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Abstract: Eleven statistical and machine learning tools are analyzed and applied to hourly solar 

irradiation forecasting for time horizon from 1 to 6 hours. A methodology is presented to select 

the best and most reliable forecasting model according to the meteorological variability of the 

site. To make the conclusions more universal, solar data collected in three sites with low, 

medium and high meteorological variabilities are used: Ajaccio, Tilos and Odeillo. The datasets 

variability is evaluated using the mean absolute log return value. The models were compared 

in term of normalized root mean square error, mean absolute error and skill score. The most 

efficient models are selected for each variability and temporal horizon: for the weak variability, 

auto-regressive moving average and multi-layer perceptron are the most efficient, for a medium 

variability, auto-regressive moving average and bagged regression tree are the best predictors 

and for a high one, only more complex methods can be used efficiently, bagged regression tree 

and the random forest approach. 
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1. Introduction 

The management of an electrical network is a very complex task, particularly on small grids 

like islands which are generally not interconnected to the mainland grid (Diagne, David, Lauret, 

Boland, & Schmutz, 2013). The equality between production and consumption is the most 

difficult challenge; moreover, the increased rate of intermittent and stochastic renewable energy 

sources into the energy mix adds a layer of difficulty. For an efficient management of the energy 

mix and a safest electricity supply, production and consumption must be planned before. There 

are many forecasting methods for solar radiation, all the methods have advantages and 

inconvenient and their accuracy depends on the forecasting horizon and on the geographical 

situation. The three main categories of models are sky imaging, physical models (or numerical 

weather prediction, e.g. NWP) and machine learning models. The sky imaging models are 

mainly used for short term forecasting (1 to 60 minutes), the physical models concern numerical 

weather prediction models often used for long term forecasting (several days). The medium-

term forecasting (from 1 to few hours) is often made by machine learning methods, a large state 

of the art was made  concerning the solar power forecasting (Voyant, Notton, et al., 2017).  This 

study is related to the comparison of eleven machine learning models in order to forecast solar 

global irradiation and to compare their performances in three different sites to make our results 

more universal. The main goal is to propose a prioritization methodology to highlight the best 

forecasting method between the tested ones according to the level of irradiation variability 

considering the complexity of the method. To distinguish the different weather conditions and 

to characterize the global behavior of the solar time series in the three sites, a property of time 

series named variability is calculated, the characterization of this time series property can be 

made by various statistical parameters (Voyant, Soubdhan, Lauret, David, & Muselli, 2015). 

The solar forecasting is realized with an hourly time granularity for 1 hour to 6 hours’ time 
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horizons. The comparison between the models is evaluated by statistical indexes and classical 

error metrics, the eleven tested models are:  

- Persistence (P) and smart persistence (SP) can be considered as naïve models, they are 

often used in intraday solar radiation forecasting and are usually taken as reference to 

compare the performances with other models (Lauret, Voyant, Soubdhan, David, & 

Poggi, 2015). 

- Auto regressive moving average (ARMA) and artificial neural network (ANN) are two 

types of models allowing to realize respectively linear and non-linear regressions. 

ARMA is certainly the most studied tool especially in econometry, but also in global 

irradiation forecasting (Boland, David, & Lauret, 2016). Artificial neural network 

(ANN) is taken as well-known global radiation forecasting method (Voyant, Motte, et 

al., 2017).  

- Regression tree based models family is composed by five models with different levels 

of complexity and optimization. Classical regression tree (RT) and pruned regression 

tree (RT-pruned) are sometimes used in very short term forecasting and allow good 

results compared with other machine learning models (Troncoso, Salcedo-Sanz, 

Casanova-Mateo, Riquelme, & Prieto, 2015). Boosted regression tree (RT-boosted) 

consists in combine the responses of a collection of weak classifiers which once 

averaged form a strong classifier to make prediction (De’ath, 2007). Then the 

aggregated versions of regression trees denoted bagged regression tree (RT-bagged) 

(Breiman, 1996) are developed to build an aggregated predictor in order to improve 

accuracy of the forecast. Finally, we propose also the random forest method (RF) which 

is another improvement of regression tree methods with more robustness (Breiman, 

2001).  
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-  Models based on Kernel estimation like Gaussian processes (GP) and support vector 

regression (SVR). The first one is a nonparametric kernel-based probabilistic model 

giving very good results in time series prediction (Rasmussen, 2004),  The second one 

(SVR) can be considered as a generalization of linear classifiers and can be used to 

forecast solar irradiation and can be improved by several methods of optimization (Jiang 

& Dong, 2017).  

The study is developed as follow: section 2 describes the materials and methods, the data 

and the models. Section 3 presents the results and the discussion about the forecasting 

reliability, the variability of solar data and the link between variability and efficiency of the 

forecasting models. 

2. Materials and methods 

This section presents information related to the preliminary stage before the forecasting phase. 

Fig 1 shows the different steps (detailed afterwards) of this methodology. 
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Figure 1. Flowchart of the model development before forecasting 

It consists in:  

1. A quality control of the solar data: often, mistakes appear in the temporal series of solar 

data due to problems with the acquisition system; an automatic quality check used in 

the frame of GEOSS project (Group on Earth Observation System of System) 

(http://www.earthobservations.org/geoss.php) has been applied to the data;  

2. A data preprocessing: the night hours are removed, due to problems occurring at the 

sunset and the sunrise (mask effects and bad response of pyranometers) (Badescu, 2008; 

Iqbal, 1983), a filter is applied on the datasets which remove all the data that correspond 

to a solar elevation angle up to 10°.  

3. Stationarity: the solar irradiation time series contains some properties like seasonality 

and periodicity. Most of the machine learning forecasting methods are applicable only 

to stationary time series (Hornik, Stinchcombe, & White, 1989) describe the necessary 

steps in order to use data in forecasting with machine learning. Thus, the solar data time 

series must be made stationary using a solar radiation model by clear sky and computing 

the clear sky index (paragraph 2.1), this method is described in (Paoli, Voyant, Muselli, 

& Nivet, 2010). 

4. At last, the choice of the number of input data for each forecasting tool is realized by 

auto mutual information method (Luo, Shi, Zheng, Gang, & Cai, 2017) and described 

in paragraph 2.2. 

2.1 The clear sky model (CS) and clear sky index (CSI) 

The solar radiation by clear sky computing is the third step of the preprocessing method, it 

consists in calculate the maximum global horizontal irradiation (GHI) at the ground level in 

cloudiness conditions (taking into account scattering and absorption by atmosphere). Almost 

http://www.earthobservations.org/geoss.php
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all the machine learning approaches are based on a stationary hypothesis of the time series. they 

are usually based on the assumption that the data generation mechanism does not change over 

time. For the global irradiation forecasting in dividing each measured solar irradiation by its 

corresponding clear sky value, the periodicity of the solar irradiation time series is then 

removed; thus, a new time series is created with values between 0 and 1 and the forecasting 

method is then applied to predict only the cloud occurrences and not the fact that GHI is more 

important at 12h than at 6h, or in summer than in winter. The CS model chosen is the SOLIS 

model developed by Mueller (Mueller et al., 2004) and based on the studies of Ineichen et al. 

(Ineichen, 2006, 2008); it gives excellent results when it was compared with solar 

measurements in Europe. It is based on radiative transfer models, Beer Lambert function, and 

their integration on the solar spectra uses the information’s of news satellites ERS-2/ENVISAT. 

The calculation of the clear sky irradiation CS(t) is given by:  

𝐶𝑆(𝑡) = 𝐻0. 𝑒
−𝜏

𝑠𝑖𝑛𝑏(ℎ(𝑡)). 𝑠𝑖𝑛(ℎ(𝑡))       (1) 

h(t) is the solar height in degrees and H0 is the extraterrestrial irradiation (irradiation on the top 

of the atmosphere before being scattered and absorbed by the atmosphere (Iqbal, 1983)); τ is 

the global total atmospheric depth and the parameter b is a fitting parameter, both of them 

depending on the meteorological characteristics of the site, Mueller and Ineichen study the 

different parameters used in modelling of clear sky (Ineichen, 2008; Mueller et al., 2004). τ and 

b depend on the site and their values can be found in (https://aeronet.gsfc.nasa.gov/). 

The clear sky index (CSI) is calculated by: 

𝐶𝑆𝐼(𝑡) =
𝐺𝐻𝐼(𝑡)

𝐶𝑆(𝑡)
         (2) 

All the machine learning tools described in the next section can be only applied to stationary 

time series.  CSI is forecasted from previous CSI values and GHI is then obtained using Eq. 2; 

the errors metrics are given in term of GHI in absolute and relative values.  
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2.2. Input matrix dimension of the forecasting tool and k-fold sampling 

The next step of the preprocessing is to choose the dimension of the input matrix of the 

forecasting tools. The data are presented under a time series (TS) formalism, a time series is a 

series of data points indexed in function of the time (𝐶𝑆𝐼(𝑡)). The approach consists in 

predicting the future clear sky index (at different time horizons) from past observed data. 

Mathematically, the formulation is: 

𝐶𝑆𝐼(𝑡 + ℎ) = 𝑓(𝐶𝑆𝐼(𝑡), 𝐶𝑆𝐼(𝑡 − 1), … , 𝐶𝑆𝐼(𝑡 − 𝑛)) + 𝜖(𝑡 + ℎ)  (3) 

𝜖(𝑡 + ℎ) is a random white noise and f depending on the model. 

The future time step (t+h) is forecasted from a given number of observed data at previous times 

(t, t-1…, t-n) which must be optimally determined. In other words, the objective is to calculate 

the value of n (number of previous values) and to obtain 𝜖 as low as possible. The choice of n, 

i.e. the dimension of the input matrix, is made by an auto mutual information method, in (Luo 

et al., 2017; Parviz, Nasser, & Motlagh, 2008)  some details concerning this method. This auto 

mutual information is a property of a time series and depends on each dataset. It determinates 

the degree of statistical dependence of the variables. The lag corresponding to the first minimum 

of this parameter corresponds to the best n to consider. 

In machine learning method, the times series is divided into two groups: a training and a testing 

group. The first one is used to train the model i.e. inputs and output are given to the model and 

a training algorithm determines the parameter values of the model; then, once these parameters 

known, the model is tested on a second set of data called testing set (never used for the training) 

and the error metrics are calculated only on this testing set.  

Sometimes, the model is trained on a given percentage of first data and tested on the 

complementary percentage of last data. But when this data repartition, there exist the risk that 

the model was trained on a period for which some specific meteorological phenomena occur, 
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conducing to a non-generalizable model. In view to avoid this problem and to make the training 

less dependent of particular meteorological periods, the k-fold method is used during the 

validation phase; it consists in dividing the dataset in k samples (here k=10), each sample is 

used at least one time for the training and one time for the test, and this process is repeated as 

many time as necessary. Thus, the results are independent of the set of data used for the training 

because using only one data set (with its own statistical particularities) can reduce the 

robustness of the conclusions. 

Note that the k-fold cross-validation is only used during the retrospective model’s comparison 

but never in operational mode or prediction in real installation. In a retrospective context, the 

concept of present, future and past data does not make sense…all the data are part of the past. 

What is essential is that the data used for training are never used during the test. The k-fold 

methodology induces that the training set is not defined “in the past” with respect to the testing 

set. Testing and training data are interleaved.  

2.3. Meteorological stations and data 

The datasets are time series of horizontal global solar irradiation measurements (GHI) in three 

different sites (Fig 2).  
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Figure 2. Geographical situation of experimental sites  

The first dataset was provided by PROMES laboratory (CNRS UPR 8521) located in south of 

France at Odeillo (Pyrénées Orientales, France, 42°29 N, 2°01 E, 1650 m asl) (red circle in Fig. 

2), the station is located in the mountains, at about 100 km from the Mediterranean Sea and 

presents often a high nebulosity. The second dataset comes from measurements realized in the 

laboratory at Ajaccio (Corsica, France, 41°55 N, 8°44 E, 4m asl) (blue circle in Fig. 2) at about 

100 m from the Mediterranean Sea. The third dataset is constituted by measurements realized 

in Tilos island (Greece, 36°24 N, 27°22 E, 96 m asl) (green circle in Fig. 2), Tilos is a small 

Greek island in the Dodecanese archipelago, the tallest mountain is about 650 m high. 

The meteorological conditions (variability of solar radiation) in these three stations are very 

different, the solar radiation is outlined and will be confirmed in paragraph 5. 

The periods of the solar data collect and the number of validated measures (after quality check 

and night data extraction) are given in Table 1.  

Table 1. Period of availability and number of validated data for the three sites. 

Location Period of collected data Number of validated data 
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Odeillo 01/01/2000 to 12/31/2002 26280 

Ajaccio 01/01/1998 to 12/31/2000 26280 

Tilos 01/01/2016 to 12/31/2016 8617 

3. The forecasting models 

Eleven forecasting models are briefly described and more information on each of them are 

available in literature. These models are classified in three categories: naïve models, classical 

machine learning models and regression trees-based models. The symbol ̂  indicates that the 

value is predicted, without this symbol the value is measured. 

3.1. Naive models 

The two naive models are generally used as a reference in view to compare it with more 

sophisticated models. Indeed, if a complex model is not more efficient than these two models 

which are easy to implement and not requiring historical data, their use is not justified. The first 

model is the simplest one, the persistence, it is the repetition of the measure at the instant t to 

the predicted value at the instant t+h (h being the forecasting horizon) (Diagne et al., 2013): 

𝐺𝐻𝐼̂ (𝑡 + ℎ) = 𝐺𝐻𝐼(𝑡)         (4) 

𝐺𝐻𝐼̂ (𝑡) and 𝐺𝐻𝐼(𝑡) are respectively the predicted and measured hourly global horizontal solar 

irradiation at time t. This model is very simple to implement but it gives generally results with 

low accuracy. 

The daily profile of the solar radiation can be added in using the Solis clear sky model to give 

the smart persistence, a simple improvement of the previous model developed for solar 

forecasting and used as reference on comparison with other models (Voyant et al., 2015) . 

𝐺𝐻𝐼̂ (𝑡 + ℎ) = 𝐺𝐻𝐼(𝑡).
𝐶𝑆(𝑡+ℎ)

𝐶𝑆(𝑡)
         (5) 
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The accuracy of such models decreases rapidly with the time horizon and is generally not 

adequate for a horizon higher than one hour. 

3.2. Classical machine learning models 

3.2.1. Auto Regressive Mobile Average (ARMA) 

The ARMA model, used in energy consumption forecasting (de Oliveira & Cyrino Oliveira, 

2018) includes two parts, an auto regressive one and a mobile average one. This model predicts 

the future values, as described in Ref  (De Gooijer & Hyndman, 2006; Faraday & Chatfield, 

1998), from a linear combination of past values and a past residue: 

𝐶𝑆𝐼̂(𝑡 + ℎ) =   𝜀(𝑡) +  ∑ 𝜑𝑖
𝑝
𝑖=0 . 𝐶𝑆𝐼(𝑡 − 𝑖) +  ∑ 𝜃𝑖  . 𝜀(𝑡 − 𝑖)𝑞

𝑖=0     (6) 

CSI(t+h) being the clear sky index at time t+h, φ and θ the ARMA parameters deduced by a 

least square method, p and q are the model orders and ε(t) is the error or a noise related to a 

normal distribution. 

 

3.2.2. Artificial neural network (ANN): MultiLayer Perceptron (MLP) 

A feed forward MLP, a type of ANN, with one hidden layer and one output layer is used. The  

utilization of this technique for application on energy systems and in forecasting and modelling 

solar radiation (Kalogirou, 2000; Mellit, 2008). The equation for a MLP with one hidden layer 

of m neurons, one output neuron and n input variables is given by: 

𝐶𝑆𝐼̂(𝑡 + ℎ) = ∑ 𝜔𝑗
𝑚
𝑗=1 . (𝑔(∑ 𝜔𝑖,𝑗. 𝐶𝑆𝐼(𝑡 − 𝑗)𝑛−1

𝑖=0 + 𝑏𝑗)       (7) 

with CSI the input vector of n clear sky indexes, 𝐶𝑆𝐼̂(𝑡 + ℎ) the predicted value, 𝑏𝑗 the biases 

of the hidden neuron j and 𝜔𝑖,𝑗 the weights between the input i and the hidden node j, g is the 

transfer function,𝜔𝑗  the weight between the output and the hidden neuron j 
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3.2.3. Gaussian Process (GP) 

The Gaussian process, nonlinear model, is a Gaussian distribution with an infinity of variables, 

(Rasmussen, 2004) details the work and implementation of GP. Every predicted CSI is 

represented by the sum of a function 𝑓(𝐶𝑆𝐼(𝛕)) and an independent Gaussian noise 

𝒩(𝑂, 𝜎𝑛
2) with a variance 𝜎𝑛

2 and CSI(τ) = (CSI(t), CSI(t − 1), ⋯ , CSI(t − n)):  

𝐶𝑆𝐼̂(𝑡 + ℎ) = 𝑓(𝐶𝑆𝐼(𝛕)) + 𝒩(𝑂, 𝜎𝑛
2)         (8)                  

GP is defined as a mean function 𝑚(𝐶𝑆𝐼(𝛕)) and a covariance function k. k is an exponential 

squared function relying 𝐶𝑆𝐼̂(𝑡𝑝 + ℎ)  with 𝐶𝑆𝐼̂(𝑡𝑞 + ℎ) , tp and tq being two successive 

instants:  

𝑘(𝐶𝑆𝐼̂(𝑡𝑝 + ℎ), 𝐶𝑆𝐼̂(𝑡𝑞 + ℎ)) = 𝜎𝑓
2𝑒𝑥𝑝 [

−(𝐶𝑆𝐼(𝑡𝑝)−𝐶𝑆𝐼(𝑡𝑞))
2

2𝑙2 ] + 𝛿𝑝𝑞𝜎𝑛
2   (9) 

𝛿𝑝𝑞 is Kronecker delta, 𝜎𝑓
2 and 𝜎𝑛

2 are the hyper parameters of the covariance function and are 

responsible of the complexity of the model, l is a length parameter.  

 

3.2.4. Support Vector Regression (SVR) 

SVR is a Kernel based model, firstly developed for regression problems and applied now for 

forecasting purposes (Lauret et al., 2015; Vapnik, 2013). With a training dataset 𝐷 =

{𝐶𝑆𝐼(), 𝐶𝑆𝐼(𝑡 + ℎ)} ; the predicted CSI can be expressed by:  

𝐶𝑆𝐼̂(𝑡 + ℎ) = ∑ 𝛼𝜏 
𝑡−1
𝜏=1 . 𝑘𝑟𝑏𝑓(𝐶𝑆𝐼(𝑡 + ℎ), 𝐶𝑆𝐼(𝑡 − 𝜏) ) + 𝑏    (10) 

and the Kernel radial basis function is:  

  𝑘𝑟𝑏𝑓(𝐶𝑆𝐼(𝑡𝑝), 𝐶𝑆𝐼(𝑡𝑞) ) = 𝑒𝑥𝑝 [
−(𝐶𝑆𝐼(𝑡𝑝)−𝐶𝑆𝐼(𝑡𝑞))

2

2𝜎𝑓
2 ]     (11) 
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αi is the Lagrange multipliers, solutions of a quadratic problem, b is the bias determined by 

specific conditions. 

3.2.5. Regression Trees based methods 

Decision trees based on “If-Then” rules are used for classification and produces understandable 

models due to their graphical representation, they are adapted to work on forecasting problems, 

like solar  radiation forecasting (Aggarwal & Saini, 2014; Burrows, 1997). They have been then 

extended for predicting numerical values of attributes and led to regression trees which are a 

decision tree in which the leaf nodes have been set as regression models, and therefore, 

continuous numeric values can be predicted. Some results are given on forecasting of 

photovoltaic production system using regression trees (Persson, Bacher, Shiga, & Madsen, 

2017). 

A. Standard and pruned regression trees (RT and RT-pruned) 

Hastie and Tibshirani (Hastie & Tibshirani, 1986) proposed a formalization of the RT models: 

𝐶𝑆𝐼̂(𝑡 + ℎ) =  ∑ 𝑘𝑖 . 𝐼(𝐶𝑆𝐼(𝑡 − 𝑖))𝑡−1
𝑖=1         (12) 

with ki constant factors, I a function which return 1 if input is used and 0 elsewhere; The trees 

are built by splitting the data based on the values of predictive attributes. A regression model is 

then computed for each node. The pruning aspect of RT is operated with an elevation of the 

quadratic error tolerance per node. Splitting nodes stops when the quadratic error per node drops 

below tolerance. For normal RT, the tolerance is close to zero, while for the pruned RT, a higher 

value is chosen using a heuristic method based on the minimizing of the global error of 

prediction (Pedro, Coimbra, David, & Lauret, 2018) . 

 

B. Boosted and bagged regression trees (RT-boosted and RT-bagged) 
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It is interesting in “ensemble learning” methods to generate many regressors and aggregate their 

results. Two usual methods are boosting and bagging of RT, these two methods are 

improvement of the classical regression trees.  

The boosting method consists in assembly weak RT classifiers and take the average of 

predictions in order to improve the efficiency (Huang & Perry, 2016). A weak predictor is a 

simple single split RT and the next trees give more weights to the data badly predicted at the 

previous point, De’Ath explains in details the method to use boosted RT in modelling and 

forecasting applications (De’ath, 2007). The function for additive models applied to solar 

forecasting by boosted RT is: 

𝐶𝑆𝐼̂(𝑡 + ℎ) = ∑ 𝛽𝑚𝑚 𝑏(𝐶𝑆𝐼̂(𝑡 + ℎ), 𝛾𝑚)       (13) 

The function 𝑏 represents the individual trees with 𝛾𝑚 the split variable and 𝛽𝑚  the weight at 

each node. The Bagging method (for bootstrap aggregating) is another improvement of the RT 

(Breiman, 1996); the model is an aggregation of RT which grows from samples of dataset : 

𝐶𝑆𝐼̂(𝑡 + ℎ) = 𝑎𝑣𝑘 𝜑𝑘(𝐶𝑆𝐼̂(𝑡 + ℎ))        (14) 

𝜑𝑘 are the different predictors before the aggregation and 𝑎𝑣𝑘  the mean of the different 

predictors.  

C. Random forests 

Random forests [9] add an additional layer of randomness to bagging. In a random forest, the 

dataset is equally divided in samples but each regression tree grows differently, each node is 

split using the best among a subset of predictors randomly chosen at that node (Ibrahim & 

Khatib, 2017). This improvement by randomness gives robustness to the model and decreases 

the over-training risks.  

4. Evaluation of models performance 
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To evaluate the accuracy of the models, three different statistics are used. The mean absolute 

error (MAE), defines the absolute value of the gap between the observed and the predicted 

value.  

𝑀𝐴𝐸 =
∑ |𝐺𝐻𝐼̂ (𝑖)−𝐺𝐻𝐼(𝑖)|𝑁

𝑖=1

𝑁
          (15) 

with 𝐺𝐻𝐼̂ (𝑖) the predicted variable, 𝐺𝐻𝐼 (𝑖) the observed variable and N the number of data. 

The normalized root mean squared error (nRMSE) is more sensitive to large forecast errors, 

and hence is suitable for applications where small errors are more tolerable and larger errors 

cause disproportionately high costs, as for example in the case of utility applications. It is 

probably the reliability factor that is most appreciated and used: it’s a good statistical index to 

evaluate the accuracy of a models, the aim of an operator is to minimize it in order to improve 

model performances:  

𝑛𝑅𝑀𝑆𝐸 =
√

1

𝑁
∑ (𝐺𝐻𝐼̂ (𝑖)−𝐺𝐻𝐼(𝑖))2𝑁

𝑖=1

𝐺𝐻𝐼̅̅ ̅̅ ̅̅
        (16) 

where 𝐺𝐻𝐼 is the algebraic average of the observed values. 

The skill score is an index calculated in order to compare the performance of a given model 

with a reference model, here the reference model is the smart persistence model (SP) described 

in 3.1. 

𝑆𝑘𝑖𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =
𝑀𝑒𝑡𝑟𝑖𝑐𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡−𝑀𝑒𝑡𝑟𝑖𝑐𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑀𝑒𝑡𝑟𝑖𝑐𝑝𝑒𝑟𝑓𝑒𝑐𝑡_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡−𝑀𝑒𝑡𝑟𝑖𝑐𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
= 1 −

𝑛𝑅𝑀𝑆𝐸𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑛𝑅𝑀𝑆𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
   (17) 

The skill score is always inferior at 1, negative if the forecaster is less performant than the 

reference, 0 if the performances are similar, and positive if it is better. 

5. Evaluation of the variability 
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The evaluation of the variability of different datasets is made thanks to a statistical parameter, 

Voyant et al. (Voyant et al., 2015) described several parameters to quantify the variability of a 

solar irradiation time series and the mean absolute log return appeared to be the most efficient:  

𝑚𝑒𝑎𝑛𝑎𝑏𝑠 (𝑙𝑜𝑔𝑟) =  
∑ |log(𝐶𝑆𝐼(𝑖))−log(𝐶𝑆𝐼(𝑖−1))|𝑁

𝑖=1

𝑁
       (18) 

Other variability metrics are available like the P parameter described by Perez et al. (Perez, 

Kivalov, Schlemmer, Hemker Jr., & Hoff, 2012) and computed from the standard deviation 

(std) by 𝑃 = 𝑠𝑡𝑑(𝐶𝑆𝐼(𝑡) − 𝐶𝑆𝐼(𝑡 − 1)). In order to not overburden the manuscript, the 

variability is only estimated with the mean absolute log return. The variability of the three solar 

dataset were computed using Eq (18) and the Mean absolute log return values for each site are 

shown in Table 2.  

Table 2. Variability for three CSI datasets according to the mean absolute log return. 

Site Odeillo Tilos Ajaccio 

Mean absolute log return 0.5028 0.3732 0.1961 

Type of variability Strong Medium Weak 

A large difference between the three datasets is noted, the variability of the solar irradiance 

measurements differs from one site to another; thus, the performance of the forecasting methods 

presented here will have a more universal character in nature because they are the result of 

calculations realized from various weather conditions. Moreover, it will be possible to draw a 

correlation between the site variability and the ranking of the models in term of performance. 

6. Solar irradiance forecasting and performances of forecasting models 

This section presents the results of solar irradiance forecasting for the three sites. The 

preprocessing is the same for every dataset:  

- Calculation of the clear-sky irradiation by the Solis model; 

- Calculation of clear sky indexes; 
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- Remove of night hours and hour with the sun elevation up to 10°.  

The auto-mutual information which is a part of information theory, is a way to select the number 

of input given in the models (Fu et al., 2017; Parviz et al., 2008). For each time series shows 

that the optimal number of input data n (first minimum of the auto mutual information criteria, 

see paragraph 2.2) is n=8 for Ajaccio and Odeillo and n=6 for Tilos. Thus, for estimating the 

future solar irradiation, the n previous measured solar irradiations are used. The training set is 

about 80% of the dataset and the testing set about 20% considering a k-fold sampling equal to 

10.  

Tables 3 and 4 show the results of the nRMSE and MAE calculations for the eleven models and 

a forecast horizon from 1 to 6 hours with an hourly resolution. 

 

 

 

 

 

 

Table 3. nRMSE vs forecast horizon, the two best models are highlighted. 
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Horizon  h+1 h+2 h+3 h+4 h+5 h+6 

Persistence 40.91% 61.81% 76.18% 84.53% 88.35% 86.25% 

Smart persistence 37.00% 54.59% 66.68% 74.64% 77.77% 77.76% 

ARMA 34.42% 47.12% 49.26% 49.76% 49.16% 48.56% 

MLP 29.88% 43.51% 45.86% 47.87% 48.44% 48.72% 

Regression tree (RT) 36.73% 51.94% 54.95% 56.76% 57.86% 57.45% 

Boosted RT 30.20% 43.24% 45.59% 47.71% 48.57% 48.78% 

Bagged RT 28.80% 42.00% 44.66% 46.63% 47.83% 47.52% 

Pruned RT 29.90% 43.97% 46.47% 48.47% 50.01% 49.84% 

Random forest 28.76% 42.75% 44.89% 46.56% 47.78% 48.34% 

Gaussian process 28.65% 42.15% 45.37% 46.67% 48.54% 48.42% 

Support vector regression  34.18% 57.71% 57.25% 57.76% 58.27% 57.25% 
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T
il

o
s 

(v
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b
il

it
y
: 

0
.3

7
3

2
) 

Horizon h+1 h+2 h+3 h+4 h+5 h+6 

Persistence 27.33% 44.81% 57.12% 64.59% 67.50% 65.13% 

Smart persistence 18.51% 26.20% 31.73% 34.57% 36.73% 36.65% 

ARMA 17.71% 27.42% 29.91% 30.64% 30.85% 31.44% 

MLP 18.97% 30.76% 31.39% 32.40% 32.96% 33.74% 

Regression tree (RT) 25.62% 35.09% 37.45% 37.04% 34.45% 36.37% 

Boosted RT 19.37% 29.63% 32.91% 32.89% 36.17% 33.93% 

Bagged RT 20.11% 30.55% 30.64% 31.09% 33.22% 33.33% 

Pruned RT 20.66% 30.57% 34.05% 33.33% 34.04% 33.49% 

Random forest 19.19% 29.42% 32.28% 32.90% 33.54% 32.30% 

Gaussian process 18.48% 28.87% 32.28% 32.46% 33.53% 33.52% 

Support vector regression  18.73% 39.27% 39.67% 39.78% 40.03% 39.62% 
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.1
9

6
1
) 

Horizon h+1 h+2 h+3 h+4 h+5 h+6 

Persistence 26.60% 42.62% 54.10% 61.39% 64.51% 63.86% 

Smart persistence 19.26% 26.46% 31.18% 34.15% 36.92% 38.93% 

ARMA 18.35% 29.27% 31.38% 32.25% 33.18% 33.69% 

MLP 18.26% 29.26% 31.31% 32.47% 32.98% 33.84% 

Regression tree (RT) 24.64% 36.88% 38.47% 39.74% 39.95% 41.24% 

Boosted RT 18.75% 29.55% 31.89% 32.51% 33.55% 33.98% 

Bagged RT 18.76% 29.80% 31.10% 32.17% 33.35% 34.02% 

Pruned RT 18.72% 30.88% 32.27% 33.76% 34.01% 35.00% 

Random forest 18.97% 29.63% 31.62% 32.38% 33.37% 33.91% 

Gaussian process 18.97% 30.08% 31.96% 33.29% 33.55% 34.44% 

Support vector regression  18.55% 38.78% 41.03% 41.56% 41.66% 41.60% 

 

 

 

 

 

Table 4. MAE values (in Wh/m²) vs forecast horizon, the two best models are highlighted 
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 Horizon h+1 h+2 h+3 h+4 h+5 h+6 

Persistence 147.07 238.13 297.75 328.68 341.65 331.23 

Smart persistence 124.62 199.81 249.00 277.70 288.13 285.29 

ARMA 130.73 179.45 189.20 190.79 188.41 187.33 

MLP 105.87 162.23 172.95 181.43 185.81 186.29 

Regression tree (RT) 119.94 186.50 201.09 208.70 212.29 210.24 

Boosted RT 107.77 161.64 171.97 180.56 185.47 185.90 

Bagged RT 98.94 156.32 166.26 175.28 179.78 179.82 

Pruned RT 105.68 163.08 173.14 181.84 188.12 186.80 

Random forest 97.48 156.73 167.45 174.15 180.13 181.94 
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Gaussian process 99.50 157.09 169.66 175.93 184.45 185.04 

Support vector regression  110.49 214.72 213.05 214.57 215.82 213.61 
T

il
o
s 

(v
ar

ia
b
il

it
y
: 

0
.3

7
3

2
) 

Horizon  h+1 h+2 h+3 h+4 h+5 h+6 

Persistence 143.12 246.30 306.64 353.09 358.97 343.51 

Smart  persistence 73.93 113.29 140.99 156.14 165.36 162.97 

ARMA 74.74 128.93 140.58 145.30 145.64 146.64 

MLP 79.09 137.93 144.65 147.69 150.01 149.41 

Regression tree (RT) 94.51 145.97 157.23 155.33 149.38 152.16 

Boosted RT 82.81 132.26 143.15 145.50 149.75 145.07 

Bagged RT 76.13 130.23 133.61 136.03 140.34 140.42 

Pruned RT 89.69 131.89 145.60 144.57 144.19 140.30 

Random forest 73.71 127.95 136.51 140.44 141.65 138.56 

Gaussian process 71.40 127.41 138.11 138.47 142.03 141.78 

Support vector regression  71.27 166.29 168.16 168.84 170.02 168.69 

A
ja

cc
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 (
v
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b
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y
: 

0
.1

9
6

1
) 

Horizon  h+1 h+2 h+3 h+4 h+5  h+6 

Persistence 104.61 176.01 220.18 252.23 259.18 255.98 

Smart persistence 55.47 79.46 95.99 107.08 116.37 123.95 

ARMA 60.68 88.84 94.98 97.40 100.59 102.31 

MLP 60.63 89.42 95.19 98.86 100.66 103.31 

Regression tree (RT) 73.28 117.66 125.00 129.83 132.00 135.58 

Boosted RT 61.36 91.76 98.07 100.10 103.32 104.62 

Bagged RT 61.38 93.33 97.27 101.34 104.63 105.96 

Pruned RT 60.80 95.42 99.97 104.98 106.14 108.86 

Random forest 61.18 92.94 99.08 102.03 105.03 106.48 

Gaussian process 61.91 96.06 101.10 104.80 106.27 108.30 

Support vector regression  54.58 126.64 133.29 135.50 135.08 134.62 

Conclusions are difficult to drawn for these three locations. More meteorological sites would 

have been welcome but it is difficult to find reliable and long hourly solar irradiation data set 

and to propose a synthetic paper with so many forecasting models applied to a larger number 

of locations. The results generalization is, as often, very complicated and depends also on the 

error metrics used. 

However, some first conclusions can be drawn, the first one the naïve models (persistence and 

smart persistence) give always bad performances for all the sites and are the worst models. For 

a high variability (Odeillo), the best performances are obtained with ensemble learning models 

(bagged regression trees and random forest), the machine learning models are less performant. 

These results show that ensemble learning models have the capacity to apprehend complicated 
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phenomena. The high dataset variability explains the bad performances of “classical” models 

as MLP, ARMA or simple regression trees.  

For a medium variability dataset (Tilos), the best results come from the ARMA model, but 

occasionally smart persistence and random forest gave good results. The poorer performances 

of machine learning models, for Tilos, is probably due to the small length of the dataset (smaller 

than for Ajaccio and Odeillo).  

For a low variability dataset (Ajaccio) the best models are ARMA and MLP, followed by smart 

persistence and bagged regression trees; however, the errors are of the same order of magnitude 

for all the models excepted for persistence and simple regression tree. With such a variability, 

machine learning models are strong predictors.  

The results from the MAE point of view are similar:  

- For a high variability dataset, the ensemble learning models present the smallest 

absolute error.  

- For a medium variability and the two first hours of forecasting horizon, the statistical 

models give the best performances and for deeper horizons, the ensemble learning 

models are the best predictors 

- For a low variability dataset, excepted for the naïve model, all the models are similar in 

term of absolute error, the results are of the same order of magnitude.  

The skill score (related to the smart persistence reference model) is computed for each model, 

each horizon and site and is plotted in Fig 3.  
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Figure 3. Skill score vs forecast horizon for a) Odeillo, b) Tilos and c) Ajaccio 

The skill score compares the performances of the model with the smart persistence. If the 

performances of the models are generally better than the smart persistence for Odeillo, this fact 

is not checked for the two other sites. Thus, as expected, the improvement on the forecasting 

due to the use of machine learning methods compared with naïve models increases with the 

variability of the dataset to predict.  

7. Comments concerning prediction error and variability 

Depending on the variability of the site, the models inducing the lowest prediction error are 

different. In Table 5, the main conclusions concerning the benchmarking study of forecasting 

model are drawn for the three sites: Ajaccio, Odeillo and Tilos.  

For a low variability, (Ajaccio), a linear model ARMA and a classical MLP give very good 

results. With a lower reliability, the smart persistence or a RT with the bagged mode for the 

horizons inferior to 4 hours can be also used. For a high variability site (here Odeillo), the 

(c) 
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choice is more complicated, ensemble machine learning methods like random forest or bagged 

RT are more recommended and linear models or smart persistence must be rejected . For an 

intermediate variability (here Tilos), the two best models are ARMA and Bagged RT, but all 

the other machine learning models have about the same performances and the model ranking is 

very difficult. 

It is obvious than these results must be confirmed on other meteorological sites with a wide 

range of variability. 

Table 5. Ranking of the prediction methodologies according to the variability 

 Weak variability 
𝒎𝒆𝒂𝒏𝒂𝒃𝒔 (𝒍𝒐𝒈𝒓) < 0.2 

Medium Variability 
0.2< 𝒎𝒆𝒂𝒏𝒂𝒃𝒔 (𝒍𝒐𝒈𝒓) < 0.4 

Strong variability 
0.4 < 𝒎𝒆𝒂𝒏𝒂𝒃𝒔 (𝒍𝒐𝒈𝒓) 

Recommended 

models 
ARMA, MLP ARMA, Bagged RT 

Bagged RT, Random 

forest 

Usable models 
SP (horizon < 4h), 

Bagged RT 

Random forest, Gaussian 

process, MLP, SP 

(horizon <3h) 

Gaussian process 

 

8. Conclusion 

Eleven statistical and machine learning tools for global solar irradiation forecasting were 

analyzed and compared in term off performances on three sites with different meteorological 

characteristics. To characterize the solar data time series measured in each location, an 

evaluation of the variability was realized. A ranking of the forecasting methods according to 

the prediction horizon and depending on the site was realized; the main conclusions can be 

drawn: 

- For Ajaccio, with a weak variability, ARMA and MLP are the most efficient tools; 

- For Tilos, with a medium variability, ARMA and bagged regression tree are 

recommended; 
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- For Odeillo with a higher variability, the forecasting reliability is lower, but the best 

results were obtained for the bagged regression tree and the random forest approach. 

Even as the results are not totally conclusive, it appears that that higher is the variability, more 

complex is the forecasting tool to be used. In general, when the cloud occurrences are low, the 

utilization of an ARMA model is sufficient else the regression tree based on the bagging mode 

is the most reliable. The conclusions drawn here concern only three sites and to confirm them, 

other simulations must be carried out on well-chosen sites with particular weather 

characteristics (desert, monsoon, extreme longitude, etc.). 
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