1{x∈X } . (2.8)

In addition, [MT92, Thm. 4.3] shows that (2.8) implies the bound

Ex[
τ+X

]
⩽

1

ε
U (x) ∀x ∈X0 ,

so that EX (σ) is indeed finite. Note that if U is a Lyapunov function for K0, then it is a good
candidate for being a Lyapunov function for small positive σ.

Remark 2.3. An alternative to assuming the existence of a Lyapunov function is to work with
the process conditioned on staying in the set X forever, via Doob’s h-transform (see for in-
stance [BB17, App. B]). This has a negligible effect on spectral-theoretic results if we assume
that there exists a constant θ > 0 such that

min
1⩽i⩽N

V (x⋆i , y)⩾ max
1⩽i ̸= j⩽N

H(i , j )+θ

holds for all y ∈X0 \X . ♢

The following result shows that the LDP also provides a rough estimate, of order eη/σ2
with

arbitrarily small η > 0, for the mean hitting time of the metastable set M when starting in X .
Its proof is postponed to Appendix A.

Proposition 2.4 (Mean hitting time of M ). For any η> 0, there existσ0,δ0 > 0 such that one has
EX (σ)⩽ eη/σ2

, provided 0 <σ<σ0 and the diameter of the Bi is bounded by δ0.

We will however see that in many practical situations, it is possible to show that EX (σ) is
much smaller, typically of order log(σ−1), which yields better spectral gap estimates.
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2.4 Trace process

A very important process is going to be the trace process on a recurrent set A ∈ S0 (i.e., such
that P

x{
τ+A <∞}= 1 for all x ∈ A).

Definition 2.5 (Trace process). Let A be a positive recurrent set. The trace process on A is defined
as the Markov chain monitored only when staying in A. Its transition kernel is given by

AKσ(x,B) =Px{
Xτ+A ∈ B

}
for any B ∈S0. We denote this process by A(Xn)n⩾0.

Note that owing to the strong Markov property, AKσ is a markovian kernel, meaning that

AKσ(x, A) = 1 for all x ∈ A. Since A is recurrent, it is also a stochastic kernel on A. It can be
rewritten in the form

AKσ(x,B) = ∑
n⩾1

P
x{
τ+A = n, Xn ∈ B

}
,

and thus for σ> 0 it admits the density

Akσ(x, y) = ∑
n⩾1

P
x{
τ+A = n

}
kn
σ(x, y)1{x∈A,y∈A} . (2.9)

Assume from now on that A is positive recurrent (i.e., E
x[
τ+A

]<∞ for all x ∈ A). Applying (2.6)
to f = 1B for B ⊂ A, we obtain

π0(B) =
∫

A
π0(dx)E

x

[
τ+A∑

n=1
1{Xn∈B}

]
=

∫
A
π0(dx)P

x{
Xτ+A ∈ B

}
,

showing that the restriction of π0 to A is invariant under the trace process. It follows that the
measure Aπ0 defined by

Aπ0(B) = π0(B)

π0(A)
∀B ∈S0 : B ⊂ A

is an invariant probability measure of the trace process on A.

Remark 2.6 (Transitivity of the trace). One easily checks that the trace enjoys the following
transitivity property: if B ⊂ A, then B (A(Xn))n⩾0 = B (Xn)n⩾0. ♢

It will be more convenient to work with kernels defined on a bounded set. This can be
achieved by considering, instead of the original kernel Kσ, the kernel X Kσ of the trace process
on the bounded set X , which contains essentially the same dynamic information owing to
Assumption REC.

To lighted the notation, we will from now on simply write K instead of X Kσ, the parameter
σ> 0 being always fixed at a sufficiently small value. The density of K , denoted by k, is contin-
uous and strictly positive in X by Assumption REC. The Borel σ-algebra of X will be denoted
B(X ) =S , and for any A ∈S we write Ac instead of X \ A.

Since X is bounded and k is continuous, K is a compact operator (that is, it maps every
closed set in S to a relatively compact set, i.e., a set with compact closure). The Riesz–Schauder
theorem [RS80, Thm. VI.15] ensures that K has discrete spectrum, with all eigenvalues except
possibly 0 having finite multiplicity. The eigenvalues are roots of the Fredholm determinant,
introduced in [Fre03]. Jentzsch’s extension of the Perron–Frobenius theorem [Jen12] states that
the eigenvalue of largest module is real and positive, and that the associated eigenfunctions
can be taken real and positive as well.
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We will denote by (λi )i∈N0 the eigenvalues of K , ordered by decreasing modulus, and by πi

and φi the left and right eigenfunctions, that is

(πi K )(x) =λiπi (x) and (Kφi )(x) =λiφi (x)

for all i ∈N0. We normalise the eigenfunctions in such a way that

πi (φ j ) :=
∫
X
πi (x)φ j (x)dx = δi j ,

which implies that the kernels with density φi (x)πi (y) are projectors on invariant subspaces
of K . In case the set of eigenfunctions is complete and all nonzero eigenvalues have equal
algebraic and geometric multiplicity, we have the spectral decomposition

kn(x, y) = ∑
i⩾0

λn
i φi (x)πi (y) ∀n ∈N .

If some geometric multiplicities are smaller than the corresponding algebraic multiplicities,
this decomposition will contain nontrivial Jordan blocks.

Since K is stochastic (K (x,X ) = 1 for all x ∈ X ), we have in particular λ0 = 1, while π0 is
the density of the invariant distribution of the process, and φ0 is identically equal to 1. In what
follows, we will usually identify signed measures and their density.

2.5 Killed process and QSDs

Given A ∈ S , we denote by K A the kernel of the process (X A
n )n⩾0 killed upon leaving A. Its

density has the expression
kA(x, y) = k(x, y)1{x∈A,y∈A} .

If Ac has positive Lebesgue measure, this is a substochastic process, which can be turned into a
stochastic process on A∪{

∂
}
, where ∂ denotes a cemetery state. The killing time of the process

is given for all x ∈ A by τ∂(x) = τAc (x) = τ+Ac (x).
Fredholm theory also applies to K A , and we denote its eigen-elements by λA

i , πA
i and φA

i . A
major difference in the substochastic case is that the principal eigenvalue λA

0 is strictly smaller
than 1. The left eigenfunction πA

0 is a quasiergodic distribution (QED) of the process, meaning
that it satisfies

Pπ
A
0
{

X A
n ∈ B

∣∣ τAc > n
}=πA

0 (B) ∀B ∈S , ∀n ∈N .

It can also be checked that the killing time, when starting in the QED, is geometrically dis-
tributed with success probability (1−λA

0 ), that is,

P
πA

0
{
τAc = n

}= (λA
0 )n−1(1−λA

0 ) ∀n ∈N and E
πA

0
[
τAc

]= 1

1−λA
0

.

If the spectral-gap condition
∣∣λA

1

∣∣<λA
0 is satisfied, then one also has

lim
n→∞P

x{
X A

n ∈ B
∣∣ τAc > n

}=πA
0 (B)

for all x ∈ A and all B ∈ S , meaning that πA
0 is also a quasistationary distribution (QSD). We

refer to [CMSM13, BG16, CV16, DGLLPN16, CV23] for proofs and further details on QSDs.
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2.6 Uniform positivity

The last assumption we need is a form of ergodicity condition, which is a particular case of the
uniform positivity condition used in [Bir57], and a variant of Doeblin’s condition for Markov
chains suitable for substochastic processes (see also [HM11] for related results).

Definition 2.7 (Uniform positivity condition). We say that a (sub)stochastic Markov kernel K A

on A with density kA satisfies a uniform positivity condition with parameters n ∈N and L > 1 if

sup
x∈A

kn
A(x, y)⩽ L inf

x∈A
kn

A(x, y) (2.10)

holds for all y ∈ A.

Remark 2.8. A more general uniform positivity condition one encounters in the literature is
that s(x)ν(B) ⩽ K n(x,B) ⩽ Ls(x)ν(B) for a positive function s and a positive measure ν. The
form we use here corresponds to a constant s, which is sufficient for our purposes since we are
going to apply it to sets A on which K n(x, ·) is bounded below. ♢

We will only need uniform positivity to hold for certain trace processes killed upon hitting
some metastable sets. More precisely, given 1 ⩽ i ⩽ N , let M Kσ,Bi be the kernel of the trace
process on M , killed when in hits M \ Bi (which is equivalent to the trace process leaving Bi ).

Assumption POS (Uniform positivity). There exist a constant L ∈ (1,2), independent of σ, and
an integer n0(σ), such that for each 1 ⩽ i ⩽ N , the kernel M Kσ,Bi satisfies a uniform positivity
condition on Bi with parameters n0(σ) and L. Furthermore, for any η> 0, there exists σ0(η) > 0
such that

n0(σ)⩽ eη/σ2

holds for all σ ∈ (0,σ0]. ♣

At first glance, it might seem difficult to prove that such a condition holds. In practice, how-
ever, we will often be in the following situation. We have a bad upper bound on the oscillation
of x 7→ M kσ,Bi (x, y) valid on the whole domain (typically, this bound has order eC /σ2

for some
C > 0), but we also have a much smaller bound, uniform inσ, when x is only allowed to vary on
a small ball, typically of radius σ2. The two bounds can then be combined into a much better
one by using a coupling argument, see Proposition B.1 in Appendix B.1.

3 Main results

We assume throughout this section, without further mention, that the kernel K =X Kσ satisfies
Assumptions DET, LDP, REC and POS. Our first main result concerns the spectrum of K . We
give its proof in Section 5.

Proposition 3.1 (Spectral gap estimate). For any η > 0, there exist σ0 > 0 and δ0 > 0 such that,
if σ ∈ (0,σ0] and the diameter of the sets Bi is bounded by δ0, then the kernel K has exactly N
eigenvalues outside the disc {λ ∈C : |λ|⩽ ϱ}, where

ϱ= exp

{
− log2

4EX (σ)

}
.

Furthermore, these N eigenvalues all belong to the disc of radius e−[H0−η]/σ2
, centred in 1.
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Remark 3.2 (Sharper estimates on the N first eigenvalues). In [BB17], we obtained sharper
estimates on the N largest eigenvalues, in terms of committor functions between the Bi , under
a more restrictive condition on the H(i , j ). The condition requires that the Bi can be ordered
in such a way that

min
j<i

H(i , j )⩽min
k<i

min
j⩽i , j ̸=k

H(k, j )−θ ∀i ∈ {1, . . . , N }

holds for some θ > 0. Since we do not make this assumption here, it is necessary to give a new
proof of Proposition 3.1 in the current situation. The proof uses however the same tools as
in [BB17]. ♢

One consequence of Proposition 3.1 is that the variables of the sequence (Xn)n⩾0 will be at
distance decreasing like ϱn from a sequence ((Xtr)n)n⩾0, generated by the truncated kernel Ktr,
obtained by projecting K on the space associated with its N largest eigenvalues. This truncated
kernel is given, in the basis of eigenfunctions of K , by a matrix of size N . However, it is not
immediatly clear how this approximate sequence relates to the sequence of visited Bi . The
following approximation result clarifies that point.

Theorem 3.3 (Approximation by a finite Markov chain). There exist constants C ,θ0 > 0 such that
the following holds for all θ ∈ (0,θ0]. Let i ∈ {1, . . . N }, and let m = m(σ) satisfy

lim
σ→0

σ2 log(m(σ)) = θ .

Then for any η > 0, there exist σ0 > 0 and δ0 > 0, such that if σ ∈ (0,σ0] and the diameter of the
sets Bi is bounded by δ0, then for any x ∈ Bi , one has∣∣Px{

Xτ+,nm
M

∈ B j
}−Pi {

Yn = j
}∣∣⩽C

(
e−[Ĥmin−η]/σ2 +ϱnm)

(3.1)

for all n ∈ N and all j ∈ {1, . . . N }. Here Ĥmin is a constant satisfying Ĥmin ⩾ H0 − (N −1)θ, and
(Yn)n⩾0 is the Markov chain with transition matrix P, whose matrix elements satisfy

Pi j =Pπ̊
Bi
0

{
Xτ+,m

M
∈ B j

}[
1+O

(
e−[θ−η]/σ2)]

, (3.2)

where π̊Bi
0 is the QSD of the trace process M (Xn) killed when leaving Bi .

We give the proof in Section 6, which also contains more precise information on the con-
stants θ0 and Ĥmin. Theorem 6.14 also provides the relation

P
i {

Yn = j
}= Eµi

[
ψ j

(
Xτ+,nm

M

)]
,

where the µi andψ j are suitable measures and test functions, and τ+,n
M

is the nth return time to
the metastable set M . This shows in which way the original and reduced process are coupled.
In fact, there exists a linear map L from the space of measures on X to those on {1, . . . , N } such
that

Pi Y −1
n =L

(
Pµi X −1

τ+,nm
M

) ∀n ∈N0 ,

given by L (µ j ) = δ j . The map L is of course highly non-injective, since it maps an infinite-
dimensional space to a space of dimension N . Its kernel is a complement of the space of
measures spanned by µ1, . . . ,µN , given by the space of measures µ such that Eµ

[
ψ j

] = 0 for
j = 1, . . . , N .
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Relation (3.1) shows in which sense the sequence of visited balls Bi is close to the Markov
chain (Yn)n⩾0. Note that the error term ϱnm converges to 0 as n increases. It actually becomes
negligible as soon as

n ⩾ Ĥmin
EX (σ)

σ2m(σ)
,

which already happens for n ⩾ 1 if one applies Proposition 2.4 with η small enough.
The important part of the error term in (3.1) is thus given by C e−[Ĥmin−η]/σ2

. The point is
that this error is uniform in time n. Thus at any given time n, we know that the trace process

is likely to be in a ball Bi whenever the probability P
i {

Yn = j
}

is not exponentially small. This
information becomes useful on time scales that are long compared to the typical time of tran-
sitions between metastable sets.

The process (Xτ+,nm
M

)n⩾0 can thus be approximated, up to an exponentially small error that
is uniform in time, by a Markov chain with transition probabilities Pi j . Note that the error
in the expression (3.2) for these probabilities is multiplicative. Our analysis does not provide
more explicit expressions for these transition probabilities than the large-deviation estimate in
Proposition 6.1, but it shows that is is sufficient to know the probabilities of hitting the different
balls B j when starting in the QSD on each Bi . One may hope that future development of the
theory will provide sharper estimates.

4 Applications

In this section, we show that most of the main assumptions are automatically satisfied for the
two main applications we have in mind, namely randomly perturbed iterated maps, and ran-
dom Poincaré maps.

4.1 Iterated maps with additive noise

Let X0 =Rd and consider the Markov chain given by

Xn+1 =Π(Xn)+σξn+1 ,

where Π : Rd → Rd satisfies Assumption DET, and the ξn are i.i.d. random variables taking val-
ues in Rd . A typical example would be that the ξn are centred, normal random variables with
positive definite covariance matrixΣ (that is, we assume c−∥ζ∥2 ⩽ 〈ζ,Σζ〉c+ ⩽ ∥ζ∥2 for all ζ ∈Rd ,
where c+ ⩾ c− > 0).

The transition kernel of the chain (Xn)n⩾0 is given by

Kσ(x, A) =P{
Π(x)+σξ1 ∈ A

}=P{
σξ1 ∈ A−Π(x)

} ∀A ∈S0 .

We now examine the four assumptions one by one.

Assumption DET. The existence of a set X invariant under the mapΠ is a classical growth
condition that holds true for many discrete-time dynamical systems. Let us assume for simplic-
ity that X can be taken as a ball B(R0) = {x ∈ Rd : ∥x∥ < R0}. For later use, we shall make the
somewhat stronger assumption that Π maps any ball B(R) of radius R ⩾R0 into a smaller ball,
namely there exists ε0 > 0 such that

∥Π(x)∥2 ⩽ ∥x∥2 −ε0 ∀x : ∥x∥⩾R0 . (4.1)
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Checking the conditions on limit sets is in general no easy task, as it requires a good under-
standing of fixed points and periodic orbits, their basins of attraction, and there stable and
unstable manifolds. However they are known to hold for a number of systems. See for in-
stance [CFLM06] for a non-trivial dynamical systems arising from genetic regulatory networks.

Assumption LDP. Assume the random variable ξ1 satisfies a large-deviation principle
with good rate function I0. Then it is immediate to see that Kσ(x, ·) satisfies (2.1) and (2.2)
with the rate function

I (x, y) = I0(y −Π(x)) .

We see that I vanishes only if y = Π(x) provided I (x) > 0 for x ̸= 0, and is continuous at fixed
points whenever I0 is continuous at 0.

In particular, if ξ1 has a centred normal distribution with covariance matrix Σ, then

I (x, y) = 1

2
〈y −Π(x),Σ−1(y −Π(x))〉 (4.2)

satisfies all required properties.

Assumption REC. Assume ξ1 has a continuous density p. Then we see that Kσ admits the
density

kσ(x, y) = 1

σd
p

(
y −Π(x)

σ

)
,

as required. Furthermore, taking U (x) = ∥x∥2 as Lyapunov function, we obtain

(KσU )(x) = Ex[∥Π(x)+σξ1∥2]
= ∥Π(x)∥2 +2σ〈Π(x),E[ξ]〉+σ2E[∥ξ1∥2] .

Thus if we assume that ξ1 has zero mean and its components have bounded variance, it follows
from (4.1) that the discrete drift condition (2.8) is satisfied provided σ2 < ε0

[
E[∥ξ1∥2]

]−1.
These properties clearly hold in the case of Gaussian ξi , for which the density is

kσ(x, y) = 1

N
e−I (x,y)/σ2

, N = (2πσ2)d/2(detΣ)1/2 (4.3)

with I given by (4.2).

Assumption POS. In the case where ξ1 follows a normal law, the following result based
on the coupling argument in Proposition B.1 shows that the positivity condition holds for suf-
ficiently small diameter of the Bi .

Proposition 4.1 (Positivity for Gaussian noise). Assume ξ1 follows a centred, normal law with
positive definite covariance matrix Σ. Then there exist δ0,σ0 > 0 such that, if the Bi have a diam-
eter bounded by δ0 and 0 <σ<σ0, then Assumption POS is satisfied for n0(σ) of order log(σ−1).

PROOF: See Appendix B.1.

Recall that Proposition 2.4 shows that EX (σ) is bounded by any exponential eη/σ2
if σ and

the Bi are small enough. In fact, we can do much better, and show that this expectation has
order log(σ−1) if we assume that the deterministic system does not admit any heteroclinic cy-
cles. A heteroclinic orbit from an unstable fixed point z⋆1 to an unstable fixed point z⋆2 is an
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orbit whose α-limit set is equal to z⋆1 and whose ω-limit set is equal to z⋆2 . A heteroclinic cycle
between unstable fixed points z⋆1 , . . . , z⋆n is a set of heteroclinic orbits connecting z⋆1 to z⋆2 , z⋆2
to z⋆3 , . . . , z⋆n−1 to z⋆n and z⋆n to z⋆1 .

Proposition 4.2 (Expected hitting time of M ). Assume ξ1 follows a centred, normal law with
positive definite covariance matrix Σ, and the deterministic dynamical system generated by Π0

has no heteroclinic cycles. Then there exist constants c0,σ0,δ0 > 0 such that

EX (σ)⩽ c0 log(σ−1)

holds for 0 <σ<σ0 and 0 < δ< δ0.

PROOF: See Appendix B.2.

The reason we exclude heteroclinic cycles is that the system may spend times longer than
log(σ−1) in their neighbourhood. Note that SDEs with heteroclinic cycles have been investi-
gated, for instance, in [Bak11]. Results from that work may be transposed to the present situa-
tion, to analyse that point in more detail.

Based on what is known in the continuous-time case [BB17], similar results are expected to
hold for more general systems with state-dependent noise, of the form

Xn+1 =Π(Xn)+σg (Xn)ξn+1 ,

provided g satisfies an ellipticity condition (that is, g (x)g (x)† should be positive definite). If g
fails to be elliptic at certain points, a more careful analysis becomes necessary.

4.2 Random Poincaré maps

Consider a stochastic differential equation on D0 ⊂Rd+1 of the form

dzt = f (zt )dt +σg (zt )dWt , (4.4)

where f : D0 → Rd+1 is a vector field of class C 2, g : D0 → R(d+1)×k is of class C 1 and (Wt )t⩾0

is a k-dimensional standard Wiener process. Assume further that the deterministic ordinary
differential equation

ż = f (z) (4.5)

admits N ⩾ 2 linearly asymptotically stable periodic orbits Γ1, . . . ,ΓN , and that there exists a
smooth d-dimensional manifold Σ that all Γi intersect transversally (cf. [BB17, Sect. 2.2]).

The random Poincaré map associated with this system describes the sequence (X0, X1, . . . )
of successive intersections of a sample path (zt )t⩾0 of the SDE (4.4) with Σ. To obtain a well-
defined process, these intersections should be separated by excursions away from Σ, which
can be achieved by requiring the sample path to visit another section Σ′, disjoint from Σ, be-
tween two consecutive Xi (see [BB17, Sect. 2.3]). The strong Markov property implies that the
sequence (Xn)n⩾0 forms a Markov chain which, under suitable assumptions on f and g , is of
the form studied here.

Assumption DET. This assumption is fulfilled if the deterministic system (4.5) admits a
positively invariant, bounded open connected set D ⊂ D0, intersecting Σ, and the limit sets
of (4.5) are given by the Γi and finitely many linearly unstable stationary points or unstable
orbits. We can then take X =D∩Σ, andΠmaps a point in x ∈Σ to the point where the positive
orbit of x first returns to Σ. Furthermore, x⋆i = Γi ∩Σ, and the intersections of the unstable
periodic orbits with Σ are the unstable fixed points of Π.
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Assumption LDP. Assume the diffusion coefficient g satisfies an ellipticity condition, that
is, there exist constants c+ ⩾ c− > 0 such that the diffusion matrix D(z) = g (z)g (z)† satisfies

c−∥ξ∥2 ⩽ 〈ξ,D(z)ξ〉⩽ c+∥ξ2∥ (4.6)

for all z ∈ D and ξ ∈ Rd+1. Then Wentzell–Freidlin theory [FW98] provides the existence of a
sample-path LDP with rate function

I[0,T ](γ) =


1

2

∫ T

0
(γ̇s − f (γs))†D(γs)−1(γ̇s − f (γs))ds if γ ∈ H 1 ,

+∞ otherwise .

Note that if g fails to satisfy the ellipticity condition (4.6), an LDP may still hold, but its rate
function is given by a variational principle (obtained by applying the contraction principle to
Schilder’s theorem for scaled Brownian motion).

This continuous-time LDP induces, by the contraction principle, a discrete-time LDP with
rate function

I (x, y) = inf
T>0

inf
γ : x→y

I[0,T ](γ) ,

where the second infimum runs over paths connecting points x and y in Σ in time T , and
making an excursion via Σ′.

Assumption REC. The ellipticity condition (4.6) ensures that the kernel Kσ of the Markov
chain (Xn)n⩾0 admits a continuous density kσ as shown in [BAKS84]. In fact, a weaker hypo-
ellipticity condition is sufficient. As for Harris recurrence, it follows from a continuous-time
analogue of the discrete drift condition (2.8) [MT93]. Namely, there should exist a function
V : D0 →R+ of class C 2, diverging as ∥x∥→∞, and constants c > 0 and d ⩾ 0 such that

(L V )(z)⩽−c +d1{z∈D} ∀z ∈D0 ,

where L is the infinitesimal generator of the diffusion (4.4).

Assumption POS. The uniform positivity condition (2.10) of the trace process can again
be proved to hold by applying the coupling argument of Proposition B.1. Instead of using Har-
nack inequalities for the density of a Gaussian random variable, one can use Harnack inequal-
ities satisfied by harmonic functions, see [BB17, Sect. 5.1] and [BG14, Sect. 5.3]. The parameter
n0(σ) in the uniform positivity condition has again order log(σ−1).

We also have an analogue of Proposition 4.2 on the expected hitting time of the metastable
set M .

Proposition 4.3 (Expected hitting time of M ). Assume the deterministic dynamical system (4.5)
has no heteroclinic cycles. Then there exist constants c0,σ0,δ0 > 0 such that

EX (σ)⩽ c0 log(σ−1)

holds for 0 <σ<σ0 and 0 < δ< δ0.

PROOF: See [BB17, Cor. 8.13]. This work excluded the existence of heteroclinic orbits between
unstable periodic orbits, but the same arguments as in the proof of Proposition 4.2 show that
the absence of heteroclinic cycles is sufficient.
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5 Proof of Proposition 3.1

In this section, we give the proof of the spectral gap result stated in Proposition 3.1, by adapting
the proof of [BB17, Thm 3.2] to the weaker assumptions of the present work. We start with a
simple but useful a priori estimate.

Lemma 5.1. There exist constants θ0,σ0 > 0 such that

sup
x∈M

P
x{

X1 ∈M c}⩽ e−θ0/σ2
(5.1)

holds for all σ⩽σ0.

PROOF: Pick an x ∈ Bi ⊂ M . Since Bi is assumed to be positively invariant under the map Π

and x⋆i is asymptotically stable, Π(x) belongs to Bi , and its distance to ∂Bi is bounded below.
The claim thus follows from the large-deviation principle.

Fix x ∈X and m0 ∈N. By Markov’s inequality and the definition (2.7) of EX (σ), we have

P
x{
τ+M > m0

}
⩽

1

m0
Ex[

τ+M
]
⩽

1

m0
EX (σ) .

This shows that

P
x{

Xm0 ∉M
}
⩽P

x{
τ+M > m0

}+Px{
Xm0 ∉M ,τ+M ⩽m0

}
⩽

1

m0
EX (σ)+ sup

m1⩽m0

sup
y∈M

P
y{

Xm1 ∈M c} .

The second term is exponentially small by (5.1), and is thus bounded by 1
4 for σ small enough.

For sufficiently small σ, we thus have

P
x{

Xm0 ∉M
}
⩽

1

2

provided m0 ⩾ 4EX (σ).

5.1 Feynman–Kac representation formulas

We will now rely on Feynman–Kac representation formulas for eigenfunctions of the kernel K ,
as used in [BB17, Sect. 4], to show that there are only N eigenvalues outside a given disc in the
complex plane. Writing X̃n = Xnm0 for the time-diluted Markov chain and τ̃+

M
for the corre-

sponding first-hitting time of M , we obtain from [BB17, Lem. 4.1] that the Laplace transform
E

x[
euτ̃+

M

]
exists whenever |e−u |⩾ 1

2 . By [BB17, Cor. 4.3], we know that (e−u ,φ) is an eigenpair
of K m0 for |e−u | > 1

2 if, and only if, one has

((K u)m0φ)(x) = e−uφ(x) ∀x ∈M ,

where K u is the kernel defined by

K u(x, A) = Ex
[

eu(τ+
M
−1) 1{

Xτ+
M

∈A
}] ∀A ∈B(M ) .

Note that K 0 is equal to the kernel M K of the trace process on M . It follows that (e−u ,φ) is an

eigenpair of K for |e−u | > (1
2

)1/m0 if, and only if, one has

(K uφ)(x) = e−uφ(x) ∀x ∈M . (5.2)
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Remark 5.2. It may seem unusual that the variable u appears both in the kernel K u and the
eigenvalue e−u . This is not a problem, however, since the eigenvalue problem (5.2) can be
considered as the system

K uφ=λφ , λ= e−u

for two unknowns λ and e−u . ♢

The idea is now to compare the kernel K u to the simpler kernel K⋆, defined for A ⊂M by

K⋆(x, A) =
N∑

i=1
1{x∈Bi }P

π̊
Bi
0

{
Xτ+

M
∈ A

}
.

Here we recall that π̊Bi
0 denotes the quasistationary distribution of the trace process on M killed

when leaving Bi . Since

(K⋆φ)(x) =
N∑

i=1
1{x∈Bi }E

π̊
Bi
0

[
φ(Xτ+

M
)
]

,

the kernel K⋆ has finite rank. Indeed, its image is the N -dimensional space of functions φ :
M →R that are constant on each Bi . Therefore, K⋆ has at most N nonzero eigenvalues. These
eigenvalues are exactly those of the N by N stochastic matrix P⋆ with elements

P⋆
i j =P

π̊
Bi
0

{
Xτ+

M
∈ B j

}
. (5.3)

Note that Proposition 2.2 implies that for any η> 0, there exists a σ0(η) > 0 such that one has

e−(H0+η)/σ2
⩽Px {τM \Bi ⩽ n}⩽ n e−(H0−η)/σ2

(5.4)

for any n ∈N, any x ∈ Bi and all σ< σ0(η), where H0 has been introduced in (2.5). This shows
in particular that the matrix elements (5.3) satisfy

Pi j ⩽ e−(H0−η)/σ2
for i ̸= j . (5.5)

5.2 Norm estimates on kernels

In order to compare kernels, we will need a norm on the space of (signed) kernels on M . If Q is
such a kernel with density q , we write

∥Q∥ = sup
x∈M

∫
M

∣∣q(x, y)
∣∣dy = sup

x∈M

|Q(x,M )| .

One easily checks that this is a subordinate norm, given by

∥Q∥ = sup
ϕ∈L∞ : ∥ϕ∥∞=1

∥Qϕ∥∞ = sup
µ∈L1 : ∥µ∥1=1

∥µQ∥1 .

In particular, (5.5) implies that the kernel R = K⋆− id satisfies

∥R∥⩽ 2(N −1)e−(H0−η)/σ2
. (5.6)

This allows us to bound the resolvent of K⋆. Indeed, for z ∈C\ {1}, we have

(z id−K⋆)−1 = 1

z −1

(
id− 1

z −1
R

)−1

= 1

z −1

∑
n⩾0

1

(z −1)n Rn .
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The Neumann series converges whenever |z −1| > ∥R∥, in which case we have

∥(z id−K⋆)−1∥⩽ 1

|z −1|−∥R∥ . (5.7)

It follows that all eigenvalues of K⋆ are contained in the closed disc of radius ∥R∥ centred in 1.
Our aim is now to compare K u and K⋆ in two steps. Firstly, [BB17, Prop. 6.1], slightly

adapted to allow for complex u, shows that for any m ∈N,

∥(K u)m − (K 0)m∥⩽
(

1+ |1−e−u |EM
[
τ+

M
−1

]
1−|1−e−u |EM c [

τ+
M

])m

−1 , (5.8)

which holds provided the denominator is strictly positive. This is indeed the case provided
|1−e−u | < EX (σ)−1. Secondly, [BB17, Prop. 6.7] shows that for any m ∈N,

∥(K 0)m − (K⋆)m∥⩽ sup
1⩽i⩽N

Ri ,

where

Ri = ∥φ̊Bi
0 −1∥+2

∣∣λ̊Bi
1

∣∣m +2
1− ∣∣λ̊Bi

1

∣∣m

1− ∣∣λ̊Bi
1

∣∣ PBi {τ+M \Bi
< τ+Bi

}

+m(m −1)PBi {τ+M \Bi
< τ+Bi

}PM \Bi {τ+Bi
< τ+M \Bi

} . (5.9)

Here the φ̊Bi

k and λ̊
Bi

k denote eigen-elements of the trace process on M killed upon leaving
Bi . These can be estimated thanks to the uniform positivity condition POS. First note that
integrating (2.10) against φA

0 (y), yields the very rough bound

sup
x∈A

φA
0 ⩽ L inf

x∈A
φA

0 (x) .

With the normalisation πA
0 (φA

0 ) = 1, this yields L−1 ⩽ φA
0 (x) ⩽ L for all x ∈ A. A much sharper

bound is then provided by the following estimates.

Proposition 5.3 (Spectral gap and oscillation of φA
0 ). Let K A be the kernel of the process killed

upon leaving A. Assume its density kA satisfies the uniform positivity condition (2.10) with pa-
rameters n0(σ) ∈N and L ∈ (1,2). Then the spectral gap satisfies

(∣∣λA
1

∣∣
λA

0

)n0(σ)

⩽ L−
inf
x∈A

P
x{
τAc > n0(σ)

}
(
λA

0

)n0(σ)
. (5.10)

Furthermore, the oscillation of the principal eigenfunction satisfies

∥φA
0 −1∥ := sup

x∈A

∣∣φA
0 (x)−1

∣∣⩽ L3

∣∣∣∣∣∣1−
inf
x∈A

P
x{
τAc > n0(σ)

}
(
λA

0

)n0(σ)

∣∣∣∣∣∣ . (5.11)

PROOF: The spectral gap estimate (5.10) is proved in [BB17, Prop. 5.1]. The estimate (5.11) is
proved in [BB17, Prop. 5.5], where the constant M in that result can be taken equal to L thanks
to the a priori bound L−1 ⩽φA

0 (x)⩽ L.
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We are going to apply these bounds to the kernel M K with A = Bi . Note that (5.4) already
allows us to bound several terms in (5.9) by exponentially small quantities. Furthermore, the
definition of π̊Bi

0 implies that for any x ∈ Bi , one has

1− P
x{
τM \Bi > n0(σ)

}(
λ̊

Bi
0

)n0(σ)
= 1− P

x{
τM \Bi > n0(σ)

}
P
π̊

Bi
0

{
τM \Bi > n0(σ)

}
= P

x{
τM \Bi ⩽ n0(σ)

}−Pπ̊Bi
0

{
τM \Bi ⩽ n0(σ)

}
1−Pπ̊

Bi
0

{
τM \Bi ⩽ n0(σ)

} .

Combining (5.11) and (5.4) we get

∥φ̊Bi
0 −1∥⩽ L3n0(σ)e−(H0−η)/σ2

1−e−(H0+η)/σ2 .

A similar argument, based on the bound (5.10), shows that

∣∣λ̊Bi
1

∣∣⩽ (
L−1+n0(σ)e−(H0−η)/σ2

1−e−(H0+η)/σ2

)1/n0(σ)

, (5.12)

Plugging the last two estimates into (5.9) yields

∥(K 0)m − (K⋆)m∥⩽L3n0(σ)e−(H0−η)/σ2

1−e−(H0+η)/σ2 +
(

L−1+n0(σ)e−(H0−η)/σ2

1−e−(H0+η)/σ2

)m/n0(σ)

+2m e−(H0−η)/σ2 +m2 e−2(H0−η)/σ2
, (5.13)

where we have bounded the fraction in (5.9) above by m.

5.3 Resolvent estimate

We can now apply the following classical resolvent estimate, see for instance the argument
presented in [BB17, Sect. 7.1], which is based on [GG01, Cor. 8.2] and [GGK03, Prop. 4.2].

Lemma 5.4. Let K1 and K2 be compact linear operators. Let Γ be a contour in the complex plane,
encircling k eigenvalues of K1. Let

γ= min
{∥(z id−K1)−1∥−1 : z ∈ Γ}

,

C = 1

π

∫
Γ
∥(z id−K1)−1∥2 dz .

If ∥K2 −K1∥ < min{ 1
2γ,C−1}, then K2 has exactly k eigenvalues inside the contour Γ.

We now apply this lemma to K1 = (K⋆)m , and K2 = (K u)m . The same argument as the one
yielding (5.7) shows that

∥(z id−(K⋆)m)−1∥⩽ 1

|z −1|+1− (1+∥R∥)m .

It follows that all N nonzero eigenvalues of (K⋆)m are contained in a disc of radius (1+∥R∥)m−1,
centred in 1. Given r ⩾ 2[(1+∥R∥)m−1], Lemma 5.4 applied to the contourΓ of radius r , centred
in 1 shows that (K u)m has exactly N eigenvalues inside Γ, provided

∥(K u)m − (K⋆)m∥⩽ r . (5.14)
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We now make some convenient choices for various parameters. First of all, we assume that

η⩽
1

3
min

{
H0,θ0

}
,

and take σ small enough to guarantee that n0(σ) ⩽ eη/σ2
and EX (σ) ⩽ eη/σ2

, which is possible
by Assumption POS and Proposition 2.4. Since δ= 1

2 (L−1) > 0, we may define

m =
⌈

1

σ2 max

{
m0,

H0n0(σ)

log(δ−1)

}⌉
. (5.15)

Note that this implies δm/n0(σ) ⩽ e−H0/σ2
. Then it follows from (5.13) that

∥(K 0)m − (K⋆)m∥⩽
(
1+C1

n0(σ)

σ2

)
e−(H0−η)/σ2

for some numerical constant C1. Next we note that for any x ∈M , one has

E
x[
τ+M −1

]
⩽P

x{
X1 ∈M c}EX (σ)⩽ e−θ0/σ2

EX (σ) .

If we further impose the condition

r ⩽
1

2EX (σ)
, (5.16)

then (5.8) yields

∥(K u)m − (K 0)m∥⩽ (
1+2rEM

[
τ+M −1

])m −1⩽
(
1+2r e−θ0/σ2

EX (σ)
)m −1

If 2mr e−θ0/σ2
EX (σ) is bounded, this quantity has order mr e−θ0/σ2

EX (σ), so that

∥(K u)m − (K 0)m∥⩽C2
n0(σ)EX (σ)

σ2 e−θ0/σ2
r ⩽

r

2

thanks to our bounds on n0(σ) and EX (σ). We may thus set r = e−(H0−2η)/σ2
, which satisfies

both (5.14) and (5.16). One furthermore checks that the bound (5.6) implies that r ⩾ 2[(1+
∥R∥)m −1]. We can thus conclude that K u and K⋆ have the same number of eigenvalues in the
disc {|z −1| < r }.

By a similar argument, K u has no eigenvalues in any contour that does not contain 0, and
stays at distance at least r from 1. It follows that K u has exactly N nonzero eigenvalues (count-
ing multiplicity).

Recall finally that K and K u have the same eigenvalues outside a disc of radius
(1

2

)1/m0 .
It follows that K m and (K u)m have the same number of eigenvalues outside a disc of radius(1

2

)m/m0 . The choice (5.15) of m implies that this disc does not intersect the disc of radius r
centred in 1, which concludes the proof.

6 Proof of Theorem 3.3

6.1 Large-deviation estimates for the trace process on M

The trace process on M is given by the sequence
(
Xτ+,n

M

)
n∈N, where

τ+,1
M

= τ+M , τ+,n+1
M

= inf
{
m > τ+,n

M
: Xm ∈M

}
.
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Owing to Proposition 2.2, for any η> 0 there exist σ0(η) > 0 and δ0(η) > 0 such that

e−[H(i , j )+η]/σ2
⩽P

x{
Xτ+

M
∈ B j

}
⩽ e−[H(i , j )−η]/σ2

(6.1)

holds for all x ∈ Bi , j ̸= i and all σ<σ0(η), provided the diameter of the balls Bℓ is bounded by
δ0(η).

We will use several properties of the quasipotential H defined in (2.4). First note that H
satisfies the triangle inequality

H(i ,ℓ)+H(ℓ, j )⩾ H(i , j ) ∀i , j ,ℓ ∈ {1, . . . , N } ,

where we have extended H by setting H(i , i ) = 0 for all i ∈ {1, . . . , N }.
We call path a tuple γ= (γ0,γ1, . . . ,γp−1,γp ) ∈ {1, . . . , N }p+1 whose consecutive elements are

different. Its length is defined to be
∣∣γ∣∣ := p, and its cost is

V (γ) = H(γ0,γ1)+H(γ1,γ2)+ . . . H(γp−1,γp ) .

We write γ : i → j if γ0 = i and γp = j . We say that γ is an optimal path from i to j , and write
γ : i ↠ j , if

V (γ) = H(i , j ) .

and for any ε> 0, there exists a sequence of points in the definition (2.3) of the quasipotential
that visits all Bγk with γk an element of γ, and whose cost is smaller than H(i , j )+ε. Note that
there may be more than one optimal path γ : i ↠ j .

We will also use the notation

Ĥ0 = min
γ:i→ j ,V (γ)>H(i , j )

[
V (γ)−H(i , j )

]
(6.2)

for the minimal difference between the costs of a non-optimal path and an optimal path from
i to j . The minimum is reached, even though the set of paths γ : i → j is infinite, because

V (γ)⩾
∣∣γ∣∣H0 , (6.3)

and an optimal path γ : i ↠ j can have length N −1 at most.

Proposition 6.1. For any η> 0, there exist σ0(η),δ0(η) > 0 and a constant CN depending only on
N such that

P
x{

Xτ+,n
M

∈ B j
}
⩽

∑
γ:i↠ j

(
n∣∣γ∣∣

)
e−[H(i , j )−|γ|η]/σ2 +CN e−[H(i , j )+Ĥ0−Nη]/σ2

P
x{

Xτ+,n
M

∈ B j
}
⩾

∑
γ:i↠ j

(
n∣∣γ∣∣

)
e−[H(i , j )+|γ|η]/σ2[

1−e−(H0−η)/σ2]n−|γ|

holds for any i ̸= j , x ∈ Bi and n ⩾ 1, provided σ<σ0(η) and the diameter of the Bk is bounded
by δ0(η).

PROOF: To any trajectory (X
τ+,k

M
)0⩽k⩽n from x to B j , we associate a path γ = (i ,ℓ1, . . . ,ℓp = j ) :

i → j and an increasing sequence 0 = k0 < k1 < k2 < kp ⩽ n of jump times, such that

X
τ+,k

M
∈ Bγℓ for kℓ⩽ k < kℓ+1 .
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The path γ simply indicates the sequence of visited balls. Then we have

P
x{

Xτ+,n
M

∈ B j
}= ∑

γ:i→ j
|γ|⩽n

∑
0<k1<···<kp

Qk1,...,kp (x) , (6.4)

where we have set p = ∣∣γ∣∣, and

Qk1,...,kp (x) =Px{
X
τ+,k

M
∈ Bγℓ ,kℓ⩽ k < kℓ+1,0⩽ ℓ⩽ p −1

}
.

We want to use the fact that the sum (6.4) is dominated by optimal paths γ : i ↠ j . Let γ be
such an optimal path, of length p. Then (6.1) yields the upper bound

Qk1,...,kp (x)⩽
p−1∏
ℓ=0

sup
y∈Bγℓ

P
y{

Xτ+
M
∈ Bγℓ+1

}
⩽

p−1∏
ℓ=0

e−[H(γℓ,γℓ+1)−η]/σ2
⩽ e−[H(i , j )−pη]/σ2

. (6.5)

As a lower bound, we have

Qk1,...,kp (x)⩾
p−1∏
ℓ=0

(
inf

y∈Bγℓ

P
y{

Xτ+
M
∈ Bγℓ+1

}) p∏
ℓ=0

(
inf

y∈Bγℓ

P
y{

Xτ+
M
∉ Bγℓ

})kℓ+1−kℓ−1

⩾
[
1−e−(H0−η)/σ2]n−p e−[H(i , j )+pη]/σ2

. (6.6)

Since both bounds are independent of the sequence of jump times (k1, . . . ,kp ), summing over
all these sequences simply multiplies the bounds by their number. This number is exactly the
number of compositions of n +1 into p +1 parts, which is known to be equal to the binomial
coefficient

(n
p

)
.

It remains to bound the contribution of non-optimal paths. Here we distinguish the cases∣∣γ∣∣ ⩽ N , and
∣∣γ∣∣ > N . In the first case, we use (6.2), while in the second case, we use (6.3) and

bound the resulting sum by a geometric series. The constant CN bounds the number of paths
of length N , and can be taken of order N N .

6.2 The finite rank kernel K⋆

In what follows, it will be convenient to use the physicists’ bra-ket notation, in which a signed
measure µ, viewed as a row vector, is denoted 〈µ|, while a test function f , viewed as a column
vector, is denoted | f 〉. Recall that the kernel K⋆ is defined by

K⋆(x,dy) =
N∑

i=1
1{x∈Bi }P

π̊
Bi
0

{
Xτ+

M
∈ dy

}
. (6.7)

Denote by E⋆∞ ⊂ L∞(M ) its right image. This is an N -dimensional vector space, admitting the
explicit basis

E⋆
∞ = span(|1B1〉, . . . , |1BN 〉) .

In other words, E⋆∞ is the vector space of bounded measurable functions which are constant on
each Bi . In particular, we have

(
K⋆|1B j 〉

)
(x) =

N∑
i=1

1{x∈Bi }P
π̊

Bi
0

{
Xτ+

M
∈ B j

}= N∑
i=1

1{x∈Bi }〈π̊Bi
0 |K 0|1B j 〉

where K 0 =M K denotes the trace of K on M . This can be rewritten as

K⋆|1B j 〉 =
N∑

i=1
|1Bi 〉〈π̊Bi

0 |K 0|1B j 〉 =Π⋆K 0|1B j 〉 , (6.8)
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where

Π⋆ =
N∑

i=1
|1Bi 〉〈π̊Bi

0 | (6.9)

is the projector on E⋆∞; indeed, (Π⋆)2 =Π⋆, owing to the orthonormality relation

〈π̊Bi
0 |1B j 〉 =

∫
B j

π̊
Bi
0 (dx) = δi j .

Relation (6.8) shows that K⋆ =Π⋆K 0 holds on E⋆∞.
Since K⋆ involves the QSDs π̊Bi

0 , it is natural to introduce the dual space

E⋆
1 = span(〈π̊B1

0 |, . . . ,〈π̊BN
0 |) ⊂ L1(M ) .

Note that the kernel K⋆, as defined in (6.7), does not necessarily leave E⋆
1 invariant. This is

because even if X0 is distributed according to the QSD 〈π̊Bi
0 |, conditionally on X1 ∈ B j with

j ̸= i , X1 need not be distributed according to the QSD 〈π̊B j

0 |. However, the kernel

K̂⋆ = K⋆Π⋆ =
N∑

j=1
K⋆|1B j 〉〈π̊

B j

0 | =
N∑

i , j=1
|1Bi 〉〈π̊Bi

0 |K 0|1B j 〉〈π̊
B j

0 |

does leave E⋆
1 invariant. The probabilistic interpretation of K̂⋆ is that it acts as K⋆, but in

addition it projects the distribution of X1 on the QSD 〈π̊B j

0 |whenever X1 ∈ B j . Note thatΠ⋆K⋆ =
K⋆, so that we have (K̂⋆)n = (K⋆)nΠ⋆ for all n ∈N. Since K̂⋆|1B j 〉 = K⋆|1B j 〉, (6.8) implies

〈π̊Bi
0 |K̂⋆|1B j 〉 = 〈π̊Bi

0 |K⋆|1B j 〉 = 〈π̊Bi
0 |K 0|1B j 〉 =Pπ̊

Bi
0

{
Xτ+

M
∈ B j

}
,

showing that K̂⋆, K⋆ and K 0 coincide when viewed as kernels acting on the invariant spaces
E⋆∞ and E⋆

1 .
In what follows, we will be interested in processes in which time has been sped up by a

factor m = m(σ). These will involve the kernel

K⋆
m =Π⋆(K 0)mΠ⋆ ,

which satisfies

〈π̊Bi
0 |K⋆

m |1B j 〉 = 〈π̊Bi
0 |(K 0)m |1B j 〉 =Pπ̊

Bi
0

{
Xτ+,m

M
∈ B j

}
. (6.10)

The following large-deviation estimate is an immediate consequence of Proposition 6.1.

Lemma 6.2. Assume m = m(σ) satisfies

lim
σ→0

σ2 logm(σ) = θ (6.11)

for some θ ∈ (0, H0). Let p be the length of the longest optimal path γ : i ↠ j , and let

Hθ(i , j ) = H(i , j )−pθ .

Then for any η> 0, there exist σ0(η),δ0(η) > 0 such that

e−(Hθ(i , j )+η)/σ2
⩽P

x{
Xτ+,m

M
∈ B j

}
⩽ e−(Hθ(i , j )−η)/σ2

(6.12)

holds for any i ̸= j and x ∈ Bi , providedσ<σ0(η) and the diameter of the Bk is bounded by δ0(η).
Furthermore, if (N −2)θ⩽ Ĥ0 then Hθ satisfies the triangle inequality

Hθ(i ,ℓ)+Hθ(ℓ, j )⩾ Hθ(i , j ) ∀i , j ,ℓ ∈ {1, . . . , N } . (6.13)
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PROOF: To show (6.12), it suffices to recall that all optimal paths have a length bounded by N .
Therefore, the binomial coefficient

(m
p

)
is logarithmically equivalent to mp , so that the sum over

optimal paths yields a prefactor equivalent to epθ/σ2
.

To prove (6.13), we distinguish between two cases. If H(i ,ℓ)+H(ℓ, j ) = H(i , j ), then ℓ lies
on an optimal path γ : i ↠ j . This path is thus the concatenation of optimal paths γ1 : i ↠ ℓ

and γ2 : ℓ↠ j , so that

Hθ(i , j ) = H(i , j )− (∣∣γ1
∣∣+ ∣∣γ2

∣∣)θ = Hθ(i ,ℓ)+Hθ(ℓ, j ) .

The other possibility is that H(i ,ℓ)+H(ℓ, j )⩾ H(i , j )+Ĥ0. For optimal paths γ : i ↠ j , γ1 : i ↠ ℓ

and γ2 : ℓ↠ j , one gets

Hθ(i ,ℓ)+Hθ(ℓ, j )−Hθ(i , j )⩾ Ĥ0 −
(∣∣γ1

∣∣+ ∣∣γ2
∣∣− ∣∣γ∣∣)θ .

Since
∣∣γ1

∣∣+ ∣∣γ2
∣∣⩽ N −1 and

∣∣γ∣∣⩾ 1, the result follows.

6.3 The truncated kernel K 0
tr

Denote by by λ0
k , |φ0

k〉 and 〈π0
k | the orthonormalised eigen-elements of K 0, and introduce the

truncated kernel K 0
tr associated with the N largest eigenvalues.

We denote the right and left invariant subspaces of K 0
tr by

E 0
∞ = span(|φ0

0〉, . . . , |φ0
N−1〉) ,

E 0
1 = span(〈π0

0|, . . . ,〈π0
N−1|) .

Our aim is now to construct another basis of the subspaces E 0∞ and E 0
1 , which is close to the

basis formed by the QSDs 〈π̊Bi
0 | and the indicators |1B j 〉. A natural idea is to set, for some m ∈Z∗,

〈µi | = 〈π̊Bi
0 |(K 0

tr

)m , |ψ j 〉 =
(
K 0

tr

)−m |1B j 〉 ,

where
(
K 0

tr

)−1 is the generalised inverse of K 0
tr, and

(
K 0

tr

)−m = ((
K 0

tr

)−1
)

m . Indeed, we then have
〈µi | ∈ E 0

1 and |ψ j 〉 ∈ E 0∞ by construction. Unfortunately, the basis is not orthonormal, because(
K 0

tr

)−1K 0
tr = K 0

tr

(
K 0

tr

)−1 =Π0, where

Π0 =
N−1∑
k=0

|φ0
k〉〈π0

k | (6.14)

is the projector on the invariant subspaces of K 0
tr. Therefore, in general we will have

〈µi |ψ j 〉 = 〈π̊Bi
0 |Π0|1B j 〉 ̸= δi j ,

A solution to this problem is to modify the definition of 〈π̊Bi
0 | and |ψ j 〉 as follows.

Lemma 6.3. Let Π0
⊥ = id−Π0. If 〈π̊Bi

0 |Π0Π⋆ ̸= 0 for j = 1, . . . , N , then the basis defined by

〈µi | = 〈π̊Bi
0 |[id−Π0

⊥Π
⋆
]−1

Π0 , |ψ j 〉 =Π0|1B j 〉

satisfies 〈µi |ψ j 〉 = δi j for all i , j ∈ {1, . . . , N }. Furthermore,

N∑
i=1

|ψi 〉〈µi | =Π0 . (6.15)
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PROOF: Since 〈π̊Bi
0 |Π⋆ = 〈π̊Bi

0 |, we have

〈π̊Bi
0 |[id−Π0

⊥Π
⋆
]= 〈π̊Bi

0 |[id−Π⋆+Π0Π⋆
]= 〈π̊Bi

0 |Π0Π⋆ ̸= 0

for j = 1, . . . , N , so that 〈µ j | is indeed well-defined. Furthermore,

〈µi |ψ j 〉 = 〈π̊Bi
0 |[id−Π0

⊥Π
⋆
]−1

Π0|1B j 〉
= 〈π̊Bi

0 |[id−Π0
⊥Π

⋆
]−1[id−Π0

⊥
]|1B j 〉

= 〈π̊Bi
0 |[id−Π0

⊥Π
⋆
]−1[id−Π0

⊥Π
⋆
]|1B j 〉

= 〈π̊Bi
0 |1B j 〉

= δi j ,

where we have used the fact that Π⋆|1B j 〉 = |1B j 〉 to obtain the third line. As a consequence,
the left-hand side of (6.15) is a projector of rank N . Since it is of the form Π0MΠ0 for a linear
operator M , its left and right images are given by E 0

1 and E 0∞, which implies (6.14).

6.4 Comparison of transition probabilities

Our aim is now to show that for an appropriate m = m(σ) ∈N, one has

〈µi |
(
K 0

tr

)m |ψ j 〉 ∼ 〈π̊Bi
0 |(K 0)m |1B j 〉 =Pπ̊

Bi
0

{
Xτ+,m

M
∈ B j

}
.

The Neumann series representation of [id−Π0
⊥Π

⋆]−1 and the definition (6.9) of Π⋆ yield

〈µi |
(
K 0

tr

)m |ψ j 〉 = 〈π̊Bi
0 |[id−Π0

⊥Π
⋆
]−1(K 0

tr

)m |1B j 〉
= ∑

n⩾0
〈π̊Bi

0 |(Π0
⊥Π

⋆
)n(

K 0
tr

)m |1B j 〉

= 〈π̊Bi
0 |(K 0

tr

)m |1B j 〉+
N∑
ℓ=1

∑
n⩾1

〈π̊Bi
0 |(Π0

⊥Π
⋆
)n |1Bℓ

〉〈π̊Bℓ

0 |(K 0
tr

)m |1B j 〉 . (6.16)

For an appropriate m, the first term on the right-hand side is indeed close to 〈π̊Bi
0 |(K 0

)
m |1B j 〉.

We thus need to bound the remaining terms. We introduce the notation

εi j = ε(1)
i j = 〈π̊Bi

0 |Π0
⊥Π

⋆|1B j 〉 = 〈π̊Bi
0 |Π⋆−Π0|1B j 〉 = δi j −〈π̊Bi

0 |Π0|1B j 〉 . (6.17)

For every n ⩾ 2, (6.9) allows us to write

ε(n)
i j = 〈π̊Bi

0 |(Π0
⊥Π

⋆
)n |1B j 〉 =

N∑
ℓ1,...,ℓn−1=1

εiℓ1εℓ1ℓ2 . . .εℓn−1 j .

With these notations, (6.16) becomes

〈µi |
(
K 0

tr

)m |ψ j 〉 = 〈π̊Bi
0 |(K 0

tr

)m |1B j 〉+
N∑
ℓ=1

〈π̊Bℓ

0 |(K 0
tr

)m |1B j 〉
∑

n⩾1
ε(n)

iℓ . (6.18)

The kernel K⋆
m = Π⋆

(
K 0

)
mΠ⋆ has the same image as K̂⋆ and Π⋆. Thus the Riesz projector

formalism shows that

Π⋆−Π0 = 1

2π i

∫
Γ

[(
z id−K⋆

m

)−1 − (
z id−(

K 0
tr

)m)−1]dz , (6.19)
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provided Γ is a contour in the complex plane encircling all (nonzero) eigenvalues of K⋆ and
K 0

tr. One option would be to use a resolvent identity and a bound on ∥K⋆−K 0
tr∥, but this would

yield an estimate which is uniform in i , j , which is not sharp enough for our purpose.
To obtain a sharper bound, we note that the Cayley–Hamilton theorem implies that if K

is an operator of finite rank N , then K N is a linear combination of id,K ,K 2, . . . ,K N−1. This
implies that the resolvent of K can also be expressed in terms of a finite number of powers of
K , as shows the following result.

Lemma 6.4. Let K be an operator of finite rank N , and let λ1, . . . ,λN be its nonzero eigenvalues.
Then the resolvent of K can be written in the form

(z id−K )−1 = 1

cK (z)

N−1∑
n=0

αn(z)K n , (6.20)

where cK (z) = det(z id−K ) = ∏N
k=1(z −λk ) is the characteristic polynomial of K , and αn(z) is a

polynomial of degree N −1−n in z. More precisely, one has

cK (z) =
N∑

n=0
cn zn ⇒ αn(z) =

N−1−n∑
i=0

ci+n+1zi .

PROOF: Multiply (6.20) by (z id−K ) and use the relations zαn(z)−αn−1(z) = −cn , αN−1(z) =
cN , zα0(z) = cK (z)− c0 and cK (K ) = 0. Also see for instance [Hou98], which gives an iterative
construction implying the above expression for the αn(z).

The key estimates that will allow us to control εi j are the following two propositions. They
will allow us to control the error made when projecting the law of the process on its QSD ev-
ery m steps, and thus to compare matrix elements involving

(
K 0

)
m and K⋆

m . This approach is
somewhat related in spirit to the one used in [MOS89]. To lighten notations, we write

ϱ̊i =
∣∣λ̊Bi

1

∣∣
λ̊

Bi
0

for the spectral gap of the trace process killed upon leaving Bi , where λ̊Bi
1 is the next-to-leading

eigenvalue of this process.

Proposition 6.5. For any η> 0, there exist σ0(η),δ0(η) > 0 such that

P
x{

Xτ+,m
M

∈ B j
}=Pπ̊Bi

0
{

Xτ+,m
M

∈ B j
}[

1+ rη,m(σ)
]

(6.21)

holds for any m ∈N, any i , j ∈ {1, . . . , N } and any x ∈ Bi , provided σ<σ0(η) and the diameter of
the Bℓ is bounded by δ0(η). There exists a constant C , independent of σ, m and η, such that the
remainder in (6.21) satisfies

∣∣rη,m(σ)
∣∣⩽C

[
ϱ̊

m1
i +

(m
p

)− (m−m1
p

)(m−m1
p

) e2pη/σ2[
1−e−(H0−η)/σ2]m−p +δi j m e−(H0−η)/σ2

]
(6.22)

for any m1 < m, where p is the length of the longest optimal path γ : i ↠ j .

PROOF: In the case i = j , the large-deviation principle shows that

P
x{

Xτ+,m
M

∈ Bi
}= 1−O

(
m e−(H0−η)/σ2)

,
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so that the result follows at once by integrating this relation against π̊Bi
0 (x).

In the case i ̸= j , we consider first the case where the optimal path from i to j has length
1. Then the decomposition (6.4) of the transition probability involves only m terms Qk (x), and
the bounds (6.5) and (6.6) reduce to[

1−e−(H0−η)/σ2]m−1 e−(H(i , j )+η)/σ2
⩽Qk (x)⩽ e−(H(i , j )−η)/σ2

(6.23)

uniformly in k, which provides an upper bound on the ratio between the largest and smallest
Qk (x). We now split the Qk (x) into “bad” and “good” terms, the good ones being those with
k ⩾m1 chosen sufficiently large that the process has time to relax to the QSD π̊

Bi
0 before making

the transition to B j . With this splitting, we have

m∑
k=m1+1

Qk (x)⩽
m∑

k=1
Qk (x)⩽

m∑
k=m1+1

Qk (x)+
m1∑

k=1
Qk (x)

⩽
m∑

k=m1+1
Qk (x)

[
1+ m1

m −m1

e2η/σ2[
1−e−(H0−η)/σ2]m−1

]
.

In order to derive a sharper estimate for the good Qk , we rewrite them in the form

Qk (x) =
∫

B j

∫
Bi

(
k̊Bi

)k−1(x, y)k0(y, z)
(
K̊ B j

)n−k (z,B j )dy dz .

Using the facts that (
k̊Bi

)k−1(x, y) = (
λ̊

Bi
0

)k−1
π̊

Bi
0 (y)+O

(∣∣λ̊Bi
1

∣∣k−1) ,∫
Bi

π̊
Bi
0 (x1)

(
k̊Bi

)k−1(x1, y)dx1 =
(
λ̊

Bi
0

)k−1
π̊

Bi
0 (y) ,

we obtain

Qk (x) =
∫

Bi

π̊
Bi
0 (x1)Qk (x1)dx1

[
1+O

(
ϱ̊k−1

i

)]
.

Collecting terms and bounding the contribution of non-optimal paths as in the proof of Propo-
sition 6.1, we get

P
x{

Xτ+,m
M

∈ B j
}

P
π̊

Bi
0

{
Xτ+,m

M
∈ B j

} = 1+O
(
ϱ̊k−1

i

)+O

(
m1

m −m1

e2η/σ2[
1−e−(H0−η)/σ2]m−1

)

as claimed. To extend the proof to optimal paths of length larger than 1, we proceed in an anal-
ogous way, where the bad terms are those for which k1 ⩽m1. The ratio of binomial coefficients
in (6.22) is the ratio between bad terms and good terms.

Proposition 6.6. Fix i ̸= j and a bounded, measurable, real-valued test function F supported in
B j . There exists a constant C such that for any x ∈ Bi and any m1 < m, one has

E
x[

F (Xτ+,m
M

)
]

P
x{

Xτ+,m
M

∈ B j
} = [

1−pη,m(σ)
]
E
π̊

B j
0

[
F

][
1+qη,m(σ)

]+pη,m(σ)E
x
[
E

X
τ
+,m
M

[
F

]]
, (6.24)

where the error terms satisfy

∣∣pη,m(σ)
∣∣⩽C

(m
p

)− (m−m1
p

)(m−m1
p

) e2pη/σ2[
1−e−(H0−η)/σ2]m−p ,

∣∣qη,m(σ)
∣∣⩽C

[
ϱ̊

m1
j +m e−(H0−η)/σ2

]
.

(6.25)
Here p is again the length of the longest optimal path γ : i ↠ j . If i = j , then the bound (6.24)
holds with

∣∣pη,m(σ)
∣∣⩽m e−(H0−η)/σ2

.
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PROOF: For i ̸= j , let us consider again the case p = 1 first. We introduce the stopping time

τ= inf
{
n > 0: Xτ+,n

M
∈ B j

}−1 .

Since the optimal path from i to j visits j only once, at the very end of the path, τ will be with
overwhelming probability equal to the last time the process visits M \ { j }. Then we write

E
x[

F (Xτ+,m
M

)
]= m−m1∑

k=0
Ek (x)+

m−1∑
k=m−m1+1

Ek (x) , (6.26)

where
Ek (x) = Ex[

1{τ=k}F (X
τ+,k

M
)
]

.

Note that
Q̂k (x) =Px{

τ= k
}=Px{

X
τ+,k

M
∉ B j , X

τ+,k+1
M

∈ B j , . . . , Xτ+,m
M

∈ B j
}

has similar properties as Qk (x) in the previous proof. In particular, it again satisfies (6.23) owing
to the large-deviation principle. In the same spirit as in the previous proof, we consider the
Ek (x) in the first sum in (6.26) as good terms, and those in the second sum as bad terms.

To estimate the good terms, we write for k ⩽m −m1

Ek (x) =
∫

B j

∫
M \B j

(
k̊Bi

)k−1(x, y)k0(y, z)
(
K̊ B j

)m−k (z,F )dy dz ,

where

(K̊ B j )m−k (z,F ) = Ez[
F (X

τ+,m−k
M

)
]

= (λ̊
B j

0 )m−kE
π̊

B j
0

[
F

][
1+O (ϱ̊m−k

j )
]

.

Since λ̊
B j

0 = 1−O (e−(H0−η)/σ2
), it follows that

Ek (x) =Px{
τ= k −1

}
E
π̊

B j
0

[
F

][
1+O (ϱ̊m−k

j )+O (m e−(H0−η)/σ2
)
]

,

so that the sum of good terms satisfies

m−m1∑
k=0

Ek (x) =Px{
τ⩽m −m1

}
E
π̊

B j
0

[
F

][
1+O (ϱ̊m1

j )+O (m e−(H0−η)/σ2
)
]

.

This implies the result, with

pη,m(σ) =Px{
τ> m −m1

∣∣ Xτ+,m
M

∈ B j
}= ∑m−1

k=m−m1+1 Q̂k (x)∑m−1
k=0 Q̂k (x)

,

which satisfies indeed the bound (6.25) with p = 1, thanks to (6.23). The case of general p then
follows in a similar way, by counting the number of good and bad terms.

In the case i = j , the result follows by distinguishing the cases where X
τ+,k

M
∈ Bi for all k ⩽m,

and the unlikely complementary event.

Corollary 6.7. For any η> 0, there exist σ0(η),δ0(η) > 0 such that∣∣∣∣∣ 〈π̊
Bi
0 |(K 0

)
nm |1B j 〉

〈π̊Bi
0 |(K⋆

m
)

n |1B j 〉
−1

∣∣∣∣∣⩽Rη,m,n(σ) :=
[

1+qη,m(σ)+pη,m(σ)rη,nm(σ)
]n−1 −1

holds for all σ<σ0 and all i , j , provided the diameter of the Bk is bounded by δ0(η).
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PROOF: For n = 1, the result follows from (6.10) with Rη,m,1(σ) = 0. To prove the result for n ⩾ 2,
we first observe that

〈π̊Bi
0 |(K 0)nm |1B j 〉 =

N∑
ℓ=1

E
π̊

Bi
0

[
1{

X
τ
+,m
M

∈Bℓ

}PX
τ
+,m
M

{
Xτ+,(n−1)m

M
∈ B j

}]
=

N∑
ℓ=1

E
π̊

Bi
0

[
Fℓ(Xτ+,m

M
)
]

,

where
Fℓ(x) = 1{x∈Bℓ}P

x{
Xτ+,(n−1)m

M
∈ B j

}
.

Proposition 6.6 shows that

E
π̊

Bi
0

[
Fℓ(Xτ+,m

M
)
]=Pπ̊Bi

0
{

Xτ+,m
M

∈ Bℓ

}
×

[
(1−pη,m)E

π̊
Bℓ
0

[
Fℓ

]
(1+qη,m)+pη,mE

π̊
Bi
0

[
E

X
τ
+,m
M

[
Fℓ

]]]
.

Now we note that

E
π̊

Bℓ
0

[
Fℓ

]=Pπ̊Bℓ
0

{
Xτ+,(n−1)m

M
∈ Bℓ

}
,

while Proposition 6.5 implies that for any x ∈ Bℓ, one has

E
x[

Fℓ
]=Pπ̊Bℓ

0
{

Xτ+,(n−1)m
M

∈ Bℓ

}[
1+ rη,(n−1)m

]
.

It follows that

E
π̊

Bi
0

[
Fℓ(Xτ+,m

M
)
]=Pπ̊Bi

0
{

Xτ+,m
M

∈ Bℓ

}
P
π̊

Bℓ
0

{
Xτ+,(n−1)m

M
∈ Bℓ

}[
1+Rn

]
= 〈π̊Bi

0 |(K 0)m |1Bℓ
〉〈π̊Bℓ

0 |(K 0)(n−1)m |1B j 〉
[
1+Rn

]
, (6.27)

where the remainder

Rn = (1−pη,m)(1+qη,m)+pη,m(1+ rη,(n−1)m)−1

satisfies
0⩽Rn ⩽ qη,m +pη,mrη,(n−1)m .

Summing (6.27) over ℓ shows that

〈π̊Bi
0 |(K 0)nm |1B j 〉 = 〈π̊Bi

0 |(K 0)mΠ⋆
(
K 0)(n−1)m |1B j 〉

[
1+Rn

]
,

and the result follows by induction on n.

Corollary 6.8. Assume m satisfies (6.11). Then there exists a constant C such that for any η> 0∣∣εi j
∣∣⩽C

[
δi j e−(H0−η)/σ2 +N e−[Hθ(i , j )−η]/σ2[

Rη,m,N (σ)+ϱm +e−(H0−η)/σ2]]
(6.28)

holds for 1⩽ i , j ⩽ N , provided σ and the Bk are sufficiently small as a function of η.
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PROOF: Let Γ be a contour encircling the (nonzero) eigenvalues of (K 0
tr)m , and staying at a dis-

tance of order 1 from all eigenvalues of (K 0)m . Note that this is possible for σ small enough
by Proposition 3.1. Recall that K 0

tr = Π0K 0, where Π0 is the Riesz projector associated with Γ.
Using (6.17), (6.19), Lemma 6.4 and Corollary 6.7, we obtain

εi j =
N−1∑
n=0

1

2π i

∫
Γ
〈π̊Bi

0 |
[
α⋆n (z)

c⋆(z)

(
K⋆

m

)n − α0
n(z)

c0(z)

(
K 0

tr

)nm
]
|1B j 〉dz

=
N−1∑
n=1

1

2π i

∫
Γ

[
α⋆n (z)

c⋆(z)

[
1+O (Rη,m,n(σ))

]− α0
n(z)

c0(z)

[
1+O (ϱnm)

]]
dz 〈π̊Bi

0 |(K 0)nm |1B j 〉

+ 1

2π i

∫
Γ

[
α⋆0 (z)

c⋆(z)
− α0

0(z)

c0(z)

]
dz δi j ,

where c⋆(z) and theα⋆n (z) are the coefficients of the decomposition (6.20) of K⋆
m , and c0(z) and

the α0
n(z) are those of the decomposition of (K 0

tr)m . The contour Γ has been chosen such that
the characteristic polynomials c⋆(z) and c0(z) are bounded away from 0. Proposition 3.1 shows
that the eigenvalues of K⋆ and K 0 are at distance O (e−(H0−η)/σ2

) from each other. This shows
that α⋆n (z)/c⋆(z) = (α0

n(z)/c0(z))[1+O (e−(H0−η)/σ2
)] on the contour Γ. Hence the result follows

from Lemma 6.2.

We can now choose a value of m1 yielding the smallest possible error terms. Since N is a fi-
nite constant, we no longer indicate the dependence of the error terms on N . The bound (5.12)
implies that ∣∣λ̊Bi

1

∣∣⩽ δ1/n0(σ) = exp

{
− log(δ−1)

n0(σ)

}
for a constant δ< 1 related to L. The choice

m1 = H0n0(σ)

log(δ−1)σ2

then yields

ϱ̊
m1
i ⩽

∣∣λ̊Bi
1

∣∣m1(
λ̊

Bi
0

)m1
⩽ 2e−H0/σ2

. (6.29)

Since m is assumed to satisfy (6.11), we have 2m1 ⩽m ⩽ e(H0−η)/σ2
for η small enough. Further

note that for these m1 and p or order 1,(m
p

)− (m−m1
p

)(m−m1
p

) =O

(
p

m1

m

)
.

Substituting in (6.22) yields

∣∣rη,m(σ)
∣∣⩽C1

[
e−H0/σ2 + 1

m

n0(σ)

σ2 e2η/σ2
]
⩽ 2C1 e−(θ−3η)/σ2

.

The error term qη,m(σ) also satisfies (6.29), while pη,m(σ) is at most of order rη,m(σ). Therefore,∣∣Rη,m,N (σ)
∣∣⩽C2 e−2(θ−3η)/σ2

.

Furthermore, Proposition 3.1 implies that for these m, ϱm is negligible with respect to rη,m(σ),
provided 2η< θ. Writing

Ĥθ(i , j ) = H0δi j +Hθ(i , j )(1−δi j ) ,
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we can rewrite the bound (6.28) as∣∣εi j
∣∣⩽ e−(Ĥθ(i , j )+θ−4η)/σ2

.

Note that the fact that the error Rη,m,N involves the product pη,mrη,m instead of only one of
these terms has improved the accuracy of the approximation.

Remark 6.9. Corollary 6.8 shows in particular that the assumption that 〈π̊Bi
0 |Π0Π⋆ ̸= 0, made

in Lemma 6.3, is satisfied for small enough σ. Indeed, writing Π0 as a contour integral as in the
proof of the Corollary shows that 〈π̊Bi

0 |Π0|1B j 〉 = δi j +O (e−[H0−η]/σ2
). Therefore, 〈π̊Bi

0 |Π0Π⋆ =∑N
j=1〈π̊Bi

0 |Π0|1B j 〉〈π̊
B j

0 | is exponentially close to 〈π̊Bi
0 |. ♢

Corollary 6.10. For any η ∈ (0,θ), there exist σ0,δ0 > 0 such that for all 1⩽ i ̸= j ⩽ N ,

〈µi |
(
K 0

tr

)m |ψ j 〉 = 〈π̊Bi
0 |(K 0)m |1B j 〉

[
1+O

(
e−(θ−η)/σ2)]

,

provided σ<σ0 and all Bk have a diameter smaller than δ0.

PROOF: Proceeding by induction on n and using the triangle inequality (6.13), one easily ob-
tains the bounds∣∣ε(n)

i j

∣∣⩽ e−[Ĥθ(i , j )+n(θ−4η)]/σ2 ∀n ⩾ 1 ,
∑

n⩾1

∣∣ε(n)
i j

∣∣⩽ 2e−[Ĥθ(i , j )+θ−4η]/σ2
. (6.30)

It follows that the remainder in (6.18) satisfies∣∣∣∣ N∑
ℓ=1

〈π̊Bi
0 |(K 0

tr

)m |1Bℓ
〉 ∑

n⩾1
ε(n)
ℓ j

∣∣∣∣⩽ 2N e−[Ĥθ(i , j )+θ−5η]/σ2
,

provided σ and the Bk are sufficiently small, depending on η. On the other hand, we have

〈π̊Bi
0 |(K 0

tr

)m |1B j 〉 = 〈π̊Bi
0 |(K 0)m +O (ϱm)|1B j 〉⩾ e−[Ĥθ(i , j )+η]/σ2 +O (ϱm) .

Proposition 3.1 shows that for m as above, the error term O (ϱm) is indeed negligible, yielding
the claimed exponentially small multiplicative error, after redefining η.

The following result shows in which sense the new basis vectors 〈µi | and |ψ j 〉 are close to

〈π̊Bi
0 | and |1B j 〉.

Proposition 6.11. The basis vectors satisfy

〈µi |1B j 〉 = δi j and 〈π̊Bi
0 |ψ j 〉 = δi j −εi j (6.31)

for all 1⩽ i , j ⩽ N . Furthermore, for any η> 0, one has

∥ψ j − 1B j ∥∞ = sup
x∈M

∣∣ψ j (x)− 1B j (x)
∣∣⩽ e−[Ĥ j−η]/σ2

(6.32)

provided σ and the diameters of the Bi are small enough, where

Ĥ j = min
i ̸= j

[
H(i , j )− max

γ:i↠ j

∣∣γ∣∣]⩾ H0 − (N −1)θ . (6.33)
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PROOF: The relations (6.31) follow immediately from the definitions, since

〈µi |1B j 〉 = 〈π̊Bi
0 |[id−Π0

⊥Π
⋆
]−1

Π0|1B j 〉 = 〈µi |ψ j 〉 = δi j ,

〈π̊Bi
0 |ψ j 〉 = 〈π̊Bi

0 |Π0|1B j 〉 = δi j −εi j .

In order to prove (6.32), we proceed as in the proof of Corollary 6.8, writing for x ∈ Bi

ψ j (x)−δi j = 〈δx |Π0 −Π⋆|1B j 〉

=
N−1∑
n=0

1

2π i

∫
Γ
〈δx |

[
α0

n(z)

c0(z)

(
K 0

tr

)nm − α⋆n (z)

c⋆(z)

(
K⋆

m

)n
]
|1B j 〉dz .

Propositions 3.1 and 6.5 imply that for 0⩽ n ⩽ N −1, one has

〈δx |
(
K 0

tr

)nm |1B j 〉 =Px{
Xτ+,nm

M
∈ B j

}+O (ϱnm)

=Pπ̊
Bi
0

{
Xτ+,nm

M
∈ B j

}[
1+ rη,m(σ)

]+O (ϱnm) ,

while the definition of K⋆
m implies

〈δx |
(
K⋆

m

)n |1B j 〉 = 〈π̊Bi
0 |(K⋆

m

)n |1B j 〉 =Pπ̊
Bi
0

{
Xτ+,nm

M
∈ B j

}[
1+ rη,m(σ)

]
.

Substituting, we find ∣∣ψ j (x)−δi j
∣∣=O

(
e−[Ĥθ(i , j )−η]/σ2)

.

The expression (6.33) of Ĥ j follows from the definition of Ĥθ(i , j ), and the fact that Ĥ(i , i ) =
H0.

Remark 6.12. Getting an L1-estimate on the difference 〈µi | − 〈π̊Bi
0 | would require a sharper,

pointwise estimate on densities, than in Corollary 6.7. Indeed, we have

〈µi |−〈π̊Bi
0 | = 〈π̊Bi

0 |Π0 −〈π̊Bi
0 |+ ∑

n⩾1
〈π̊Bi

0 |(Π0
⊥Π

⋆
)nΠ0

= 〈π̊Bi
0 |[Π0 −Π⋆]+ N∑

j=1

∑
n⩾1

ε(n)
i j 〈π̊B j

0 |Π0 .

Using (6.30), one can bound the L1-norm of the double sum by an exponentially small term.
However, estimating the L1-norm of 〈π̊Bi

0 |[Π0 −Π⋆]
would require a pointwise estimate of

〈π̊Bi
0 |[(K 0)nm − (

K⋆
m

)n]
instead of an integral estimate as in Corollary 6.7. ♢

6.5 Proof of the main approximation result

Let m be as in the previous section. Define a matrix P of dimension N ×N with elements

Pi j = 〈µi |
(
K 0

tr

)m |ψ j 〉 . (6.34)

Corollary 6.10 shows that

Pi j =Pπ̊
Bi
0

{
Xτ+,m

M
∈ B j

}[
1+O

(
e−(θ−η)/σ2)]

.
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Lemma 6.13. P is a stochastic matrix for sufficiently small σ.

PROOF: First note that
∑N

j=1 |1B j 〉 = |φ0
0〉, since both are identically equal to 1. It follows that

N∑
j=1

|ψ j 〉 =Π0
N∑

j=1
|1B j 〉 =Π0|φ0

0〉 = |φ0
0〉 ,

and thus
N∑

j=1
Pi j = 〈µi |

(
K 0

tr

)m |φ0
0〉 = 〈µi |φ0

0〉 =
N∑

j=1
〈µi |ψ j 〉 = 1 .

Furthermore, the Pi j are clearly positive if σ is small enough.

Let (Yn)n⩾0 be the Markov chain with transition matrix P . Then Theorem 3.3 follows di-
rectly from Theorem 6.14 below. Here expectations and probabilities with respect to a signed
measure are interpreted as differences of these quantities with respect to the positive and neg-
ative parts of that measure.

Theorem 6.14. If Xn starts with the (signed) distribution µi , then

E
µi

[
ψ j

(
Xτ+,nm

M

)]
=Pi {

Yn = j
}

(6.35)

holds for all n ⩾ 0 and all j ∈ {1, . . . , N }. As a consequence,

P
µi

{
Xτ+,nm

M
∈ B j

}=Pi {
Yn = j

}[
1+O

(
e−[Ĥ j−η]/σ2)]+Pi {

Yn ̸= j
}
O

(
e−[Ĥ j−η]/σ2)

(6.36)

for any η> 0, provided σ and the Bi are small enough. Furthermore, for all x ∈ Bi , one has

P
x{

Xτ+,nm
M

∈ B j
}=Pi {

Yn = j
}+O

(
e−[Ĥmin−η])/σ2)+O

(
ϱnm)

, (6.37)

where Ĥmin = minℓ Ĥℓ⩾ H0 − (N −1)θ.

PROOF: The first claim (6.35) follows from (6.34) by taking the nth power of P , and using the
completeness relation (6.15). The second claim (6.36) is a consequence of the decomposition

P
i {

Yn = j
}= ∫

B j

P
µi

{
Xτ+,nm

M
∈ dy

}
ψ j (y)+ ∑

ℓ̸= j

∫
Bℓ

P
µi

{
Xτ+,nm

M
∈ dy

}
ψ j (y) .

Indeed, writing P n
i j for the left-hand side and Qn

i j =P
µi

{
Xτ+,nm

M
∈ B j

}
, Proposition 6.11 yields

P n
i j =

N∑
ℓ=1

Qn
iℓ

[
δl j + rl j

]
,

where rl j = O (e−[Ĥ j−η]/σ2
) for all ℓ. This is equivalent to the matrix equation P n = Qn[id+R],

which can be inverted using the Neumann series for [id+R]−1. The resulting expression of Qn

in terms of P n and R is equivalent to (6.36).
To obtain (6.37), we write

P
x{

Xτ+,nm
M

∈ B j
}= 〈δx |(K 0)nm |1B j 〉
= 〈δx |(K 0

tr)nm |1B j 〉+〈δx |(K 0
⊥)nm |1B j 〉 ,
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where K 0
⊥ = K 0−K 0

tr. The second term on the right-hand side decreases like the nmth power of
the spectral gap ϱ. As for the first term, it can be written

〈δx |(K 0
tr)nm |1B j 〉 = 〈δx |Π0(K 0

tr)nm |1B j 〉

=
N∑
ℓ=1

〈δx |ψℓ〉〈µℓ|(K 0
tr)nm |1B j 〉

=
N∑
ℓ=1

ψℓ(x)P
µℓ

{
Xτ+,nm

M
∈ B j

}
.

If x ∈ Bi , the term ℓ= i can be estimated by (6.36), while the other terms are exponentially small
by Proposition 6.11.

A Other proofs for Section 2

A.1 Proof of Proposition 2.2

Since I is continuous at (x⋆i , x⋆i ) and (x⋆j , x⋆j ) and I (x⋆i , x⋆i ) = I (x⋆j , x⋆j ) = 0, we can find δ > 0
such that I (y1, y2)⩽ η/6 for all y1, y2 ∈ Bi , and similarly for points z1, z2 ∈ B j . This implies that

H(i , j )− η

2
⩽V (y, z)⩽ H(i , j )+ η

2

holds for all y ∈ Bi and all z ∈ B j . Consider now the increasing sequence of events

Γn = {
τ+B j

(x) < τ+Bi
(x),τ+B j

(x)⩽ n
}= n⋃

m=1

([
(Bi ∪B j )c]m−1 ×B j ×X n−m

0

)
.

Then the LDP for paths (x, x1, . . . , xn) yields

− inf
Γ̊n

I (x, ·)⩽ liminf
σ→0

σ2 logPx (Γn)⩽ limsup
σ→0

σ2 logPx (Γn)⩽− inf
Γ̄n

I (x, ·) .

Since Px (Γn) is increasing in n, to prove the lower bound, it suffices to find n ⩾ 2, points
x1, . . . , xn−1 ∈ (Bi ∪B j )c and z ∈ B̊ j such that I (x, x1, . . . , xn−1, z)⩽ H(i , j )+η. To this end, let y ∈
Bi and z ∈ B j be the points minimizing V . Since V (y, z)⩽ H(i , j )+η/2, there exist n, x1, . . . , xn−1

such that I (y, x1, . . . , xn−1, z)⩽ H(i , j )+3η/4. We can assume that x1, . . . , xn−1 ∉ Bi∪B j since oth-
erwise there would exist a cheaper way to connect these sets. Replacing y by x increases I by at
most η/6, yielding the required path.

To prove the upper bound, we have to show that for any n, and any path (x1, . . . , xn) ∈ Γ̄n ,
I (x, x1, . . . , xn) ⩾ H(i , j )−η. This follows from the fact that V (x, y) ⩾ H(i , j )−η for all y ∈ B j ,
since V (x, y) involves the infimum over a larger set.

A.2 Proof of Proposition 2.4

In the spirit of [FW98, Chapt. 6, Thm. 5.1], we first construct a path of finite length n0 from
x to M , whose rate function I is bounded by η/2. In the case where the ω-limit set ω(x) is
one of the stable fixed points x⋆i , there exists n0 ∈N such that Πn0 (x) ∈ Bi . Setting xn =Πn(x),
we have I (x, x1, . . . , xn) = 0. If ω(x) is an unstable fixed point y⋆, we can find n1 ∈ N such that
∥Πn1 (x)− y⋆∥⩽ δ. Since the stable manifolds of all unstable fixed points have codimension at
least 1, they cannot contain any open subset of X . Thus there exists a point y1 at distance at
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most δ from y⋆ such thatω(y1) is a stable fixed point x⋆i . Setting xn =Πn(x) and yn =Πn−1(y1),
we obtain the existence of n2 ∈N such that yn2 ∈ Bi and

I (x, x1, . . . , xn1 , y1, . . . , yn2 ) = I (xn1 , y1) .

The continuity of I at (y⋆, y⋆) implies that we can assume I (xn1 , y1) ⩽ η/4 by making δ small
enough. The large-deviation lower bound implies that if n0 = n1 +n2, then

liminf
σ→0

σ2 logP
x{
τ+M ⩽ n0

}
⩾−η

2
,

so that there exists σ0 > 0 such that P
x{
τ+

M
⩽ n0

}
⩾ e−η/σ2

holds for all x ∈ X and all σ < σ0.
To extend this result to an estimate on expected return times, we use the fact that for any sets
A,B ,C ∈S0 such that B ∩C =∅, one has

E
A[
τ+B

]
⩽ E

A[
τ+B∪C

]+PA{
τ+C < τ+B

}
E

C [
τ+B

]
,

where we write PA{·} = supx∈AP
x {·}. For a proof, see for instance [BB17, Lem. 8.9] (the proof

only requires B ∩C =∅). Taking A = X , B = M and C = X \ M , bounding EC
[
τ+B

]
by EA

[
τ+B

]
,

and rearranging, we obtain

E
X [

τ+M
]
⩽

E
X [

τ+
X

]
P

X {
τ+

M
< τ+

X \M

} .

The same relation holds when the τ+ are replaced by the return times τ̂+ of the diluted process
(Xnn0 )n∈N. This yields

E
X [

τ+M
]
⩽ n0E

X [
τ̂+M

]
⩽

n0E
X [

τ̂+
X

]
P

X {
τ̂+

M
< τ̂+

X \M

} . (A.1)

Observe that for any x ∈X ,

P
x{
τ̂+M < τ̂+X \M

}
⩾P

x{
1 = τ̂+M < τ̂+X \M

}
=Px{

Xn0 ∈M
}

=Px{
τ+M ⩽ n0

}−Px{
τ+M ⩽ n0, Xn0 ∉M

}
⩾P

x{
τ+M ⩽ n0

}[
1− sup

k⩽n0

P
M {

Xk ∉M
}]

.

The supremum is exponentially small by Lemma 5.1. Since n0 is independent ofσ and E
X [

τ+
X

]
is uniformly bounded, the result follows.

B Proofs for Section 4

B.1 Proof of Proposition 4.1

An important tool in the proof is the following coupling argument.

Proposition B.1 (Coupling argument). Let K A be a submarkovian kernel on a set A, and denote
its killing time by τAc . Assume that there exist constants r,η > 0 such that the density kA of K A

satisfies the Harnack inequality

sup
x∈A : ∥x−x0∥⩽r

kA(x, y)⩽ (1+η) inf
x∈A : ∥x−x0∥⩽r

kA(x, y)
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for all x0, y ∈ A. Let (X̂ x
n )n⩾0 be the process with kernel K A conditioned on staying in A, defined

by

P
{

X̂ x
n ∈ B

}= K n
A (x,B)

K n
A (x, A)

for any Borel set B ⊂ A. Assume that for any x1 ̸= x2 ∈ A, there exists a coupling between (X̂ x1
n )n⩾0

and (X̂ x2
n )n⩾0 such that the stopping time

N (x1, x2) = inf
{
n ⩾ 1: ∥X̂ x2

n − X̂ x1
n ∥⩽ r

}
is almost surely finite, and define

ρn = sup
x1 ̸=x2∈A

P
{

N (x1, x2) > n
}

.

Then kA satisfies for every n ∈N a uniform positivity condition with parameters n and

L =
(1+η)2 +ρn−1 sup

y∈A

(
supx∈A kA(x, y)

infx∈A kA(x, y)

)
inf
x∈A

P
x{
τAc > n

} . (B.1)

PROOF: See [BG14, Prop. 5.9] and [BB17, Prop. 5.4].

Fix 1 ⩽ i ⩽ k ⩽ N . To apply the above coupling argument, we need to estimate the various
terms appearing in (B.1). We first claim that for any η> 0, there exist C ,r > 0 such that the two
relations

sup
x∈Bi

M kσ,Bi (x, y)⩽ eC /σ2
inf

x∈Bi
M kσ,Bi (x, y) (B.2)

sup
x∈Bi : ∥x−x0∥⩽rσ2

M kσ,Bi (x, y)⩽ (1+η) inf
x∈Bi : ∥x−x0∥⩽rσ2 M kσ,Bi (x, y) (B.3)

hold for all x0, y ∈ Bi . First note that the Gaussian density (4.3) of the original kernel satisfies

kσ(x1, y)

kσ(x2, y)
= exp

{
I (x2, y)− I (x1, y)

σ2

}
,

where I (x2, y)− I (x1, y) = 〈Σ−1 y,Π(x1)−Π(x2)〉+ 1
2 〈Π(x2),Σ−1Π(x2)〉− 1

2 〈Π(x1),Σ−1Π(x1)〉. This
quantity is bounded by a constant C for all x1, x2 ∈ Bi and y in a bounded set, and has order
rσ2 if in addition ∥x1 −x2∥⩽ rσ2. Hence kσ satisfies (B.2) and (B.3) if r = r (η) is small enough.

In order to extend this to M kσ, we use the fact that for all n ∈N and x1, y ∈ Bi , we have

P
x1

{
τ+Bi

= n
}
kn
σ(x1, y) =

∫
B c

i

kσ(x1, z)P
z{
τ+Bi

= n −1
}
kn−1
σ (z, y)dz .

The Laplace method shows that the integral is dominated by z of order 1 at most. We can thus
bound kσ(x1, z) above by eC /σ2

kσ(x2, z) for any x2 ∈ Bi , and by (1+η)kσ(x2, z) if ∥x1−x2∥⩽ rσ2.
Together with the expression (2.9) for the density of the trace process, this shows that M kσ also
satisfies (B.2) and (B.3).

Regarding the effect of the killing, denote by Mτ+B c
i

the killing time of the trace process and
observe that Proposition 2.2 yields

P
Bi

{
Mτ+B c

i
= 1

}=PBi
{
τ+M \Bi

< τ+Bi

}
⩽ e−H/σ2
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for an H > 0. By the Markov property, we get P
Bi

{
Mτ+B c

i
⩽ n

}
⩽ n e−H/σ2

for any n ∈ N. Since
kσ(x, y) is bounded below by e−cδ2

0/σ2
for x, y ∈ Bi , this shows that the killing has a negligible

effect for δ0 small enough. It also shows that the denominator in (B.1) is close to 1.
It thus remains to show that ρn−1 in (B.1) can be made exponentially small for an n of order

log(σ−1). Let (X x1
n )n⩾0 and (X x2

n )n⩾0 denote the original processes driven by the same noise
(ξn)n⩾1, and starting respectively from x1 and x2. With this coupling, writing Yn = X x2

n − X x1
n ,

we see that
Yn+1 =Π(X x1

n +Yn)−Π(X x1
n ) = AnYn +bn(Yn) ,

where An = ∂xΠ(X x1
n ) and ∥bn(y)∥ ⩽ M∥y∥2 for bounded y and some constant M > 0. Since

∂xΠ(x⋆i ) has spectral radius strictly smaller than 1, there exists 0 < ϱ1 < 1 such that An has
spectral radius bounded by ϱ1 for any n such that X x1

n ∈ Bi . Thus there exists a norm ∥·∥′,
equivalent to the Euclidean norm, such that ∥An y∥′ ⩽ ϱ2∥y∥′ for these n, where ϱ2 < 1. Taking
δ0 small enough that M∥x2 −x1∥′ < 1−ϱ2, we conclude that ∥Y1∥′ ⩽ ϱ∥x2 −x1∥′.

Since Π(Bi ) ⊂ Bi (where the inclusion is strict for δ0 small enough), there exists κ> 0 such
that PBi {X1 ∉ Bi } ⩽ e−κ/σ2

, and thus PBi {∃ℓ⩽ n : Xℓ ∉ Bi } ⩽ n e−κ/σ2
for any n ∈ N. Hence the

coupled trace processes conditioned on staying in Bi satisfy

P
{∥X̂ x2

n − X̂ x1
n ∥′ > ϱn∥x2 −x1∥′

}
⩽

2n e−κ/σ2

1−2n e−κ/σ2 ⩽ 3n e−κ/σ2
(B.4)

forσ small enough. Let N (x1, x2) = inf{n ⩾ 1: ∥X̂ x2
n − X̂ x1

n ∥′ ⩽ r (η)σ2}, and let n1(σ) be such that
diam(Bi )ϱn1(σ) ⩽ r (η)σ2. Note that n1(σ) has order log(σ−1), and that P{N (x1, x2) > n1(σ)} is
bounded above in (B.4). Applying the Markov property at times which are multiples of n1(σ),
we obtain

ρℓn1(σ) =P
{

N (x1, x2) > ℓn1(σ)
}
⩽

(
3n1(σ)e−κ/σ2)ℓ .

Choosing ℓ such that ℓκ>C , the result follows with n0(σ) = ℓn1(σ), taking η small enough.

B.2 Proof of Proposition 4.2

The proof is essentially an adaptation to the discrete-time setting of results in [BB17, Sect. 8.2
and 8.3], which rely in part on methods from [BG06, Chapt. 5]. Since several proofs simplify in
the present setting, we believe it is worth giving details here. In view of the upper bound (A.1)

for E
X [

τ+
M

]
and the fact that E

X [
τ+

X

]
is bounded by Assumption REC, it is sufficient to show

that P
X {

τ+
M

⩽ n0
}

is bounded away from 1 for some n0 of order log(σ−1).
Given x ∈X , we first give an estimate for the probabillity of the sample path (Xn)n⩾0 start-

ing in x deviating from the deterministic orbit (X det
n )n⩾0 defined by X det

n =Πn(x).

Lemma B.2. There exist constants κ> 0 and h0 > 0 such that for any n ∈N,

P
x
{

max
1⩽i⩽n

∥Xi −X det
i ∥ > h

}
⩽ n exp

{
− κh2

σ2G (2)
n

}

holds whenever 0 < h < h0/G (1)
n , where G (ℓ)

n =∑n−ℓ
i=0 Dℓi

n with Dn = max1⩽i⩽n∥∂xΠ(X det
i )∥.

PROOF: The difference Yn = Xn −X det
n satisfies Y0 = 0 and

Yn+1 =Π(X det
n +Yn)−Π(X det

n )+σξn+1

= AnYn +b(Yn)+σξn+1 ,
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where we have set An = ∂xΠ(X det
n ), and ∥b(y)∥⩽ M∥y∥2 for bounded y and some M > 0. Con-

sider first the linearized equation

Y 0
n+1 = AnY 0

n +σξn+1 , Y 0
0 = 0 .

Its solution can be written

Y 0
n =σ

n∑
i=1

Bniξi ,

where Bni = An−1 . . . Ai if i < n and Bnn = id is the identity matrix. Thus Y 0
n is a centred Gaussian

random variable with covariance matrix σ2Σn , where

Σn =
n∑

i=1
BniΣB †

ni .

We have ∥Bni∥⩽ Dn−i
n and ∥Σn∥⩽ ∥Σ∥G (2)

n . This implies that P{∥Y 0
n ∥ > h} ⩽ e−κ0h2/(G (2)

n σ2) for
some κ0 > 0, and thus

P

{
max

1⩽i⩽n
∥Y 0

i ∥ > h

}
=P

(
n⋃

i=1

{∥Y 0
i ∥ > h

})
⩽ n exp

{
− κ0h2

G (2)
n σ2

}
. (B.5)

To extend this estimate to Yn , we write Yn = Y 0
n +Rn and note that we have

Rn+1 = AnRn +b(Yn) ⇒ Rn =
n∑

i=2
Bni b(Yi−1) .

Setting τ = inf{n ⩾ 1: ∥Yn∥ > h}, we have ∥b(Yn∧τ)∥ ⩽ Mh2 and ∥Rn∧τ∥ ⩽ G (1)
n Mh2. For any

decomposition h = H0 +H1 with H0, H1 > 0, we have

P
{
τ< n

}
⩽P

{
max

1⩽i⩽n
∥Y 0

i ∥ > H0

}
+P

{
max

1⩽i⩽n∧τ
∥Ri∥ > H1

}
.

The first term on the right-hand side can be estimated with (B.5), while the second one vanishes
if H1 ⩾G (1)

n Mh2. The result thus follows by setting H0 = h(1−G (1)
n Mh).

Corollary B.3. Let x ∈X be such that ω(x) is a stable fixed point x⋆i . Then there exist n(x) <∞
and κ(x) > 0 such that P

x{
τ+

M
⩾ n(x)

}
⩽ n(x)e−κ(x)/σ2

.

PROOF: By definition ofω-limit sets, there exists n(x) such that ∥Πn(x)(x)−x⋆i ∥ < δ/2. It is thus
sufficient to apply Lemma B.2 with h = δ/2.

This bound deteriorates when x approaches an unstable fixed point ofΠ (or the stable man-
ifold of such a fixed point), because n(x) diverges and κ(x) tends to 0. We thus have to treat
these cases separately. In doing so, we will repeatedly use the following elementary estimate.

Lemma B.4. Let A,B be two disjoint sets in S0. Then for any n1,n2 ∈N,

P
A∪B {

τ+(A∪B)c ⩾ n1 +n2
}
⩽P

A{
τ+Ac ⩾ n1

}+PB {
τ+B c ⩾ n2

}+PB {
τ+A < τ+(A∪B)c

}
.

PROOF: When starting in B , consider separately the cases τ+(A∪B)c = τ+Ac and τ+(A∪B)c = τ+B c .
When starting in A, distinguish the cases τ+Ac ⩾ n1 and τ+Ac < n1, and use the bound for starting
points in B .
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To estimate exit probabilities from the neighbourhood of an unstable equilibrium point,
we proceed in two steps, considering first the exit from a small neighbourhood of sizeσ3/4, and
then the exit from a larger neighbourhood of size δ.

Lemma B.5. Let S be a neighbourhood of diameter σ3/4 of an unstable fixed point z⋆j . Then
there exist constants c1,C1 > 0 such that

P
S {

τ+S c > c1 log(σ−1)
}
⩽C1 log(σ−1)σ1/2 .

PROOF: We may assume that z⋆j = 0. Let λ+ be the module of the largest eigenvalue of ∂xΠ(z⋆),
and let m be its multiplicity. There exists a linear change of variables Xn 7→ (Yn , Zn) such that

Yn+1 = A+Yn +b+(Yn , Zn)+σξ+n+1 , Y0 = y ,

Zn+1 = A−Zn +b−(Yn , Zn)+σξ−n+1 , Z0 = z , (B.6)

where A+ is a square matrix of size m, all of whose eigenvalues are equal to λ+, all eigenvalues
of A− are strictly smaller in module than λ+, ∥b±(y, z)∥⩽ M(∥y2∥+∥z∥2) for bounded y and z,
and the ξ±n are nondegenerate Gaussian random variables. Let Y 0

n obey the linearized dynamics
Y 0

n+1 = A+Y 0
n +σξ+n+1. Similarly to the Lemma B.2, we have Yn = Y 0

n +Rn , where

Y 0
n = An

+y +σ
n∑

i=1
An−i
+ ξ+i , Rn =

n∑
i=2

An−i
+ b+(Yi−1, Zi−1) .

A similar decomposition Zn = Z 0
n +Qn holds for the second component. Let Σ+ denote the

covariance matrix of the ξ+i . The law of Y 0
n is Gaussian with covariance matrix

Cov(Y 0
n ) =σ2

n∑
i=1

An−i
+ Σ+(A†

+)n−i

We have detCov(Y 0
n )⩾ c(σλn+)2m for some c > 0, so that there exists C > 0 such that

P
{∥Y 0

n ∥ < h
}
⩽C

(
h

σλn+

)m

for all n ∈N and h > 0. Setting X 0
i = (Y 0

i , Z 0
i ) we have for any h1 > 0

P

{
max

1⩽i⩽n
∥Xi∥ < h

}
⩽P

{
max

1⩽i⩽n
∥X 0

i ∥ < h +h1

}
+P

{
max

1⩽i⩽n
∥(Ri ,Qi )∥⩾ h1, max

1⩽i⩽n
∥Xi∥ < h

}
,

⩽P

{
∥Y 0

n ∥ < h +h1

}
+P

{
max

1⩽i⩽n
∥(Ri ,Qi )∥⩾ h1, max

1⩽i⩽n
∥Xi∥ < h

}
.

The second term on the right-hand side vanishes if we set h1 =C1Mh2λn+ for a sufficiently large
constant C1. Choosing h =σ3/4 and n such that λn+ ⩾σ−3/4, we obtain the result.

Lemma B.6. Let U be a neighbourhood of diameter δ of an unstable fixed point z⋆j . Then there
exist constants c2,C2 > 0 such that

P
U {

τ+U c > c2 log(σ−1)
}
⩽C2 log(σ−1)σ1/2 .
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PROOF: We may use a similar coordinate system as in (B.6), except that now Y contains all
unstable directions, while Z contains the marginally stable and stable ones. The center-stable
manifold theorem allows us to assume that b+(0, z) = 0 and ∥b+(y, z)∥⩽ M(∥y∥2+∥y∥∥z∥) in U

for some M > 0. The Lyapunov function Un = ∥Yn∥2 satisfies

Un+1 = ∥A+Yn∥2 + [
2〈b+, A+Yn〉+∥b+∥2]+2σ〈A+Yn +b+,ξ+n+1〉+σ2∥ξ+n+1∥2 .

All eigenvalues of A+ have a module strictly larger that 1, showing that ∥A+Yn∥2 ⩾ λ+Un for
some λ+ > 1. The term in square brackets has order U 3/2

n +Un∥Zn∥. Thus for small enough δ,
there exists λ̄+ > 1 such that

Un+1 ⩾ λ̄+Un +σg (Xn)ηn+1 +σ2∥ξ+n+1∥2 ,

where ∥g (x)∥⩽ M1U 1/2
n for some M1 > 0, and ηn+1 is a centred Gaussian random variable of

bounded variance. Let K = {(y, z) ∈U : σ3/4 ⩽ ∥y∥⩽ δ}. For n ⩽ τ+K c , we obtain that Vn =U 1/2
n

satisfies
Vn+1 ⩾ λ̄1/2

+ Vn +σḡ (Xn)ηn+1 ,

where ḡ is bounded in K . It follows that for n ⩽ τ+
U c ,

Vn ⩾ λ̄n/2
+

[
V0 +σζn

]
,

where V0 ⩾σ3/4 and ζn =∑n
i=1 λ̄

(n−i )/2
+ ḡ (Xi−1)ηi has bounded variance. Chebyshev’s inequality

shows that

P

{
min

1⩽i⩽n∧τ+
K c

ζi

λ̄i /2+ −1
<−σ3/4

}
⩽ nCσ1/2

for some C > 0. Taking n of order log(σ−1) such that λ̄i /2+ > δ/σ3/4, this yields the existence of
constants c1,C1 > 0 such that

P
K {

τ+K c > c1 log(σ−1)
}
⩽C1 log(σ−1)σ1/2 ,

P
K {

τ+S < τ+U c

}
⩽C1 log(σ−1)σ1/2 . (B.7)

Applying Lemma B.4 with A = S and B = K yields the claimed result with K ∪S instead
of U . The result can be extended to U by showing that Lemma B.5 also applies to the larger
set U \ K = {(y, z) ∈ U : ∥y∥ ⩽ σ3/4}, using the better bounds on b+ due to the centre-stable
manifold theorem, and analysing a slightly more general recursion for Yn with time-dependent
linear part.

To finish the proof, we have to deal with the possible existence of heteroclinic orbits. De-
note the unstable fixed points by z⋆1 , . . . , z⋆M . Let Ui be a ball of diameter δ centred in z⋆i , with δ
small enough for Lemma B.6 to apply. We denote the union of all Ui by U . Define

τdet
A (x) = inf

{
n ⩾ 1: Πn(x) ∈ A

}
,

Ai =
{

x ∈X \U : Xτdet
U

∈Ui
}

.

The set Ai contains part of the stable manifold of z⋆i . Note that Ai contains no fixed points
of Π, showing, by Lemma B.2, that P

Ai
{
τ+

A c
i
⩾ n

}
is exponentially small for some bounded n.

Furthermore, the proof of Lemma B.6, in particular (B.7), shows that

P
Ui

{
τ+Ai

< τ+(Ai∪Ui )c

}
⩽C1 log(σ−1)σ1/2 .
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This is because deterministic orbits starting on the boundary of K on which Y = δ cannot
enter Ai (recall that there are no heteroclinic cycles). Thus Lemma B.4 shows that there exist
constants c3,C3 > 0 such that

P
Ui∪Ai

{
τ+(Ui∪Ai )c > c3 log(σ−1)

}
⩽C3 log(σ−1)σ1/2 .

When leaving Ui , it may happen that a trajectory enters the domain of attraction A j of another
unstable fixed point, due to the existence of a heteroclinic orbit from z⋆i to z⋆j . In this case we
write i ≺ j . Extending this relation by transitivity yields a strict partial order relation, owing to
the fact that there are no heteroclinic cycles. Lemma B.2 implies that whenever i ≺ j or i and
j are not related, the probability, when starting from U j ∪A j , to hit Ui ∪Ai before (U j ∪A j )c

is exponentially small. Repeated application of Lemma B.4 shows that, if Û = ⋃M
i=1(Ui ∪Ai ),

then
P

Û {
τ+

Û c > c4 log(σ−1)
}
⩽C4 log(σ−1)σ1/2

holds for constants c4,C4 > 0. In X \ Û , we can apply Corollary B.3 with a uniformly bounded
n(x), which finishes the proof, applying one last time Lemma B.4.
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