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Abstract: The proliferation of photovoltaic (PV) power generation in power distribution grids induces
increasing safety and service quality concerns for grid operators. The inherent variability, essentially
due to meteorological conditions, of PV power generation affects the power grid reliability. In order
to develop efficient monitoring and control schemes for distribution grids, reliable forecasting of the
solar resource at several time horizons that are related to regulation, scheduling, dispatching, and
unit commitment, is necessary. PV power generation forecasting can result from forecasting global
horizontal irradiance (GHI), which is the total amount of shortwave radiation received from above
by a surface horizontal to the ground. A comparative study of machine learning methods is given
in this paper, with a focus on the most widely used: Gaussian process regression (GPR), support
vector regression (SVR), and artificial neural networks (ANN). Two years of GHI data with a time
step of 10 min are used to train the models and forecast GHI at varying time horizons, ranging from
10 min to 4 h. Persistence on the clear-sky index, also known as scaled persistence model, is included
in this paper as a reference model. Three criteria are used for in-depth performance estimation:
normalized root mean square error (nRMSE), dynamic mean absolute error (DMAE) and coverage
width-based criterion (CWC). Results confirm that machine learning-based methods outperform
the scaled persistence model. The best-performing machine learning-based methods included in
this comparative study are the long short-term memory (LSTM) neural network and the GPR model
using a rational quadratic kernel with automatic relevance determination.

Keywords: solar resource; global horizontal irradiance; time series forecasting; machine learning;
Gaussian process regression; support vector regression; artificial neural networks

1. Introduction

In the past few years, the higher penetration of renewable energy sources, in particular
solar photovoltaics, into power grids, has brought new challenges for grid operators [1–5].
As electricity is not easy to store, supply and demand have to be balanced at all times by grid
operators. Nonetheless, due to the intermittent nature of the solar resource, the deployment
of photovoltaic (PV) power generation makes the power grid balance more complex to
ensure using standard tools [6]. Indeed, the proliferation of PV power generation in power
distribution grids brings out constraints, in particular voltage constraints, mainly observed
on the medium-voltage power distribution grid, on the low-voltage one. Ergo, evolution
of the power distribution grid and smart management tools are necessary to alleviate
these constraints. It seems necessary to develop new tools that must help to improve the
grid observability and management to go along with the grid’s evolution. As a result, the
development of predictive management strategies is a stepping stone to more efficient
real-time monitoring and optimization of grid operation [6–8]. Therefore, tools that allow
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accurate forecasting of PV power generation at several time horizons are needed to achieve
the power grid stability and reliability. Towards this same objective, in the context of the
Smart Occitania project, PROMES-CNRS laboratory and ENEDIS (the French distribution
grid operator) have been developing tools to improve the observability and regulation
of the low-voltage distribution grid in the presence of PV power generation in Occitania
(southern France). Intrahour, intraday and day-ahead PV power generation forecasts allow
grid operators to make decisions related to real-time grid regulation, unit commitment,
and control of electricity demand [9]. To reach the goals of the Smart Occitania project, this
work will focus on short-term forecasting horizons, ranging from 10 min to 4 h. Indeed,
in order to perform a predictive management of power grids, which usually have fast
dynamics, very short forecast horizons are needed.

The generated PV power can be deduced from forecasts of global horizontal irradi-
ance (GHI), which is the total amount of shortwave radiation received from above by a
horizontal surface on Earth. Hence, accurate forecasts of GHI at various time horizons
are required for efficient development of grid-connected PV power systems. Reviewing
the scientific literature, various solar irradiance forecasting methods have been developed
(see e.g., [9–15]). These models are used to forecast GHI depending on the input data and
forecast horizon. For the intrahour range, GHI forecasts with higher spatial and temporal
resolution derived from cloud information from ground-based sky imagers are more accu-
rate than the satellite-based forecasts [10,16,17]. For short-term horizons ranging from few
minutes to 6 h, statistical models with on-site GHI measurements are appropriate [10–13].
Satellite images, which provide information about cloud motion that can be extrapolated
to the upcoming few hours, allow to have good forecasts for time horizons up to 6 h
ahead [10,18]. However, the spatial extension of the monitored cloud scenes and corre-
sponding cloud velocities limit the forecast horizons. Numerical weather prediction (NWP)
models deliver more precise forecasts for time horizons from about 6 h onwards [9,10,19].
There are also combined or hybrid methods that integrate different kinds of input data
and/or approaches to elaborate a high-performance forecasting model [20–22].

One drawback of statistical models is that they cannot account for dynamic phenom-
ena like motion and formation of clouds that create sudden changes in the GHI signal [10].
Based on these effects, one might desire to use models to describe cloud motion and to
derive irradiance from images provided by satellites or sky imagers. However, these
models are complex and exhibit an inherent uncertainty related to limits in spatial and
temporal resolution, uncertainty in input parameters, and simplifying assumptions within
the models [10]. As a result, for short-term horizons, although dynamic phenomena may
not be anticipated, statistical models developed are nonetheless used to provide forecasts.
A simple way of using statistical approaches to forecast solar irradiance is to develop
models that deliver forecasts based only on endogenous data (only GHI measurements).
Statistical models can also be fed with exogenous input data such as NWP forecasts [20] or
other data (direct horizontal irradiance, direct normal irradiance, dew point, temperature,
humidity, wind direction) [23]. However, the development of statistical models using
endogenous data is prevalent in the solar irradiance forecasting literature in a real-time
operational context because they can provide accurate forecasts with limited investment
and computational effort.

As the current paper deals with short-term GHI forecasting based on historical
GHI data, the focus is put on statistical models. These models include classical time-
series approaches such as the persistence model and autoregressive models, and artificial
intelligence-based techniques such as regression trees, k-nearest neighbours (kNN), ar-
tificial neural networks (ANNs), support vector regression (SVR) and Gaussian process
regression (GPR) [12,13,24–28]. Note that as most of classical time-series models need
stationarity, the solar irradiance data, which are non-stationary, can be preprocessed using
the clearness index [11] or the clear-sky index [29]. However, machine learning-based
techniques can model non-stationary signals and are capable of capturing both the peri-
odic component and the stochastic part of the GHI time-series. Additionally, in [30], it is
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argued that artificial intelligence-based techniques without any specific preprocessing of
data outperform classical approaches with preprocessed data. Finally, the development of
models free from using clear-sky models or other preprocessing steps implies that all errors
come solely from the forecasting method. As a result, in this paper, GHI data without any
specific preprocessing step will be used.

Machine learning methods have been increasingly used in recent years. In [31],
the authors applied deep recurrent neural networks for solar irradiance forecasting and
showed that these networks outperform SVR models and feedforward neural networks.
In [23], long short-term memory (LSTM) neural networks were used for multi-step ahead
forecasting of GHI. In [32], the authors developed a hybrid model using an autoregressive
model and an ANN model for forecasting hourly solar radiation in the Mediterranean area.
One-hour ahead solar irradiance were predicted using support vector machines (SVMs)
in [33]. In [34], a deep convolutional neural network (CNN) model has been developed for
hourly GHI forecasting based only on sky images without numerical measurements and
extra feature engineering. A hybrid CNN with a LSTM neural network for forecasting half-
hourly solar radiation has been proposed in [35]. This hybrid model has been compared
to other deep learning models and results show that the hybrid model outperformed its
counterparts. The potential of GPR for GHI forecasting has been investigated in [24,25].
In [24], the authors have made a comparative study of online GPR and online sparse GPR
models based on simple kernels or combined kernels defined as sums or products of simple
kernels and the results have shown the superiority of quasiperiodic kernels-based GPR
models over the classic persistence model as well as simple kernels-based GPR models.

Based on their proven good performance, popularity and potential in providing
accurate forecasts, it yields that machine learning methods such as ANN, SVR and GPR
are well-suited for GHI forecasting. The present paper focuses on the development and
comparison of intrahour and intraday machine learning-based GHI forecasting models.
Even though several such comparative analyses exist in the literature (Table 1 offers a
comparison between the work presented in this paper and recent comparative studies),
several questions still remain to be answered.

Table 1. Main recent comparative studies using machine learning methods. For the meaning of abbreviations, see at the end
of the paper.

Authors
Forecast

Hori-
zons

Forecasting
Methods

Data
Time
Step

Performance
Criteria

Input Variables Output
Variables

Database

Sharifzadeh
et al. [28]

1 h to 6 h ANN, SVR, GPR 1 h MSE PV power, temperature, DHI,
DNI

PV power From 1985 to 2014

Benali et al.
[26]

1 h to 6 h Scaled
persistence, MLP,

Random forest

1 h RMSE,
nRMSE,

MAE, nMAE

GHI, DNI, DHI GHI, DNI,
DHI

Data covering three
years

Chandola
et al. [23]

3 h to
24 h

LSTM 3 h RMSE,
MAPE

DHI, DNI, dew point,
temperature, pressure, relative
humidity, wind direction, wind

speed

GHI From 2010 to 2014

Lauret et al.
[13]

1 h to 6 h Persistence,
scaled

persistence, AR,
MLP, SVR, GPR

1 h nRMSE,
nMAE,
nMBE,

s-skill score

Clear sky index Clear sky
index

Three sites; for each
site, one-year data

for training and
one-year data for

test

Tolba et al.
[24]

30 min
to 48 h

Persistence, GPR 30 min nRMSE Time GHI Two datasets, each
covering a period of
45 days; 30 days for
training and 15 days

for test

Gbémou
et al.

(present
paper)

10 min
to 4 h

Scaled
persistence, MLP,
LSTM, LS-SVR,

GPR

10 min nRMSE,
DMAE,
CWC

GHI GHI One-year data for
training and

one-year data for
test
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• Most studies use databases having at least a 1-hour time step, which leads to the im-
possibility of intrahour forecasting and to significant simplification of GHI dynamics,
as illustrated in Figure 1.

• The methods themselves are not always optimized and used to their fullest extent. For
example, when using GPR, the default kernel (i.e., the squared exponential) is usually
used [13,36]; however, a kernel tailored to the application at hand has a significant
influence on results [24].

• Regarding input data: some studies use only endogenous data, while others use
additional data, which prevents from making fair comparisons between methods.

• Some authors forecast GHI directly, others the clear-sky index (using clear-sky models
as pre- and postprocessing steps) or even PV power generation.

As a result, despite the extent of research on GHI forecasting in the scientific literature,
a thorough comparative study of machine learning-based methods using endogenous data
only, without any preprocessing step, for intrahour GHI forecasting is, to the best of the
authors’ knowledge, inexistent.
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Figure 1. Difference in GHI dynamics between 10 min and 1 h time steps. Measurements are taken at
PROMES-CNRS laboratory, located in Odeillo-Font-Romeu (Occitania region, southern France).

The main contributions of the present paper are threefold.

• The models are developed using a two-year GHI database with a 10 min time step. As
can be seen in Table 1, in previous machine learning studies the time step is usually
1 h. However, such a time step leads to significant simplification of GHI dynamics:
as can be noticed in Figure 1, GHI data sampled with 10 min time step exhibit more
fluctuations and are thus more difficult to forecast.

• Contrary to developing a specific model for each forecast horizon, as shown in some
studies in the literature [13,28], we made the choice of multi-horizon forecasting
models. Developing a specific model for each forecast horizon can be computationally
demanding when many horizons are considered and it would be more practical to
use a multi-horizon forecasting model when trying to run the algorithms in situ to
produce real-time forecasts at various horizons, especially when intrahour forecasts
are needed. Therefore, in this paper, the models are developed for multi-step ahead
GHI forecasting and once the training phase is over, the models are used to forecast
GHI for all horizons.

• Besides, many authors generally choose classical performance criteria (nRMSE, MAE,
MBE, MAPE) for their models’ evaluation. In the present paper, two criteria are used
in addition to the nRMSE: DMAE, that accounts for temporal distortion error and
absolute magnitude error simultaneously; and CWC, that assesses the quality of pre-
diction intervals. These criteria provide more detailed and comprehensive information
about the models’ performance, and allow an in-depth analysis of their forecasts.

In this paper, the same data are used for each model training and tests are performed
on the same dataset to make a fair comparison and a thorough analysis of the results.
When using GPR, kernels with automatic relevance determination (ARD), such as the
squared exponential kernel with ARD (kSE-ARD) and the rational quadratic kernel with
ARD (kRQ-ARD), are chosen to account for the relevance of each input dimension in the
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underlying function modelling. It is a good option, when using GPR for GHI forecasting,
as the underlying function has a multi-dimensional input variable, to use ARD kernels
that implicitly determine the relevance of each input dimension [37]. That is why we have
decided for such kernels. Nonetheless, the flexibility of ARD kernels means that they can
be relatively slow to learn and, as a result, authors generally choose simple kernels with
isotropic correlation length parameter [13]. The ANN models developed in this paper are
based on MLP (multilayer perceptron) and LSTM neural networks. These artificial neural
networks are widely used for time series forecasting.

The rest of the paper is organized as follows: in Section 2, the data used to develop and
validate the models included in the comparative study are described. Section 3 provides a
description of the scaled persistence model and the machine learning methods (GPR, SVR
and ANN) used to forecast GHI and presents the models’ structure. The forecasting results
as well as the criteria used to assess the models’ performance (i.e., forecasting accuracy)
are presented and discussed in Section 4. The paper ends with a conclusion.

2. Data Description

The dataset is derived from measurements taken at PROMES-CNRS laboratory, located
in Font-Romeu-Odeillo-Via (southern France) in the Occitania region. Located at high
altitude, the site is characterized by a relatively dry mountain climate, with hot summers
and icy winters. Besides, there is also occasional severe thunderstorms that fall on the
region. GHI data are collected using a pyranometer KIPP and ZONEN CM5.

The dataset used in this paper covered the years 2018 and 2019. The data were
sampled with a time step ∆t = 10 min, resulting in around 26,600 points per year (after
nights were removed). Data of year 2018 were used for training the models and 2019’s
data were used for the test phase. The aim behind such a partition was to train the models
with data providing exhaustive information (this enabled the models to learn all possible
patterns in one-year GHI data) and to assess their ability to provide GHI forecasts in all
atmospheric conditions, whatever the season. The min-max normalization was used for
data preprocessing to facilitate the learning process of the models. Figure 2 depicts a map
of data covering the two years. Additionally, it can be noted that there were some missing
values in the database, amounting to 0.64% of the whole database. As the missing values
represented an insignificant part of the data, there was no need for a sophisticated way to
handle them. They were removed from the dataset. Moreover, the models trained with
data after the removal of missing values were often robust.

3. Forecasting Methods Included in the Comparative Study

This section presents the scaled persistence model and the three different machine
learning-based methods included in the comparative study: Gaussian process regression
(GPR), support vector regression (SVR) and artificial neural networks (ANNs). For the
machine learning-based methods’ description, we considered a training set D = {(xi, yi),
1 6 i 6 n}, where xi ∈ RD is a vector of past GHI values, yi ∈ R is the corresponding one-
step ahead GHI forecasting value and n is the number of training samples. Let us aggregate
all input vectors xi in a matrix X ∈ Rn×D and note y ∈ Rn the vector of corresponding
outputs yi. The models were implemented on a machine having Intel® Xeon® CPU E7-4890
v2@2.80 GHz as the CPU. The GPR models were implemented using the Gaussian Processes
for Machine Learning Matlab Toolbox [38], the LS-SVR model was implemented using
the LS-SVM Matlab Toolbox [39] and the ANN models were implemented using the Deep
Leaning Matlab Toolbox.

This paper focuses on the multi-step ahead forecasting of GHI, which was achieved
by iterating one-step ahead forecasting: this strategy involved using the estimate of the
output of the current forecasting as well as previous outputs (up to the lag D) as the input
to forecast GHI at the next time step and repeating this procedure until the forecast at the
desired forecast horizon was obtained. During the training phase, each sample was used.
Throughout the testing phase, the models’ parameters were updated each time step to
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forecast the one-step ahead GHI and successive one-step ahead forecasts were performed
to reach the desired forecast horizon.
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Figure 2. GHI data covering the years 2018 and 2019. Measurements are taken at PROMES-CNRS
laboratory, located in Font-Romeu-Odeillo-Via (Occitania region, southern France).

3.1. Scaled Persistence Model

The scaled persistence model, used in this study as a reference model, is given by:

GHI(t + k∆t) =
GHI(t)

GHIclsk(t)
·GHIclsk(t + k∆t) (1)

where GHI is the measured global horizontal irradiance, GHIclsk is the clear-sky model’s
output, ∆t refers to the time step (10 min) and k∆t is the forecast horizon.

Clear-sky models estimate ground level irradiance under a clear sky as a function of
the solar elevation angle, site altitude, aerosol concentration, water vapour and various
atmospheric parameters. The scientific literature exhibits a wide variety of clear-sky models
that are reviewed in [40]. The approach proposed in [41] for clear-sky DNI models, which
combines Ineichen and Perez’s clear-sky model [42] with a persistence of atmospheric
turbidity, is modified to obtain a clear-sky GHI model. The clear-sky global horizontal
irradiance is given by:

GHIclsk = cg1 · I0 · cos(z) · exp
(
−cg2 ·AM · ( fh1 + fh2(TL−1))

)
· exp(0.01 ·AM1.8) (2)

where I0 is the extraterrestrial irradiance, z is the solar zenith angle, AM is the optical air
mass, TL is the Linke turbidity coefficient and fh1, fh2, cg1, and cg2 are parameters.

The Linke turbidity coefficient is defined as the number of dry atmospheres necessary
to produce the attenuation of the extraterrestrial irradiance produced by the atmosphere.

The parameters fh1, fh2, cg1 and cg2 are respectively given by:

fh1 = exp
(
− h

8000

)
(3)

fh2 = exp
(
− h

1250

)
(4)

cg1 = 5.09× 10−5h + 0.868 (5)

cg2 = 3.92× 10−5h + 0.0387 (6)

where h is the elevation.
The optical air mass (AM) is calculated by Kasten and Young’s formula [43]:

AM =
1

cos(z) + 0.50572(96.07995− z)−1.6364 (7)

3.2. Gaussian Processes

A Gaussian process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution [38]. As a Gaussian distribution is determined by
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a mean vector and a covariance matrix, in a similar manner a GP is also fully defined by a
mean function and a covariance function. A function f distributed as a Gaussian process
is denoted as f (x) ∼ GP(µ(x), k(x, x′)), where x and x′ are arbitrary input variables,
µ(x) = E[ f (x)] is the mean function and k(x, x′) = E

[
( f (x)− µ(x))( f (x′)− µ(x′))T

]
is

the covariance function, also called kernel.

3.2.1. Kernels Used in This Study

Kernels contain the assumptions about the underlying function to be learned and de-
fine the similarity between the function values at different input variables x and x′ [38,44].
It yields that the choice of kernel has a crucial impact on the performance of a GPR
model [24]. Any function can be a covariance function as long as the covariance matrix
obtained is positive semi-definite.

The kernel is a crucial part of GPR models and should be carefully chosen. For
GHI forecasting by GPR, many authors have chosen kernels with isotropic correlation
length parameter [13,36]. However, as the underlying function has a multi-dimensional
input variable and doesn’t have the same variation level along each input dimension, it
would be better to use kernels that define a specific and suitable length-scale for each
input dimension. That is why Automatic Relevance Determination (ARD) kernels, which
implicitly determine the relevance of each input dimension, are used to model functions
that have multi-dimensional input [37].

Furthermore, additive structures can be developed for ARD kernels to capture the
correlations between the input dimensions in order to improve the generalization ability
of models for long-term horizons [45]. ARD kernels used in this work are described
below. It is worth noting that several ARD kernels have been tested to identify the
best-performing ones.

• The SE-ARD kernel kSE-ARD, expressed as a product of squared exponential (SE)
kernels over input dimensions each having a different length-scale, is given by:

kSE-ARD(x, x′) = σ2 exp

(
−1

2

D

∑
d=1

(xd − x′d)
2

`2
d

)
(8)

where σ > 0 is the amplitude and `1, `2, . . . , `D > 0 are the length-scales which control
the function’s variation along each input dimension. This kernel is a covariance
function commonly chosen as default in Gaussian processes applications, because it
has relatively few and easy-interpretable parameters to estimate. Moreover, it can
be seen as an universal kernel, capable of learning any continuous function given
enough data, under some conditions that are investigated in [46].

• The RQ-ARD (rational quadratic) kernel kRQ-ARD is given by:

kRQ-ARD(x, x′) = σ2

(
1 +

1
2α

D

∑
d=1

(xd − x′d)
2

`2
d

)−α

(9)

where α > 0 characterizes the relative weighting of large-scale and small-scale vari-
ations. The RQ kernel can be seen as an infinite sum of SE kernels with different
characteristic length-scales [38] and models functions that vary smoothly across many
length-scales. Analogously, the RQ-ARD kernel, which allows the modelling of func-
tions that exhibit multi-scale variations along each input dimension, can be seen as an
infinite sum of SE-ARD kernels.

3.2.2. Gaussian Process Regression

Consider the standard regression model:

y = f (X) + ε (10)
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where f is the regression function and ε ∼ N (0, σ2
ε ) is an independent identically dis-

tributed Gaussian noise.
GPR is a Bayesian non-parametric approach [38] towards regression problems, which

consists in approximating f (x) ∼ GP(µ(x), k(x, x′)) using a training set of n observations
D. Consider X∗ a matrix of test input vectors. Assuming f (x) ∼ GP(µ(x), k(x, x′)) and
ε ∼ N (0, σ2

ε ), the training observations y and the function values f∗ for the test inputs
X∗ follow a joint Gaussian distribution. Thus, the posterior predictive density is also
Gaussian [38]:

f∗ |X, y, X∗ ∼ N (µ∗, σ2
∗) (11)

where the mean prediction µ∗ and the predictive variance σ2
∗ are respectively given by:

µ∗ = µ(X∗) + KT
∗ (K + σ2

ε I)−1(y− µ(X)) (12)

and:

σ2
∗ = K∗∗ − KT

∗ (K + σ2
ε I)−1K∗ (13)

with f∗ = f (X∗), K∗ = k(X, X∗), K∗∗ = k(X∗, X∗), and K = k(X, X).
In the event of a single test input vector x∗, the mean prediction (Equation (12)) becomes:

µ∗ = µ(x∗) + kT
∗ (K + σ2

ε I)−1(y− µ(X)) (14)

where k∗ =
[
k(x1, x∗) k(x2, x∗) . . . k(xn, x∗)

]T.
Thus the mean prediction µ∗ (Equation (14)) can be written as a linear combination of

kernel functions, each one centred on a training point:

µ∗ = µ(x∗) +
n

∑
i=1

αik(xi, x∗) (15)

where α = (K + σ2
ε I)−1(y− µ(X)).

The coefficients αi, also called parameters, are updated each time a new observation is
added to the observation set contrary to the parameters of the kernel, referred to as hyper-
parameters, which do not change once training is over. Graphical views of GHI forecasting
by the kSE-ARD-based and kRQ-ARD-based GPR models are depicted by Figures 3 and 4.

GHI(t− ∆t)
GHI(t− 2∆t)

...
GHI(t− D∆t)

GPR with kernel

kSE-ARD(x, x′) = σ2 exp

(
−1

2

D

∑
d=1

(xd − x′d)
2

`2
d

)
GHI(t)

Figure 3. GPR forecasting model based on the SE-ARD kernel kSE-ARD. GHI(t− ∆t), GHI(t− 2∆t),
. . . , GHI(t− D∆t) is the observation set and ∆t = 10 min is the time step.

GHI(t− ∆t)
GHI(t− 2∆t)

...
GHI(t− D∆t)

GPR with kernel

kRQ-ARD(x, x′) = σ2

(
1 +

1
2α

D

∑
d=1

(xd − x′d)
2

`2
d

)−α
GHI(t)

Figure 4. GPR forecasting model based on the RQ-ARD kernel kRQ-ARD. GHI(t− ∆t), GHI(t− 2∆t),
. . . , GHI(t− D∆t) is the observation set and ∆t = 10 min is the time step.
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3.2.3. Training a GPR Model

The hyperparameters θ of a GPR model, which group the parameters involved in the
kernel and the noise variance, have to be inferred from the training data. In practice, they
are commonly estimated by maximizing the log marginal likelihood given by:

L(θ) = −1
2

(
yT(K + σ2

ε I
)−1y + log

(
det

(
K + σ2

ε I
))

+ n log(2π)
)

(16)

Unfortunately, the log marginal likelihood function L(θ) is usually non-convex with
respect to the hyperparameters. The problem space can have many local optima and the
optimized hyperparameters, which depend on their initialization, may not be the global
optimum [37,47]. A classical approach to overcome this drawback is to use various starting
points randomly selected from a suitable prior distribution. A study on the impact of
prior distributions of the initial hyperparameters in GPR models has been conducted
in [48] and the authors have arrived at the conclusion that simple priors such as the
uniform distribution in an appropriate range may be sufficient in GPR modelling in terms
of predictability.

For the initialization of the hyperparameters θ, the following choices have been
made: the hyperparameter σ2 was chosen to be equal to the variance of the training data
and the remaining hyperparameters are randomly drawn from an uniform distribution
θi ∼ Uniform(0, 1).

3.3. Support Vector Machines

Support vector machines (SVM), which have been developed in the past few
decades [49–53], are learning systems that map inputs into a high dimensional feature space
where linear separation or regression becomes much easier. The SVM algorithm, which is a
nonlinear generalization of the method developed in [54], is based on a learning algorithm
from optimization theory grounded in the statistical learning theory framework [49,55].
Firstly, SVM were developed for pattern recognition [52], but they also exhibit good perfor-
mance in time series modelling and have been successfully applied to regression problems
and time series forecasting [51,53].

3.3.1. Support Vector Regression

Support vector regression (SVR) maps the input X into a high dimensional feature
space F through a nonlinear mapping function φ in order to do a linear regression in the
feature space. We construct a linear regression function f in the feature space F:

f (X) = wTφ(X) + b (17)

where w and b are obtained by solving a convex optimization problem.
In [49], SVR is first described as ε-SV regression, which aims to find function f that is

as flat as possible and concomitantly has at most ε error from the targets yi for all training
data. This problem can be formulated as a convex optimization problem [53]. Furthermore,
slack variables ξi, ξ∗i are introduced to deal with unfeasible constraints of the optimization
problem [49].

Equations (18) and (19) describe the convex optimization problem as follows:

min
1
2

wTw + C
n

∑
i=1

(ξi + ξ∗i ) (18)

subject to, ∀i: 
yi − (wTφ(xi) + b) 6 ε + ξi

(wTφ(xi) + b)− yi 6 ε + ξ∗i
ξi, ξ∗i > 0

(19)



Energies 2021, 14, 3192 10 of 23

where C > 0 determines the trade-off between the flatness of f and the amount up to
which deviations larger than ε are tolerated.

It is shown in [53] that the optimization problem can be solved more easily in its dual
formulation using Lagrange multipliers. The dual form of this problem is:

min
1
2

n

∑
i=1

n

∑
j=1

(αi − α∗i )(αj − α∗j )k(xi, xj) + ε
n

∑
i=1

(αi + α∗i )−
n

∑
i=1

yi(αi − α∗i ) (20)

subject to, ∀i: 
0 6 αi, α∗i 6 C

n

∑
i=1

(αi − α∗i ) = 0
(21)

where αi, α∗i are Lagrange multipliers and k is a kernel function, defined as:

k(x, x′) = φT(x)φ(x′) (22)

The weight w can be written as:

w =
n

∑
i=1

(αi − α∗i )φ(xi) (23)

Thus the regression function is given by:

f (X) =
n

∑
i=1

(αi − α∗i )k(xi, X) + b (24)

The learning algorithms of support vector regression need to solve the optimiza-
tion problem (Equations (18) and (19)), which becomes more complex and requires much
computing time when a large dataset is considered. In order to reduce the algorithmic com-
plexity, an equivalent least squares support vector regression (LS-SVR) is introduced [56].
In LS-SVR, the inequality constrains are replaced by equality ones, significantly reducing
computation time.

3.3.2. Least Squares Support Vector Regression

The optimization problem for LS-SVR can be described as:

min
w,b,e

J(w, e) =
1
2

wTw +
1
2

γ
n

∑
i=1

e2
i (25)

where J is the loss function and γ is the adjustable constant, subject to, ∀i:

yi = wTφ(xi) + b + ei (26)

where φ is the nonlinear mapping function in kernel space, b is the bias term and ei is the
error variable.

The Lagrangian function of the optimization problem is:

L = J(w, e)−
n

∑
i=1

αi[wTφ(xi) + b + ei − yi] (27)
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where αi is Lagrange multiplier. The partial derivatives of L are:

∂L
∂w

= 0⇒ w =
n

∑
i=1

αiφ(xi)

∂L
∂b

= 0⇒
n

∑
i=1

αi = 0

∂L
∂ei

= 0⇒ αi = γei

∂L
∂αi

= 0⇒ wTφ(xi) + b + ei − yi = 0

(28)

After eliminating w and ei from Equation (28), we can write the problem in matrix form:[
0 1

T
n

1n K + 1
γ I

][
b
α

]
=

[
0
y

]
(29)

where:

K(i, j) = k(xi, xj) = φ(xi)
Tφ(xj) (30)

Then the function estimation of LS-SVR is:

y = f (X) =
n

∑
i=1

αik(X, xi) + b (31)

Among the kernels that can be used in support vector regression (linear, polynomial
and radial basis function kernels), we have decided for the radial basis function (RBF)
kernel to model and forecast GHI (Figure 5). This kernel, which is more flexible than the
linear and polynomial kernels, is capable of representing complex relationship between
data and is well-suited for nonlinear modelling. The RBF kernel is given by:

k(xi, xj) = exp

(
−
‖xi − xj‖2

2δ2

)
(32)

where δ is the length-scale. Herein, δ and γ are estimated using the gridsearch method.

GHI(t− ∆t)
GHI(t− 2∆t)

...
GHI(t− D∆t)

LS-SVR with kernel

k(x, x′) = exp
(
−‖x− x′‖2

2δ2

)
GHI(t)

Figure 5. LS-SVR forecasting model based on the RBF kernel. GHI(t − ∆t), GHI(t − 2∆t), . . . ,
GHI(t− D∆t) is the observation set and ∆t = 10 min is the time step.

3.4. Artificial Neural Networks

Artificial neural networks are nonlinear data-driven self-adaptive approaches widely
used for time series forecasting [57], in particular for solar resource forecasting [13,26,58,59].
Indeed, ANN, which are inspired by the neural structure of the human brain, are powerful
tools for regression. They can process problems involving nonlinear and complex data
even if these data are imprecise and noisy. An artificial neural network is fully defined
by its architecture (or topology), its parameters (named weights, or synaptic weights, and
biases) and the algorithm used for training.
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While feedforward neural networks are the most widely used for time series forecast-
ing tasks, recurrent neural networks are also extensively used now due to their ability to
learn dependencies between time steps of data [60]. Convolutional neural networks, often
used for image classification and computer vision problems, have the ability to learn and
automatically extract features from raw input data [60]. Thus, they can also be applied to
time-series forecasting tasks. The capabilities of these ANN types can be combined to build
hybrid models, such as CNN associated with long short-term memory neural networks
that seek to harness the ability of each model type [35].

In the present work, a multilayer perceptron, i.e., a feedforward neural network,
and a LSTM neural network will be used to forecast GHI. Both networks are described
in the sequel. MLP and LSTM neural network have been broadly used for time-series
forecasting and have proven good performances [57,61]. Despite their enhanced feature
learning ability, convolutional neural networks cannot learn temporal dependencies in data.
Nevertheless, the use of CNN and hybrid models seems to be promising in the application
of ANN to time-series forecasting. As this paper doesn’t aim to provide an exhaustive
study about ANN, CNN and hybrid models are not considered for GHI forecasting.

3.4.1. Multilayer Perceptron

The multilayer perceptron is a feedforward artificial neural network historically used
for time series forecasting. In a MLP with ` hidden layers, there is no feedback and the
information flows through connecting pathways, in only one direction, from the input
layer to the output layer. For the input layer, h0(x) = x, where x is an input vector. For the
network’s hidden layers, with L = 1, . . . , `:

aL(x) = bL + W LhL−1(x) (33)

and:

hL(x) = φ(aL(x)) (34)

where bL is the bias vector of layer L, W L is the weight matrix of layer L and φ is the hidden
neurons’ activation function.

The sigmoid function was historically the most widely used activation function in
hidden layers since it is differentiable and enables to keep values in the interval [0, 1].
However, using this function is problematic since its gradient is very close to 0 when
|x| is not close to 0. Because this can cause trouble during training, in particular with
deep architectures, the sigmoid function was supplanted by the rectified linear unit (or
ReLU). As an interesting feature, the ReLU function, which is not differentiable in 0, has a
sparsification effect. It is used in our network. So:

φ(aL(x)) = max(0, aL(x)) (35)

For the network’s output layer, with L = `+ 1:

a`+1(x) = b`+1 + W `+1h`(x) (36)

and:

h`+1(x) = ψ(a`+1(x)) (37)

where b`+1 is the bias vector of layer `+ 1, W `+1 is the weight matrix of layer `+ 1 and ψ
is the output neurons’ activation function (which is linear).

Figure 6 shows a graphical view of the MLP model’s architecture for GHI forecasting.
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Hidden layer
300 neurons

Dropout layer
30%

Hidden layer
180 neurons

Dropout layer
10%

Hidden layer
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Dropout layer
10%

Output layer
1 neuron

GHI(t− ∆t)
GHI(t− 2∆t)

...
GHI(t− D∆t)

GHI(t)

Figure 6. MLP forecasting model: the network’s topology is defined as a combination of hidden and
dropout layers. The output layer provides the forecast. GHI(t−∆t), GHI(t− 2∆t), . . . , GHI(t−D∆t)
is the observation set and ∆t = 10 min is the time step.

3.4.2. Long Short-Term Memory

LSTM networks, introduced by [62], are recurrent neural networks developed to
overcome the gradient vanishing problem that occurs when training traditional recurrent
neural networks [63,64]. LSTM networks are capable of learning sequences of observations.
This may make them neural networks well suited for forecasting. Initially, an LSTM unit
was composed of a cell, an input gate, and an output gate. Later on, the forget gate has
been introduced to allow the LSTM to reset its own state [65]. Let us denote by i, f , g, o the
input gate, forget gate, input node, and output gate respectively. These gates and nodes are
shortly described below. The input node, the input gate and the forget gate are respectively
defined as follows:

gk = φ(W gxxk + W ghhk−1 + bg) (38)

ik = σ(W ixxk + W ihhk−1 + bi) (39)

f k = σ(W f xxk + W f hhk−1 + b f ) (40)

where xk is the current input vector, hk−1 is the hidden state at the previous time step, W gx,
W ix, W f x are input weights, W gh, W ih, W f h are recurrent weights, bg, bi, b f are biases, σ
is the sigmoid function, and φ is the hyperbolic tangent function.

At the heart of each memory cell, there is a node with linear activation. This internal
state has a self-connected recurrent edge, often called the constant error carousel, with the
following unit weight:

sk = gk � ik + sk−1 � f k (41)

where � is the Hadamard product.
The output gate is described by:

ok = σ(W oxxk + W ohhk−1 + bo) (42)

and:

hk = φ(sk)� ok (43)

Figure 7 shows a graphical view of the LSTM model’s architecture for GHI forecasting.



Energies 2021, 14, 3192 14 of 23
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Figure 7. LSTM forecasting model: the network’s topology is defined as a combination of LSTM
and dropout layers. The fully connected layer provides the forecast. GHI(t− ∆t), GHI(t− 2∆t), . . . ,
GHI(t− D∆t) is the observation set and ∆t = 10 min is the time step.

3.4.3. Training Algorithm

Adam (for adaptive moment estimation), a well-known adaptive learning rate opti-
mization algorithm [66], has been used to train both the MLP and LSTM neural networks.
Adam performs first-order gradient-based optimization of stochastic objective functions,
based on adaptive estimates of lower-order moments. It is computationally efficient, has
very little memory requirements and is well suited for large problems in terms of data or
parameters. It is also well suited for problems with very noisy or sparse gradients. Finally,
the hyperparameters have intuitive interpretations and tuning is rather simple [66].

Dropout [67] works by probabilistically removing, or “dropping out”, inputs to a
layer, which may be input variables in the data sample or activations from a previous
layer. It has the effect of simulating a large number of networks with different topologies
and, in turn, making neurons generally more robust to the inputs. Such a mechanism
improves the generalization ability of deep artificial neural networks significantly, even
though its computational cost is low, and reduces overfitting (which leads to improved
generalization ability). That is why dropout is nowadays the most popular regularization
method. Its main drawback is that training is slowed down and, usually, the number of
epochs is increased.

For the MLP and LSTM models, we tried our best to optimize the results, and after
testing many architectures we obtained the topologies depicted in Figures 6 and 7.

4. Results

This section presents the results and is divided into two parts. The first part presents
the criteria used to assess the models’ performance: the normalized root mean square error,
the dynamic mean absolute error and the coverage width-based criterion. A discussion
about the results based on the obtained criteria values and examples of forecasts shown in
Figures 8–10 is conducted in the second part.

4.1. Performance Criteria

The different models developed in this paper were compared using the popular root
mean square error normalized by the mean of data (nRMSE):

nRMSE =

√
1

n∗ ∑n∗
i=1

(
y∗i − ŷ∗i

)2

1
n∗ ∑n∗

i=1 y∗i
(44)

where y∗ ∈ Rn∗×1 is the test data and ŷ∗ ∈ Rn∗×1 is the forecast.
The nRMSE is a well-known criterion in the scientific literature and assesses the

error between the forecasts and test data without giving an adequate quantification of
the failures due to mismatches in the time index. Indeed, this temporal error can lead
to the misestimation of some events, such as the production peak or ramps. That is
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why the dynamic mean absolute error (DMAE) [68], which accounts for temporal error
(misalignments) and absolute magnitude error simultaneously, is also used to evaluate
the models’ performance. The DMAE error is a trade-off between the temporal distorsion
index and the mean absolute error. It involves two parameters: λ that determines the
weight of the MAE for the considered temporal distortion and c that controls the allowed
temporal distorsion. Herein, λ = 0.1 and c = 5%. For more details, the interested reader is
referred to [68].

As the confidence intervals are calculated and displayed for all models, the quality of
prediction intervals is assessed. Criteria such as the prediction interval coverage probability
(PICP) or the prediction interval normalized average width (PINAW) can be used for the
assessment of prediction intervals [69]. The PICP evaluates whether the target values lie
within the constructed prediction intervals limits and is defined by [69]:

PICP =
1

n∗

n∗

∑
i=1

εi (45)

where n∗ is the number of test data and εi is a Boolean variable, which is equal to 1 if the
target value y∗i lie within the prediction interval limits and 0 otherwise.

Mathematically, εi is defined as follows:

εi =

{
1 if y∗i ∈ [Li, Ui],
0 if y∗i /∈ [Li, Ui].

(46)

where y∗i is a test datum and Li and Ui are respectively the lower and upper bounds of the
prediction interval.

The PINAW assesses the width of prediction intervals and is defined by [69]:

PINAW =
1

n∗R

n∗

∑
i=1

(Ui − Li) (47)

where R used for normalization is the difference between the maximum and minimum of
the test data.

The assessment of prediction intervals based only on PICP criterion or PINAW index
is inaccurate, as forecast with a large prediction interval can lead to a high PICP. However,
such a forecast is not as well as another one that has a narrow prediction interval (small
PINAW value) and a high PICP. That is why the combinational index of these two criteria
proposed in [70], named coverage width-based criterion (CWC) that carries out information
about the width and coverage probability of prediction intervals is interesting to evaluate
the sharpness of the forecast. This index is defined by:

CWC = PINAW(1 + γ(PICP) · exp(−η · (PICP− µ))) (48)

where µ is the nominal confidence level associated with the prediction intervals, and η is a
parameter that magnifies the difference between PICP and µ. Herein, η = 10 and µ = 0.95.
The function γ is defined by:

γ =

{
1 if PICP < µ

0 if PICP > µ.
(49)

In this paper, besides the nRMSE and DMAE used to evaluate the models’ forecasting
performance, the CWC was used to assess the quality of models’ prediction intervals. GPR
naturally provides a predictive distribution, from which confidence intervals are obtained.
However, the other considered methods—LS-SVR and ANN—do not. For LS-SVR, the
method developed in [71] for construction of confidence intervals based on the central
limit theorem for linear smoothers combined with bias correction and variance estimation
is used to obtain the confidence intervals. Concerning the ANN models, the bootstrap
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method [72,73] that allows training neural networks with different parameter initializations
in order to estimate the model uncertainty is used to quantify the uncertainty associated
with the forecasts (here 30 repetitions were used for both the MLP and LSTM models).

4.2. Forecasting Results

The models’ forecasting skill was assessed by comparing the forecasts over different
time horizons ranging from 10 min to 4 h. The aforementioned criteria were calculated for
each horizon and for each model. Numerical results for the considered forecast horizons
are stored in Tables 2–4.

Table 2. nRMSE values for all the models included in the comparative study.

Forecast Horizon 10 min 1 h 4 h

Scaled persistence 0.2020 0.3435 0.4628
LS-SVR 0.2197 0.3305 0.4317
LSTM 0.2016 0.3089 0.3995
MLP 0.1985 0.3210 0.4449

kRQ-ARD-based GPR 0.2057 0.3140 0.4020
kSE-ARD-based GPR 0.2079 0.3287 0.4285

Table 3. DMAE values for all the models included in the comparative study.

Forecast Horizon 10 min 1 h 4 h

Scaled persistence 0.04951 0.08201 0.13481
LS-SVR 0.05582 0.08463 0.14753
LSTM 0.03317 0.05587 0.08956
MLP 0.02948 0.07248 0.15173

kRQ-ARD-based GPR 0.03419 0.05677 0.08912
kSE-ARD-based GPR 0.04416 0.06718 0.09816

Table 4. CWC values (lower is better) for all the models included in the comparative study.

Forecast Horizon 10 min 1 h 4 h

LS-SVR 0.5660 1.1136 9.8391
LSTM 0.4734 0.8283 2.1642
MLP 0.4609 0.7031 2.2884

kRQ-ARD-based GPR 0.4574 0.6026 2.8651
kSE-ARD-based GPR 0.4966 0.7610 8.8394

As can be seen in Table 2, at the lowest forecast horizon (10 min), all the models
developed in this study gave good and similar results, with a slight advantage to the ANN
models, except the LS-SVR model which gave the worst result. As the forecast horizon
increased, the superiority of the machine learning models became clear. They surpassed
the scaled persistence model, whose performance degraded quickly as the forecast horizon
increased. When looking at the nRMSE values of the machine learning models for all
horizons, it can be noticed that the performances of these models were very similar, but
the LSTM model and the GPR model based on kRQ-ARD kernel outperformed the others as
the forecast horizon increased. Table 2 also shows that, at the lowest horizon (10 min), the
MLP model gave the best results but gave the worse results at the highest horizon (4 h).
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Figure 8. Examples of 10 min forecasts of GHI given by the models included in the comparative study.
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Figure 9. Examples of 1 h forecasts of GHI given by the models included in the comparative study.
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Figure 10. Examples of 4 h forecasts of GHI given by the models included in the comparative study.

The values of DMAE for all models are stored in Table 3. Based on this criterion, the
LS-SVR model and the scaled persistence model gave the worst results for all horizons
compared to the other models. This criterion combined the temporal distorsion between
the forecasts and test data with the absolute magnitude error. For lower horizons, the
scaled persistence model gave good results according to its nRMSE values (Table 2) and its
performance at the lowest horizon (10 min) was practically similar to the performance of
ANN models (nRMSE = 20.20%) and slightly better than the performance of GPR models.
However, there were some time lags between the forecasts given by the scaled persistence
model and the test data (Figures 8–10), which are reflected in its DMAE values. Table 3
shows that, at the lowest horizon, the MLP model gave the best results, but for all horizons,
the best performing models were the LSTM model and kRQ-ARD-based GPR model.

Table 4 stores the CWC values for the LS-SVR, ANN, and GPR models. All these
models gave high coverage probability at the lowest horizon (10 min), with an advantage to
the GPR model based on kRQ-ARD kernel which, besides, had narrow confidence intervals
as demonstrated by its CWC value. When the forecast horizon increased, the quality and
accuracy of forecasts degraded for each model. The rapid augmentation of the CWC values
indicated these effects. At the highest forecast horizon (4 h), the ANN models gave high
PICP values, that is why they had small CWC values, but in terms of quality and accuracy
of forecasts, when looking at the nRMSE values, the GPR model based on kRQ-ARD kernel
(nRMSE ' 0.40) was better than the MLP model (nRMSE ' 0.44). The ANN models
also had large confidence intervals at the highest horizon, which were reflected by their
forecasts displayed in Figure 10. For each forecast horizon, the LS-SVR model gave the
worst CWC value compared to the other models. As a result, by examining its confidence
intervals combined with its nRMSE values, we can conclude that it was difficult for this
model to follow its counterparts’ performances.

Some examples of 10 min, 1 h and 4 h forecasts are displayed in Figures 8–10. A
period of 6 days in the whole test database (from 28 November 2019 to 3 December 2019),
having both clear and cloudy days, was chosen. At the lowest forecast horizon, the
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scaled persistence model was excellent, but when the horizon increased, its performance
degraded quickly. Looking at Figure 8 for the lowest forecast horizon, all the models
followed the trends in the test data quite well, except the LS-SVR model that did not predict
well the patterns in overcast days. When the horizon increased, the performances of all
forecasting models degraded. However, the figures show that the LSTM model and the
GPR model based on kRQ-ARD kernel outperformed the other models. That is especially
evident in Figure 10, at the highest forecast horizon, where despite the deterioration of
their performances, these two models followed pretty well the trends in test data.

Figure 10 also shows that while the LSTM model gave better results than others during
cloudy days, during clear days the GPR model based on kRQ-ARD kernel prevailed. The
MLP model and the GPR model based on kSE-ARD did not follow well the trend of days
when the forecast horizon increased. The LS-SVR model converged to a smooth signal
at the highest forecast horizon. This was not surprising because its kernel was suitable
for smooth functions’ representation and could not correctly model both large-scale and
small-scale variations in the GHI signal. Among the ANN models, the LSTM model,
which could learn long-term dependencies in the data, outperformed the MLP model. The
large confidence intervals, when the forecast horizon got longer, demonstrated the models’
performance degradation.

When examining the models’ performances based on the obtained criteria values and
examples of forecasts shown in Figures 8–10, it yielded that the two best models for GHI
forecasting were the GPR model based on kRQ-ARD kernel and the LSTM model. Indeed,
these two models outperformed their counterparts considered in this study. However, as
the LSTM model and the kRQ-ARD-based GPR model gave similar results, it was hardly
easy to distinguish between them through this work. As the GHI data used in this paper
exhibited more clear days than overcast days, one would tend to choose the GPR model
based on kRQ-ARD kernel, which outperformed the LSTM model during clear days and
gave less good results than the LSTM model during cloudy days, for GHI forecasting for
our location (i.e., Font-Romeu-Odeillo-Via, in the Occitania region (southern France)).

Table 5 stores the models’ training time, the number of parameters involved in each
model, and the time needed to perform one forecast for each model. Although many
parameters were involved in ANN models, they were fast to train and their forecasts were
almost instantaneous. Concerning GPR models, they were very time-consuming in the
training phase and needed more time to provide forecasts. Indeed, the generation of a
forecast by a GPR model required an inversion of a matrix as big as the training dataset is
large. However, there are many sparse approaches in the literature [74] that can be used to
reduce time complexity and memory requirement while keeping the same performances
for an in situ implementation.

Table 5. Comparison of models’ computation time and complexity (number of parameters).

Model Training Time
(min)

Number of
Parameters

Execution Time for
One Forecast (s)

LS-SVR 133 26,457 4.12
LSTM 20 127,459 0.05
MLP 10 58,635 0.02

kRQ-ARD-based GPR 209 26,457 12.59
kSE-ARD-based GPR 200 26,457 12.59

5. Conclusions

This paper aims to shed light on the use of machine learning to forecast global hor-
izontal irradiance (from which photovoltaic power generation can be inferred) using
endogenous data. To do so, a comparative study of popular machine learning methods
(artificial neural networks, support vector regression and Gaussian process regression) for
GHI forecasting is conducted at different time horizons, covering intrahour and intraday
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cases. The models are developed using a 2-year GHI database with a 10 min time step.
Usually, in machine learning studies, the time step is 1 h, which leads to significant simpli-
fication of GHI dynamics. In addition, contrary to developing a specific model for each
forecast horizon, as shown in many studies in the literature and which can be computation-
ally demanding when many horizons are considered, we made the choice of multi-horizon
forecasting models. The scaled persistence model is also included in the comparative
study as a reference model. Two criteria, the dynamic mean absolute error (DMAE) and
the coverage width-based criterion (CWC), are used in addition to the popular root mean
square error normalized by the mean of data (nRMSE) in order to conduct an in-depth
analysis of the models’ performance.

The results show that all the machine learning-based models outperform the scaled
persistence model and among these models, the long short-term memory (LSTM) model
and the kRQ-ARD-based GPR model outperform their counterparts. However, it is difficult
to distinguish between these two models because their performances are very similar. The
conclusion arising from the examination of the forecasts’ temporal evolution is that the
LSTM model provides good forecasts for cloudy days, contrary to the case of clear-sky
days where the kRQ-ARD-based GPR model outperforms the LSTM model.
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AM Optical air mass
ANN Artificial neural networks
AR Autoregressive model
ARD Automatic relevance determination
CNN Convolutional neural networks
CWC Coverage width-based criterion
DMAE Dynamic mean absolute error
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
GHI Global horizontal irradiance
GP Gaussian process
GPR Gaussian process regression
kNN k-nearest neighbours
LSTM Long short-term memory
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(n)MAE (Normalized) mean absolute error
MAPE Mean absolute prediction error
(n)MBE (Normalized) mean bias error
MLP Multilayer perceptron
MSE Mean squared error
NWP Numerical weather prediction
PV Photovoltaic
RBF Radial basis function
ReLU Rectified linear unit
(n)RMSE (Normalized) root mean square error
RQ Rational quadratic
SE Squared exponential
SVM Support vector machine
SVR Support vector regression
(LS-)SVR (Least-squares) support vector regression
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