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Gradient descent dynamic window approach to the mobile robot
autonomous navigation.

Hugo POUSSEUR∗a) Non-member, Alessandro CORREA-VICTORINO∗b) Non-member

Avoiding obstacles is a key feature in a vehicle autonomous navigation methodology. The dynamic window ap-
proach (DWA), which has been proposed for several decades, has emerged as a responsive navigation methodology
suitable reactive for obstacle avoidance.

In the initial approach of the dynamic window obstacle avoidance strategy, the optimization of an objective function
is realized with an exhaustive computation which can be costly in computational time. This is not useful in a real-time
scenario where an autonomous vehicle needs to avoid obstacles in urban or road velocity conditions. The improved
run time execution also makes for a less abrupt and more comfortable driving experience.

In this paper, we revise the DWA methodology, implementing a new method that forces us to redefine the objective
function differently, defining it as a loss function. In order to apply a gradient descent to optimize the convergence.

We use DWA to control our autonomous cars, but to verify the correctness of our optimization, we optimized DWA
in its original context, i.e., to control a robot in an unknown environment with obstacles to visit given positions. We
tested our approach, in simulation on ROS and on a real Turltebot robot.

Keywords: Optimisation Control, DWA, Gradient Descent, ROS

1. Introduction

The safe navigation of these autonomous vehicle requires
perceiving the surrounding environment, interacting with
any spatial and temporal changes in this environment, and
rescheduling its mission according to this dynamic. A first
required functionality is the autonomous realization of move-
ments, avoiding obstacles, in an a priori unknown environ-
ment. The dynamic window approach (DWA), originally pro-
posed by Dieter Fox (5) in 1997, is mobile robot autonomous
navigation methodology that could be useful to the reactive
local navigation of autonomous robotic vehicles (4).

The lane keeping module of our autonomous vehicles is
based on an implementation of the DWA including deep
learning models. In order to optimize the computations
performed by our autonomous module, we try to optimize
each part, including the computations of the different deep
learning models, but also the computations performed by the
DWA. We noticed that, the initial approach of DWA requires
us to discretize a search space and to find the optimal solu-
tion among this space by applying brute force. As an ex-
ample, in the default implementation proposed by ROS, the
search space is of the order of 600. This means that the opti-
mal solution can only be defined after 600 calculations, each
of these calculations is independent. It is important to note
that the implementation of this strategy on an autonomous
car, obliges us because of the physical capacities to define an
even more important space and consequently requires more
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calculations. And at high speed, it is important to be able to
define a precise command quickly to avoid any accident.

Since the creation of DWA, new approaches have emerged.
These different approaches (2) (6), adapt the initial approach
to new robots, adapting DWA to holonomic vehicles. In-
deed, the solution initially proposed is only applicable to
non-holonomic robots. The authors propose to adapt the ap-
proach to holonomic robot by adapting the objective function.
Other searches allow making DWA tractable and convergent,
inspired by a model predictive control (MPC) and control
Lyapunov function (CLF) frameworks proposed by Primbs (7).
The idea is to avoid local minima that would move the robot
away from its target and the risk of it getting stuck. Other
searches focused on the adaptation of the DWA according to
its environment by using notions of reinforcement learning (3)

or fuzzy logic (10). This new approach is called Adaptive Dy-
namic Window Approach, the weights used by the objective
function are defined in real-time in according the topology
of the environment. In practice, we notice that the choice
of weights is dependent on the situation, on the topology of
the obstacles. These adaptations define the best path in all
situations and does not get stuck.

Our approach proposed is to replace the initial search of
the optimal velocity by a gradient descent in order to con-
verge more quickly to an optimal solution. This paper fo-
cuses on the optimization of the DWA in the initial context,
i.e. the robot must be able to evolve in an environment with
obstacles in order to reach given positions.

The paper is structured as follows, the Section 2 introduces
main concepts of the origin DWA. The Section 3 defines our
modification about the initial objective function. The Sec-
tion 4 shows the implementation of our solution on virtual
and real robot and the Section 5 discusses the results of the
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experiments.

2. The Original DWA Method

This method provides obstacle avoidance and is classified
as an online collision avoidance strategy, i.e., this strategy is
based on the current state of the robot (i.e., current robot dy-
namics, velocity and acceleration). This method takes in con-
sideration physic limitations of the robot, maximum acceler-
ation/deceleration, in order to define the controls achievable
by the robot.

The method is divided in two steps, first we define the ve-
locities considered as admissible by the robot at the current
time t, and second we define the one among these velocities
considered as the best.

2.1 Search space For a given moment, Tt, the cur-
rent velocity of the robot can be annotated like: (vt, wt). The
set of achievable velocities at time t is limited by the physical
restrictions of the robot (acceleration and braking) and by the
safety of the robot (this set excludes all velocities that could
collide the robot with an obstacle). The dynamic window
(denoted by Vt) represents the velocity reachable at the mo-
ment Tt in a time interval dt, this window is centered around
the current velocity.

2.2 Objective Function Once the search space de-
fined, the velocity (v∗, w∗) considered as optimal is defined in
this space, (v∗, w∗) ∈ Vt. The optimal solution must allow to
reach the objective by avoiding the obstacles as well as pos-
sible, these conditions are translated by an objective function
allowing to attribute to any velocity a value quantifying the
quality of the solution. The equation 1 defines the objective
function used.

G(v, w) =α.heading(v, w)
+ β.dist(v, w)
+ γ.velocity(v, w)

(1)

The velocity selected, is the couple (v, w) ∈ Vt who maxi-
mizes the objective function:

(v∗, w∗) = arg max
(v,w)∈Vt

(G(v, w)) (2)

2.2.1 Target Heading: heading(u, w) This function
is fundamental in the success of the objective, quantifies
whether the robot performs the task it is supposed to per-
form, i.e. to get to a given position. The heading function
defines the alignment of the robot with the target position, if
the robot applies the velocity (v, w) tested.

2.2.2 Clearance: dist(u, w) The DWA must control
the robot towards a target while avoiding obstacles, the dist
function quantifies the distance between the robot and obsta-
cles once the robot applies the velocity (v, w). The value of
the function is high if the robot is far from obstacles, other-
wise it is low.

2.2.3 Velocity: uelocity(u, w) This function ensures
that the robot is always moving at the desired speed. This
encourages the robot not to get stuck and to keep moving.

3. From Objective Function To Loss Function

3.1 Motivation As explain above (Section 2.2), the

optimal solution for a t moment is defined in attributing an
objective value at each velocity tested. This step requires dis-
cretizing the initial search space. Thus, our initial continuous
search space is now defined by a matrix MV ∈ Mn,m(R). The

Fig. 1. Discretizing annotation.

figure 1 explains the discretizing process.
The search for the optimal solution thus consists in cal-

culating for each ai j ∈ MV the value of the objective func-
tion. Each of these calculations is independent, i.e. no sub-
calculation can be used to calculate the objective value of
another velocity. In this case we can define the complexity
of the search to equal to O(n ∗ m). This complexity reflects
a relationship between complexity and search quality. In the
case where n and m are small then the search is fast, but the
solution will be problematically inaccurate because of a too
large discretization step. In the opposite case, the solution
will be accurate but will require a longer execution time.

We want to find a method to avoid this brute force approach
which forces us to perform several independent calculations.
Our idea is to try to replace this approach by a convergent
approach.

3.2 Gradient Descent Approach Our idea is to con-
vert the initial objective function into a loss function. That
means that the optimal solution minimize the function instead
of maximize. Additionally, if this loss function is convex we
can apply a gradient descent in order to converge to the min-
imum global avoiding to brute force. Let γ the learning rate
and L a function, defined and differentiable in a neighbor of
the point w, then the gradient descent is defined by:

wn+1 = wn − γ ∗ L(wn) (3)

So our approach is to change the objective function to a con-
vex function. To create the loss function, we can use the fol-
lowing property of the convex function:

if w1, ..., wn ≥ 0 and f1, ..., fn are all convex, then so
w1 f1 + ... + wn fn is convex.

Our idea is to exploit this property and find for each initial
sub-function of the DWA an equivalent convex loss function.
The loss function can then be defined as follows:

L(v, w) =α.headingloss(v, w)
+ β.distloss(v, w)
+ γ.velocityloss(v, w)

(4)



Contrary to the initial definition the optimal solution, (v∗, w∗),
is the velocity belonging to the search space, Vt, that mini-
mizes the loss function.

(v∗, w∗) = arg min
(v,w)∈Vt

(L(v, w)) (5)

3.3 Constraint The Gradient Descent The initial
DWA approach limits the search space by velocities reach-
able in dt time and that avoid obstacles. So we can’t ap-
ply a gradient descent until the optimal solution, because we
can’t be sure that the optimal solution is defined in the search
space.

Our approach includes this same concept of search space,
the gradient descent is realized until the solution belongs to
search space. The search space is defined from the current
robot speed. So that the current speed is included in this
space ((vt, wt) ∈ Vt+1). We can then include this notion of
search space by applying the gradient descent until we are
outside this space.

Fig. 2. Descent gradient constraint explication.

The following Figure 2 shows this limitation. The hashed
rectangle represents the search space at time t, the green point
(first point) represents the current speed where the gradient
descent starts, the yellow points are found by the gradient de-
scent, as shown the 5th point is outside the search space, so
we stop the gradient descent on the variable w, and place the
point on the boundary. Until the gradient descent is off the
side of v.

This restriction is based on the sign of the gradient as well
as the current value. From this information, we can restrict
the descent in the following way:
• ∂L(v) < 0 ∧ v > vmax set to v = vmax
• ∂L(v) > 0 ∧ v < vmin set to v = vmin
• ∂L(w) < 0 ∧ w > wmax set to w = wmax
• ∂L(w) > 0 ∧ w < wmin set to w = wmin
Once the descent is limited on an axis, then on this variable

is defined as non-trainable, so the descent evolves only on the
last remaining axis.

3.4 Loss Functions Definitions The following sub-
sections will introduce new definitions of sub-functions used
inside our loss function. The loss function reflects a relevant

solution (vi, w j) if the value of the loss function evaluated at
that velocity (vi, w j) is small.

3.4.1 Heading Loss Function As explained before
(section 2.2.1), the heading function allows us to quantify if
the computed velocity allows us to orient the robot in the
alignment of the target to visit.

From the angle with the target and the interval time dt used
we can define the w∗ the optimal angular velocity. By this
way we can define the distloss as:

headingloss(v, w) =
1
2

(w − w∗)2

=
1
2

(
w −

(
arctan

(
ygoal − yt

xgoal − xt

)
− θt

)
∗

1
dt

)2

(6)

Where (xgoal, ygoal) defines the position of the target, (xt, yt)
the position of the robot at the current moment and θt the cur-
rent orientation of the robot. From the loss function we can
deduce the gradient as:

∂headingloss

∂v
= 0 (7)

∂headingloss

∂w
=

(
w −

(
arctan

(
ygoal − yt

xgoal − xt

)
− θt

)
∗

1
dt

)
(8)

3.4.2 Dist Loss Function The distloss function is
used to move the robot away from obstacles around it. The
definition of this function is divided in two steps, first we
have to define the zones in which the robot can evolve safely
(i.e. does not collide with obstacles). From this area we can
define at a time t the angle allowing to place the robot in a
safety position close to the current robot angle.

Safe Zone Definition: This function is based on our
concept of safe zone. A safe zone represents area where the
robot can move safely. This approach takes inspiration from
Vector Field Histogram methods (1).

A safe zone is delimited by two angles where for all
θ ∈ [θbegin, θend] defining safe angles for the robot. The fig-
ure 3 shows three zones, represented by two hashed lines, the
crossed out rectangles represent the obstacles.

Fig. 3. Zone explication.



In first time, we create clear zones from LiDAR data. A
clear zone is defined by two angles, where there is no one
obstacle between them.

The safe zone represents the clear zone without collision
risk, i.e. safe zone includes robot dimension constraint to re-
move areas where the robot may collide with obstacles. Our
idea is to remove areas from the clear zone, in which the
robot collides with obstacles, called dead zone. The figure 4
represents these different zones. The dead zone depends on

Fig. 4. Variables of safe zone representation.

the variable d representing the distance expected between the
robot and the obstacle. We can define the variable as:

d = dradius + dε (9)

Where dradius the radius of the robot base and dε is a security
distance. The dead angle depends on the distance d expected
and the radius r between the robot and the obstacle. We can
define the θdead by the following relation:

θdead = 2 ∗ arcsin
(

d
2 ∗ r

)
(10)

Once the dead angles are calculated, we can deduct them
to define the safe zones. Which one zi defined by zi =

[θbegin, θend]
Loss Definition: Once the safety zones are defined, we

can define for the moment t, the optimal angle to avoid the
obstacles. These zones are defined from the robot’s LiDAR,
i.e. θrobot = 0 (the angles are relatives to the robot). The
optimal angle is the angle defined in safe zone closed to the
angle robot (θrobot). There are two principals cases, the θrobot
is defined outside any zones, ∀zi = [θbegin,i, θend,i], θrobot < zi.
In this case the optimal solution is the angle inside a zone and
close to the θrobot (Figure 5, case 01). Otherwise, the θrobot is
defined in a zone safe then the angle is the optimal angle (Fig-
ure 5, case 02 and case 03). We can generalize the approach
by the following relation:

θ∗ = arg min
θ∈

⋃
[θbegin,i,θend,i]

(distangle(θ, θrobot)) (11)

Let θ∗direct the absolute difference direct between θ∗ and
θrobot, otherwise, θindirect difference indirect. Then the θ∗f inal =

min(θ∗direct, θ
∗
indirect)

Fig. 5. Variables of safe zone representation.

distloss(v, w) =
1
2

(w − w∗)2

=
1
2

w − θ∗f inal

dt

2 (12)

from the distloss function we can define, the gradient of this
function as:

∂distloss

∂v
= 0 (13)

∂distloss

∂w
=

w − θ∗f inal

dt

 (14)

3.4.3 Velocity Loss Function Unlike the previous
functions, the velocityloss function does not require pre-
calculation, we can directly define the translation velocity
expected as the velocity optimal v∗, this velocity is defined
by the user.

velocityloss(v, w) =
1
2

(v − v∗)2 (15)

∂velocityloss

∂v
= (v − v∗) (16)

∂velocityloss

∂w
= 0 (17)

3.5 Loss function Based on the above definitions,
the final loss function, L, is defined as follows:

L(v, w) = α

∗1
2

(
w −

(
arctan

(
ygoal − yt

xgoal − xt

)
− θt

)
∗

1
dt

)2
+ β ∗

1
2

w − θ∗f inal

dt

2
+ γ ∗

(
1
2

(v − v∗)2
)



(18)

Then the gradient of the L function is defined by:

∂L
∂v

= (v − v∗) (19)

∂L
∂w

=

(
w −

(
arctan

(
ygoal − yt

xgoal − xt

)
− θt

)
∗

1
dt

)
+

w − θ∗f inal

dt

 (20)

4. Methodology Validation
We have tested and evaluated the proposed methodology

in virtual simulated environment and in real experimentation
on board a real mobile robot. Our solution has been imple-
mented on ROS†, in this way is easy to test our approach on
the Gazebo simulator and on real robot. The package uses
the Tensorflow library†† allowing to exploit gradient descent
definition as well as gradient descent optimizers.

4.1 Simulation Experimentation In the simulation,
the robot evolves inside a virtual world with obstacles. The
simulation uses a virtual robot Turtlebot, so it is possible to
exploit our simulation tests on a real robot afterwards. Be-
fore to start the simulation, we define a sequence of targets to
visit.

The Figure 6 shows the path realized by the robot during
the simulation, squares represent obstacles, dots represent
target to visit, and the path represents the positions of the
robot during the simulation. The robot uses the ROS package
including our gradient descent approach. Like the original

Fig. 6. Simulation experience, path made by the robot.

approach, we have to define in advance the parameters used
in the loss function. This assignment is done empirically. The
test has been realized with parameters defined in the table 1.
During the simulation, for t moment, a descent is computing
in order to define the optimal control. The descent resumes
until variables are inside the search space and that the descent
does not go up. The figure 7 shows the number of iterations
used per descent during the simulation.
† Official website: https://www.ros.org/
†† Official website: https://www.tensorflow.org/

variable w heading w dist w velocity learning rate
value 0.2 1.0 0.1 0.05

Table 1. Hyperparameters values

Fig. 7. Simulation experience, histogram of the distri-
bution of the number of iterations used per descent.

4.2 Real Robot Experimentation The integration of
our approach was designed to fit easily into Turtlebot robot.
Our integration was tested in a joint experiment with a mas-
ter student. In this experiment, the robot must reach a set
of points while avoiding obstacles, a drone must be able to
follow the robot’s trajectory using visual feedback.

The Figure 8 shows the setup of our experience, where blue
trashcans represent obstacles. The Figure 9 shows trajectory

Fig. 8. Drone follower experience, picture of the scene.

the robot during the experience, the crosses represent posi-
tions targets and dots represent obstacles.

5. Discussion

The first experience, inside the simulation, shows that our
solution can drive a robot in an environment with obstacles.
The robot managed to evolve to reach the different objectives
while avoiding the obstacles on its way. Like the original
approach, we defined the weights that best fit our situation,
and we defined the learning rate used by the gradient descent.



Fig. 9. Drone follower experience, drone and robot po-
sitions graphic.

The goal of our approach is to reduce the execution time, the
Figure 7 shows us the number of iterations used per descent
during the experience. We notice that in most cases, we only
need one iteration to control the robot.

In the initial approach, the search space is defined using
hyperparameters that define how to discretize the space. It is
difficult to be objective about the comparison, but for compar-
ison, we can use the default settings used by the ROS DWA
library†. In this case, the search space is defined by a space of
size 600, which means that the optimal solution requires 600
iterations per calculation. We can compare that our solution
avoids many operations compared to the optimal solution; in-
deed, according to our experience, only ≈ 1.33 iterations are
needed on average per calculation.

The second experiment proves that we can use our ap-
proach in a real situation with a real robot. This experiment
showed that the robot was able to move in different positions
while avoiding obstacles.

6. Conclusion

We tested a new approach to reduce the computation time
in the initial context of the dynamic window approach. This
approach has been successful because it has shown, in sim-
ulation and in real life, its efficiency and its ability to reduce
the computation time. We plan to implement this same solu-
tion in our solution for driving autonomous cars, where the
goal here is no longer to go to a set of given positions but to
keep the vehicle in the center of the lane while avoiding ob-
stacles on the lane. We must then redefine our loss function
according to this new objective.

6.1 Limitation As with the original approach, be-
cause of the hyperparameters, this strategy is rigid with re-
spect to the situation, depending on each situation optimal
weights can be set. The definition of the learning rate is also
done upstream, it is defined empirically with respect to a set
of tests.

In our approach, we define an optimal angle at time t to
avoid obstacles. This approach ignores solutions that are also
potentially good.

† DWA ROS documentation: http://wiki.ros.org/dwa local planner

6.2 Perspective Different studies (10) (3) propose to
vary the weights used by the objective function, we can apply
these studies to our loss function so that the weighting of the
weights is no longer dependent on a specific situation but has
the ability to adapt to its environment.

Our approach adds a new hyperparameter, the learning
rate. This variable is defined empirically by making several
tests, we can in an analogous way to the weights of the loss
function, define the learning rate by using information on the
environment. Another approach is to look if the loss function
evolves very little between two iterations. If the variation is
small, we can possibly make a slaving of the learning rate
according to the number of iterations performed during the
previous calculation. In this way, it will be possible to make
the number of iterations per calculation oscillate around a
new parameter fixed beforehand, defining an instruction of
the number of iterations to be carried out per iteration.

We can optimize the gradient descent by using optimizes (9),
for example we can use a gradient descent with momentum (8)

to accelerate the convergence.
Moreover, find a new way to define relevant solutions that

avoid obstacles (including a redefinition of the dist function),
providing a set of possible solutions rather than a single solu-
tion. However, this redefinition may well include the notion
of zones defined in this article.
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