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Introduction and main results

Let us consider the Gaussian logarithmic Sobolev inequality

∇u 2 L 2 (R d ,d γ) ≥ 1 2 R d u 2 log ⎛ ⎝ u 2 u 2 L 2 (R d ) ⎞ ⎠ d γ ∀u ∈ H 1 (R d , d γ) ( 1 
)
where d γ = γ(x) d x is the normalized Gaussian probability measure with density

γ(x) = (2π) -d 2 e -1 2 x 2 ∀ x ∈ R d .
In this paper we are interested in stability results, that is, in estimating the difference of the two terms in (1) from below, by a distance to the set of optimal functions. According to [START_REF] Carlen | Superadditivity of Fisher's information and logarithmic Sobolev inequalities[END_REF][START_REF] Émery | Diffusions hypercontractives[END_REF], equality in (1) is achieved by functions in the manifold

M ∶= w a,c ∶ (a,c) ∈ R d × R
where w a,c (x) = c e -a⋅x ∀ x ∈ R d and only by these functions. The ultimate goal of stability estimates is to find a notion of distance d, an explicit constant β > 0 and an explicit exponent α > 0, which may depend on d, such that

∇u 2 L 2 (R d ,d γ) - 1 2 R d u 2 log ⎛ ⎝ u 2 u 2 L 2 (R d ) ⎞ ⎠ d γ ≥ β inf w∈M d(u, w) α (S )
for any given u ∈ H 1 (R d , d γ). In this paper we consider the slightly simpler question of finding a specific w u ∈ M such that

∇u 2 L 2 (R d ,d γ) - 1 2 R d u 2 log ⎛ ⎝ u 2 u 2 L 2 (R d ) ⎞ ⎠ d γ ≥ β d(u, w u ) α , (⋆)
which provides us with no more than an estimate for (S ): any estimate of α and β for (⋆) is also an estimate for (S ). In order to illustrate the difference between the two questions, let us consider the following elementary example. Assume that d = 1 and consider the functions u ε (x) = 1 + ε x in the limit as ε → 0. With d(u, w) = u ′w ′ L 2 (R,dγ) , which is the strongest possible notion of distance that we can expect to control in (⋆), elementary computations show that the deficit of the logarithmic Sobolev inequality, i.e., the left hand-side in (⋆), is

∇u ε 2 L 2 (R d ,d γ) - 1 2 R d u ε 2 log ⎛ ⎝ u ε 2 u ε 2 L 2 (R d ) ⎞ ⎠ d γ = 1 2 ε 4
+ O ε 6 , while, using the test function w a ε ,c ε ∈ M where a ε = 2 ε and c ε = e -a 2 ε 4 , we obtain

d (u ε , 1) 2 = u ′ ε 2 L 2 (R,dγ) = ε 2 and inf w∈M d(u ε , w) α ≤ d (u ε , w a ε ,c ε ) 2 = 1 2 ε 4 + O ε 6 .
In practice we will consider only the case

w u = 1
in (⋆) and the above example shows that the best we can hope for without additional restriction is α ≥ 4. Similar examples in higher dimensions can be obtained by considering for an arbitrary given ν ∈ S d -1 the functions u ε (x) = 1 + ε x ⋅ ν in the limit as ε → 0. This is not a surprise in view of [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF][START_REF]Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF][START_REF] Indrei | Sharp stability for LSI[END_REF], and also of the detailed Taylor expansions of [START_REF] Frank | Degenerate stability of some Sobolev inequalities[END_REF][START_REF] Brigati | Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results[END_REF][START_REF]On Gaussian interpolation inequalities[END_REF]. Still with w u = 1, we can expect to have α = 2 in (⋆) under additional conditions, including for d(u, w) = ∇u -∇w L 2 (R d ,d γ) , while it is otherwise banned as shown for instance from [39, Theorem 1.2 (2)], or simply from considering the above example. Before entering the details, let us mention a recent stability result for (S ) with α = 2 involving a constructive although very delicate expression for β > 0 and d(u, w) = uw L 2 (R d ,d γ) that appeared in [START_REF] Dolbeault | Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence[END_REF]. Here we aim at stronger estimates under additional constraints, with w u = 1, which is a different point of view. Let us start by a first stability result.

Proposition 1. For all u ∈ H 1 (R d , d γ) such that u L 2 (R d ) = 1 and x u 2 L 2 (R d ) ≤ d , we have ∇u 2 L 2 (R d ,d γ) - 1 2 R d u 2 log u 2 d γ ≥ 1 2 d R d u 2 log u 2 d γ 2 (2)
and, with ψ(s) ∶= sd 4 log 1 + 4 d s , we also have the stronger estimate

∇u 2 L 2 (R d ,d γ) - 1 2 R d u 2 log u 2 d γ ≥ ψ ∇u 2 L 2 (R d ,d γ) . (3) 
Similar results are already known in the literature (see for instance [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF][START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF][START_REF]Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF][START_REF] Indrei | Sharp stability for LSI[END_REF]) and we claim no originality for the the results. Also see references to earlier proofs at the end of the introduction. Our method is based on the carré du champ method.

Even if some ideas go back to [START_REF] Arnold | Refined convex Sobolev inequalities[END_REF], it is elementary, new as far as we know, and of some use for our other results.

Coming back to (⋆), we may notice that there is no loss of generality in imposing

the condition u L 2 (R d ) = 1, as we can always replace u by u u L 2 (R d ) . Because of the Csiszár-Kullback-Pinsker inequality R d u 2 log u 2 d γ ≥ 1 4 u 2 -1 2 L 1 (R d ,d γ) (4) and u -1 = u 2 -1 u + 1 ≤ u 2 -1 , we find that (2) implies (⋆) type with d(u, w) = u -w L 1 (R d ,d γ)
for nonnegative functions u, α = 4, and β = 1 (32d). For functions far away from the optimal functions, say such that ∇u L 2 (R d ,d γ) ≥ A under the conditions of Proposition 1, Inequality (3) provides us with an even stronger stability result of (⋆) type with α = 2 and d(u, w) = ∇u -∇w L 2 (R d ,d γ) , but with a positive constant β which depends on A > 0. Again, notice that (⋆) with such a distance cannot hold without constraints.

Next we aim at explicit results with α = 2, under other constraints. Let

C ⋆ = 1 + 1 1728 ≈ 1.0005787 . Theorem 2. For all u ∈ H 1 (R d , d γ) such that u 2 γ is log-concave and such that R d (1, x) u 2 d γ = (1,0) and R d x 2 u 2 d γ ≤ d , ( 5 
)
we have

∇u 2 L 2 (R d ,d γ) - C ⋆ 2 R d u 2 log u 2 d γ ≥ 0 . ( 6 
)
The condition ∫ R d x 2 u 2 d γ ≤ d in ( 5) is a simplifying assumption. A result like (6) also holds if ∫ R d x 2 u 2 d γ > d , but with a constant that differs from C ⋆ and actually depends on ∫ R d x 2 u 2 d γ. We refer to Section 3.5: see Proposition 7 for an exten- sion of Theorem 2, and also for further comments on the extension of Proposition 1.

The constant C ⋆ in (8) relies on an estimate of [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF]. Inequality [START_REF] Ledoux | Lévy-Gromov's isoperimetric inequality for an infinitedimensional diffusion generator[END_REF] with improved constant C ⋆ > 1 compared to (1) can be recast in the form of a stability inequality of type (⋆) around the normalised Gaussian as

∇u 2 L 2 (R d ,d γ) - 1 2 R d u 2 log u 2 d γ ≥ 1 2 (C ⋆ -1) R d u 2 log u 2 d γ for all functions u ∈ H 1 (R d , d γ) such that u L 2 (R d ) = 1, which covers the case α = 2, β = (C ⋆ -1) 8 and d(u, w) = u -w L 1 (R d ,d γ) in (⋆) for nonnegative functions by (4),
or even in the stronger Ḣ1 (R d , d γ) semi-norm, as

∇u 2 L 2 (R d ,d γ) - 1 2 R d u 2 log u 2 d γ ≥ C ⋆ -1 C ⋆ ∇u 2 L 2 (R d ,d γ) for all functions u ∈ H 1 (R d , d γ) such that u L 2 (R d ) = 1, which corresponds to α = 2, β = (C ⋆ -1) C ⋆ and d(u, w) = ∇(u -w) L 2 (R d ,d γ) in (⋆)
. By the Gaussian Poincaré inequality, notice that the case of (⋆) with

α = 2, β = (C ⋆ -1) C ⋆ and the standard distance d(u, w) = u -w L 2 (R d ,d γ) is also covered.
Log-concavity might appear as a rather restrictive assumption, but this is useful because a function which is compactly supported at time t = 0 evolves through the diffusion flow into a logarithmically concave function after some finite time that can be estimated by the heat flow estimates of [START_REF] Lee | Geometrical properties of solutions of the porous medium equation for large times[END_REF]. This is enough to produce a stability result with an explicit constant. Compact support is in fact a too restrictive condition and we have the following result.

Theorem 3. Let d ≥ 1. For any ε > 0, there is some explicit C > 1 depending only on ε such that, for any u ∈ H 1 (R d , d γ) satisfying (5) and

R d u 2 e ε x 2 d γ < ∞, (7) 
then we have

∇u 2 L 2 (R d ,d γ) ≥ C 2 R d u 2 log u 2 d γ . ( 8 
)
Additionally, if u is compactly supported in a ball of radius R > 0, then (8) holds with

C = 1 + C ⋆ -1 1 + C ⋆ R 2 .
This expression of the constant C in ( 8) is given in the proof, in Section 3.4. The simpler estimate in terms of R relies on Theorem 2.

Let us conclude this introduction with a review of the literature. The logarithmic Sobolev inequality historically appeared in [START_REF] Stam | Some inequalities satisfied by the quantities of information of Fisher and Shannon[END_REF][START_REF] Blachman | The convolution inequality for entropy powers[END_REF], in a form that was later rediscovered as an equivalent scale-invariant form of the Euclidean version of the inequality in [START_REF] Weissler | Logarithmic Sobolev inequalities for the heat-diffusion semigroup[END_REF]. We refer to [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] for the Gaussian version (1) of the inequality, and also to [START_REF] Federbush | Partially alternate derivation of a result of Nelson[END_REF] for an equivalent result. The optimality case in the inequality has been characterized in [START_REF] Carlen | Superadditivity of Fisher's information and logarithmic Sobolev inequalities[END_REF] but can also be deduced from [START_REF] Émery | Diffusions hypercontractives[END_REF]. Also see [START_REF] Villani | A short proof of the "concavity of entropy power[END_REF] for a short introductory review with an emphasis on information theoretical aspects. The logarithmic Sobolev inequality can be viewed as a limit case of a family of the Gagliardo-Nirenberg-Sobolev (GNS) as observed in [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF], in the Euclidean setting, or as a large dimension limit of the Sobolev inequality according to [START_REF] Beckner | Sobolev inequalities, the Poisson semigroup, and analysis on the sphere S n[END_REF]. See [START_REF] Dolbeault | Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence[END_REF][START_REF]On Gaussian interpolation inequalities[END_REF] for recent developments and further references. We refer to [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF][START_REF] Guionnet | Lectures on logarithmic Sobolev inequalities[END_REF][START_REF] Royer | An initiation to logarithmic Sobolev inequalities[END_REF][START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] to reference books on the topic. In a classical result on stability in functional inequalities, Bianchi and Egnell proved in [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] that the deficit in the Sobolev inequality measures the Ḣ1 (R d , d x) distance to the manifold of the Aubin-Talenti functions. The estimate has been made constructive in [START_REF] Dolbeault | Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence[END_REF] where a new L 2 (R d , d x) stability result for the logarithmic Sobolev inequality is also established (also see [START_REF] Indrei | Sharp stability for LSI[END_REF] for furrther results in strong norms). Still in the Euclidean setting a first stability result in strong norms for the logarithmic Sobolev inequality appears in [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF], where the authors give deficit estimates in various distances for functions inducing a Poincaré inequality. Under the condition x u L 2 (R d ,d γ) = √ d , a stability result measured by an entropy is given in [START_REF]Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF]. For sequential stability results in strong norms, we refer to [START_REF] Indrei | Deficit estimates for the logarithmic Sobolev inequality[END_REF] when assuming a bound on u in L 4 (R d , d γ) and to [START_REF] Indrei | Sharp stability for LSI[END_REF] when assuming a bound on x 2 u in L 2 (R d , d γ). Stability according to other notions of distance has been studied in [START_REF]A Stein deficit for the logarithmic Sobolev inequality[END_REF][START_REF] Ledoux | Stein's method, logarithmic Sobolev and transport inequalities[END_REF][START_REF] Feo | Some remarks on the stability of the log-Sobolev inequality for the Gaussian measure[END_REF].

To our knowledge, the first result of stability for the logarithmic Sobolev inequality is a reinforcement of the inequality due to E. Carlen in [START_REF] Carlen | Superadditivity of Fisher's information and logarithmic Sobolev inequalities[END_REF] where he introduces an additional term involving the Wiener transform. Stability in logarithmic Sobolev inequality is related to deficit in Gaussian isoperimetry and we refer to [START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF] for an introduction to early results in this direction, [START_REF] Barchiesi | Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality[END_REF] for a sharp, dimension-free quantitative Gaussian isoperimetric inequality, and [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF] for recent results and further references. Results of Proposition 1 are known from [14, Theorem 1.1] where it is deduced from the HWI inequality due to F. Otto and C. Villani [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]. Such estimates have even been refined in [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF]. There are several other proofs. In [START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF], M. Fathi, E. Indrei and M. Ledoux use a Mehler formula for the Ornstein-Uhlenbeck semigroup and Poincaré inequalities. The proof in [START_REF]Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF] is based on simple scaling properties of the Euclidean form of the logarithmic Sobolev inequality, which also apply to Gagliardo-Nirenberg inequalities. Various stability results have been proved in Wasserstein's distance: we refer to [START_REF] Indrei | A quantitative log-Sobolev inequality for a two parameter family of functions[END_REF][START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF][START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF][START_REF] Indrei | Deficit estimates for the logarithmic Sobolev inequality[END_REF][START_REF] Kim | Instability results for the logarithmic Sobolev inequality and its application to related inequalities[END_REF][START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF][START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF][START_REF] Indrei | Sharp stability for LSI[END_REF]. A key argument for Theorem 2 is the fact that the heat flow preserves log-concavity according, e.g., [START_REF] Saumard | Log-concavity and strong log-concavity: a review[END_REF], which is a pretty natural property in this framework: see for instance [START_REF] Courtade | Quantitative stability of the entropy power inequality[END_REF].

In this paper, we carefully distinguish stability results of type (S ) where stability is measured w.r.t. M , and of type (⋆) where the distance to a given function is estimated. Even if this function is normalized and centered, this is not enough as shown in [START_REF] Indrei | Sharp stability for LSI[END_REF]. Many counter-examples to stability are known, involving Wasserstein's distance for instance in [START_REF] Indrei | A quantitative log-Sobolev inequality for a two parameter family of functions[END_REF][START_REF] Bobkov | Bounds on the deficit in the logarithmic Sobolev inequality[END_REF][START_REF] Fathi | Quantitative logarithmic Sobolev inequalities and stability estimates[END_REF][START_REF] Indrei | Deficit estimates for the logarithmic Sobolev inequality[END_REF][START_REF] Kim | Instability results for the logarithmic Sobolev inequality and its application to related inequalities[END_REF], weaker distances like p-Wasserstein, or stronger norms like L p or H 1 : see for instance [START_REF] Indrei | Deficit estimates for the logarithmic Sobolev inequality[END_REF][START_REF] Indrei | Sharp stability for LSI[END_REF]. The main counter-examples which we might try to apply to our setting are [START_REF] Kim | Instability results for the logarithmic Sobolev inequality and its application to related inequalities[END_REF]Theorem 1.3] and [START_REF] Eldan | Stability of the logarithmic Sobolev inequality via the Föllmer process[END_REF]Theorem 4] but, as already noted in [START_REF] Indrei | Deficit estimates for the logarithmic Sobolev inequality[END_REF], they are based on the fact that the second moment diverges along a sequence of test functions, which is forbidden in our assumptions.

This paper is organized as follows. Section 2 is devoted to the standard carré du champ method and a proof of Proposition 1. Theorem 2 is proved in Section 3.3, under a log-concavity assumption. Using properties of the heat flow, the method is extended to the larger class of functions of Theorem 3 in Section 3.4.

Entropy methods and entropy -entropy production stability estimates

This section is devoted to the proof of Proposition 1.

Definitions and preliminary results

Consider the

Ornstein-Uhlenbeck equation on R d ∂h ∂t = L h , h(t = 0, ⋅) = h 0 , (t, x) ∈ R + × R d , (9) 
where L h ∶= ∆h -x ⋅ ∇h denotes the Ornstein-Uhlenbeck operator.

Let us recall some classical results. If

h 0 ∈ L 1 (R d , d γ)
is nonnegative, then there exists a unique nonnegative weak solution to (9) (see for instance [START_REF] Evans | Partial differential equations[END_REF]). The two key properties of the Ornstein-Uhlenbeck operator are

R d v 1 (L v 2 )dγ = - R d ∇v 1 ⋅ ∇v 2 d γ and [∇,L ] v = -∇v .
As a consequence, we obtain the two identities

R d (L v) 2 d γ = R d Hess v 2 d γ + R d ∇v 2 d γ (10) 
and

R d L v ∇v 2 v d γ = -2 R d Hess v ∶ ∇v ⊗ ∇v v d γ + R d ∇v 4 v 2 d γ , (11) 
where 

= L v + ∇v 2 v . ( 12 
)
Let us fix v L 2 (R d ) = 1, then the entropy and the Fisher information, respectively defined by

E [v] ∶= R d v 2 log v 2 d γ and I [v] ∶= R d ∇v 2 d γ ,
evolve along the flow according to [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF]. Using [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] and [START_REF] Blachman | The convolution inequality for entropy powers[END_REF], we obtain the classical expression of the carré du champ method

d d t E [v] = -4I [v] and d d t I [v] = -2 R d (L v) 2 + L v ∇v 2 v d γ if v solves
d d t I [v] + 2 I [v] = -2 R d Hess v - ∇v ⊗ ∇v v 2 d γ ( 13 
)
as for instance in [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF][START_REF] Dolbeault | On the Bakry-Emery criterion for linear diffusions and weighted porous media equations[END_REF][START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. By writing that

d d t I [v] - 1 2 E [v] ≤ 0 and lim t →+∞ I [v(t,⋅)] - 1 2 E [v(t,⋅)] = 0 ,
we recover the standard proof of the entropy -entropy production inequality

I [v] - 1 2 E [v] ≥ 0 , (14) 
i.e., of (1) by the method of [START_REF] Émery | Diffusions hypercontractives[END_REF]. Several of the above expression can be rephrased in terms of the pressure variable P ∶= -log h = -2 log v using the following elementary identities ∇v = - ∇P ⊗ ∇P , so that, by taking into account v ∇P = -2∇v and h = v 2 , we have

I [v] = 1 4 R d ∇P 2 h d γ and R d Hess v - ∇v ⊗ ∇v v 2 d γ = 1 4 R d Hess P 2 h d γ .

Improvements under moment constraints

In standard computations based on the carré du champ method, one usually drops the right-hand side in [START_REF] Bobkov | KLS-type isoperimetric bounds for logconcave probability measures[END_REF] which results in the standard exponential decay of [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF] and, after integration on t ∈ R + , proves [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]. Keeping track of the right-hand side in [START_REF] Bobkov | KLS-type isoperimetric bounds for logconcave probability measures[END_REF] provides us with improvements as shown in [START_REF] Arnold | Refined convex Sobolev inequalities[END_REF][START_REF] Demange | Des équations à diffusion rapide aux inégalités de Sobolev sur les modèles de la géométrie[END_REF][START_REF] Dolbeault | Improved interpolation inequalities, relative entropy and fast diffusion equations[END_REF] in various interpolation inequalities but generically fails in the case of the logarithmic Sobolev inequality. We remedy to this issue by introducing moment constraints. This is not a very difficult result but, as far as we know, it is new in the framework of the carré du champ method.

I [v(t,⋅)] if v solves

Lemma 4. With the notations of Section

2.1, if v ∈ H 2 (R d , d γ) is a positive function such that ∫ R d x 2 v 2 d γ ≤ d , then 4 I [v] ≤ R d (∆P)h d γ ≤ d R d Hess P 2 h d γ . Proof. Using h ∇P = -∇h, we obtain 4 I [v] = R d ∇P 2 h d γ = - R d ∇P ⋅ ∇h d γ = R d h (L P )dγ.
After recalling that L P = ∆P -x ⋅ ∇P, using an integration by parts we deduce that -

R d h x ⋅ ∇P d γ = R d x ⋅ ∇h d γ = R d h x 2 -d d γ = R d v 2 x 2 -d d γ ≤ 0
which proves the first inequality. The second inequality follows from a Cauchy-Schwarz inequality and the arithmetic-geometric inequality

(∆P) 2 ≤ d Hess P 2 .
Proof of Proposition 1. Let h = v 2 be the solution of ( 9) with initial datum

h 0 = u 2 . Since x ↦ x 2 -d is an eigenfunction of L with corresponding eigenvalue -2 and L is self-adjoint on L 2 (R d , d γ), we have d d t R d x 2 -d h d γ = R d x 2 -d (L h) d γ = R d h L x 2 -d d γ = -2 R d x 2 -d h d γ . ( 15 
)
The sign of t ↦ ∫ R d x 2 -d h(t , x) d γ is conserved and in particular we have that

∫ R d x 2 v 2 d γ ≤ d for any t ≥ 0.
For any i = 1, 2. . . d , we also notice that x ↦ x i is also an eigenfunction of L with corresponding eigenvalue -1 so that

d d t R d x h d γ = - R d x h d γ
and, as a consequence ∫ R d x h(t , ⋅)dγ = 0 for all t ≥ 0 because ∫ R d x h 0 d γ = 0.

For smooth enough solutions, we deduce from Lemma 4, ( 13) and ( 14) that

d d t I [v] + 2 I [v] ≤ - 8 d I 2 [v] ≤ 1 2 d d d t (E [v])
2 and obtain by considering the limit as t → +∞ that

I [v] ≥ 1 2 E [v] + 1 2 d (E [v]) 2 .
This provides us with (2). In the general case, one can get rid of the H 2 (R d , d γ)

regularity of Lemma 4 by a standard approximation scheme, which is classical and will not be detailed here.

As in [START_REF] Brigati | Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results[END_REF], a better estimate is achieved as follows. Let

φ(s) ∶= d 4 e 2 d s -1 ∀ s ≥ 0 . Using d d t E [v] = -4I [v], we notice that d d t I [v] -φ E [v] = - 8 d I [v] -φ E [v] .
Since lim t →+∞ I [v(t,⋅)] = 0 as can be deduced from a Gronwall estimate relying on

d d t I [v] ≤ -2I [v]
and lim t →+∞ E [v(t,⋅)] = 0 as a consequence of (1), one knows that lim

t →+∞ I [v(t,⋅)] -φ E [v(t,⋅)] = 0 . Moreover, Gronwall estimates show that I [v(t,⋅)] -φ E [v(t,⋅)] cannot change
sign and an asymptotic expansion as t → +∞ as in [START_REF] Brigati | Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results[END_REF]Appendix B.4] is enough to

obtain that I [v(t,⋅)]-φ E [v(t,⋅)
] takes nonnegative values for t > 0 large enough.

Altogether, we conclude that

I [v(t,⋅)] -φ E [v(t,⋅)] ≥ 0
for any t ≥ 0 and, as a particular case, at t = 0 for v(0, ⋅) = u. The function φ is convex increasing and, as such, invertible, so that we can also write

ϕ I [u] -1 -φ E [u] ≥ 0 .
his completes the proof of (3) with the convex monotone increasing function

ψ(s) ∶= s - 1 2 φ -1
(s).

Stability results

Log-concave measures and Poincaré inequality

According to [START_REF] Ledoux | Lévy-Gromov's isoperimetric inequality for an infinitedimensional diffusion generator[END_REF], given a Borel probability measure µ on R d , its isoperimetric constant is defined as

h(µ) ∶= inf A P µ (A) min µ(A), 1 -µ(A)
where the infimum is taken on the set of arbitrary Borel subset R d with µ-perimeter

or surface measure P µ (A) ∶= lim ε→0 + µ(A ε ) -µ(A) ε and A ε ∶= {x ∈ R d ∶ x -a < ε for some a ∈ A}.
Here and in what follows, we shall say that a measure µ with density e -ψ with respect to Lebesgue's measure is a log-concave probability measure if ψ is a convex function, and denote by λ 1 (µ) the first positive eigenvalue of -L ψ where L ψ is the Ornstein-Uhlenbeck operator L ψ ∶= ∆-∇ψ⋅∇. In that case, we learn from [START_REF] Ledoux | Spectral gap, logarithmic Sobolev constant, and geometric bounds[END_REF]Ineq. (5.8)] that

1 4 h(µ) 2 ≤ λ 1 (µ) ≤ 36 h(µ) 2
where the lower bound is J. Cheeger's inequality that goes back to [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF] for Riemannian manifolds and also to earlier works by V.G. Maz'ya [START_REF] Maz'ya | The negative spectrum of the n-dimensional Schrödinger operator[END_REF][START_REF]On the solvability of the Neumann problem[END_REF]. This bound was later improved in [START_REF] Buser | A note on the isoperimetric constant[END_REF][START_REF] Ledoux | A simple analytic proof of an inequality by P. Buser[END_REF]. The characterization of h(µ) has been actively studied, but it is out of the scope of the present paper. We learn from [12, Theorem 1.2] and [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF]Ineq. (3.4)] that

h(µ) ≥ 1 6 3 ∫ R d x -x µ 2 d µ where x µ = R d x d µ
for any log-concave probability measure µ. This estimate is closely related with the results by R. Kannan, L. Lovász and M. Simonovits in [START_REF] Kannan | Isoperimetric problems for convex bodies and a localization lemma[END_REF] and their conjecture, which again lies out of the scope of the present paper (see for instance [START_REF] Bobkov | KLS-type isoperimetric bounds for logconcave probability measures[END_REF] for a recent work on the topic).

Altogether, if µ is a log-concave probability measure with d µ = e -ψ d x such that

∫ R d x 2 d µ ≤ d , then we have the Poincaré inequality R d ∇f 2 d µ ≥ 1 432 R d f 2 d µ ∀ f ∈ H 1 (R d , d µ) such that R d f d µ = 0 . ( 16 
)
We refer to [START_REF] Cattiaux | Functional inequalities for perturbed measures with applications to log-concave measures and to some Bayesian problems[END_REF] and references therein for further estimates on λ 1 (µ).

Time evolution, log-concave densities and Poincaré inequality

Lemma 5. Let us consider consider a solution h of (9) with initial datum h 0 = v 2 and assume that µ 0 ∶= h 0 γ is log-concave. Then µ t ∶= h(t , ⋅)γ is log-concave for all t ≥ 0.

Proof. The function g ∶= h γ solves the Fokker-Planck equation

∂g ∂t = ∆g + ∇ ⋅ (x g ).
The function f such that

f (t, x) ∶= g 1 2 log(1 + 2 t ), x √ 1 + 2 t ∀(t, x) ∈ R + × R d
solves the heat equation and can be represented using the heat kernel. According for instance to [START_REF] Saumard | Log-concavity and strong log-concavity: a review[END_REF][START_REF] Bardet | Functional inequalities for Gaussian convolutions of compactly supported measures: Explicit bounds and dimension dependence[END_REF], log-concavity is preserved under convolution, which completes the proof.

The log-concavity property becomes true under the action of the flow of ( 9) after some delay t ⋆ for large classes of initial data. With the notation of Lemma 5, for any R > 0, we read from [48, Theorem 5.1] by K. Lee and J-L. Vázquez that µ t is logconcave for any

t ≥ t ⋆ (R) ∶= log √ R 2 + 1 , ( 17 
)
if v is compactly supported in a ball of radius R > 0, by reducing the problem to the heat flow as in the above proof. As a consequence, we know that (16) holds for any

t ≥ t ⋆ (R).
Alternatively, under Assumption [START_REF] Barchiesi | Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality[END_REF], we learn from a recent paper [23, Theorem 2] by H.-B. Chen, S. Chewi, and J. Niles-Weed that the Poincaré inequality

R d ∇ f 2 d µ t ≥ λ 1 (µ t ) R d f 2 d µ t ∀ f ∈ H 1 (R d , d µ t ) such that R d f d µ t = 0 (18) 
holds for all t ≥ t ε ⋆ with

t ε ⋆ ∶= log √ 1 + ε -1 , 1 λ 1 (µ t ) ≤ τ ε τ ε τ -1 + A 1 ε τ-1 and τ = 1 2 e 2t
-1 .

Explicit stability results for log-concave densities

Let us start by an elementary observation.

Lemma 6. If h ∈ H 1 (R d , d γ) is such that ∫ R d x h d γ = 0 and P = -log h is the pressure variable, then R d ∇P h d γ = 0 . Proof. The result follows from ∫ R d ∇P h d γ = -∫ R d ∇h d γ = ∫ R d x h d γ = 0.
With this result in hand, we can now prove our first main result.

Proof of Theorem 2. The function h = v 2 is such that ∫ R d x h d γ = 0 and Lemma 6 applies. Since h γ is log-concave, we can apply ( 16) with f = ∂P ∂x i for any i = 1, 2,. . . d and obtain

R d Hess P 2 h d γ ≥ 1 432 R d ∇P 2 h d γ .
It follows from (13) that

d d t R d ∇v 2 d γ + 2 R d ∇v 2 d γ ≤ - 1 864 R d ∇v 2 d γ ,
and the stability result is obtained as in the proof of Proposition 1.

Extension by entropy methods and flows

This section is devoted to the proof of Theorem 3. The key idea is to evolve the function by the Ornstein-Uhlenbeck equation, so that the solution after an initial time layer has the log-concavity property of Theorem 2, at least if the initial datum has compact support. To some extent, the strategy is similar to the one used in [START_REF] Bonforte | Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method[END_REF]. During the initial time layer, we use an improved version of the entropy -entropy production inequality which arises as a consequence of the carré du champ method.

Proof of Theorem 3. Let h be the solution to [START_REF] Beckner | Sobolev inequalities, the Poisson semigroup, and analysis on the sphere S n[END_REF] with initial datum h 0 = u 2 and define

Q(t) ∶= I h(t , ⋅) E h(t , ⋅) ∀ t ≥ 0 .
Let us assume first that v has compact support. With no loss of generality, we can assume that v is supported in B (0,R) for some R > 0. With t ⋆ = t ⋆ (R) given by ( 17), we know from [48, Theorem 5.1] that µ t is log-concave at t = t ⋆ and Theorem 2 applies:

Q(t ⋆ ) ≥ C ⋆ 2 .
With an estimate similar to [16, Lemma 2.9], we learn from Section 2 that

d Q d t ≤ 2 Q (2Q -1) . (19) 
An integration on (0, t ⋆ ) shows that

Q(0) ≥ 1 2 1 + 2 Q(t ⋆ ) -1 1 + 2 Q(t ⋆ )(e 2 t ⋆ -1) ≥ 1 2 1 + C ⋆ -1 1 + C ⋆ R 2 = C 2 .
Under the more general assumption (7), we rely on ( 18) and obtain with same notations as above and

t ⋆ = t ε ⋆ that R d Hess P 2 h(t , ⋅)dγ ≥ λ 1 (µ t ) R d ∇P 2 h(t , ⋅)dγ ∀ t ≥ t ⋆ .
Moreover, for some explicit t 0 = t 0 (ε) > t * , we notice that t ↦ λ 1 (µ t ) is nonincreasing on (t 0 , +∞). Hence we deduce from I [v(t 0 , ⋅)] - Using [START_REF] Buser | A note on the isoperimetric constant[END_REF], we obtain

C = 1 + C 0 -1 1 + C 0 (e 2 t 0 -1)
. This concludes the proof. Proof. We learn from (15) that and the remainder of the proof of Theorem 2 is unchanged.

Normalization issues

A similar extension of Theorem 3 can be done on the same basis. Details are left to the reader. As for Proposition 1, we can make the following observations. The Knowing that z ′ < 0 is an improvement on the decay rate I [v(t,⋅)] ≤ I [u]e -2 t can be rephrased as an improved entropy -entropy production inequality for A > 0.

  Hess v = ∇ ⊗ ∇v is the Hessian matrix of v. Here we use the following notations. If a and b take values in R d , a ⊗ b denotes the matrix (a i b j ) 1≤i , j ≤d . With matrix valued m and n, we define m ∶ n = ∑ d i , j =1 m i , j n i , j and m 2 = m ∶ m. If h is a nonnegative solution of (9), notice that v = √ h solves ∂v ∂t

4 + 4 λ 1

 441 λ 1 (µ s ) E ′ [v(s,⋅)]d s ≥ 0after an integration by parts thatQ(t 0 ) ≥ (µ t 0 ) =∶ C 0 .

Proposition 7 . 2 L 2 (

 722 If we do not assume that uL 2 (R d ,d γ) = 1 and x u L 2 (R d ,d γ) ≤ d , it is still possibleto state the analogue of Theorem 2, but the price to be paid is a dependence onκ[u] ∶= u L 2 (R d ,d γ) max √ d , (x -x 0 )u L 2 (R d ,d γ) where x 0 = R d x h 0 d γ ,which goes as follows. For all u ∈ H 1 R d , (1 + x 2 )dγ such that ∫ R d x u 2 d γ = 0, and u 2 γ is log-concave, we have ∇u R d ,d γ) -

R d x 2 2 L 2 (d x 2 -

 2222 h(t , x) d γ = d u R d ,d γ) + e -2t R d h 0 d γ ∀ t ≥ 0 .Hence[12, Theorem 1.2] and [12, Ineq. (3.4)] apply with h(µ) ≥ κ[u]

u 2 x 2 - 2 -Hess P 2 h d γ ≤ - 1 2 d 4 I

 2214 case ∫ R d x 2 v 2 d γ ≤ d is already covered in Lemma 4. If A ∶= R d d d γis positive, let us consider the solution h of (9) with initial datum h 0 = u 2 . We know from (15) thatR d h(t , x) x d d γ = A e -2tand deduce as in the proof of Lemma 4 that4 I [v] = R d ∇P 2 h d γ = R d h (L P )dγ + A e -2t ≤ d R d Hess P 2 h d γ + A e -2twith P = -logh. Hence by[START_REF] Bobkov | KLS-type isoperimetric bounds for logconcave probability measures[END_REF], we learn that [v] -A e -2t 2 and this estimate can be rephrased with z(t ) ∶= e 2 t I [v(t,⋅)]
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