
1

Gradient Scarcity with Bilevel Optimization
for Graph Learning

Hashem Ghanem, Samuel Vaiter, and Nicolas Keriven

Abstract—A common issue in graph learning under the semi-
supervised setting is referred to as gradient scarcity. That is,
learning graphs by minimizing a loss on a subset of nodes causes
edges between unlabelled nodes that are far from labelled ones
to receive zero gradients. The phenomenon was first described
when optimizing the graph and the weights of a Graph Neural
Network (GNN) with a joint optimization algorithm. In this
work, we give a precise mathematical characterization of this
phenomenon, and prove that it also emerges in bilevel optimiza-
tion, where additional dependency exists between the parameters
of the problem. While for GNNs gradient scarcity occurs due
to their finite receptive field, we show that it also occurs with
the Laplacian regularization model, in the sense that gradients
amplitude decreases exponentially with distance to labelled nodes.
To alleviate this issue, we study several solutions: we propose to
resort to latent graph learning using a Graph-to-Graph model
(G2G), graph regularization to impose a prior structure on the
graph, or optimizing on a larger graph than the original one
with a reduced diameter. Our experiments on synthetic and real
datasets validate our analysis and prove the efficiency of the
proposed solutions.

Index Terms—gradient scarcity, graph learning, bilevel opti-
mization, automatic differentiation.

I. INTRODUCTION

THE expensive cost of labelling data represents a challenge
as the amount of generated data has been growing

exponentially. As a result, it is common to observe both
labelled and unlabelled data points, the latter being usually the
vast majority. Learning tasks on datasets which comprise both
labeled and unlabeled points is referred to as Semi-Supervised
Learning (SSL). SSL is usually handled with extra assump-
tions on the data. The main one, called homophily, refers to
the fact that “nearby” points are likely to have similar labels
[1]. Moreover, points in many applications represent entities
that are naturally linked to each other, e.g., in biology [2] or
social media [3]. There again, linked entities are likely to share
the same label, which underlines the importance of exploiting
the links when solving SSL inference problems. Consequently,
various graph-based methods have been developed for SSL.

One issue with such methods is that their performance is
highly dependent on the graph quality. This issue poses a
significant challenge as real-world graphs are inherently noisy,
significantly degrading the performance and leading to sub-
optimal solutions. Many graph learning algorithms have thus
been proposed in the literature to overcome this issue. Among
these methods, a mainstream approach is to optimize the graph

The authors acknowledge the support of ANR Grava ANR-18-CE40-0005
and ANR GRandMa ANR-21-CE23-0006.

HG is with CNRS, IMB, Univ. de Bourgogne; NK is with CNRS, IRISA,
Univ. Rennes 1; SV is with CNRS, LJAD, Univ. Cote d’Azur.

structure by means of optimizing the performance directly in
the downstream task.

This approach involves generating a graph that, when used
by a graph-based model, minimizes some loss on labelled
nodes. However, graph-based models themselves require an
optimization process to minimize the classification loss. There-
fore, both the graph learning process and the graph-based
classification model need to learn by minimizing the “same”
loss. There are three common gradient-based optimization
routines that can be applied for this purpose. In the first
routine, both the graph and the graph-based model are jointly
optimized. In the second, alternate minimization, one is fixed
while the other is updated in one iteration, and vice versa in the
next iteration. The third routine is bilevel optimization, that is
an (outer) graph learning optimization problem involving the
optimal model obtained by an (inner) optimization.

For Graph Neural Network (GNN), the authors in [4] show
that joint optimization leads to gradient scarcity. It refers to
the fact that connections between unlabelled nodes “far” from
the labelled ones receive zero gradients, i.e., they receive no
supervision during the optimization and are not learned. This
is due to the finite receptive field (depth) of message-passing
GNN. In this work, we focus on bilevel optimization and
prove that gradient scarcity also occurs for all GNNs, despite
additional dependency between the parameters. We also prove
that this issue emerges with other graph-based classifiers,
including Laplacian-based labels propagation, which, unlike
GNNs, has infinite receptive field.

A. Semi-Supervised Learning
A graph G is a pair (V,E), where V is a set of n nodes

and E ⊆ V ×V is a set of edges. We represent a graph by its
adjacency matrix A ∈ Rn×n, where Ai,j is the weight of the
edge between nodes i, j. We denote by X ∈ Rn×p the feature
matrix whose rows include the features of corresponding
nodes, and by Y ∈ Rn the vector of node labels.

We look at transductive SSL problems, where we have a
set of points, a subset of which is labelled, and the goal is
to approximate the labelling function on unlabelled points.
Formally, we have (Xobs, Gobs, Y obs), where Gobs is the
observed graph, Xobs are the observed node features (we
will drop the subscript and write X in the rest of the paper)
and Y obs ∈ Rn contains the labels of a subset of points
at coordinates i ∈ Vtr ⊂ V and, e.g., not-a-number “NaN”
outside of Vtr. There are roughly two main strategies to solve
SSL problems. The first is to propagate known labels using a
regularization process. Predicted labels reads the following:

Y Reg(A)∈argmin
Y

1
|Vtr|

∑
i∈Vtr

`(Y i, (Y obs)i)+λR(Y ,A), (1)

2

where ` is a smooth loss function commonly chosen to be
the Categorical Cross Entropy (CCE) loss for classification,
and the Mean Square Error (MSE) for regression, R is a
regularization function, and λ is a balancing parameter. A
popular choice is the Laplacian regularization:

R(Y ,A) =
1

|E|
∑
i,j

Aij(Y i − Y j)
2 =

1

|E|Y
>LY , (2)

where L = L(A) = D − A is the Laplacian of the graph.
Note that here the node features X are not used.

The second main strategy for SSL is to train a parametric
model Y W (X,A) parameterized by the weights W , such as
GNNs. The objective reads:

Y GNN (A) = Y W?(X,A), where

W ? = argmin
W

1

|Vtr|
∑
i∈Vtr

`
((

Y W (X,A)
)
i
, (Y obs)i

)
. (3)

In this paper, we use message-passing GNNs with sum aggre-
gation. The first layer is X [0] = X , propagated as

X [l] = φ(X [l−1]W
[l]
1 +AX [l−1]W

[l]
2 + 1n(b

[l])>) , (4)

where W
[l]
1 ,W

[l]
2 ∈ Rdl−1×dl are learnable weights, b[l] ∈

Rdl is a learnable bias, dl is the output dimensionality of the l-
th layer, 1n = [1, . . . , 1]> ∈ Rn, and φ is a non-linear function
applied element-wise. The output Y W (X,A) = X [k] is
obtained after k rounds of message passing, and the parameters
are gathered as W = {W [l]

1 ,W
[l]
2 , b

[l]}kl=1.

B. Bilevel optimization for graph learning

We consider the case where the graph objective function is
a function of the trained classifier, that is, we look at a bilevel
optimization. Using a second set of labelled nodes Vout ⊂
V distinct from Vtr and given a set of admissible adjacency
matrices A, the bilevel optimization is cast as

Â∈argmin
A∈A

Fout(A)= 1
|Vout|

∑
i∈Vout

`(Y (A)i, (Y obs)i), (5)

such that Y (A) = Y GNN (A) or Y (A) = Y Reg(A). That
is, the minimization of the objective function Fout, called the
outer optimization problem, involves Y (A), which is itself
the result of an inner optimization problem, either (1) over Y
or (3) over W . Several models are possible for A:

Full learning: A = [a, b]n×n is the set of all weighted
adjacency matrices (generally with some bounds a, b on the
weights). This choice necessarily leads to an impractical
quadratic complexity on the minimization.

Edge refinement: the learned adjacency matrix has the
same zero-pattern as the observed adjacency matrix, that is,
we learn weights only on existing edges.

A = {A ∈ [a, b]n×n|Aij = 0 when (Aobs)ij = 0}.
The complexity is proportional to the number of edges, gen-
erally less than quadratic in n as graphs tend to be sparse.

Generalized edge refinement: same principle, but the zero-
pattern is given by a modification of the observed adjacency
matrix. For instance, taking the zero-pattern of Ar

obs yields an

edge between neighbors that are less than r-hop from each
other in Gobs, where nodes i and j are r-hop from each other
if the length of the shortest path between them in Gobs is r.

Latent graph learning: the learned graph is the output of
a parametric model, that takes as input the node features and
the observed graph: A = {A = fθ(Aobs,X)}. We will refer
to such models as Graph-to-Graph (G2G).

Both the inner and the problems are treated by a gradient-
based algorithms. We refer to the outer gradient ∇Fout,
whether with respect to A or θ, as hypergradient.

C. Contributions

Previous works observed gradient scarcity when learning the
graph and a GNN classifier with joint optimization. Indeed,
a k-layer GNN computes the label of a node using only
information from r-hops far nodes with r ≤ k. This label
is then not a function of edges connecting nodes outside
of this neighborhood, and the term in the classification loss
corresponding to this label returns null gradients on those
distant edges. However, it is not straightforward to extend this
argument for bilevel optimization. Specifically, the previous
discussion assumes that the trained weights of the GNN after
gradient-based do not depend on the adjacency matrix A,
which is not the case in the bilevel setting. Moreover, if the
problem holds in this setting, the roles of Vtr and Vout need to
be clarified. Another question is if this problem is mitigated by
resorting to graph-based models with infinite receptive field,
e.g., the Laplacian regularization.

In this work, we prove that hypergradient scarcity occurs
under the bilevel optimization setting when adopting GNNs
as a classifier. We show that using a k-layer GNN induces null
hypergradients on edges between nodes k-hop from labelled
nodes in Vtr ∪ Vout. For the Laplacian regularization,
we prove that the problem persists, as hypergradients
are exponentially damped with distance from labelled nodes.
We empirically validate our findings. Then, we test three
possible strategies to solve this issue: latent graph learning
with G2G models, graph regularization and refining a power
of the given adjacency matrix. Furthermore, we empirically
distinguish between hypergradient scarcity and overfitting,
in the sense that solving the former does not necessarily
resolve the latter. To the best of our knowledge, this is the
first work that mathematically tackles the gradient scarcity
problem for bilevel optimization of graphs, and examines the
phenomenon for models with infinite receptive field.

II. RELATED WORK

Bilevel optimization is used in many applications like multi-
task and meta learning [5], [6], [7]. See [8] for a review of
applications in different fields.

Graph learning gained in importance since real-world graphs
usually have corrupted edges. The first way used to construct
these graphs might be the k-nearest neighbors technique [9],
[10] and its variants, but with shortcomings: we have to
choose the number of nearest neighbors to consider and
the associated similarity criterion. Here, we consider situa-
tions where the graph learning problem are formulated as

3

a supervised bilevel optimization problem. In [11], authors
learn the parameters of Bernoulli probability distributions
over independent random edges. The problem is similarly
framed as a bilevel optimization, where these parameters are
optimized to minimize the GNN’s validation loss. Similar
to Eq. (5) with full learning of A, this method includes
learning n2 parameters which limits scalability. In [12], a
state-of-the-art method referred to as Graph Agreement Model
(GAM) is proposed to learn graphs for SSL problems by
penalizing the absence of an edge between nodes with the
same label. Thereby the penalty is not explicitly a function
of the used GNN model, and the problem isn’t bilevel. In
attention mechanisms, edge weights are re-evaluated after each
GNN layer based on similarity between node representations,
i.e., edge refinement. The similarity criterion is either user-
defined like the dot product [13], [14], learned locally at
each layer by a single-layer feed-forward network [15], or
a combination of both schemes [16]. In contrast to bilevel
optimization, these mechanisms are trained with the GNN
model using joint optimization. To alleviate overfitting resulted
from learning the GNN parameters and edge weights together,
[17] makes use of the Label Propagation model (LPA) [18] to
regularize the graph. The proposed framework produces state-
of-the-art results on node classification tasks. However, authors
adopt the joint optimization scenario.

Gradient scarcity was studied in [4] where the authors
looked at this problem with the intuition that learning a
graph in SSL problems is done to improve performance
in the downstream task, thus optimizing both requires such
supervision that is not available in small labelled subsets.
Then, for downstream tasks adopting a k-layer GNN classifier
(with k = 2 in their case), they identified what they refer to
as the supervision starvation problem, which states that edges
between unlabelled nodes do not receive any supervision if
they are at least 2-hop from labelled nodes. They quantify the
starvation for the special case of Erdös-Rényi graphs. Note
that gradient scarcity and supervision starvation refer to the
same phenomenon.

This issue cannot be resolved by adding more layers to
the GNN as this will increase its complexity on one hand,
which means more data and labels are needed, and due to
the oversmoothing issue on the other hand [19]. To mitigate
this issue and provide more supervision on the graph level,
authors make use of the assumption that a good graph does
not only perform well in labelling nodes, but also in denoising
node features. Therefore, they regularize the learned graph by
a contrastive loss [20], [21], [22], which evaluates its denoising
performance, which overall results in a uni-level optimization.

That said, authors implicitly assumed no dependence be-
tween the GNN weights and the graph when identifying gradi-
ent scarcity, which is the case in joint/alternating optimization
schemes. To the best of our knowledge, this issue has not yet
been studied for the bilevel optimization setting. Moreover, it
is not clear if this problem is resolved with graph-based models
with infinite receptive field, e.g., the Laplacian regularization.
We treat both these topics in our work.

In [23], authors state that optimizing both the graph and
a GNN model under the supervision of a classification task

introduces reliance on available labels, bias in the edge dis-
tribution and even reduce the span of potential application
tasks. Still, this statement is not accompanied with a theoretical
justification, especially regarding the first two consequences.
To overcome this problem, authors suggested to avoid label-
based graph optimization, and proposed an unsupervised graph
learning framework based on contrastive learning. Although
the unsupervised framework proved effective and competed
state-of-the-art methods, we believe that labels contain in-
formative knowledge that is not exploited when deploying
unsupervised learners, and that better results are obtained by
getting the best of both worlds.

III. HYPERGRADIENT SCARCITY WITH GNNS

In this section, we consider the bilevel optimization (5) in
the edge refinement setting, i.e., we optimize the weight of
every existing edge in Aobs, and the GNN case Y (A) =
Y GNN (A) = Y W?(A,X).

In [4], the authors demonstrated that the predicted node
label using a 2-layer GNN integrates information from nodes
of distance less than two hops, i.e., the label is not a function of
edges connecting nodes at least 2-hop far away. Consequently,
when optimizing the graph by minimizing the classification
error of that label via a gradient-based algorithm, these edges
receive zero-valued gradients. However, the authors used joint
(or alternating) optimization of both the GNN weights and
the adjacency matrix, where the dependency between W and
A is dropped, i.e., JW (A) = 0. This is not the case for
bilevel optimization. In this section, we first examine the
joint/alternating optimization schemes, and prove the existence
of the problem for a generic number of layers k, similar
to [4]. For the bilevel optimization setting, we then prove
that the optimized weights W ? are not a function of edges
connecting nodes at least k-hop from nodes in Vtr. After that,
we conclude that hypergradient scarcity holds in the bilevel
setting for edges connecting nodes at least k-hop from nodes
in the union Vtr ∪ Vout.

A. Scarcity for joint or alternating optimization

In this first result, we will assume that the weights W do not
depend on A, as is the case in joint/alternating minimization,
and show gradient scarcity in Y W (A,X). This result uses
the fact that W does not depend on A, an hypothesis which
is no longer satisfied in bilevel optimization.

Theorem III.1. Let Y W = Y W (A,X) be the output of a k-
layer GNN parameterized by W . Let i, j, u be such that nodes
i, j are at least k-hop from node u. Assume that ∂W

∂Ai,j
= 0.

Then:
∂(Y W)u
∂Ai,j

= 0 . (6)

Proof. The proof is done by induction on k. For k = 1, this is
indeed the case since X [0] = X does not depend on A, and
that Ai,j does not belong to the row Au,: which is the only
row in A that contributes in the value (X [1])u,:.

Assume that the statement is true for some arbitrary positive
integer k, we show that it is also true for a k+1-layer GNN.

4

If i, j are at least (k + 1)-hop far from u, then clearly they
are at least k-hop far from it too. Thus from the induction
assumption, we have that (X [k])u,: is independent of Ai,j .
Also, W

[k+1]
1 does not depend on Ai,j since we assume

∂W
∂Ai,j

= 0. Therefore, (X [k]W
[k+1]
1)u,: in (4) does not depend

on Ai,j too.
In a similar way, if i, j are at least (k + 1)-hop far

from u, then they are at least k-hop far from any of its
neighbors v where Au,v 6= 0. Therefore, if for all v,

Au,v 6= 0, then ∂(X[k])v,:

∂Ai,j
= 0. Moreover, ∂W

[k+1]
2

∂Ai,j
= 0

since we assume ∂W
∂Ai,j

= 0. This makes (AX [k]W
[k+1]
2)u,: =

Au,:X
[k]W

[k+1]
2 in (4) independent of Ai,j . This concludes

the proof, as ∂(Y W)u
∂Ai,j

= ∂(X[k+1])u
∂Ai,j

= 0.

B. Gradient of the optimized weights

Theorem III.1 assumes that W is not a function of the
edge Ai,j , and states, in such case, that edges between nodes
at least k-hop from the training nodes used to optimize the
graph (Vout in our case) receive no supervision. However, in
the bilevel optimization scenario, after the first outer iteration
W may depend on A. The next theorem shows that gradient
scarcity still occurs in the bilevel optimization framework,
as the “optimal” weights used in practice are the result of
a gradient-based algorithm. More precisely, we consider a
sequence

Wt+1 =Wt −Qt(Wt,∇Wt
Fin) , (7)

where Qt is a smooth function. Note that Wt does not
necessarly converges towards the true optimal point W ?

Theorem III.2. Let A be an input graph to a k-layer GNN
with weights W , and Wt be the output obtained by optimizing
(3) for W using a gradient-based iterates sequence. Let i, j
be nodes that are at least k-hop from any node in Vtr. Then,
for all t ∈ N,

∂Wt(A)

∂Ai,j
= 0 . (8)

Proof. The proof is carried out by induction on the iteration
index t of the gradient-based optimizer. Denote by Fin the
objective function in (3). For t = 0, W0 is the initialization of
W which is usually random and does not depend on A. For
t ≥ 0, we assume that ∂Wt

∂Ai,j
= 0 and prove this must be true

for t + 1. By the chain rule, proving that ∂(∇WtFin)

∂Ai,j
= 0 is

sufficient to complete the proof. The gradient ∇Wt
Fin writes:

∇WtFin =
1

|Vtr|
∑
u∈Vtr

∇Wt`
((

Y Wt(X,A)
)
u
, (Y obs)u

)
.

For all u ∈ Vtr, the term ∇Wt
`
((

Y Wt
(X,A)

)
u
, (Y obs)u

)
is a function of Wt and

(
Y Wt(X,A)

)
u

. But ∂Wt

∂Ai,j
= 0

from the induction assumption, and, given that, we have
∂
(
Y Wt (X,A)

)
u

∂Ai,j
= 0 from Theorem III.1. Thus, we have for all

u ∈ Vtr, ∂
∂Ai,j

∇Wt
`
((

Y Wt
(X,A)

)
u
, (Y obs)u

)
= 0. This

concludes the proof of (8) as it gives ∂(∇WtFin)

∂Ai,j
= 0.

C. Hypergradient scarcity

Finally, we put the two previous results together. The next
theorem states that within the bilevel optimization framework,
edges between nodes at least k-hop from nodes in Vtr ∪ Vout
receive no supervision.

Theorem III.3. Let Y W be a k-layer GNN. Assume that the
inner optimization problem is solved with a gradient-based
algorithm (7). Then, for any pair of nodes i, j at least k-hop
from nodes in Vout ∪ Vtr, we have ∂Fout

∂Ai,j
= 0.

Proof. Directly from Theorem III.2 we have that ∂Wt(A)
∂Ai,j

=
0 since i, j are at least k-hop far from nodes in Vtr. This
makes it possible to apply Theorem III.1 to get that ∀u ∈
Vout;

∂(Y Wt)u
∂Ai,j

= 0, as i, j are at least k-hop far from nodes

in Vout and ∂Wt(A)
∂Ai,j

= 0. This concludes the proof as Fout
penalizes the classification error only on nodes in Vout.

Theorem III.3 shows that the hypergradient scarcity problem
emerges when solving edge refinement tasks: if two nodes are
at least k-hop far from nodes in Vout ∪ Vtr in Aobs, the edge
in between receives no hypergradients. In Section V, we will
examine several strategies to mitigate this phenomenon.

IV. HYPERGRADIENT SCARCITY WITH THE LAPLACIAN
REGULARIZATION

In the previous section, we have seen how the finite recep-
tive field of GNNs directly induces the gradient scarcity prob-
lem. We now examine hypergradient scarcity when Y (A) =
Y Reg(A) with the Laplacian regularization (2). Indeed, in this
case the inner problem (1) does not have a finite receptive field,
in the sense that in general ∂Y (A)

∂Aij
6= 0 for all i, j, unlike the

GNN case as proven by Theorem III.1.
Surprisingly, we show that gradient scarcity still occurs in

some sense. More precisely, we prove that the magnitude of
hypergradients decreases exponentially with the sum of the
distance to Vtr and the distance to Vout.

We consider the case where the downstream task is a
regression problem, i.e., ` in Eqs. (1) and (5) is the MSE loss
function. Let Sin ∈ Rn×n be the diagonal selection matrix
whose entries equal 1 if the corresponding node is in Vtr and 0
otherwise, the solution Y (A) enjoys a closed-from expression:

Y (A) =
(
S̃in + λL̃

)−1
S̃inY obs ,

where S̃in = Sin

|Vtr| and L̃ = L
|E| . For simplicity from now on,

we denote B = S̃in + λL̃. Then, we write Y (A) as:

Y (A) = B−1S̃inY obs . (9)

It is well-defined thanks to the following result.

Lemma IV.1. Assume that the graph is connected. The eigen-
values µi of B satisfy, for all i:

0 < µmin ≤ µi ≤ µmax ≤
1

|Vtr|
+ 2λ . (10)

Given that, we now state the main result of this section.

5

Theorem IV.2. Let nodes i, j be at least k-hop from Vout,
and q-hop from Vtr. Then we have:∣∣∣∣∂Fout∂Aij

∣∣∣∣ . λ

√
|Vout|+ µmin

√
|Vtr||Vout|

µ3
min|Vtr||E|

y2∞(1− µ)q+k ,

(11)
where µ = µmin

µmax
and y∞ = ‖Y obs‖∞.

Since both µmin, µmax are strictly positive, as shown in
the proof in Section IV-C, then 0 < 1 − µ < 1. Therefore,
Theorem IV.2 states that the magnitude of the hypergradient
is exponentially damped in a speed that is at least proportional
to (1− u)q+k, leading to a form of hypergradient scarcity.

The rest of this section is dedicated to proving Lemma IV.1
and Thm. IV.2. We first express Y (A) as a Neumann series,
then we bound the derivative of terms in the resulted series,
and by extension the gradient of Fout.

A. Proof of Lemma IV.1 and Neumann series expansion

In the first step, we re-write the inverse of B using Neumann
series. We first need to prove that ‖I−B‖ < 1 (see e.g., [24]),
where I ∈ Rn×n is the identity matrix. Remark that the
eigenvalues of I − B are 1 − µi where µ1, . . . , µn are the
eigenvalues of B. Assuming the graph is connected, the
ordered eigenvalues {νi}ni=0 of L̃ satisfy:

0 = ν1 < ν2 ≤ . . . ≤ νn ≤ 2 . (12)

The last inequality holds because ‖L‖ ≤ 2dmax ≤ 2|E|, where
dmax is the maximum degree of the graph. Let u1, . . . ,un be
the eigenvectors of L̃, where u1 ∝ 1n is associated to 0.

Proof of Lemma IV.1. We have ‖S̃in‖ ≤ 1/|Vtr| and ‖L̃‖ ≤
2 so by a triangular inequality the upper bound is proved.

Using the eigendecomposition of L̃ and recalling that ν1 =
0, for any x ∈ Rn:

x>Bx = λx>L̃x+ x>S̃inx

= λ

n∑
i=2

(x>ui)
2νi +

∑
i∈Vtr

x2
i

|Vtr|
which, minimized over the unit sphere, gives the expression of
µmin. It is immediate that µmin ≥ 0. We prove that this value is
strictly positive. Indeed, x>Bx = 0 implies that x>Sinx = 0
and therefore xi = 0 for i ∈ Vtr, but also that Lx = 0 and
therefore that x ∝ 1n, which implies that x = 0.

Let B̃ = B/µmax, with eigenvalues

0 ≤ 1− µi/µmax ≤ 1− µ < 1 ,

where µ = µmin

µmax
. Using Neumann expansion, B̃

−1
writes:

B̃
−1

=

∞∑
r=0

(I−B̃)r ⇒ Y (A) =

∞∑
r=0

(I−B̃)rµ−1maxS̃inY obs .

(13)
We denote by T r the r-th term in Y (A):

T r = (I − B̃)rµ−1maxS̃inY obs . (14)

Note that since ‖SinY obs‖ ≤
√
|Vtr|‖Y obs‖∞, we have:

‖T r‖ ≤
νry∞

µmax

√
|Vtr|

, (15)

where y∞ = ‖Yobs‖∞ and ν = 1 − µ. Similarly, ‖Y (A)‖ ≤
y∞

µmin

√
|Vtr|

. Moreover, since I − B̃ has the same zero-pattern

than A (except on the diagonal), if u is more than r hops from
Vtr, we get (T r)u = 0.

B. Gradient of (T r)u

In the second step, we derive the formula of the gradient
of (T r)u w.r.t. A, and derive a bound on its magnitude as
a function of r, q the distance to Vtr, and k the distance to
Vout. For r > 0, the gradient of the u-th coefficient in T r

w.r.t. I − B̃ is:

∇I−B̃(T r)u =

r∑
h=1

((
(I − B̃)r−h

)
u,:

)>
×
(
(I − B̃)h−1µ−1maxS̃inY obs

)>
,

by the product rule of differentiation, and we have

∇I−B̃(T r)u =

r∑
h=1

((
(I − B̃)r−h

)
u,:

)>
(T h−1)

> .

Using that I − B̃ = I − 1
µmax

(S̃in + λL̃), we have

∇L̃(T r)u = − λ

µmax
∇I−B̃(T r)u

= − λ

µmax

r∑
h=1

((
(I − B̃)r−h

)
u,:

)>
(T h−1)

> .

(16)

And finally, by deriving L̃ w.r.t. Aij :

∂(T r)u
∂Aij

= − λ

|E|µmax

r∑
h=1

(
(I − B̃)r−h

)
ui
(T h−1)i (17)

+
(
(I − B̃)r−h

)
uj
(T h−1)j

−
(
(I − B̃)r−h

)
uj
(T h−1)i

−
(
(I − B̃)r−h

)
ui
(T h−1)j ,

which allows us to prove the following.

Lemma IV.3. Let i, j, u such that: i, j are at least k-hop from
u, and at least q-hop from Vtr. Then:∣∣∣∣∂(T r)u
∂Aij

∣∣∣∣ ≤
{
0 if q + k > r

4λy∞

|E|µ2
max

√
|Vtr|

(r − q − k)νr−1 otherwise.

(18)

Proof. Recall that (T r)u = 0 if u is more than r-hop from
Vtr. Similarly, ((I − B̃)r)ui = 0 if u and i are more than r-
hop from each other. Hence, the term

(
(I−B̃)r−h

)
ui
(T h−1)i

appearing in (17) is 0 if r−h < k or h−1 < q, and bounded
by (µmax

√
|Vtr|)−1νr−1y∞ otherwise. Similarly for the other

terms, so the sum in (17) runs over the indices h that satisfy
q + 1 ≤ h ≤ r − k, which is either none if q + 1 + k > r, or
r − q − k terms otherwise, which concludes the proof.

6

C. Proof of Theorem IV.2

We finally examine the hypergradient, and prove an expo-
nential damping rate of its magnitude with the cumulative
distance to Vtr and Vout (the sum of both distances). Con-
sidering Fout = ‖Sout(Y (A) − Y obs)‖2, where Sout is the
diagonal selection matrix whose diagonal entries equal 1 if the
corresponding node is in Vout and 0 otherwise, we have:

∂Fout
∂Aij

= 2(
∂Y (A)

∂Aij
)>Sout(Y (A)− Y obs)

= 2

∞∑
r=0

(
∂T r

∂Aij
)>Sout(Y (A)− Y obs) .

Using a triangular inequality, the bound on ‖Y (A)‖, and that
‖SoutY obs‖ ≤

√
|Vout|y∞ we get:

‖Sout(Y (A)− Y obs)‖ ≤
1 + µmin

√
|Vtr||Vout|

µmin

√
|Vtr|

y∞ .

By incorporating the resulting inequality in bounding the
hypergradient, and by noticing that Sout = S2

out we have:∣∣∣∣∂Fout∂Aij

∣∣∣∣ . 1 + µmin

√
|Vtr||Vout|

µmin

√
|Vtr|

y∞

∞∑
r=0

‖Sout
∂T r

∂Aij
‖

.
1 + µmin

√
|Vtr||Vout|

µmin

√
|Vtr|

y∞

∞∑
r=0

(∑
u∈Vout

∣∣∣∣∂(T r)u
∂Aij

∣∣∣∣2
) 1

2

.

Using Lemma IV.3 and the hypotheses on i and j, for u in
Vout, the term

∣∣∣∂(T r)u
∂Aij

∣∣∣ is 0 if r < q+ k+1, and bounded by
4λy∞

|E|µ2
max

√
|Vtr|

(r − q − k)νr−1 otherwise. Hence:∣∣∣∣∂Fout∂Aij

∣∣∣∣ .λ
√
|Vout|+ µmin

√
|Vtr||Vout|

µmin|Vtr||E|µ2
max

y2∞

×
∞∑

r=q+k+1

(r − q − k)νr−1 .

Then we see that for ν < 1 we have
∞∑

r=q+k+1

(r − q − k)νr−1 = νq+k
∞∑
r=1

rνr−1 ,

and
∑∞
r=1 rν

r−1 = 1
(1−ν)2 = 1

µ2 , which concludes the proof.

V. ALLEVIATING HYPERGRADIENT SCARCITY

In this section, we review strategies to mitigate the hyper-
gradient scarcity problem. However, it is important that we
make a distinction between resolving this issue and resolving
the overfitting problem. Indeed, if gradient scarcity is also
caused by the limited quantity of available labelled data, it
is important to avoid confusion with traditional overfitting. In
particular, while traditional overfitting is generally reduced by
adding more training data, when optimizing edges far from
labelled nodes gradient scarcity is observed regardless of
the dataset size and the number of labels. We study several
strategies to mitigate hypergradient scarcity in the bilevel
setting, but we emphasize that they might not lead to a better
generalization error altogether.

Generalized edge refinement by optimizing Ar
obs. As

hypergradient scarcity is observed on edges connecting nodes
distant from the labelled ones, a natural fix is to reduce this
distance. One way to do that is by refining edges in a power
of Aobs, as the matrix Ar

obs includes r-edge long connections
between nodes. In our experiments we adopt A6

obs as this
notably expands the graph but does not achieve the extreme
case where the result is a complete graph.

Graph regularization. Graph regularization is used to
impose a prior structure on the learned graph, by adding a
regularization term to Fout to penalize graphs with undesirable
properties. For instance, [25] proposes the regularization term
−γ1>n logA1n for some γ > 0, to penalize low-degree nodes.
We use this choice in the experiments, but note that imposing
task-related priors and regularization terms could lead to better
performance. This will be the topic of future work.

G2G for edge refinement. The third fix we suggest is
latent graph learning using G2G models. In the outer problem,
we propose to replace optimizing edge weights by optimizing
the parameters of a G2G model to predict similarity between
nodes. Let θ be the weights of this model, and Aθ be its output
graph, the G2G model we adopt is (Aθ)i,j = α

(
(Xi−Xj)

2
)
,

where the square function is applied entrywise, α : Rp → R
is a Multi-Layer Perceptron (MLP) model consisting of kG2G

layers, each is of the form:

X [l] = φ[l](X [l−1]W
[l]
1 + 1n(b

[l])>) ,

where W
[l]
1 ∈ Rdl−1×dl , b[l] ∈ Rdl are learnable parameters,

and dl is the output dimensionality of the l-th layer. The
parameters are gathered as θ = {W [l]

1 , b
[l]}kG2G

l=1 .

VI. EXPERIMENTS

We1 use two synthetic datasets, the first one, called synthetic
dataset 1, is designed to test the Laplacian regularization. The
second one is a binary classification dataset that can be used
for both graph-based models. Due to the paradigm behind
construction, we call it the cheaters dataset. We also illustrate
our findings on the real-world Cora dataset.

Bilevel optimization: The problem Eq. (5) is intractable
as neither the solution of the inner problem nor its gradient
w.r.t. A (or to θ with G2G models) has a closed form
expression that can be evaluated. To overcome this difficulty,
we unroll [26] τin iterations of the gradient-based inner opti-
mizer, then using the Higher package [27] to trace iterations
and perform higher-order Automatic Differentiation (AD) to
compute the hypergradient. For both the inner and the outer
optimizers, we consider the Adam algorithm [28].

Synthetic dataset 1: we sample i.i.d. latent variables
X ∈ Rn×p for nodes uniformly at random from [0, 1] with
n = 1536, p = 2. The ground-truth graph A? is constructed
s.t. (A?)i,j = 1 if ‖Xi − Xj‖2 < σ, and 0 otherwise. σ
is set to 0.06 in our experiments. Two distinct procedures
were employed to sample the nodes that comprise Vtr, leading
to two distinct realizations of the dataset as illustrated in
Fig. 3(top). The first procedure randomly samples 100 nodes

1Our Python implementation is available at https://github.com/
hashemghanem/Gradients_scarcity_graph_learning.

7

0 100 200

0

50

100

150

200

250 0

2

4

6

8

×10−6

0 100 200

0

50

100

150

200

250 −10−2

−10−3

−10−4

−10−5

−10−6

0

10−6

10−5

10−4

10−3

10−2

Fig. 1: Hypergradient scarcity observed when solving the edge
refinement task with the bilevel optimization framework. We
run the experiment on the cheaters dataset, and use a 2-
layer GNN as a classifier. Left: graph initialization. Right:
hypergradient at an arbitrary outer iteration, namely 9. It is
clear that the hypergradient on edges between unlabelled nodes
far from the ones in Vout ∪Vtr equals zero. Recall that Vtr =
{0, 1, . . . , 32} ∪ {224, . . . , 255} and Vout = {96, . . . , 160}.

from the set V , hence Vtr is well-spread, whereas the second
procedure selects the 100 nodes with the smallest Euclidean
distance to the point (0.5, 0.5), thus Vtr is concentrated in a
small neighborhood in this case. In both cases, we randomly
sample 25 nodes from V to construct Vout. The remaining
nodes are equally divided between the validation and the test
sets. Then, each node i in Vtr is labeled as follows:

(Y obs)i = ζ(e
− (Xi−a1)2

2(0.2)2 + e
−(Xi−a2)2

2(0.2)2 + e
−(Xi−a3)2

2(0.2)2) ,

where a1,a2,a3 are randomly sampled from [0, 1]2, and ζ is a
scaling factor such that labels lie in [0, 1]. By this construction,
the prior that the labelling function on the graph is smooth is
met, and the Laplacian regularization can be applied as in
Eq. (1).

To generate labels for other nodes, we plug the labels of Vtr
and A? in Eq. (1) with λ = 1, such that the solution holds the
sought-for labels. This way, the ground-truth graph actually
plays a role in labelling nodes in Vout and V .

The noisy observed graph is built upon random weights

(Aobs)i,j = ξi,j(A
?)i,j where ξi,j ∼ U([0, 1]) .

Experiments on this dataset are done with the Laplacian
regularization in the inner problem as in Eq. (1).

Cheaters dataset: nodes in this graph represent students
in an exam classroom. Setting n = 256, p = 10, the i.i.d.
features X ∈ R256×10 are sampled uniformly at random
from [0, 1]. For a node i, Xi,0 represents the position of the
according student in the classroom. For visualization purposes
we enumerate nodes following the ascending order of X :,0.
The remaining 9 features of a student represent the grades
he is capable of scoring in the corresponding exam question.
However, students tend to cheat with their neighbors in the
graph. The ground-truth graph A? is constructed as follows:

(A?)i,j = exp (−‖Xi,0 −Xj,0‖22/2σ2) .

The observed graph Aobs is drawn from a random model as

(Aobs)i,j ∼ Ber ((A?)i,j) .

We set σ = 0.027 s.t. the number of edges in Aobs approx-
imates n log n. Students cheat such that their grades Y grade

after the exam are

Y grade = A?X :,1:919 .

A student passes the exam if his grade is greater than a
threshold τ , i.e., (Y obs)i = 1 if (Y grade)i > τ and 0
otherwise. We put τ = 60 so that approximately half of
students pass the exam. Vtr includes nodes in {0, 1, . . . , n/8}∪
{7n/8, . . . , n−1}, i.e., near the two ends of the 1-dimensional
class. Vout = {3n/8, . . . , 5n/8}, i.e., centered around the
middle of the class. Remaining nodes are equally divided into
a validation and a test set. Experiments on this dataset are
done with a GNN classifier.

Real-world dataset: we validate our findings on the Cora
dataset [29]. Cora is a citation datasets, where nodes represent
research publications described by a bag of words, and edges
stand for citations. The task is to classify articles w.r.t. their
topic. In this work, we limit our experimentation on real-
world datasets to the Cora dataset, as our empirical results are
intended to establish a proof-of-concept. Therefore, we refrain
from conducting experiments on other benchmark datasets.

Models: G2G and GNN models are implemented using
PyTorch [30] and PyTorch Geometric [31], respectively. The
function α in the G2G model is an MLP with 2 hidden layers,
each is followed by the ReLu activation function and has 16
neurons for the cheaters dataset and 32 neurons for Cora. The
GNN has 1 hidden layer of 8 neurons for the cheaters dataset
and 128 for Cora. This layer is followed ReLu, while the
output is followed by the softmax function.

Setup: we use Adam as the inner and the outer optimizer
with the default parameters of PyTorch, except for the inner
learning rate ηin and the outer one ηout, which are tuned
from the set {10−4, 10−3, . . . , 10}. The best values were
ηin = 10−2 with GNNs as a classifier, ηin = 10−1 and
ηin = 10 with the Laplacian regularization on Cora and on
the synthetic dataset 1, respectively. On the cheaters dataset,
ηout = 10−3 adopting a G2G model, while ηout = 10−2

in other cases. On the synthetic dataset 1, ηout = 10−1. On
Cora, ηout = 10−2 in all experiments without a G2G model,
Otherwise ηout = 10−4 adopting the GNN classifier, and
ηout = 10−3 adopting the Laplacian regularization. We set,
with a grid search, τin to 200 for the cheaters dataset, 500
for the synthetic dataset 1 and Cora adopting the Laplacian
regularization, and 100 for Cora with a GNN classifier. In
experiments on the cheaters dataset, we multiply the default
initialization of the last layer of the G2G model by 10−5

s.t. its output edges at the first iteration are of small magnitude.
We adopt this strategy to measure the level of scarcity by
counting the number of learned edges of magnitude greater
than a chosen threshold. GNN weights W and the initial-
ization of labels when using the Laplacian regularization are
initialized at random after each outer iteration, using Xavier
initialization and uniformly at random from [0, 1], respectively.
Edges to be refined are initialized uniformly at random from
[0, 1], except for experiments on the cheaters dataset where
the interval becomes 10−5 ∗ [0, 1]. We set the number of
outer iterations τout to 150 while ensuring convergence, and

8

0 50 100 150
Outer iteration

0.2

0.4

0.6

0.8

1.0

O
u

te
r

tr
ai

n
in

g
ac

cu
ra

cy

No fix

Regularization

Refining A6
obs

G2G

(a)

0 50 100 150
Outer iteration

104

T
h

e
nu

m
b

er
of

re
fin

ed
ed

ge
s

No fix

Regularization

Refining A6
obs

G2G

(b)

0 50 100 150
Outer iteration

0.4

0.5

0.6

0.7

0.8

T
es

t
ac

cu
ra

cy

No fix

Regularization

Refining A6
obs

G2G

Aobs

(c)

Fig. 2: Efficiency of proposed solutions to hypergradient scarcity w.r.t. the number of refined edges and the generalization
capacity. An edge is considered well refined if its learned magnitude is larger than one percent of the maximum learned edge
weight. The solutions are graph regularization with −1> logA1, latent graph learning using a G2G model, and generalized
edge refinement by refining edges in A6

obs. (a): training accuracy on Vout. (b): number of refined edges. (c) test accuracy.

0.0 2.5 5.0 7.5 10.0
Cumulated distance to Vtr and Vout

0

2

4

6

8

M
ag

ni
tu

de
 o

f h
yp

er
gr

ad
ie

nt 1e 5

0 5 10 15
Cumulated distance to Vtr and Vout

0

1

2

3

M
ag

ni
tu

de
 o

f h
yp

er
gr

ad
ie

nt 1e 5

Fig. 3: hypergradient scarcity under the bilevel optimization
setting on the synthetic dataset 1, adopting the Laplacian
regularization in the inner problem. Top: illustration of the
graph. The training nodes Vtr are circled in red, the colors
correspond to the distance to Vtr. The eigenvalue µmin is
given as a ratio of the smallest positive eigenvalue of L̃. Vout
is randomly sampled from V but not shown here. Bottom:
Hypergradient magnitude

∣∣∣∂Fout

∂Aij

∣∣∣ with respect to the sum of
distances to Vtr and Vout. Left: the training set Vtr is well-
spread thereby aligned with the high-frequency eigenvectors
of the graph, resulting in a high µmin. The decrease of the
hypergradients is sharp with the distance. Right: Vtr is aligned
with the low-frequency eigenvectors of the graph, resulting in
a low µmin. The decrease of hypergradients magnitude is not
as sharp as the previous case.

we select the graph (or the G2G weights) with the highest
validation accuracy. We set λ = 1 in training when considering
the Laplacian regularization, as we expect the bilevel algorithm
to learn this parameter by scaling the learned adjacency matrix.
When applying the Laplacian regularization fed with Aobs on

Cora, we set λ = 0.1 after a grid search. γ in the graph
regularization term is set to 1 following a grid search on the
set {10−3, 10−2, . . . , 10}.

A. Hypergradient scarcity with GNN classifiers

In this experiment, we consider a 2-layer GNN classifier in
the bilevel framework. We solve the edge refinement task (5)
on the cheaters dataset, where ` in Eqs. (1) and (5) is the CCE
function. Fig. 1(left) depicts the initialization of the adjacency
matrix. It also shows what edges are to be optimized, that is,
edges whose initialization is nonzero. In Fig. 1(right), we show
the hypergradient at the outer iteration 9, which is arbitrarily
chosen, where it is clear that edges between unlabelled nodes
far from the ones in the union Vout ∪ Vtr get no supervision
during the training process. Recall that Vtr = {0, 1, . . . , 32}∪
{224, . . . , 255} and Vout = {96, . . . , 160}. This aligns with
our findings, which state that edges between nodes at least
2-hop from nodes in Vout ∪ Vtr receive zero hypergradients.
This, as seen in Fig. 2, leads to a learned graph that overfits
training nodes and even generalizes worse than Aobs.

B. Hypergradient scarcity with the Laplacian regularization

We here examine hypergradient scarcity when adopting the
Laplacian regularization in the inner problem. We run the
bilevel optimizer to solve the edge refinement task on the
synthetic dataset 1. The dataset corresponds to a regression
problem, so ` in Eqs. (1) and (5) is the MSE loss function.

In Fig. 3(bottom), we plot the absolute value of hypergradi-
ents at the outer iteration 6 as a function of the edge cumulative
distance to Vtr and Vout, which is defined as follows: we
compute q + k, the sum of distances to Vtr and Vout, respec-
tively, for its both endpoint nodes, then we take the minimum
of the two results. One observes the hypergradient scarcity
phenomenon, since hypergradients decay exponentially as the
edge distance increases. This validates our analysis articulated
in Theorem IV.2. In addition, we observe in practice that µ is
nevertheless quite small, and that our bound in Theorem IV.2
is quite loose. Another observation is that the decrease rate is
higher when Vtr is well-spread in the graph. Deriving a tighter

9

TABLE I: Accuracies obtained on Cora when the classifier
is trained using the output graph of the Bilevel Optimization
(BO) framework, the same framework equipped with graph
regularization, the same framework optimizing a G2G model.
We also benchmark against GAM (the result is reported from
the according paper) and against Aobs. For each classifier, we
report test accuracy in the according first line and training
accuracy on Vout in the second one. Training accuracy on Vtr
equals 100% for all methods.

Graph Aobs BO BO+regularization BO+G2G GAM

GNN 77.0 76.2 80.3 82.0 84.8
77.4 94.9 94.1 97.4 -

Laplacian 71.7 76.2 78.3 76.2 -
71.0 81.9 83.2 83.5 -

bound on the magnitude of hypergradients and investigating
the link between the distribution of labelled nodes and this
bound will be the subject of a future work.

C. Testing solutions to mitigate hypergradient scarcity

We run our experiments on the cheaters dataset using the
2-layer GNN as a classifier. In each experiment, we run our
bilevel optimization framework with one of the suggested
fixes. We consider two criteria to measure the efficiency of
each solution, the first one is counting the number of refined
edges. At any outer iteration, we say that an edge is refined if
its learned weight is greater that one percent of the maximum
learned edge weight at the same iteration. Recall that we
initialize the graph/GtoG with small weights (≈ 10−5). The
second criterion is the validation accuracy. The first criterion
assesses the ability to alleviate hypergradient scarcity, while
the second assesses the generalization to unseen nodes during
training, and thus if the learned graph is meaningful.

Fig. 2 shows that all three fixes produce better results
w.r.t. the first criterion, as the number of refined edges is
larger at almost every iteration, with optimizing edges in
A6
obs being the most efficient, and the G2G model and graph

regularization having a similar performance. Moreover, one
notices that this number decreases with the iteration when
refining edges (without fix) in A6

obs, which is expected as
only a small portion of edges receive supervision; however
this portion is larger when refining A6

obs.
Regarding the second criterion, the G2G model and the

graph regularization generalize well, as both combat hypergra-
dient scarcity without increasing (or even by decreasing) the
number of parameters to learn. On the other hand, optimizing
edges in A6

obs deteriorates performance in the test phase. A
likely explanation is that by expanding the graph, we increase
the number of parameters to learn, which means a more
complex model that is more likely to overfit training nodes.
This experiment illustrates that hypergradient scarcity is not
the traditional overfitting related to data/label scarcity, and
resolving it does not necessarily promote better generalization.

0 5 10 15
Edge distance to Vtr ∪ Vout

−10−2

−10−4

−10−6
0

10−6

10−4

10−2

H
yp

er
gr

ad
ie

nt

No fix

Regularization

0 5 10 15
Cumulated distance to Vtr and Vout

−103

−100

−10−3

−10−6
0

10−6

10−3

100

H
yp

er
gr

ad
ie

nt

No fix

Regularization

Fig. 4: Observing hypergradient scarcity and the effect of
graph regularization on Cora. Left: adopting the GNN clas-
sifier. Right: adopting the Laplacian regularization model. We
plot the hypergradient against edge distance. In connected
components without at least a node from each of Vtr and Vout
in the Laplacian regularization case (or without a node from
Vtr ∪ Vout in the GNN case), edge distance is not defined.
We assign the distance 15 to edges in such components for
visualization purpose.

D. Results on Cora

We use bilevel optimization (5) to solve an edge refinement
task on Cora, trying both the GNN and the Laplacian mod-
els. Here the downstream task is a multi-label classification
problem and ` is the CCE function. We depict in Fig. 4
the received hypergradient on edges at outer iteration 9 as a
function of their distance to labelled nodes. For the Laplacian
regularization case, that is the edge cumulative distance to Vtr
and Vout as defined in Section VI-B. Whereas to compute
the edge distance in the GNN case, we compute for each of
its endpoint nodes its distance to Vtr ∪ Vout, then we take the
minimum. In accordance with our analysis, the figure displays
a null hypergradient for distances greater than 2 in the GNN
case, while the Laplacian regularization scenario exhibits a
hypergradient that diminishes exponentially with distance.

Regarding the generalization capacity, Table I shows that
the learned graph is inferior to Aobs in the GNN case for the
test error. Given that the learned graph achieves 100%, 94.9%
accuracies on Vtr, Vout, respectively, one concludes that hyper-
gradient scarcity provokes overfitting. This is indeed expected
due to the extreme scarcity in the GNN scenario, as edges of
distance greater than 2 keep their random initialization after
the training process. This is, however, not the case in the
Laplacian regularization scenario as most edges are of distance
less than 11, thereby they do not exhibit damped hypergradi-
ents and the impact on generalization is not observed.

Next, we test the efficiency of the proposed solutions to
mitigate hypergradient scarcity. We do not try learning a power
of Aobs as the memory requirement goes beyond the limits we
have access to. Results in Fig. 4 prove the efficiency of graph
regularization as all edges receive non-zero hypergradients
with a comparable magnitude to those on edges of small
distance. Note that hypergradients are received on the G2G
weights when it is deployed, not on edges, so we do not depict
them in this figure. Regarding the impact on generalization,
Table I shows that both fixes yield significant improvements
in test accuracy over Aobs with the GNN classifier. In the
Laplacian regularization case, graph regularization produces a

10

higher test accuracy, unlike the G2G model which generalizes
equally good as when learning directly edge weights. We
also notice that GNN model leads to superior results in all
scenarios, with a notable gap for the G2G model and graph
regularization, and when directly using Aobs. This is expected,
as the Laplacian regularization promotes similarity between
connected nodes but, unlike GNNs, is not a supervised-based
method. We finally point out that the bilevel optimization
framework with either fix does not achieve state-of-the-art
results produced by GAM with the same GNN classifier.

Other experiments suggest that although G2G models allevi-
ate hypergradient scarcity, regardless of the number of neurons
in its layers, the generalization performance is sensitive to this
number and if set large, clear overfitting is observed.

VII. CONCLUSION

We studied hypergradient scarcity when deploying bilevel
optimization in edge refinement tasks under the SSL settings.
This phenomenon consists in edges far from labelled nodes
receiving scarce hypergradients when optimizing the graph
and the classifier to improve classification performance. We
proved that this problem occurs for GNN. Replacing GNNs
by the Laplacian regularization model, does not resolve the
issue; however, the phenomenon is less severe: we bounded
the magnitude of hypergradients and proved they are expo-
nentially damped with distance to labelled nodes. To alleviate
hypergradient scarcity, we proposed to resort to latent graph
learning, graph regularization, and refining edges in a power
of the observed adjacency matrix. Our experiments validated
our findings, and privileged the first two solutions over the
latter. Moreover, we show that alleviating the hypergradient
scarcity does not necessarily alleviate overfitting.

REFERENCES

[1] F. Wang and C. Zhang, “Label propagation through linear neighbor-
hoods,” in ICML, 2006.

[2] Q. Liu, M. Allamanis, M. Brockschmidt, and A. Gaunt, “Constrained
graph variational autoencoders for molecule design,” Advances in neural
information processing systems, vol. 31, 2018.

[3] D. Liben-Nowell and J. Kleinberg, “The link prediction problem for
social networks,” in Proceedings of the twelfth international conference
on Information and knowledge management, 2003, pp. 556–559.

[4] B. Fatemi, L. El Asri, and S. M. Kazemi, “Slaps: Self-supervision
improves structure learning for graph neural networks,” NeurIPS, 2021.

[5] K. P. Bennett, J. Hu, X. Ji, G. Kunapuli, and J.-S. Pang, “Model selection
via bilevel optimization,” in IJCNN, 2006.

[6] R. Flamary, A. Rakotomamonjy, and G. Gasso, “Learning constrained
task similarities in graph regularized multi-task learning,” in Regulariza-
tion, Optimization, Kernels, and Support Vector Machines. Chapman
and Hall/CRC, 2014, vol. 103.

[7] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel
programming for hyperparameter optimization and meta-learning,” in
ICML, 2018.

[8] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel opti-
mization,” Ann. Oper. Res., vol. 153, no. 1, pp. 235–256, 2007.

[9] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[10] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[11] L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete
structures for graph neural networks,” in ICML, 2019, pp. 1972–1982.

[12] O. Stretcu, K. Viswanathan, D. Movshovitz-Attias, E. Platanios, S. Ravi,
and A. Tomkins, “Graph agreement models for semi-supervised learn-
ing,” NeurIPS, 2019.

[13] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in EMNLP, 2015.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurIPS, 2017.

[15] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” ICLR, 2018.

[16] D. Kim and A. Oh, “How to find your friendly neighborhood: Graph
attention design with self-supervision,” in ICLR, 2021.

[17] H. Wang and J. Leskovec, “Unifying graph convolutional neural net-
works and label propagation,” arXiv preprint arXiv:2002.06755, 2020.

[18] X. Zhu, Semi-supervised learning with graphs. Carnegie Mellon
University, 2005.

[19] N. Keriven, “Not too little, not too much: a theoretical analysis of graph
(over) smoothing,” in NeurIPS, 2022.

[20] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang,
“Self-supervised learning: Generative or contrastive,” IEEE Transactions
on Knowledge and Data Engineering, 2021.

[21] L. Wu, H. Lin, C. Tan, Z. Gao, and S. Z. Li, “Self-supervised learning
on graphs: Contrastive, generative, or predictive,” IEEE Trans. Knowl.
Data Eng., 2021.

[22] Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, and P. Yu, “Graph self-
supervised learning: A survey,” IEEE Trans. Knowl. Data Eng., 2022.

[23] Y. Liu, Y. Zheng, D. Zhang, H. Chen, H. Peng, and S. Pan, “Towards
unsupervised deep graph structure learning,” in WWW, 2022.

[24] G. W. Stewart, Matrix algorithms: volume 1: basic decompositions.
SIAM, 1998.

[25] V. Kalofolias, “How to learn a graph from smooth signals,” in Artificial
Intelligence and Statistics. PMLR, 2016, pp. 920–929.

[26] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proceedings of the 27th international conference on inter-
national conference on machine learning, 2010, pp. 399–406.

[27] E. Grefenstette, B. Amos, D. Yarats, P. M. Htut, A. Molchanov, F. Meier,
D. Kiela, K. Cho, and S. Chintala, “Generalized inner loop meta-
learning,” arXiv preprint arXiv:1910.01727, 2019.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[29] Q. Lu and L. Getoor, “Link-based classification,” in ICML, 2003.
[30] A. Paszke and al., “Pytorch: An imperative style, high-performance deep

learning library,” in NeurIPS, 2019.
[31] M. Fey and J. E. Lenssen, “Fast graph representation learning with

PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

