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A B S T R A C T   

We report on the generation of two-octave mid-infrared supercontinuum in stock, unprocessed, large core 
chalcogenide fiber pumped by a fiber-based laser delivering 35 kW, 180 fs pulses at 4.53 μm.   

A compact and robust supercontinuum (SC) source in the mid- 
infrared (mid-IR) opens up new possibilities for applications such as 
molecular spectroscopy [1,2] and high resolution imaging [3,4]. Chal
cogenide fibers, which emit light up to ~18 µm when pumped in the 
mid-IR [5], appear to be the most mature platform to achieve the full 
potential of fiber-based SC sources in spectroscopic applications. The 
broadest mid-IR SC are obtained when the wavelength of the laser 
source is matched with the anomalous dispersion regime of the fiber. To 
address this, dispersion-engineered chalcogenide fibers are pumped by 
optical parametric systems tuned to the mid-IR [5,6]. An alternative 
approach consists in exploiting the low phonon energy of fluoride 
glasses to increase the emission wavelength of rare-earth-doped fiber 
lasers [7] with the overall goal to build a compact and robust all-fiber 
mid-IR SC. Along this line, SC generation was obtained in dispersion- 
engineered small mode area chalcogenide microwire pumped in the 
weak normal dispersion regime by sub-nanojoule femtosecond Ho3+- 
doped fiber laser at 2.8 µm [8]. Despite recent success in mode-locked 
operation of Er3+-doped fluoride fiber at 3.5 µm [9], the wavelength 
range above 4 µm is not covered by ultrafast fiber lasers. 

Using the soliton self-frequency shift (SSFS) effect originating from 
the intrapulse stimulated Raman scattering [10,11], we reported 
recently on the formation of mid-IR (~2900 – 3000 nm) pulses from 
various fiber-based laser systems emitting in the near-IR [12,13]. Along 
the same line, Robichaud et al. recently showed the generation of a 
supercontinuum up to 5 µm with a high peak power femtosecond source 
at 2.8 µm shifted to 3.6 μm by the SSFS effect [14]. In this communi
cation, we extend the same approach to the design of a fiber-based 
source of highly energetic femtosecond pulses (8.3 nJ, 179 fs) at 4.53 
µm and produce two-octave spanning SC by pumping a pristine, 11.4 µm 

core diameter, chalcogenide fiber with this fiber laser. 
The experimental setup is schematically depicted in Fig. 1a, while 

the spectra measured at various points within the fiber cascade are 
displayed in Fig. 1b. The input sub-picosecond pulse is converted into an 
ultrashort pulse centered at 2940 nm by nonlinear interactions in the 
two first fibers (see blue spectrum in Fig. 1b). From frequency-resolved 
optical gating (FROG) measurement, we deduced a pulse full width at 
half maximum (FWHM) duration of 86 fs, corresponding to nine optical 
cycles [13]. In order to extend the wavelength further into the mid-IR, 
we spliced the 26 µm ZBLAN fiber to another ZBLAN fiber with a core 
diameter of 14 µm and numerical aperture (NA) of 0.12 by means of a 
CO2 fusion-splicing machine. An average power of 230 mW was 
measured at the output of a 1.5 m long piece of 14 µm core ZBLAN fiber, 
corresponding to an insertion loss of 2 dB. The mode mismatch (mode 
field diameters of 32 µm and 19 µm at 3 µm, respectively) is expected to 
account for approx. 1.2 dB) while the effect of structural deformation is 
expected to account for 0.8 dB. 

Despite the power loss, the soliton was shifted to 3.43 µm as shown in 
Fig. 1b, green curve. The spectrum of the soliton was isolated by means 
of a 500 nm bandpass filter centered at 3.5 µm. We measured a soliton 
energy of 30 nJ. The characteristics of the soliton are well suited to 
further wavelength-shift in fibers with anomalous dispersion, higher 
nonlinear coefficient (smaller mode area) and broader transparency 
window such as fluoro-indate (InF3) glass singlemode fibers [15]. Then, 
the output of the 14 µm ZBLAN fiber was coupled by proximity to 7 m of 
InF3 fiber with a core diameter of 9.5 µm and NA of 0.3. The soliton was 
then further shifted to 4.53 µm (orange curve in Fig. 1b). The energy 
measured within the bandwidth of a 500 nm bandpass filter centered at 
4.5 µm was 8.3 nJ. We also measured the temporal profile of the laser 
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pulse at 3.95 µm by FROG. We slightly decreased the wavelength of the 
pulse to ensure proper SH detection by means of the spectrometer with a 
spanning range 900–2100 nm. Fig. 2a-b show the measured and 
retrieved FROG traces, respectively. The two traces are in good agree
ment, which is confirmed by the low rms error of the reconstruction of 
0.4% and the good agreement between the measured and reconstructed 
spectra overlaid in Fig. 2c. From the retrieved temporal intensity profile 
shown in Fig. 2d, we deduced a pulse FWHM duration of 179 fs (12 
optical cycles), which corresponds to a pulse peak power of 35 kW. The 
FWHM bandwidth of the pulse of 98 nm leads to a time-bandwidth 
product of 0.33, indicating that the sech2-shaped soliton is close to 
transform-limited. 

The possibility to generate mid-IR SC from such fiber-based source 
was explored using stock arsenic selenide photonic crystal fiber (Sele
nOptics). The fiber has a hole-to-hole spacing of 9 µm and a ratio of air 
hole diameter to hole-to-hole spacing of 0.4 making it singlemode at the 
wavelength of 4.53 µm. The core diameter is equal to 11.4 µm. The zero 
dispersion wavelength of the fiber is located at 4.8 µm. The chromatic 
dispersion at the wavelength of 4.53 µm is weakly normal (–8.8 ps.nm− 1. 
km− 1). The fiber sample is 30 cm in length. The fluoride fiber and the 
chalcogenide fiber were coupled to each other by proximity. Results are 
plotted in Fig. 1b, red curve. The SC spans two octaves from 1.7 µm to 
7.8 µm measured at − 20 dB of the PSD of the residual pump at 4.53 µm. 

From the PSD measured by the FTIR spectrometer and the indepen
dently determined total power of 20 mW over the whole SC, we deduce a 
PSD of –23.5 dBm.nm− 1 at λ = 6.9 µm, corresponding to a power of 69 
µW in 0.1% of the FWHM band around the wavelength of 7 μm and a 
photon flux of 2.47 × 1015 ph.s− 1 0.1 %BW− 1. Owing to the singlemode 
characteristic of the PCF at 7 µm we assume that the mid-IR beam 
emerges from the fiber with a radius of w = 4.7 μm, corresponding to an 
effective area of 70 µm2, a divergence angle of λ/(πw) = 0.47 rad, and a 
solid angle of 0.69 sr. The resulting brightness calculated at 6.9 µm is 
then 2.2 1019 ph s− 1 mm− 2 sr–1 0.1 %BW− 1, that is three orders of 
magnitude higher than that of third generation synchrotron source [16]. 

We have demonstrated the generation of two-octave spanning mid- 
infrared supercontinuum from a femtosecond fiber-based laser source 
at 4.53 µm. The performances of the source in terms of spectral 
coverage, brightness and temporal coherence facilitate the development 
of spectroscopic applications, which are currently confined to large 
synchrotron facilities. 
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Fig. 1. (a) Schematic of the setup used for the generation of fiber-based two-octave spanning mid-IR SC. HWP: half-wave plate, PBS: polarization beam splitter, F: 
focusing lens. The fibers are characterized by their NA, core diameter and length. (b) Spectra measured at four positions in the cascaded fiber system. The inset shows 
the near-field intensity distribution measured at the output of the chalcogenide fiber. 

Fig. 2. Results of FROG characterization of the solitonic pulse at the output of the InF3 fiber. (a) Measured and (b) retrieved FROG traces. (c) Spectral profiles 
retrieved from the FROG trace and measured with the FTIR spectrometer. (d) Retrieved temporal intensity (purple) and phase (orange) profiles. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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