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Abstract: Scheduling production is an important decision issue in the manufacturing domain. With

the advent of the era of Industry 4.0, the basic generation of schedules becomes no longer sufficient to

face the new constraints of flexibility and agility that characterize the new architecture of production

systems. In this context, schedules must take into account an increasingly disrupted environment

while maintaining a good performance level. This paper contributes to the identified field of smart

manufacturing scheduling by proposing a complete process for assessing the robustness of schedule

solutions: i.e., its ability to resist to uncertainties. This process focuses on helping the decision maker

in choosing the best scheduling strategy to be implemented. It aims at considering the impact of

uncertainties on the robustness performance of predictive schedules. Moreover, it is assumed that

data upcoming from connected workshops are available, such that uncertainties can be identified

and modelled by stochastic variables This process is supported by stochastic timed automata for

modelling these uncertainties. The proposed approach is thus based on Stochastic Discrete Event

Systems models and model checking techniques defining a highly reusable and modular process.

The solution process is illustrated on an academic example and its performance (generecity and

scalability) are deeply evaluated using statistical analysis. The proposed application of the evaluation

process is based on the technological opportunities offered by the Industry 4.0.

Keywords: robustness evaluation; production scheduling; uncertainties; discrete event systems,

decision making; Industry 4.0

1. Introduction

The expectations of industries are increasing: to manufacture in shorter and shorter
time frames, with higher and higher quality and with the possibility to customize
any product on demand. In this context, industries seek to define optimal production
schedules, i.e., to find the solution that defines the start and completion dates of tasks,
and the allocation to dedicated resources. Approaches to scheduling, which are generally
sought to be optimal in terms of product set, production time or resource utilization, are
the subject of a large literature, particularly from operations research. These different
approaches are generally carried out in a predictive manner by considering a stable
environment in terms of demand and resources. Historically, approaches to optimal
scheduling have been extensively discussed in the literature, especially in the operational
research (OR) community [1]. This strong assumption on the stability of the information
used to calculate the scheduling solution is difficult to maintain. In order to take these
uncertainties into account, there are two possibilities: either to recalculate the scheduling
online [2], or to take the uncertainties into account when calculating the scheduling and
evaluate different indicators. The work proposed in this paper falls into the second
category. In fact, optimal scheduling risks seeing its performance deteriorate during its
implementation [3], given the inevitable deviations from the environment in practice:
uncertainties and high variability on the sets of products to be produced (volume, mass
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customization, production of small series, increasingly short lead times between order
taking and delivery time, etc.), uncertainties on the production resources (operating
times, machine breakdowns, manufacturing hazards, etc.) Manufacturers currently need
other indicators to make their scheduling choices, for example, delay times in the event
of a breakdown, the absorption capacity of their scheduling in the face of uncertainties
about production times. The work proposed in this paper therefore focuses on the
evaluation of a scheduling system in the face of uncertainties and thus proposes different
indicators to help the decision-maker choose a solution.

Production scheduling under uncertainty is not a new issue. The main propositions to
tackle this problem focus on generating robust schedules that guarantees a performance
level [4]. These methods are specific to the production problem treated. The re-usability of
proposed approaches to other problems is then difficult.

In this paper, we propose a generic evaluation approach that can, on the one hand,
be adapted to different types of workshop and different types of uncertainty and, on the
other hand, evaluate the robustness of an initial production schedule. For this purpose,
we use discrete event system modelling and statistical model-checking based on Monte
Carlo simulation. A numerical example for illustrating the application of the of the process
is given and a deep discussion, regarding the process performances from the genericity,
sensitivity and scalability point of views, is provided.

2. Literature Review

Even if scheduling under uncertainties is still a critical issue, it is not a new research
issue. More generally, decision making and optimization under uncertainties are topics
that have been extensively studied in the last decades. Twenty years ago, Ref. [5]
already justified the need of hedging uncertainties in optimization by the fact that for
real-world optimization problems, the “decision environment” is often characterized
by: (i) uncertain/inexact data, (ii) the difficulty to implement accurately an optimal
solution (even if computed very accurately), (iii) the necessity to satisfy the constraints
for all meaningful realizations of the data, (iv) the fact that “Bad” optimal solutions
(those which become severely infeasible in the face of even relatively small changes
in the nominal data) are not uncommon. Thus, to not consider these uncertainties in
optimization in general and thus in scheduling in particular can lead to unworkable
solutions. Regarding the scheduling problem, Ref. [6] advanced that the inability of much
scheduling research to address the general issue of uncertainty is often cited as a major reason for
the lack of influence of scheduling research on industrial practice. Ref. [7] went a step further
and advanced that optimization is actually the opposite of robustness.

This ability to address uncertain knowledge in scheduling remains a need that
is clearly identified as a key performance in the recent literature. Ref. [8] proposed
a literature review concerning smart production planning and control. Based on this
literature review, they identify required smart capabilities such as smart shop floor control
and scheduling capability, and for reaching these capabilities, they determine key per-
formances. Improve manufacturing robustness is one of them. Ref. [9] proposed another
review that is more dedicated to production scheduling in the context of Industry 4.0.
The authors identified scheduling under uncertainty, incomplete and missing data as one
of the critical scheduling areas. Moreover, they pointed the fact that the complexity
of the problems to be solved will increase, as a consequence of the complexity of the
real-world situations. More recent papers are aligned with these conclusions. Ref. [10]
talks about disturbance- and disruption- resistant scheduling. Ref. [11] analysed existing Job
Shop Scheduling contributions in the context of Industry 4.0 and concluded that they
are not sufficiently focused on the emerging trend of robustness and smart scheduling.

According to [1] a Manufacturing Scheduling System is defined as in Figure 1. It
consists in three main types of modules:

• database, object base, and knowledge-base modules,
• modules that generate the initial schedules, and



Processes 2023, 11, 371 3 of 22

• user interface modules.

Figure 1. A scheduling system (figure modified from [1]).

Clearly, the user interface modules are important for implementation success. Their
goal is to give to the decision maker the opportunity to modify the scheduling solution
manually and to receive performance indicators for these solutions for taking the right
decision. This is particularly true in the context of Industry 4.0.

Robustness is one of these indicators when dealing with uncertainty.
Ref. [7] defined a solution as robust if its performance remain relatively unchanged when ex-

posed to uncertain conditions. This definition is typically consensual but needs to preliminary
answer the two following questions:

1. How to qualify the uncertainties and how to integrate them into the scheduling
problem?

2. How to measure the fact that a solution remains efficient despite these uncertainties?

2.1. Modelling Uncertainties

Regarding the first question, we would like to know what means uncertainties (theo-
retically, all the input data of the problem can be impacted) and then to propose a model
for catching them. Ref. [12] proposed a typology for uncertainties: data can be uncertain
(subjected to doubt concerning the validity of knowledge), incomplete (subjected to a lack
of knowledge) or imprecise (subjected to a lack of precision). In literature, uncertainties
are classified into several types. For instance, Ref. [13] categorize uncertainties into two
groups linked to the source of uncertainty. It may come either from (i) environment or
(ii) production system. In this paper, we combined the last classification with a second cri-
teria linked with the impact of uncertainty (Table 1). In fact an uncertainty is characterized
by both its source and its type. For instance, an urgent order comes from the environment
of the production system and is linked to event occurrence.

Table 1. Uncertainty classification.

Uncertainty on Parameters Uncertainty on Events

Environmental
Demand volume supply disruption

Supply delivery time Urgent order
. . . . . .

System
Operation duration Machine breakdown
Reparation duration Product defect

. . . . . .

Ref. [14] proposed another typology: Uncertainties on parameters (noted UoP) and
Uncertainties on events (noted UoE). UoP are defined as the difference between the
predicted information and the real available information whereas UoE are defined by
the occurrence of uncontrollable events in the system or its environment. Modelling
uncertainties is the underlying question. Ref. [15] present the different uncertainty models
and the associated approaches that are used in decision aiding and optimization problems.
They also propose a framework that describes the relationships among them. Ref. [16] is
more focused on scheduling under uncertainties and listed the three most usual approaches
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used to model uncertainties: the bounded form, the probability description, and the
fuzzy description.

• The bounded form is used when it is possible to maintain values of data in bounded
limits. Then, the uncertainties can be described by a set of scenarios which can be
discrete or continuous inside these bounded limits.

• The probability description or stochastic modelling is used when there exist historical
and statistical data. The uncertainties can then be modeled as random variables that
follow a discrete or continuous probability distribution.

• The fuzzy description method is based on the possibility theory. When problem data
are imprecise or not available, the uncertainty parameters are modeled in fuzzy sets
and linked to satisfaction functions.

The probability description is relevant when information about the behavior of un-
certainty is available. The bounded form is typically relevant when this information is
not enough in order to develop an accurate description of the probability distribution,
but only error bounds can be obtained [16]. The fuzzy description [17] is relevant when
historical data are not readily available. Regarding the Industry 4.0 context, it is reasonable
to consider that data coming back from the shopfloor can be used to build sufficiently
rich information on the uncertainties. Thus, a probability description seems particularly
relevant in this context.

2.2. Schedule Robustness as Performance Indicator

Regarding the second question identified in introduction, we would like to know how
to measure the robustness of a solution such that this solution can be computed or chosen.
Note that the answer to this question is deeply linked with the uncertainty model.

Robustness can be seen as a performance indicator as it measures the ability of a
solution to maintain its performance relatively unchanged when exposed to uncertain
conditions [7]. More specific KPIs when considering reliability only can be found in [18].

For considering general concerns in the robustness topic, Ref. [7] surveyed the different
robustness approaches associated to the uncertainties models.

Considering the bounded form uncertainties, the common robust measure is the robust
counterpart, also called minmax-robustness. This approach is detailed in [19] and consists
in evaluating the performance in the worst case regarding the bounded set of uncertainties.
The most common robustness metrics were presented in [20] and are still valid. Refs. [21,22]
are surveys dedicated to the minmax-robustness applied to classical optimization problems
such as the shortest path problem or the knapsack problem. Ref. [23] moreover discussed
the different application of minmax-robustness as finance, revenue management, energy
systems and scheduling.

The main drawback of the minmax-robustness approach concerns the fact that it is
a conservative approach in the sense that it is based on the anticipation that the worst might
happen [20].

Considering the uncertainties modeled by fuzzy description, the possibility theory
provides the theoretical basis for defining relevant metrics based on the concepts of belief
and plausibility [7]. For an application of fuzzy description in scheduling, the reader can
refer to [24] or [17].

Considering the uncertainties modeled by probability description, different approaches
can be discussed [7]: the expected value of a utility function, the probabilistic threshold
(or service level) that evaluates the probability that the cost of a solution satisfies a given
threshold, statistical feasibility robustness that consists in guaranteeing the constraints
statistically (the constraints have a sufficient probability to be satisfied).

When focusing only on scheduling under uncertainty, Ref. [25] proposed a survey on
single machine scheduling under uncertainties and Ref. [26] proposed a survey on flow-
shop scheduling under uncertainties. Refs. [27,28] focused on the parallel machine schedul-
ing problem under uncertainty but proposed a state-of-the-art regarding this problem that
can be generalized to scheduling under uncertainty. The literature review confirmed the
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used of the three types of models and the associated robustness metrics. Second, they
pointed that uncertainty in scheduling is receiving more and more attention. Moreover,
Ref. [26] concluded that probability description is the most used model.

Regarding the integration of new enabling technologies in scheduling practices, big
data and machine learning techniques have already been considered as emerging trends.
Ref. [29] reviewed the recent progress of data-driven mathematical programming under
uncertainty. Ref. [30] proposes an application of deep reinforcement learning for lexible
job shop scheduling problem. Ref. [31] proposed an architecture for a scheduling systems
based on data-driven procedures. Such types of works suggest that it will be possible in a
next future to extract information directly from the shopfloor (The shopfloor data collection
system). This will be true also for the vital information concerning the uncertainties such
that the probability description model seems to be a convenient model in the context of
Industry 4.0.

2.3. Discussion and Solution Direction

Regarding the previous state-of-the-art, one commonality relating to the reviewed
works is that the solution approaches that are used are dedicated to one particular problem
(single machine, parallel machines, flow-shop, . . . ) and to specific uncertainties.

Moreover, in this context, the question of performance evaluation is a key issue, and ro-
bustness must be considered as an important performance for dealing with the inherent
uncertainties meaning that it must be considered in the “Performance evaluation” module.

The next step is thus to propose an evaluation process that is (i) able to evaluate the
robustness of a candidate scheduling solution and, (ii) is generic regarding the type of the
workshop and the considered uncertainties. Then the solution maker (the human in the
loop) is able to take the best decision.

In order to achieve this goal we propose an evaluation approach that answers the
following research questions:

• RQ1 How to give, to the decision maker, a modelling framework for his/her schedules
subjected to uncertainties that is: (i) generic, (ii) modular and (iii) reusable?

• RQ2 How to give, to the decision maker, a tool for evaluating the robustness of his/her
schedule modelled using the framework that answers to RQ1?

In the following section, an overview of the global process for answering these two
questions is given. RQ1 is particularly addressed by proposing a modelling framework
based on stochastic timed automata that is detailed in Section 4. RQ2 is particularly
addressed by proposing a tool, based on simulation and model-checking techniques, that is
detailed in Section 5.

Moreover, in the remaining of the paper, the following assumptions are made.

• AS1: uncertainties data are available in the workshop (Industry 4.0 assumption).
• AS2: uncertainties are described with stochastic models.
• AS3: a predictive schedule is known and has been generated before the evaluation.

3. Overview of the Process for Robustness Evaluation of Scheduling
under Uncertainties

In the classical scheduling problem, the data of the workshop are stated as certain and
static. In reality, the performance or even the admissibility of the predictive scheduling
solution can be questioned when unpredictable events occurs or when real data are different
from predicted ones. To ensure the admissibility and the performances of a predictive
schedule to the real situation of the workshop, the problem of production scheduling must
be upgraded to deal with the uncertainties.

3.1. Scheduling Problem Notations

To formulate the scheduling problem, three information sets are thus needed: the
workshop, the constraints, and the objectives. The workshop information are defined by:
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• A set J of jobs j to be processed in the workshop. With NbJ, the number of jobs;

• Each job j is associated to a set OJ
j of operations ojk defining a necessary routing to

perform the job. With NbOpj, the number of operations to realize the job j;
• A set R of resources r, allowing the execution of operations. With NbR, the number of

workshop resources;
• In order to execute the operation ojk on the resource r, an execution duration is defined

as djkr.

The second information set is the workshop constraints that must be satisfied by a
scheduling solution to be qualified as admissible. There are first the structural constraints
that are related to the type of the workshop. In a Flow Shop and Job Shop, the operations
of the same job have precedence constraints defined by the job route. Moreover, in a Flow
Shop, all the jobs follow the same route. For the Open Shop, the operations in the job
route can be executed in any order. The Hybrid Shop is a mix between these different
types. Other constraints can be considered in the scheduling problem (preemption, batch
production, release dates, etc.) [1].

A scheduling solution, denoted as s can be represented as a Gantt diagram [32] (as in
Figure 2) in which we can deduce:

• The allocation of resources to operations and the sequence of operations on each
resource. For instance, in the solution of Figure 2, r1 is allocated to {o11; o22; o33} and
the sequence on this resource is o11 → o22 → o33;

• The total predicted duration of the schedule s, denoted as C
re f
max(s). For instance in

Figure 2, C
re f
max(s) = 18TimeUnit .

Note that the solution of Figure 2 satisfies the job shop constraint as all the operations of the
same job are processed sequentially according to the order of the route (o21 → o22 → o23, etc.).

𝑠 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

𝑟! 𝑜"!! 𝑜"## 𝑜"$$

𝑟# 𝑜"#! 𝑜"$# 𝑜"!$

𝑟$ 𝑜"$! 𝑜"!# 𝑜"#$

Figure 2. Schedule example.

3.2. Robustness Evaluation Process

The proposed process is the result of several reflections on the issue of robust produc-
tion scheduling under uncertainties. Indeed, in [14], we have proposed a first approach that
allows to deal specifically with the uncertainties on the execution durations of operations
since it has a consequent impact on the makespan criterion of a schedule. While in [33]
the uncertainties related to the machine failure and its reparation duration is analyzed
in a specific approach. In the following, the evaluation process has evolved to a generic
and adaptable one in order to stay independent of the type of workshop treated and the
uncertainty to be considered.

The main objective of the evaluation process is to help the decision maker to choose
the adapted “robust” schedule that satisfies workshop constraints and a desired deadline
despite considered uncertainties. In the context of Industry 4.0, the process (Figure 3) is
considered as a decision making process allowing the using of available data collected
and treated in the workshop, as defined by [1]. The process can either be integrated in a
scheduler as an evaluation module or applied by the decision maker on existing schedules.
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Operators

Shop floor data 
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Instantiate the 
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Performance Evaluation Process
Deadline to be

satisfied (𝑑9)

Automatic schedule
generator

Figure 3. Robustness evaluation process.

The process has three inputs given by the decision maker or the schedule generator:

• Schedule s is defined by the set of jobs and their related operations, the sequence of

operations on resources and its initial makespan C
re f
max(s).

• Set of uncertainties U that have to be considered.

• Deadline d̃ that must be guaranteed despite the uncertainties.

The evaluation process is a two-step process. First, a set of generic models is instanti-
ated according to the input data. Then, the robustness level is evaluated on the instantiated
models and sent to the decision maker. To be implemented in an Industry 4.0 context,
the evaluation process must satisfy the following challenges:

1. Genericity in front of the types of workshops(Job Shop, Flow Shop, Open Shop, etc.).
2. Genericity in front of the type of uncertainties considered, their stochastic data and

the number of uncertainties considered.

The next section will present in detail the generic models that can be instantiated by
the decision maker (step 1 in Figure 3) whereas Section 5 will present the evaluation step
by using model-checking on the instantiated models.

4. STA Based Models for Scheduling under Uncertainties

4.1. Generic Modelling Approach

To model both schedules and uncertainties, a modular approach based on the concept
of plug and play is suggested. In fact, our approach is based on several patterns that
will model the behavior of the schedule elements and the uncertainties that will occur
in the workshop. The main interest of such structure in the Industry 4.0 is to allow the
adaptability of the process to the input data. The plug and play approach allow then to
re-use the process with different uncertainties and different schedules.

On one hand, the schedule is modeled using two patterns. The first one presents
the behavior of an operation that needs to be executed, while the second one models
the behavior of a resource (machine, operator, etc.). On the other hand, uncertainties are
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presented by two patterns, the first one models the behavior of uncertainty on parameters
(UoP) and one the behavior of uncertainty on events (UoE).

The choice of having separate models for each element is to satisfy the need to evaluate
the schedule performance regarding to different uncertainties and different workshops.
Actually, considering a new uncertainty or increasing the number of uncertainties does
not impact all models. Thus, it is contributing to the targeted genericity face to the type of
the uncertainties. Moreover, the changing of workshop type will not affect the uncertainty
models, contributing to the targeted genericity face to the type of workshop.

This concept generates several modelling constraints. The modelling tool to be used
has to allow the modular modelling (to make it adaptable to the problem parameters),
dynamic modelling (allowing the communication between patterns), stochastic modelling
(to take into account stochastic models of uncertainties) and instantiable models (to be
adaptable to the problem size).

Stochastic Timed Automata Formalism

To model the behavior of schedules and uncertainties, we should be able to satisfy the
modelling constraints such as communicating models, time characteristics and probabilistic
behavior of uncertainties.

Usually, the scheduling problem under uncertainties is modeled using Operational Re-
search tools such as mathematical programming [20,34]. To meet the modelling constraints
mentioned above another alternative is to use Discrete Event Systems (DES). In the field of
safety and security, DES are generally used to evaluate reliability, availability and maintain-
ability. Thus, they have proven their effectiveness in modelling stochastic and dynamic
systems and evaluating system properties. Moreover, DES present considerable advantages
making them good candidates for solving the scheduling problem in general [35]. Many
stochastic DES languages allow the modelling of some of these characteristics: Stochas-
tic Petri nets [36], Stochastic automata [37] and Stochastic automata networks [38]. The
stochastic timed automata (STA) language answers to all modelling criteria and is therefore
chosen. The STA language is an extension of the timed automata [37] which is enriched
with shared variables, synchronizing events and probabilistic characteristics [39].

Definition 1. Formally a Stochastic timed automaton is presented as the following n-tuple
A = (L, V, E, C, Inv, Pr, T, Lm, l0, v0) where:

• L is a finite set of locations.
• V is a finite set of variables.
• E is a finite set of synchronizing events with E = Eu ∪ Eū.

– Eu is a finite set of urgent events. To prevent the network of automata from delaying when
two components are able to synchronize, an event can be declared as urgent. In other
words, transitions must be fired as soon as the guards are satisfied, without allowing time
to pass.

– Eū is a finite set of non-urgent events.

• C is a finite set of clocks.
• Inv is a set of invariants (conditions in location).
• Pr is a set of probabilities: (i) discrete for the set of transitions (from a location li, probabilistic

transitions allows to attend different locations lj with a given probability pij, with pi =
n

∑
j=0

pij = 1. (ii) continuous for the variables (the crossing condition of a transition is defined

randomly by a probability distribution).
• T is a finite set of transitions (l, e, g, m, l′) ∈ L × E × G × M × L where l and l′ are

respectively the starting and arriving locations . On a transition, three optional elements are
defined: (i) a guard (condition on variables) g from the set of guards G, (ii) an update (on
variables) m from the set of updates M, (iii) and a synchronizing event e from the set E.

• Lm ⊆ L is the set of marked locations.
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• l0 ∈ L is the initial location of the automaton.
• v0 is the initialization vector of variables.

The elements of an STA are graphically represented as follows. Locations are repre-
sented by vertices, marked location by a double vertices, transitions by arcs and the initial
location by an initial arc. An invariant is represented inside the associated vertex (loca-
tion). Guards are represented between brackets “[ ]”. Synchronizing events are denoted
in italic. The update of variables and clocks are placed between parenthesis “()”. Discrete
probabilities are modeled by dotted arcs and associated probabilistic values are underlined.
For continuous probabilities, they are directly linked with the definition of variables.

Example 1. Let us consider two automata STA (AutoA) and (AutoB) (Figure 4) as a representative
construction example of two automata synchronized with a synchronizing event. Three variables are
defined: two clocks c for (AutoA) and x for (AutoB) and a synchronizing event e1. The behavior
of the two automata is constrained by the synchronizing event e1 and the probabilistic behavior is
modeled by two discrete probabilities.

A0

c ≤ 3

A1

•

A2

A3

e1

(c := 0)

[c == 3] 0.95

(c := 0)

0.05
(c := 0)

(a) Automate (AutoA).

B0

x ≤ d

B1

e1

(x := 0)

[x == d]

(b) Automaton (AutoB).

Figure 4. Example of a stochastic timed automata.

In the following, the behaviors of schedule and uncertainties are modeled by several
STA patterns. First, the UoP and UoE models are presented. Second, the operation model
and resource model are explained. These models communicate using synchronizing events
and shared global variables.

4.2. Modelling Uncertainties

4.2.1. Impact of Uncertainties on Scheduling Solution

To take into account the different uncertainties in the initial predictive schedule,
the following assumptions are made:

• uncertainties have an impact on the execution duration of operations, i.e., they gen-
erate a variation on the execution duration of operations and thus on the overall

duration of the predictive schedule C
re f
max. Here, we assume that the decision maker

would like that the total completion time of the schedule is not degraded too much by
the uncertainties.

• uncertainties are mutually independent, i.e., the consideration and the evolution of a
uncertainty do not influence the occurrence or the evolution of another uncertainty.

A schedule can be impacted either by uncertainties on events (UoE) h ∈ H.We distin-
guish two types of UoP: the set Uex of uncertainties uex that directly impact the execution
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duration of the operations, and the set Uh of UoE uh that are linked to the duration of the
unpredictable event h ∈ H. We define UH = ∪

h∈H
Uh.

Moreover, we denote as NbUex the number of UoP on parameters linked to the
execution duration in Uex, while NbH denotes the number of UoE and NbUh the number of
UoE linked to one occurring event Uh. Then, NbU denotes the total number of uncertainties.
The set of uncertainties can thus be defined by U = H ∪ Uex ∪ UH .

Every execution duration of operation djkr is impacted by uncertainties. In fact, an exe-

cution duration is defined first by a reference execution duration d
re f
jkr , given by deterministic

data. Second, a summation of fluctuations linked to the considered uncertainties whether it
is UoE or UoP. Each uncertainty uex will generate a fluctuation δduex

jkr (that can be positive

or negative) on the execution duration djkr. The resulting deviation due to this type of

uncertainties is thus the sum of fluctuations (∑NbUex

uex=1 δduex

jkr ). For considering UoE, each

operation can be impacted by one or more unpredictable event (resource failure, supply
disruption, etc). Then, every UoE h ∈ H is linked with:

• An occurrence probability p
(

h, ojk

)

that represents the probability that the event h

impacts the operation ojk.

• A Boolean variable Hh
jk that can be deduced from the probability of occurrence. It is

equal to 1 if the operation ojk is impacted by h and 0 there is no impact.

• A duration d
re f ,h
jkr that represents the reference delay generated by the occurrence of h.

The reference duration generated by the occurrence of h may also be impacted by one

or more uncertainty uh. This uncertainty generates a fluctuation (δduh

jkr) on the considered

duration. All the fluctuations expressed by a δd are random variables that follow known
probability distributions assumed to be bounded into intervals such as [δd−, δd+].

With considering all these elements, the execution duration of an operation is defined
by the Expression (1).

djkr = d
re f
jkr +

NbUex

∑
i=1

δd
uex

i
jkr +

NbH

∑
h=1

Hh
jk ×

(

d
re f ,h
jkr +

NbUh

∑
i=1

δd
uh

i
jkr

)

(1)

The total number of uncertainties considered is assessed by (Expression (2)).

NbU = NbOp ×

(

NbUex + NbH +
NbH

∑
h=1

NbUh

)

(2)

In a flexible context of Industry 4.0, the description of uncertainties for each opera-
tion allow a high level of adaptability. In fact, the Expression (2) can be customized for
each operation.

4.2.2. Pattern for Uncertainty on Event (UoE)

The UoE pattern of (Figure 5a) presents the impact of the occurrence of an umpre-
dictable event on a schedule operation. The purpose of this pattern is to model the fact
that an operation ojk is either impacted or not by the event h ∈ H. For that, from an initial
state Idle, a transition leads to the locality OpImpacted with probability p(h, ojk) and to
the locality OpNotImpacted with probability 1 − p(h, ojk). In order to execute the other
models only when all the uncertainties are initialized, a counter c is updated (c := c + 1)
when the transition is crossed.
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clk ≤ 0

Idle

•

OpNotImpacted

OpImpacted

1 − p(h, ojk)

(Hh
jk := 0; c := c + 1)

p(h, ojk)

(Hh
jk := 1 ; c := c + 1)

(a) UoE pattern.

clk ≤ 0

Idle

clk ≤ 0

Prob

•

EndProb

(δdu
jkr :=

δdu−
jkr ;

l := 0)

[δdu
jkr < δdu+

jkr ]

[δdu
jkr == δdu+

jkr ]

(c := c + 1)

1 − p(l)

(l := l + 1;
δdu

jkr := δdu
jkr + t)

p(l)

(c := c + 1)

(b) UoP pattern.

Figure 5. Stochastic patterns of uncertainties.

4.2.3. Pattern for Uncertainty on Parameter (UoP)

The UoP uncertainty pattern presented in (Figure 5b) allows the modelling of the
behavior of uncertainties whether it is an uncertainty on execution duration uex or linked
to UoE occurrence uh. The objective of this pattern is to determine the value δd in the
interval [δdu−

jkr , δdu+
jkr ] by following a probability distribution. Following the notations given

in expression (1), we denote as δdu
jkr the duration parameter linked with a discrete random

variable Xd. The discretization step of the probability distribution is denoted as t and
we use an iteration counter denoted as l. The philosophy of this pattern is to increase,
iteratively and randomly, the value of δd in the interval [δdu−

jkr , δdu+
jkr ].

From the first location of (Figure 5b), the value of δdu
jkr and l are initialized. When

reaching the location Prob, two transitions are enabled depending of the satisfaction of
their guards:

1. If the maximum bound of δd is reached ([δdu
jkr == δdu+

jkr ]), the automaton evolves

directly to the location EndProb and the value of δdu
jkr is δdu+

jkr . When crossing this

transition, the value of the counter c is also incremented to save the execution of
the uncertainty.

2. Otherwise, when [δdu
jkr < δdu+

jkr ], δdu
jkr is incremented by the discretization step t.

With crossing this transition, two probabilistic evolutions are possible:

(a) With the probability p(l), the location EndProb is reached which implies
that δd keeps the value updated during the previous iteration. Moreover,
the uncertainty counter is incremented (c := c + 1).
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(b) Otherwise, with the probability 1 − p(l) the automaton returns to the location
Prob with updating the iteration parameter l to l + 1. From there, another
discretization step is executed such that the value of δdu

jkr is updated to δdu
jkr + t.

In the UoP pattern, the stochastic model is considered in the parameter p(l). To ensure
that all uncertainties can be considered regardless of the probability distribution of the
stochastic model upcoming from the workshop, we proposed a generic discretization
approach (Proposition 1).

Proposition 1. Given a random variable δdu
jkr and its known cumulative distribution function

FX(δdu
jkr), the discrete values of p(l) associated to the fluctuation δdu

jkr (Figure 5b) are computed

following this equation system (3).























p(0) =
FX(δdu−

jkr +t)−FX(δdu−
jkr )

FX(δdu+
jkr +t)−FX(δdu−

jkr )

p(l) =
FX(δdu−

jkr +(l+1)t)−FX(δdu−
jkr +lt)

FX(δdu−
jkr +lt)−FX(δdu−

jkr +(l−1)t)
× p(l−1)

1−p(l−1)
f or l ≥ 1

(3)

This proposition explains how any probability distribution (as long as its cumulative
distribution function is known) can be integrated into our models. This contributes to the
genericity of our models face to the types of uncertainties.

4.3. Modelling Schedule Behavior with Uncertainties

To model the behavior of a schedule, two patterns (operation and resource) are defined
and will be instantiated according to the number of operations and resources. When all
the uncertainties have been initialized (c == NbU), the different fluctuations δd generated
by the uncertainty patterns are taken into account using the Expression (1) for fixing the
duration djkr.

The pattern approach is based on the instantiation principle to model different prob-
lems with different sizes. In fact, the instantiation of patterns allows to take into consider-
ation different workshop characteristics without modifying the elements of the patterns,
such that we can consider that the models are generic regarding the type of the workshop.
The scheduling evolution is represented by the exchange of messages between the opera-
tion and resource patterns, denoted as (Req(r), Comp(ojk)). The following two paragraphs
present the operation and resource patterns.

4.3.1. Operation Pattern

The operation pattern (Figure 6a) models the behavior of one operation ojk. The objec-
tive of this model is to represent the operation behavior, i.e., (i) checking when the operation
can be executed according to the product route and the sequencing on the resources, and
(ii) waiting the duration execution on the resource.

After initializing djkm according to the uncertainties, the workshop constraints are
verified through the guard [Route(ojk) == 1 && Sequence(ojk) == 1 && Avail(j) == 1]
(Precedence on job route if necessary, precedence linked to the sequence of resource
and job availability). When the workshop does not consider route constraint (as in the
case of Open shop), the condition Route(ojk) == 1 is set at true by default. Checking
the availability of the job will ensure that there is no overlapping between two or more
operations of the same job and ensure the safe execution of the given schedule. The
combination of these two constraints guarantees the genericity of the pattern regarding
the workshop type.

When the guard is satisfied, the operation ojk synchronizes with its allocated re-
source r using the request event (Req(r)). The availability of the job is then updated
and the identifier of the operation is saved (operation := ojk). In the Execution loca-



Processes 2023, 11, 371 13 of 22

tion, the operation is waiting for the end of its execution. The synchronizing event
(Comp(ojk)) allows the operation to cross the transition to its marked location Completed

with updating the execution status of the operation (OpComp := 1) and the availability
of its job.

Waiting

Idle Execution Completed

[c == NbM]
(

djkr := d
re f
jkr + ∑

NbUex

uex=1 δduex

jkr + ∑
NbH
h=1 Hh

jk ×
(

d
re f ,h
jkr + ∑

NbUh

uh=1
δduh

jkr

))

[Route(ojk) == 1 && Sequence(ojk) == 1 && Avail(j) == 1 ]

Req(r)

( Avail(j) := 0 ; operation := ojk)

Comp(ojk)

(Avail(j) := 1;
OpComp((ojk) := 1)

(a) Operation pattern.
Idle

xr ≤
djkr

Executing Op

Req(r)

(clock xr := 0; ojkr := operation)

[ xr == djkr]

Comp(ojk)

(b) Resource pattern.

Figure 6. Schedule patterns.

4.3.2. Resource Pattern

The resource pattern (Figure 6b) models the behavior of one resource r. This model
simply represents the state of the resource: available or executing an operation. In the
Idle location, the resource r is waiting for one operation request (Req(r)). When crossing
the transition from this location, the local clock is initialized to zero (xr := 0) and the
operation identity is saved in the variable ojkr . In the location Executing Op, the resource
starts the execution of the operation. The invariant (xr ≤ djkr) ensures that the duration
will not exceed djkr . When reaching the duration value, the guard [xr == djkr] is then
satisfied and the synchronizing event Comp(ojk) occurs allowing the resource to go back
to the Idle location.

4.3.3. Evolution of the Modelling Structure

The modelling structure is based on pattern instantiation. In fact all the pattern
presented before will be instantiated following the number of operations and resources.
The uncertainty patterns will also be instantiated following the set of uncertainties (U) and
the number of operations. In Figure 7, we use a sequence diagram to illustrate the execution
of the structure models. More precisely, the uncertainty models are preliminary executed
to compute the duration of each perturbed operation according to the information on the
uncertainties. Then, each operation model can be executed according to the previously
computed duration and the workshop and schedule constraints. Finally, the resource model
is executed for completing the different operations.
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Figure 7. Evolution of modelling structure.

5. Simulation Based Approach for Robustness Evaluation

5.1. Quantifying Robustness Performance

The notion of robustness has different definitions in the literature that converge to the
same idea: a robust schedule should maintain or guarantee some performances despite
uncertainties and variations generated by the production system or its environment [34].

In this paper, robustness is defined as the capacity of a schedule to absorb uncertainties
without a big decrease in its performance. The robustness performance therefore seeks to
meet the reality of production workshops which is the need to take into consideration the
uncertainties in advance when it comes to production control. Therefore, the evaluation of
the robustness performance must eventually enable the generation of a robust schedule
and the prediction of the scheduling behavior in front of uncertainties. In the continuation
of our work, we will focus on this concept of robustness as a performance evaluation to
bring elements of response in order to contribute to the challenge of robustness identified
in particular by [40] for the implementation of the Industry 4.0. To assess this robustness,
a metric has to be defined. In this paper we use the metric defined in [41] that assesses the
robustness as a service level. The service level is defined as “the probability that a criterion
is smaller (resp. larger) or equal to a given value”. In our case, the considered criterion of
the scheduling problem is the total completion time, so the service level assessment is
the probability that the makespan is smaller (or equal) to a given deadline defined by the
decision maker. Formally, this metric is given by the Equation (4) :

RL
(

s, U, d̃
)

= Pr
(

Cmax(s, U) ≤ d̃
)

(4)

Explicitly, the Equation (4) expresses the measure of probability Pr that the makespan
Cmax of the schedule s subjected to the set of uncertainties U is less or equal than a fixed
deadline d̃.

5.2. Robustness Evaluation by Model-Checking

To assess the robustness of a schedule over the modelling structure given above, we
use model checking tools. The main objectives of the model checking approach is first to
translate the expression of service level defined in (Expression (4)) in a language that is
recognized by STA and second is to find the suitable approach to assess RL. In DES domain,
model checking is usually used to verify if a model satisfies some properties or not. These
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properties can be expressed in several logic languages (CTL, PCTL, etc.). To assess the
robustness, we use an extension of model-checking to stochastic DES models. For stochastic
DES models, the properties are expressed in PCTL logic (Probabilistic Computation Tree
Logic) [42]. This language is a probabilistic extension of CTL (Computation Tree Logic) [43].
This type of logic allows the expressing properties such as “What is the probability that the
model is in the state A, in the precise interval [0,T]?”. This question can be transcribed in PCTL
as in the Expression (5).

P =?[F ≤ T “A”] (5)

The operator P =? expresses the probability assessment Pr. The operator F means
that there exists eventually a path where the automata is in the state “A”.

To assess the robustness level of a schedule, the question asked is: “What is the
probability that all paths lead to a global state where all operation models are in the marked location
Completed in a duration that is less or equal to a given deadline d̃?”.

Using PCTL logic, the Formula (4) can be expressed as the property:

P =?[F ≤ d̃ “All operations ojk are Completed”] (6)

Actually, the Makespan Cmax(s, U) is given by the value of the global clock (clk).
The formula [F ≤ d̃ “All operations ojk are Completed”] is a PCTL expression for:

(Cmax(s, U) ≤ d̃). The statistical model checking (SMC) is used in order to check
the stochastic models. SMC generates various execution paths and verifies, after each
execution, the satisfaction of a property for giving the associated statistical results (in the
same way of Monte Carlo simulation). This avoids the combinatory explosion and is then
adapted for checking real systems [44].

A confidence interval is an estimated interval having a specified precision ǫ and
a confidence level α such that the robustness level RL

(

s, U, d̃
)

belongs to the interval
[RL

(

s, U, d̃
)

− ǫ; RL
(

s, U, d̃
)

+ ǫ] with a chance of (1− α) [45]. In this paper we use UppAal
SMC tool to implement both models and property [46].

6. Illustrative Example

In the scenario presented below, we assume that the production environment can
undergo several uncertainties. The objective of this application is to illustrate the use of
the evaluation process in evaluating schedule robustness on a numerical example. The
genericity to the type of workshop and to the uncertainties of the proposed approach,
as well as the scaling up will be presented in the next section.

Let us consider the following situation. In a transition to Industry 4.0 transformation,
a company has set up a machine learning system to manage the collection and treatment of
data [47]. The collected data from one lines are treated and kept in a virtual Data Center
and used to contribute into workshop simulation. The treatment of these data allows the
setting of knowledge about the uncertainties that may impact production lines.

6.1. Problem Description

This line represents a flexible job shop able to produce customized products. The main
challenge when scheduling this line is to guarantee a flexible production satisfying a dead-
line.

To schedule this workshop, the strategy adopted is a proactive one. Where the decision
maker generate several schedules with different makespans. The historical data of this
workshop shows that machine breakdown and uncertainty on execution duration have
an irreversible impact on the total duration of schedule and should be considered in
workshop scheduling.

The characteristics of the problem are as follows:

• Workshop size : NbJ = 8, NbOp = 35, NbR = 7,
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• First UoE h1 : machine breakdown. We consider that during the scheduling horizon at
least one operation is impacted by the failing of a resource. This is translated by an
occurrence probability of p(h, ojk) = 3%, ∀(j, k) (35 × 3% ≈ 1).

• Second UoP uh
1: Uncertainty on maintenance duration. In fact when a machine break-

down occur in the workshop, usually the mean time of maintenance is considered.
In reality, this duration can variate following the type of failure and the availability of
human resources. To consider this variation, the stochastic model constructed is based
on an exponential distribution.

• Third UoP uex
1 : Uncertainty on execution duration. When the schedule is executed on

this line, the effective execution duration of operations is deviated from the reference
durations defined. With the historical data recovered, the uncertainty on execution
durations are to be considered in an exponential probability distribution.

6.2. Illustration Results and Discussion

In UppAal SMC tool, the two parameters to set are named α and ǫ. The parameter α

defines the risk for the calculated probability to be outside the confidence interval.
To have the most precise probability value, we set the parameters α and ǫ to respec-

tively 2% and 1% for the implementation of the evaluation process. The scheduler has
generated three schedules to be implemented in the workshop (S = {s1, s2, s3}) with close

reference makespans C
re f
max(s) but different sequencing on resources. The set of uncertainties

considered is U = uex
1 , h1, uh1

1 and the deadline to respect is defined as a spread on reference

makespan d̃ = 110%C
re f
max.

The evaluation process is used to assess the service level of each schedule in front
of expected uncertainties (uncertainty on execution duration, machine breakdown and
uncertainty on maintenance duration). The results of this application are given in (Table 2)

Table 2. Robustness evaluation results.

Schedule C
re f
max(TU) d̃(TU) CI of RLi RLi

s1 38 42 [0.69, 0.71] 70%
s2 39 43 [0.75, 0.77] 76%
s3 42 46 [0.71, 0.73] 72%

With the resulted information, the decision maker can interpret the results and choose
a schedule to be executed in the workshop. For instance, it can be concluded that the
solution s2 is the most robust (the highest service level RL2 = 76%). Moreover, this solution
represents a good compromise between robustness and time performance (Makespan).

7. Assessment of Process Performances

To implement the evaluation process in the context of Industry 4.0, its ability to
reach some performances must be checked. We consider that this process must satisfy
the challenges identified in the research questions. Two main performance criteria are
identified: first the genericity of the evaluation process and second its sensitivity.

7.1. Process Genericity

One of the initial arguments for the definition and the implementation of the proposed
process was based on the observation that the existing methods are often dedicated to
a specific scheduling problem (type of workshop considered, uncertainties considered).
Thus, the objective here is to evaluate to what degree the proposed approach is generic.
Two questions are addressed:

• Is the approach generic to the type of production workshop considered?
Being used with different workshops (Flexible job shop, Flow shop and parallel machines).
Indeed, the instantiation of the operation pattern allows to consider the different workshop
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constraints. With this characteristic, the evaluation process can be used in the flexible context
of Industry 4.0 where the workshop configuration is intended to be constantly moving.

• Is the approach generic with to the considered disturbances?
Being used with several uncertainties. The fact here is that as long as the uncertainty is a UoE
or an uncertainty and its impact can be translated into fluctuations on the runtime, then it
can be integrated in the evaluation process.

7.2. Process Sensitivity and Scalability

For the purpose of implementation, it is also important to analyze the performance of
our approach in terms of resolution. The following performance concerns the computation
time. In order to analyze the performances of the process, two parameters are studied: input
parameters and size of the workshop. First, the purpose is to test process performances to
the variation of inputs given by the decision maker. The input parameters treated are the
initial given schedule, the uncertainties and the deadline. The second parameter analyzed
is the size of the workshop. Here, the sensitivity to the variation of workshop’s size is
treated. In the same time, the scalability of the process is demonstrated.

To conduct a successful experiment, we defined a method based on experimental
design. The experimental design method enables the organization of the experimentation
phase while optimizing the number of necessary experiments. The purpose of a design of
experiments is to establish a link between a response Y and factors Xi (Y = F(Xi)). In our
case, we are interested in the response computation time and the factors are the different
input parameters of the evaluation process.

The experimental design proposed to analyze the sensitivity of the process is based on
several factors having three levels (Table 3). For each treated factor, three levels are defined
in order to construct a varied experimental panel. Indeed, this panel treats different input
schedules (s1, s2, s3) and different uncertainties parameters, the variation δ, the probability
distribution p(l) and the occurrence probability of UoEs p(h, ojk). The last factor is the

deadline defined d̃.

Table 3. Experimental design parameters for process sensitivity analysis.

Factor
Level

s δduex

jkr
p(l) δduh

jkr
p(h, ojk) d̃

1 s1
+/ −

10%d
re f
jkr

expon
+/ −

10%d
re f ,h
jkr

1% 110%C
re f
max

2 s2
+/ −

25%d
re f
jkr

uni f
+/ −

25%d
re f ,h
jkr

3% 120%C
re f
max

3 s3
+/ −

40%d
re f
jkr

norm
+/ −

40%d
re f ,h
jkr

5% 130%C
re f
max

The second experimental design is designated to treat the scalability of the process in
front of problem size (Table 4). The considered factors are the workshop size parameters,
the number of jobs NbJ, the number of operations per job NbOpj and the number of
resources NbR. From the Table 4, an experimental panel with different workshop sizes
are treated.

Table 4. Experimental design parameters for process scalability analysis.

Factor Level NbJ NbOpj NbR

1 8 1([3; 7]) 7
2 16 2([6; 14]) 14
3 32 3([12, 28]) 28
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7.3. Sensitivity and Scalability Discussion

For the sensitivity of the evaluation process to the input parameters, the following
observations are made and summarized in Table 5. The analysis of the factors related to
the uncertainty parameters allows us to conclude that for the uncertainties, the variability
of the duration does not have a statistically significant effect on the performance of the
approach, but the probability distribution necessary for the calculation of p(l) does have an
effect on the performance of the process. For the UoE, the probability p(h, ojk) of occurrence
has a considerable effect on the performance of the process. Indeed, as the value of this
probability increases, the computation time also increases. This deterioration is explained
by the increase of the number of operations impacted by the UoE. Indeed, by increasing
p(h, ojk), the number of operations that can be affected by the UoE increases. When the
deadline increases, the computation time decreases.

Table 5. Factors impact on time performance.

Factor s δd
re f
jkr

p(l) δd
re f ,h
jkr

p(h, ojk) d̃

Effect No Yes Yes Yes Yes Yes

For the scalability analysis, the three factors of workshop size have an effect on the
performance of the evaluation process. The main effects graphs allow to see that the three
factors have a visible impact on the computation time (Figure 8b). In fact, the evolution of
the computation time increases drastically with the size of the workshop.

In order to understand the impact of the size of the workshop on the performances
of the approach, we define a new parameter: the potential charge of the workshop. This
is defined as the ratio between the number of operations to be executed in the workshop
(NbOp) and the number of available resources (NbR) (Figure 8a). The ratio NbOp/NbR
impacts significantly the computation time.

From the sensitivity analysis, we could deduce that indeed the input parameters of
the problem have an impact on the resolution time of the process. A problem with mul-
tiple uncertainties and with complex parameters will probably increase the resolution
time of the process. This sensitivity is considered as an acceptable price of genericity.
The fact that the proposed process can treat different problems with different work-
shop configuration and different scenarii of uncertainties without any modelling effort.
The process is based on an instantiation approach, which makes it easier to adapt it to
several instances. When proposing an optimal, dedicated model for one problem, this
sensitivity is less important.

For the scalability analysis, the evaluation process has been applied on different
workshop sizes up to 560 operations to be executed on 28 resources. This meets the reality
of production workshops in biggest companies and allow to confirm the ability to use the
process in a real industrial case. It is true that the resolution time increases exponentially
with the size of the workshop but from all the instances treated in the experimental panel,
we could propose a solution in an average time of 50 min which is realistic. For small
instances, the resolution time do not exceed 3 s. With the obtained results, the evaluation
process implementation can be intended.
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(a) Effect of the resource charge on resolution Time.

(b) Effect of workshop size on resolution Time.

Figure 8. Scalability analysis of the evaluation process.

8. Conclusions and Perspectives

In this paper, a generic and reusable approach for evaluating the robustness of sched-
ules under uncertainties is proposed. This approach contributes to the issue of robust
scheduling in the context of Industry 4.0. Existing approaches in the literature are often
dedicated to the type of workshops and uncertainties and dependent to the evaluated
performance. These assumptions are difficult to hold in the context of Industry 4.0, where
workshops must be flexible and agile. It has therefore been shown that it is important to
have a generic approach that can be adapted to any type of workshop and uncertainties.
To answer this research question, the robustness performance is considered. In fact, this
paper proposes a formalization of robust scheduling problems based on the service level.
To evaluate this service level, the proposed modelling approach is based on stochastic
timed automata. This approach is both modular and generic, since it is based on modules
representing the behavior of the schedule ( operation patterns, resource patterns) and the
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behaviour of uncertainties ( UoP patterns, UoE patterns). The assessment method of service
level is based on formal verification using statistical model checking. The process feasibility
is illustrated on a flexible job shop with dealing with machined failure and uncertainties
on maintenance durations and on execution durations. This illustration highlighted the
usability of process results in decision-making support. The analysis of the process per-
formances demonstrates the genericity of the process to the type of workshop considered.
The adaptability of the process to different types of uncertainties is also highlighted. More-
over, the analysis of process sensitivity and scalability has prooven the usability of the
process into real world cases.

The data of the production workshop used as input of the evaluation process is
considered as granted. A first perspective would be to integrate a data-mining method
in order to learn from the real behavior of the workshop. With this perspective comes the
implementation of the robustness evaluation process in a simulation method in order to
support the decision making and increase the reactivity of the decisions to the upcoming
changes in the workshop. Another perspective would be to create a hybrid approach
based on Operational Research methods to optimize the robustness of the schedule.
In fact we have seen that several scheduling techniques existing in the literature needs
at some point to proceed to an evaluation of schedule performance. One interesting
perspective would be to study the possible combination of these techniques with the
proposed evaluation process.
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