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Abstract. In the perspective of an upcoming seasonally ice-
free Arctic, understanding the dynamics of sea ice in the
changing climate is a major challenge in oceanography and
climatology. In particular, the new generation of sea ice mod-
els will require fine parameterization of sea ice thickness and
rheology. With the rapidly evolving state of sea ice, achieving
better accuracy, as well as finer temporal and spatial resolu-
tions of its thickness, will set new monitoring standards, with
major scientific and geopolitical implications. Recent stud-
ies have shown the potential of passive seismology to mon-
itor the thickness, density and elastic properties of sea ice
with significantly reduced logistical constraints. For exam-
ple, human intervention is no longer required, except to in-
stall and uninstall the geophones. Building on this approach,
we introduce a methodology for estimating sea ice thickness
with high spatial and temporal resolutions from the analy-
sis of icequake waveforms. This methodology is based on
a deep convolutional neural network for automatic cluster-
ing of the ambient seismicity recorded on sea ice, combined
with a Bayesian inversion of the clustered waveforms. By ap-
plying this approach to seismic data recorded in March 2019
on fast ice in the Van Mijen Fjord (Svalbard), we observe
the spatial clustering of icequake sources along the shoreline
of the fjord. The ice thickness is shown to follow an increas-
ing trend that is consistent with the evolution of temperatures
during the 4 weeks of data recording. Comparing the energy
of the icequakes with that of artificial seismic sources, we
were able to derive a power law of icequake energy and to
relate this energy to the size of the cracks that generate the
icequakes.

1 Introduction

With the rapidly evolving climate in polar regions, collect-
ing field data is key for anticipating the major upcoming
changes related to global warming. In particular, sea ice is
an essential element of polar regions because of the role it
plays in phytoplankton production (Mayot et al., 2020) and
in several atmosphere–ice–ocean interactions. In the Arc-
tic, the extent of sea ice in summer undergoes an impor-
tant negative trend of about 12.6 % per decade, according
to the National Snow and Ice Data Center (https://nsidc.org/
arcticseaicenews/charctic-interactive-sea-ice-graph/, last ac-
cess: 21 March 2023). In the Antarctic, Parkinson (2019)
observed a weak positive trend of 1.5 % per decade. How-
ever, this positive trend should be mitigated by the outstand-
ing and unprecedented decline in 2015–2017, which shows
how vulnerable Antarctic sea ice is to both ocean warming
and changes in large-scale atmospheric winds (Eayrs et al.,
2019). This emphasizes the need for progress in research ad-
dressing the nature of these changes, their pace and their im-
pact at the global scale. In this matter, a finer and more ac-
curate description of the dynamics and thermodynamic pro-
cesses of sea ice is needed.

Given the challenging logistics for accessing polar re-
gions, most of the knowledge about sea ice extent and
concentration comes from remote sensing and in particu-
lar microwave-radar imagery, which provides altimetric in-
formation, which can be converted to ice thickness. Sea
ice thickness is an important parameter, for many reasons.
For example, thick ice filters light more than thin ice;
hence thickness influences phytoplankton production (Ar-
dyna et al., 2014). Thicker ice is also more resilient to ex-
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1328 L. Moreau et al.: Sea ice thickness tracked with artificial intelligence

ternal forcing such as swell or wind forcing (Dumont, 2022).
Hence in the research effort for monitoring the state of sea
ice, much focus is given to improving the spatial resolution
and accuracy of thickness estimations. Remote sensing meth-
ods rely on a conversion between the freeboard measurement
into an ice thickness estimation. These methods suffer from
a lack of in situ measurements to calibrate the estimations,
which can have several sources of errors, such as the pres-
ence of the snow cover, as well as uncertainties in the free-
board, in the densities of ice and snow, etc. (Garnier et al.,
2021).

Seismic methods have been shown to be good candidates
for evaluating sea ice properties at the local scale, with very
good accuracy and spatial resolution. The first seismic ex-
periments on sea ice date back to the late 1950s, where the
elastic constants and the thickness of sea ice were estimated
from the velocity of the seismic waves traveling in the ice
cover (Crary, 1954; Anderson, 1958; Hunkins, 1960). With
the emergence of digital signal processing, methods based
on Fourier analysis were made possible, allowing for more
accurate inversions of the signals to recover both the ice
thickness and its elastic properties (Yang and Giellis, 1994;
Stein et al., 1998). However, collecting seismic data on sea
ice has long remained too challenging for applications to sea
ice monitoring. With the miniaturization of electronic com-
ponents, the rapid progress in terms of battery life and the
era of seismic-noise interferometry (Shapiro and Campillo,
2004; Sabra et al., 2005), it has become possible to collect
data without the need of active, human-controlled sources
and then to process them remotely (Marsan et al., 2019).
Therefore, over the past decade, there has been a renewed in-
terest in seismic methods as a complementary means of mon-
itoring the thickness, density and elastic properties of sea ice
(Marsan et al., 2012; Moreau et al., 2020a, b; Romeyn et al.,
2021; Serripierri et al., 2022).

The missing link between data acquisition and long-term
sea ice monitoring is the ability to extract, in the continuous
recordings, the useful parts of the seismic waveforms from
the background noise, for automatic estimations of the sea ice
properties. In this paper we combine a deep learning method
for automatic clustering of the waveforms (Seydoux et al.,
2020) recorded on sea ice with Bayesian inference to locate
the position of thousands of icequakes while simultaneously
evaluating the ice thickness. We demonstrate the possibility
of generating maps of sea ice thickness and microseismic ac-
tivity, with a temporal resolution that is directly linked to the
number of icequakes recorded. In the specific configuration
at the fjord, icequake occurrences are driven essentially by
tide. On drifting ice, icequakes are generated by other mech-
anisms such as swell or ice motion, and many icequakes
are also present in the ambient seismic field (Moreau et al.,
2020b). With hundreds of icequakes recorded every day, a
daily temporal resolution can be achieved. We also use the
energy information to calculate the scaling law of icequakes
in terms of their released energy.

2 Instruments and methods

2.1 Seismic array

In a thin structure such as sea ice, the seismic wavefield is
multiply reflected at the upper and lower interfaces of the ice.
These reflections interfere constructively to produce guided
modes that propagate in the elongated direction of sea ice.
When the product of the ice thickness by the frequency is
larger than 1000 Hz m, the fundamental modes co-exist with
higher-order modes in the wavefield (Moreau et al., 2017).
Here, we restrict our analyses to frequency× thickness val-
ues, where only the fundamental modes are propagating. We
use the terminology introduced in Moreau et al. (2020a) for
referring to the following three modes:

– the quasi-Scholte mode (QS), also known in the low-
frequency regime as the flexural gravity wave;

– the fundamental quasi-symmetric mode (QS0), also
known in the low-frequency regime as the longitudinal
wave;

– the fundamental shear-horizontal mode (SH0), which
produces shear-horizontal motion.

The QS mode is highly dispersive at low frequencies;
hence seismic signals recorded in sea ice away from the
source are distorted. It is noteworthy that the SH0 mode is
not dispersive and that the QS0 becomes dispersive only at
higher frequencies. An important property of guided-wave
propagation is that given a set of ice mechanical properties,
there is a direct relationship between the dispersion of the
waveforms, the waveguide thickness and the source–receiver
distance. By recording the seismic wavefield in sea ice, it is
therefore possible to recover the structural information of the
ice. In the frequency regime of interest here, only the QS
mode is dispersive, and it has most of its energy on the ver-
tical component of the displacement, while the QS0 and SH0
modes are not dispersive and have energy mainly on the hor-
izontal components of the displacement.

To record the seismic wavefield in sea ice, an experiment
was conducted on fast ice in Svalbard (Norway), in a specific
part of the Van Mijen Fjord called Lake Vallunden (Fig. 1a).
This part of the fjord is surrounded by moraines and can
therefore be regarded as a “lake connected to the fjord”, with
a depth of about 10 m (Marchenko and Morozov, 2013). A
dense array of 247 geophones was deployed and left to record
seismic noise for 1 month. For a detailed description of the
dense array, we refer the reader to Moreau et al. (2020a). In
the present study, however, we use only five geophones of
the dense array, as shown in Fig. 1b as stations Si (i = 1, 2,
. . . , 5). Fast ice in this part of the fjord was continuous, with
cracks located for the most part along the shoreline, which
indicates that they are likely tide cracks.

The data in this paper were recorded using FairFieldNodal
Zland three-component geophones. These all-in-one sensors
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Figure 1. (a) Map of the area where the seismic array was installed (black squares) on Lake Vallunden, Svalbard. It is naturally bounded
by moraines and connected to the Van Mijen Fjord by a small channel. The facilities of Sveagruva are located about 1.5 km west of the
deployment. (b) Zoom on the five seismic stations (Si , where i = 1, 2, . . . , 5) used to record the ambient seismic field. Arrows indicate the
positions of ice drillings (ID). ID1 was performed on 1 March, giving a thickness of 62 cm; ID2 and ID3 were performed on 26 March,
giving thicknesses of 70 and 73 cm.

have an internal battery, a built-in GPS and flash memory to
store the data, allowing for several weeks of autonomous and
continuous recording, without the need of external cables.
They have a cylindrical geometry of about 17 cm in height
and 12 cm in diameter and are mounted on a detachable
spike. They were installed directly in the ice without their
spike. To maximize the coupling, a milling tool was specif-
ically designed to drill the ice at the diameter of the nodes.
The snow was removed prior to drilling holes, and geophones
were installed in the holes at about half their height. We cov-
ered them back with snow to insulate them in view of pre-
serving their battery life. At the time of the deployment, the
internal temperature of several nodes was measured, before
and after covering them with snow, showing an increase from
−21 to −16 ◦C.

FairFieldNodal Zland three-component geophones have a
flat frequency response down to their eigenfrequency of 5 Hz.
We recorded the data with a sampling frequency of 1000 Hz
(Moreau and RESIF, 2019), but in order to reduce the com-
putational cost of the present study, data were downsam-
pled at 250 Hz. Conversion of the raw data into a miniSEED
(Standard for the Exchange of Earthquake Data) format was
obtained using the Fairfield software. Instrument response
deconvolution is not necessary for our methodology and was
therefore not applied. Data are expressed in millivolts but
could be converted to velocity by dividing by the propor-
tionality factor of 89 V m−1 s−1 and further converted to dis-
placement by integration with respect to time.

2.2 Automatic clustering of the waveforms

In Moreau et al. (2020b), we introduced an approach based
on a Bayesian inversion of the icequakes waveform to re-
cover the ice thickness while simultaneously relocating the
source position, after the Young’s modulus and Poisson’s ra-
tio of the ice were estimated from noise interferometry. This
method was validated on a few icequakes recorded in fast ice
and in pack ice. In this paper we are using this approach to
conduct a systematic analysis of the thousands of icequakes
recorded at Lake Vallunden during the 1-month experiment.

Figure 2 shows 24 h of recording on 11 March 2019, at
station S1 (see Fig. 1b). This typical recording exhibits var-
ious types of signals, including thousands of icequakes with
several orders of magnitude of energy, long-lasting transients
and background noise. Some waveforms are also related to
anthropogenic activities. Therefore, the first processing step
consists of extracting all icequakes from the recordings. Tem-
plate matching is a common processing method for detect-
ing similar waveforms in continuous recordings. However,
although icequakes may look similar, their propagation in
sea ice is accompanied by a strong dispersion of the quasi-
Scholte mode. Hence, each combination of ice thickness and
propagation distance results in a different waveform. For this
reason, we use the scatseisnet algorithm, introduced by
Seydoux et al. (2020), and we apply this clustering algorithm
to the three components of the displacements recorded at S1.

The scatseisnet algorithm is inspired by deep learn-
ing and automatically clusters segments of seismic data in
continuous seismic records at a unique station. It combines a
deep scattering network (Andén and Mallat, 2014) to trans-
form the seismic waveforms into a relevant data space to
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Figure 2. The three 24 h waveform components of the ambient seismic field recorded on fast ice in Svalbard on 11 March 2019. The wavefield
is very rich and composed of icequakes with different orders of energy magnitude, transients (see the zoomed area on the vertical channel)
and anthropogenic activities (between 08:00 and 17:00).

identify relevant features suitable for clustering. The most
relevant features are then extracted from the output of the
deep scattering representation with an independent compo-
nent analysis (Comon, 1992). A summary of these process-
ing steps is given in Appendix B.

This strategy is applied on the segmented seismic time se-
ries, with a fixed window size of a few times the duration
of the events of interest (see, e.g., Steinmann et al., 2022,
for more information). For every signal segment, we obtain
20 real-valued features out of the independent component
analysis. We finally use a hierarchical clustering approach
to identify clusters of signal segments. By adjusting the dis-

tance threshold of the dendrogram (ward distance), we con-
trol the final number of clusters. A smaller distance implies
a larger number of clusters. In the present case, apart from
the transient waveforms lasting several minutes, the typical
duration of the waveforms in our recording is of a few sec-
onds. Since this study does not focus on the transient sig-
nals, we use a 40 s long sliding window with a 20 s overlap.
We represent the hierarchical clustering output in the form
of a dendrogram as in Fig. 3a, for data collected at station
S1. This clustering would not change if applied to another
stations, which is one of the advantages of using a deep scat-
tering network. With the threshold distance indicated in the
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Figure 3. (a) Hierarchical representation of the ambient seismic field after the scatseisnet algorithm was applied to the 27 d of contin-
uous recording at station S1. A total of 6 families (shown as different colors) and 30 clusters are categorized. For each sub-family: (b) cumu-
lated duration of the waveforms, (c) calendar occurrence, (d) time of day of occurrences and (e) spectrum of the waveforms. (f) Tide chart at
the Ny-Ålesund station (∼ 160 km away from Lake Vallunden).

figure, we identify six families of signals, represented with
different colors.

The family with clusters referenced 0 to 7 (Fig. 3a) ac-
counts for about 30 % of the dataset (Fig. 3b). Figure 4a
shows 10 waveforms randomly sampled from cluster 0. We
see that this cluster contains clean icequakes with a very
good signal-to-noise ratio (SNR). So do the other six clus-
ters of the first family. The icequakes have calendar occur-
rences every day of the deployment but are more frequent
between 27 February and 13 March and then between 21 and
25 March (Fig. 3c). It is noteworthy that this is consistent
with the tide chart shown in Fig. 3f and also with the fact
that spring tides occurred on 6 and 21 March, while a neap
tide occurred on 13 March. Icequakes occur at all times of
the day with the same temporal distribution, except around
09:00, where occurrences slightly decreased (Fig. 3d). The

decreased-occurrence rates in the latter half of March could
be due to the thickening of the ice (∼ 25 % thickness in-
crease).

Figure 3e indicates that the signals have a frequency con-
tent ranging between 1 and 50 Hz. To be more specific, on the
vertical channel, dominated by the QS mode, the amplitude
of the spectrum of icequake waveforms remains (on average)
over −30 dB between 1 and 35 Hz, with a peak value around
8 Hz. On the horizontal channels, where the QS0 and SH0
modes are dominant, the spectrum remains over −30 dB up
to 50 Hz.

Although some icequakes may be the consequence of
thermomechanical forcing (Olinger et al., 2019), it is likely
that the majority are tidal icequakes. The temperature log can
be extracted from the Sveagruva weather station (SN99760),
located 2 km west of the experiment location. Data for this
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Figure 4. (a) Random waveforms extracted from cluster 0, which contains mainly clean icequakes. (b) Random waveforms extracted from
cluster 27, which contains mainly signals from anthropogenic activities. Black: vertical component, blue: axial component, red: transverse
component of displacement.

station are available at https://seklima.met.no/hours/air_
temperature/custom_period/SN99760/en/2019-02-27T00:
00:00+01:00;2019-03-26T23:59:59+01:00 (last access:
21 March 2023). These temperatures are shown in Fig. 5.
The absence of a periodic pattern in temperature variations
suggests that tides have more effect on the generation
of icequakes than changes in temperature. The majority
of icequakes occur within a period of 24 h (Fig. 6). This
periodicity can also be seen in Fig. 3c, especially between
1 and 15 March. One would expect the semidiurnal tide
(10–20 cm) to reflect in the periodicity of the icequakes, but
the specific geometry of the moraines around the experiment,
together with the small channel that connects it to the fjord,
generates some nonlinear effects that cause the tide in Lake

Vallunden to be asymmetric (Marchenko and Morozov,
2013). This could explain why occurrences are dominated
by a period of 24 h instead of 12 h.

The family with clusters referenced 26 to 29 accounts
for about 13 % of the dataset. Figure 4b shows 10 wave-
forms randomly sampled from cluster 27. The waveforms
are more complex and include many impulsive events, some
noise, repeating events and events that last up to 15–20 s.
The waveforms in this family occur mostly during three
sequences. The first sequence is between 27 February and
2 March, when we went into the field to deploy the geo-
phones and performed field experiments, including impulsive
sources, sweep sources and snowmobile driving. The sec-
ond sequence is between 5 and 16 March, when a team of
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Figure 5. Air temperature recorded during deployment at the Sveagruva weather station (SN99760, https://seklima.met.no/hours/air_
temperature/custom_period/SN99760/en/2019-02-27T00:00:00+01:00;2019-03-26T23:59:59+01:00, last access: 21 March 2023), located
about 2 km west of the experiment. Temperatures remained between −30 and −10 ◦C until 18 March and then remained essentially between
−10 and 0 ◦C until the end of deployment, which is consistent with the dynamic of ice thickness shown in Fig. 7, which exhibits a sharp
increase between 27 February and 16 March and then stabilizes.

Figure 6. Frequency of icequake occurrences, obtained by discrete
Fourier transform of the dates of all icequakes in clusters 0–7 and
normalized with the maximum amplitude in the resulting spectrum.
The majority of icequakes occur within a period of 24 h and are
therefore most likely linked to tidal forcing.

researchers and students were conducting field experiments
about 150 m northeast of station S3 (Marchenko et al., 2021).
The third sequence is between 25 and 27 March, when we
went back for some more field experiments before remov-
ing the geophones. For a list of the exact times (coordinated
universal time, UTC) of the impulsive and sweep sources
in sequences 1 and 3, please refer to Table A1 in Moreau
et al. (2020a). All sequences occur between 08:00 and 18:00
(UTC), with a quieter time around 12:00. Hence we conclude
that this family contains waveforms associated with anthro-
pogenic activities.

The clusters of the other families contain either icequakes
with a low signal-to-noise ratio (SNR) in clusters 17–24 or
waveforms that correspond to noise or that do not exhibit an
obvious correlation with surrounding activities. In the fol-
lowing, cluster 27 will be used for (i) identifying events
that correspond to the artificial impulsive sources reported
in Moreau et al. (2020a) and (ii) calculating the associated
source energy. Then, the energy of these artificial sources
will be used to calibrate the energy of the icequakes extracted
from clusters 0–7.

3 Results

3.1 Icequake inversion

In this section, the methodology introduced in Moreau et al.
(2020b) is applied to all waveforms in clusters 0 to 7 and
also to those in cluster 27. This represents a total of 5350
icequakes to invert for ice thickness, source coordinates and
source activation time. The other clusters were not analyzed
further, for two reasons: first because the waveforms in the
other clusters have lower SNR and second for computational
time economy. Inversion is based on the Markov chain Monte
Carlo (MCMC) algorithm, which requires tens of thousands
of iterations for proper sampling of the parameter space. For
this paper to be self-consistent, we briefly recall the inversion
method, and the reader is invited to refer to Moreau et al.
(2020b) for the practical details of the implementation. The
method consists of the following steps:

1. Given a set of parameters for source position around
the array (latitude and longitude), source activation time
and ice thickness, generate the synthetic waveforms of
the QS mode at the geophones. Synthetic waveforms are
generated based on a Ricker wavelet that is propagated
in the ice using the analytical, low-frequency asymp-
totic model by Stein et al. (1998), with the following
ice mechanical properties: Young’s modulus= 3.8 GPa,
Poisson’s ratio= 0.28 and density= 910 kg m−3 (Ser-
ripierri et al., 2022). This model cannot account for the
finite water depth of about 10 m, like, for example, the
model by Romeyn et al. (2021) can, but by comparing
both models, we have checked that this has a negligible
effect at the frequencies of interest.

2. Replace the amplitude of the synthetic signal spectrum
with that of the signals recorded at the geophones. This
is meant to account for the source mechanism in a sim-
ple way.

3. Compute the time–frequency spectra of the QS mode
in the synthetic and recorded waveforms, and calculate
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the cost function, defined as the L2 norm between these
spectra.

4. Iterate with an MCMC scheme.

It is noteworthy that, although we make use of the three
displacement components for clustering the waveforms with
the scatseisnet algorithm, in the inversion process we
only use the vertical displacement, where the QS mode is
measured. The other two modes, measured on the horizontal
displacement, are not sensitive to the ice thickness: the SH0
mode is not dispersive (regardless the frequency), and the
QS0 is not dispersive at the considered frequency× thickness
values. These modes are, however, sensitive to the density
and elastic properties of the ice. It would therefore be pos-
sible to invert all parameters simultaneously by including
the three modes in the cost function, but the waveforms of
the QS0 and SH0 modes are not always clearly separated in
time. Hence making the inversion process automatic requires
a different inversion strategy, such as full waveform inver-
sion, which is much more computationally expensive.

Given the field conditions at the deployment site, the pa-
rameter space for the MCMC algorithm to explore is such
that

– the position of sources is within a distance of 1 km
around station S1,

– ice thickness is comprised between 0.2 and 1 m,

– the source activation time is within a 12 s window
around the icequake recording time to account for prop-
agation time between the sources and the geophones.

Each inversion provides a probability density function for
the parameters. After all inversions were performed, a quality
check was applied to keep only those for which the standard
deviation of the source position is less than 20 m and that
of the ice thickness is less than 2 cm, resulting in 1790 se-
lected inversions. This does not mean that the non-selected
inversions cannot be exploited, but we wanted to keep the
best possible inversions while retaining a sufficient number
of data for statistical analyses.

Figure 7a shows the map of the inversions that meet the
quality threshold. One can see that sources are located essen-
tially along the shoreline, where most of the stress is concen-
trated. This is consistent with previous reports on the dynam-
ics of tidal cracks. See for example the observation in the Van
Mijen Fjord by Caline and Barrault (2008).

The artificial impulsive sources near stations S3 and S5 are
indicated with black arrows. These belong to cluster 27, as-
sociated with anthropogenic activities. These sources were
generated by jumping onto the ice. Another set of artificial
sources appears inside the area marked with a black square.
These sources were realized during the abovementioned field
experiments that took place between 5 and 16 March. Part
of these experiments consisted of floating-ice-block colli-
sions with consolidated ice. The collisions were realized after

Marchenko et al. (2021) cut a 5 m wide× 10 m long× 0.8 m
high floe from the consolidated fast ice in the fjord. The floe
with a mass of 39 t was then pulled with ropes to enter into
collision with the surrounding fast ice. We checked with the
authors of Marchenko et al. (2021) that the time of these
events, which was extracted with the scatseisnet algo-
rithm, match the time of the collisions experiments. Inter-
estingly, these events belong to cluster 0, which means that
the scatseisnet algorithm clusters the collisions in the
family of icequakes instead of clustering them in the fam-
ily of anthropogenic activities (cluster 27). The waveforms
in clusters associated with anthropogenic activities have
most of their energy on the vertical-displacement component
(Fig. 4b), while those associated with icequakes have more
energy on the horizontal-displacement components (Fig. 4a).
Hence we deduce that the recorded icequakes are generated
by source mechanisms dominated by traction/compression
motion similar to the collision source mechanisms, which is
quite different from dislocation mechanisms encountered in
the fault zone for earthquakes. If these icequakes had simi-
lar dislocation mechanisms, anti-symmetric motion (with re-
spect to the middle plane of the ice layer) would be generated
and the energy would mainly go to the vertical-displacement
component.

Figure 7a also shows, in color, the range of thicknesses as-
sociated with the 1790 selected inversions. Different thick-
nesses appear from identical positions, indicating that ice
thickness has increased between the beginning and the end
of the deployment. This is more visible in Fig. 7b, where the
inverted thicknesses are represented versus time. On average,
the thickness increased by about 15 cm, which is consistent
with the increase reported in Serripierri et al. (2022), but dis-
persion is more significant. This is because, in the present
paper, ice thickness is evaluated from all directions along
the shoreline and covers a much larger range of distances
from the stations (from 5 to 1000 m) than in Serripierri et al.
(2022), where it is evaluated along two lines of receivers ori-
ented north–south and east–west, with both lines having a
length of 50 m. It is noteworthy that thickness estimates us-
ing only icequakes that originate from the same region and
at a similar date have a significantly reduced dispersion that
is consistent with the standard deviation of each individual
inversion, as shown in Fig. 8.

The ice thickness increase was also confirmed by ice
drillings on 1 and 25 March. There is a sharp increase in
thickness during the first 2 weeks, followed by a stabilization
during the remaining days. This is consistent with the tem-
perature shown in Fig. 5, which shows variations between
−15 and −30 ◦C in the first half of March, while tempera-
tures rose between −10 and 0 ◦C in the second half.

It is noteworthy that Fig. 7a represents all the recorded ice-
quakes during the 27 d of geophone deployment. However,
given the number of icequakes recorded every day, it could
be possible to generate a similar map for each day, hence
achieving near-real-time maps of sea ice thickness evolution.
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Figure 7. (a) Map of the position of the inverted icequakes. The color bar indicates the corresponding ice thickness (with bounds on the
thinnest and thickest values found). This thickness represents an average value along the paths between the icequake source and the five
geophones. The size of the circles is proportional to the icequake energy. The black arrows indicate the position of the vertical impulsive
sources, and the black square is that of the horizontal impulsive source. (b) Ice thickness versus date, obtained from icequake inversions
(black dots) and from waveforms with anthropogenic sources (red circles). The squares indicate values found by drilling the ice. We note a
sharp increase in thickness during the first 2 weeks of deployment, followed by a stabilization during the remaining days, which is consistent
with the rise in temperatures shown in Fig. 5.

Figure 8. (a) Same as Fig. 7a, restricted to icequakes originating only from directions marked as [1], [2] and [3]. (b) Same as Fig. 7b, for the
icequakes in the three groups shown in Fig. 8a: + for group [1], ◦ for group [2] and � for group [3]. Inversions originating from the same
region and at a similar date have a range of thicknesses that is consistent with the standard deviation of each individual inversion (i.e., 2.5 cm).
When comparing all directions, however, the range of thicknesses is on the order of 20 cm.

3.2 Energy of the artificial sources

Estimating the energy of the icequakes requires information
about the decay of amplitude between the source and the re-
ceivers due to geometrical spreading, energy leakage in water
and air, and the influence of snow. This can be achieved by
exploiting the waveforms from the jumps on the ice. To this
end, we proceed with the following steps:

1. Isolate inversions for which the source position is clos-
est to stations S3 and S5, where the jumps were made.

2. Calculate the corresponding energy at each geophone:
E
Si
j =

∫
T
(UZ(t)

2
+UE(t)

2
+UN (t)

2)dt , where T is the
duration of the waveform and UZ , UN and UE are the
vertical, northward and eastward displacement compo-
nents, respectively.

3. Fit the energies versus the distance r to obtain the en-
ergy decay function Ej(r). The amplitude of a guided
wave in plate-like structures can be described with Han-
kel functions; hence we fit the square of a Hankel func-
tion to approximate this decay.
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4. Extrapolate the fitted energy decay function up to the
largest distance between the icequakes and the geo-
phones.

Jumps on the ice were performed from a height of 1 m by a
person weighing 85 kg, so the kinetic energy of the jumps is
about 850 J. Hence Ej(r) can be used to estimate Es(r = 0),
the energy of the other sources, from Es(r(Si)), the energy
measured from the waveforms at geophone Si , located at a
distance r(Si) from the source, such that

Es(r = 0)=
Es(r(Si))

Ej(r(Si))
× 850. (1)

For example, applying this formula to the ice floe colli-
sions, northeast of station S3 (see the black square in Fig. 7a),
we are able to estimate the energy of these sources to be on
the order of 40 kJ (Fig. 9a). Given the weight of the ice floe,
39 t, the speed of the floe at the impact should be of about
1.4 m s−1, which is walking speed. Of course, this approach
is only a “first-order” estimation of the energy because it
does not account for all the physics of the problem, such as
source mechanism, source directivity and scattering. How-
ever, it provides interesting statistics about the scaling law of
the icequakes in sea ice.

3.3 Energy of the icequakes

Here we apply Eq. (1) to calculate the energy of the 1790
icequakes selected out of the 5350 inversions. The results
are shown in terms of the energy versus date in Fig. 9a and
in terms of the scaling law of the energy in Fig. 9b. Ener-
gies vary between less than 1 J and about 40 kJ. By com-
parison with earthquakes energy, this corresponds to energy
magnitudes between −3.7 and −0.2, where the conversion
was obtained with the energy magnitude formula (Choy and
Boatwright, 1995) of magnitude= 2/3log10(energy)− 3.2.

In the artificial ice floe collisions, the impact surface is
5 m× 0.8 m= 4 m2 and causes an energy release of about
40 kJ. The average icequake energy is about 500 J, which is
2 orders of magnitude weaker. This suggests that the majority
of icequakes are generated by cracks that are a few centime-
ters long, but there are also icequakes generated by cracks
several meters long.

The scaling law of the icequakes was calculated follow-
ing Clauset et al. (2009), which gave a power law with a
slope of −0.9 between 400 and 80 000 J, which is validated
by a Kolmogorov–Smirnov test (Massey, 1951) that gives a
p value of 0.078. This is a bit larger than for earthquakes,
for which the typical scaling law in terms of energy has a
slope of −0.66 (see above in the Gutenberg–Richter law).
However, the comparison is only indicative and serves no
other goal, since very little is known about sea ice disloca-
tion mechanisms, which are presumably quite different than
those of fault zones.

4 Discussion

The forward model used for data inversion assumes a con-
stant ice thickness, which is not the case in reality. Our es-
timations of ice thickness represent an apparent value that
we assume to be an average between the icequakes source
and the five geophones. It is noteworthy that this assump-
tion should not hold if the ice thickness varied monotonically.
In that case, without a forward model that accounts for lin-
ear thickness variations, for example in a free plate (Moreau
et al., 2014), the apparent ice thickness would be biased to-
wards the value directly under the receivers (Romeyn et al.,
2021), due to adiabatic mode propagation. However, it is very
unlikely that there was a monotonic thickness increase (or
decrease) at the place of the experiment, although it is not
possible to verify without ground-truth values. More likely
would be that there were random thickness variations of a
few centimeters between the shoreline and the geophones.
Nonetheless, the path between the source and each geophone
is not the same, so the ice thickness is likely to be slightly
different from one path to another. This is thus the reason for
the assumption that the apparent thickness is an average.

This model, like all models based on plate theory, also suf-
fers the limitation of being restricted to low frequencies. On-
going comparisons between inversions using this model and
a full numerical model based on the spectral-element method
(Cao et al., 2021) suggest that using a model based on plate
theory underestimates the ice thickness by a few centimeters,
as soon as the frequency band of interest includes frequencies
above 10 Hz, for an ice thickness of 1 m. Moreover, these nu-
merical investigations also reveal that the snow layer, if not
accounted for in the model, leads to some estimations that
reflect “apparent values” for the ice thickness and mechani-
cal properties (Moreau et al., 2020a). In particular, the snow
layer introduces a gradient of porosity through the thickness
which makes the flexural wave velocity lower, resulting in
potential underestimation of the ice thickness.

These are, however, preliminary results, and the investiga-
tion is still ongoing. The full study will be presented in detail
in a separate paper. These limitations to the model (plate the-
ory and not accounting for snow), together with the spatial
heterogeneity of the ice thickness in the field, explain why
the thickness estimations appear to be slightly less that those
measured by drilling the ice (Fig. 7b).

Both the abovementioned issues will be tackled in future
developments by using the relocated icequakes as sources
for a tomographic inversion of the thickness, for example
based on full waveform inversion strategies with a spectral-
element-based forward model, which also accounts for the
snow layer.

Currently, we are only making use of the vertical-
displacement component in this type of inversion. However,
by making use of the horizontal-displacement components,
it will be possible to also recover and monitor Young’s mod-
ulus and Poisson’s ratio, instead of using a constant value.
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Figure 9. (a) Energy versus date of all inverted icequakes (black dots) and artificial sources (red circles). (b) Scaling law of the icequake
energy.

As demonstrated in Serripierri et al. (2022), these parameters
can be constrained by exploiting the waveforms of the other
two guided modes, QS0 and SH0, for which polarization is
on the horizontal-displacement components. This could be
useful regarding drifting pack ice for long-term monitoring.
In the present study, using a constant value for these param-
eters is, however, a valid assumption, since these have been
shown to remain constant around E = 3.8 GPa and ν = 0.28,
during the 27 d of deployment (Serripierri et al., 2022).

A particularly appealing aspect of this approach is the abil-
ity to adapt the frequency of investigation to the required spa-
tial resolution. The wavelength of the seismic modes guided
in the ice layer depends on the product of the ice thickness
by the frequency. It typically varies from a few meters around
100 Hz m to a few hundred meters around 0.1 Hz m. Hence,
on drifting pack ice, by adjusting the size of the geophones
antenna, the spatial resolution of the maps can vary from tens
of meters to a few kilometers.

The ideal monitoring conditions in the fjord allow for the
development of such methodologies, in view of a transfer to
the open Arctic ocean. In Moreau et al. (2020b), the inversion
method was successfully applied to a few icequakes identi-
fied “manually” in continuous recordings on drifting pack ice
in the Arctic. To transfer the methodology of this paper in a
less favorable environment, the preferred approach is to join
other scientific projects on sea ice, for example during ice
camps on fast ice or on board an icebreaker. This is planned
in the coming 2 or 3 years. Another possibility, dedicated
to long-term monitoring, is to make use of geophones that
can telemeter the continuous recordings via satellite, such as
those used in Marsan et al. (2019) to record seismic noise
on drifting ice floes. However, this requires a large budget,
which for the most part is dedicated to the use of satellite
bandwidth.

The thermomechanical processes that generate the ice-
quakes recorded in the fjord are likely a combination of ther-

mal fracture such as those observed in lakes (Ruzhich et al.,
2009) or in glaciers (Podolskiy et al., 2019) and mechanical
forcing due to tide, as observed in glaciers (Barruol et al.,
2013). The 24 h periodicity of icequakes, as shown in Figs. 3
and 6, is not correlated with temperature variations, which
suggests that the latter effect is dominant compared to the
former. The range of energy of the recorded icequakes is
consistent with that reported in frozen lakes, for example in
Ruzhich et al. (2009) or Kavanaugh et al. (2018).

5 Conclusions

We conducted a systematic analysis of the microseismicity
recorded on fast ice in Svalbard. The analysis consists of a
two-step processing of the seismic data. First, a deep learn-
ing algorithm is used for clustering the waveforms into dif-
ferent families of signals: icequakes, background noise, an-
thropogenic noise, etc. Clusters containing thousands of ice-
quakes were identified, from which the waveforms of the
QS mode were extracted. Then, Bayesian inversion was ap-
plied to these waveforms to determine the position of the
seismic sources and the average ice thickness between the
sources and the geophones. Icequakes were found to orig-
inate from all along the shoreline of the fjord, where me-
chanical stress due to tides induces cracking, most of which
occurs with a recurrence of about 24 h. Our analyses also re-
veal that the recorded icequakes are likely to be generated
by source mechanisms that are quite different from dislo-
cations encountered for earthquakes because the energy of
the icequakes is mainly on the horizontal-displacement com-
ponents, which are dominated by the SH0 and QS0 modes.
However, these modes are excited by traction/compression
motion, which is not compatible with the anti-symmetric mo-
tion of vertical dislocations.
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The ice thickness was found to increase by about 15 cm
during the first 2 weeks of deployment, which is consistent
with the low temperatures in the first half of March 2019 and
confirmed by ice drillings at the beginning and the end of
March. Finally, using artificial impulsive sources, we were
able to determine a scaling law of the icequake energy, rang-
ing between 1 J and 30 kJ and exhibiting a log-normal distri-
bution with slope −0.9.

In a future work, by including the waveforms of the three
guided modes instead of using only that of the QS mode, it
will be possible to exploit the whole content of the recordings
via full waveform inversions strategies, in order to generate
maps of sea ice parameters with a spatial resolution of tens
of meters.

These data will also be very useful to train a deep neural
network able to instantly estimate both the source position
and the ice properties, without the need to go through a com-
putationally expensive MCMC inversion, enabling the possi-
bility of real-time in situ estimation of the ice thickness and
cracks.

Appendix A: The scatseisnet strategy

The scatseisnet algorithm operates with the processing
steps shown in Fig. A1. These steps are briefly detailed in
this section.

A1 Deep scattering network

A scattering network is a deep convolutional neural net-
work with wavelet filters. Although a thorough description of
the deep scattering network is provided in Andén and Mal-
lat (2014), we provide a succinct description here for self-
consistency of this paper. Considering the continuous three-
component input data segment u(t) ∈ R3, the scattering co-
efficients S(`) of order ` are the result of a cascade of wavelet
convolutions and modulus operations, such as

S(`) (t,f1,f2, . . .,f`)= max
[t,t+dt]

∣∣∣φ(`) (f`)
?

∣∣∣. . . ? ∣∣∣φ(2) (f2) ?

∣∣∣φ(1) (f1) ? x

∣∣∣∣∣∣∣∣∣∣∣∣ , (A1)

where ? denotes the convolution operation; | · | is the modu-
lus; and φ(i)(fi) is the wavelet filter at the layer i of the scat-
tering network, with center frequency fi . Here fi refers to
one of the center frequencies of the layer i, which is defined
by the operator. While the authors in Seydoux et al. (2020)
implement learnable wavelet filters φ(i) with respect to the
clustering loss, we here directly use Gabor filters, as origi-
nally proposed in Andén and Mallat (2014) and implemented
in Steinmann et al. (2022) to allow for faster computations.
The maximum operator performs a pooling reduction over
the time interval [t, t + dt], allowing for reducing the com-
plexity carried by the waveform itself. We prefer it over the
low-pass filter operation originally proposed in Andén and

Mallat (2014) to maximize our change to make pulse-like
signals dominate the final representation.

A2 Scattering coefficients

The first wavelet transform provides a time frequency repre-
sentation of the input seismic waveform – namely a scalo-
gram – which is routinely used by seismologists. Thanks to
the modulus operation, the wavelet transform |φ(1) ? x| rep-
resents the envelope of the input signal as a function of time
in the frequency band of the wavelet filter φ(1)(f1) centered
around the frequency f1. The second-order wavelet trans-
forms perform a scalogram of every envelope provided by the
first-order wavelet transform. This second-order transform
provides information on the modulation of the signal’s en-
velope within different frequency bands and therefore allows
for discriminating signals with the same frequency content
but different temporal histories. Following Andén and Mal-
lat (2014), we use a maximum of two layers in the scattering
network, provided that the third layer slightly improves auto-
classification performance at a high computational cost.

A3 Independent component analysis

The number of coefficients generated by the deep scattering
network is large (a few hundred), meaning that the dimension
of the feature vector for every window is high-dimensional.
Although the dimension is large, the information provided
by the neighboring scattering coefficient is highly similar
in essence (Andén and Mallat, 2014). In order to reduce
the dimension, as well as inherently improve the computa-
tional performances, we extract the most relevant features
with an independent component analysis (Comon, 1992),
which solves the problem of factorizing the data matrix into
a source matrix, and a mixing matrix under the constrain that
the sources should be maximally independent.

A4 Agglomerative clustering

We finally use agglomerative clustering to identify clusters
in the data. By computing the linkage matrix, we form a den-
drogram (as represented in Fig. 3a). The dendrogram indi-
cates how clusters form as a function of the merging distance.
By defining an arbitrary threshold, we can obtain a varying
number of clusters. For more details, please consider reading
Steinmann et al. (2022).
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Figure A1. Computing scheme of the scatseisnet method. The seismograms are fed to a deep scattering network for extracting the
scattering coefficients. The most relevant features are extracted from the scattering coefficients with an independent component analysis.
Clusters are identified with an agglomerative-clustering technique.
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