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ABSTRACT
Autophagy is a highly conserved process that utilizes lysosomes to selectively 
degrade a variety of intracellular cargo, thus providing quality control over 
cellular components and maintaining cellular regulatory functions. Autophagy 
is triggered by multiple stimuli ranging from nutrient starvation to microbial 
infection. Autophagy extensively shapes and modulates the inflammatory  
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response, the concerted action of immune cells, and secreted mediators aimed 
to eradicate a microbial infection or to heal sterile tissue damage. Here, we first 
review how autophagy affects innate immune signaling, cell-autonomous 
immune defense, and adaptive immunity. Then, we discuss the role of non- 
canonical autophagy in context of microbial infections and inflammation. 
Finally, we review how crosstalk between autophagy and inflammation influ-
ences infectious diseases as well as metabolic and autoimmune disorders.

Introduction

Autophagy: A process that maintains intracellular homeostasis

Macroautophagy (henceforth referred to as autophagy) is a highly conserved 
self-degradative process that regulates several vital processes in the cell. 
Autophagy starts with the formation of the autophagosome, a double mem-
brane-bound structure that sequesters cytoplasmic material and delivers it to 
lysosomes for degradation1,2. The molecular details of this process have been 
comprehensively reviewed elsewhere3. Once the cellular contents are 
degraded, energy is released that can buoy cell survival at critical times of 
nutrient stress. However, autophagy also plays several key housekeeping 
roles by clearing damaged organelles, aggregated proteins, and pathogens 
from cells1,2,4. Importantly, autophagy plays a significant role in the regula-
tion of multiple innate and adaptive immune responses, as we review here.

Inflammation: the double-edged sword

Inflammation is the body’s immune response to harmful stimuli, such as 
pathogens, toxic substances, or physical/physiological stress. Many regula-
tory pathways are integrated to help mount a balanced and calculated 
inflammatory response against each stimulus5. Once the stimuli are sup-
pressed, in most cases the inflammatory response is resolved by a set of 
regulatory feedback mechanisms. However, genetic defects in mechanisms of 
resolution can cause acute inflammation to become chronic. This results in 
tissue and organ damage and can eventually lead to chronic inflammatory 
disorders5.

The tissue damage and microbial infection are sensed by pattern- 
recognition receptors (PRRs) that activate cascades of events resulting in 
cytokine responses, which are important for the recruitment of adaptive 
immune cells to the site of injury or infection6. The integrated and coordi-
nated program of innate and adaptive immune response determines the fate 
of the threat6. The four major PRR families include Toll-like receptors (TLRs), 
NOD-like receptors (NLRs), Retinoic acid-inducible gene (RIG)-I-like receptors 
(RLRs), and C-type lectin receptors (CLRs). These PRRs sense many different 
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types of ligands and initiate several distinct programs of inflammatory cyto-
kine responses.

Recent evidence suggests that autophagy is a key system induced by 
inflammatory stimuli to modulate inflammatory responses. Indirectly, autop-
hagy suppresses inflammation by targeting the source of inflammation such 
as microbes and directly degrades innate immune signaling proteins (inflam-
mophagy), keeping inflammation in check7. Here, we have focused on the 
crosstalk that exists between autophagy and immune signaling pathways.

1. Autophagy, Innate immune sensors, and cell death

Crosstalk: TLRs and autophagy

TLRs are germline-encoded receptors that can sense pathogens through the 
detection of pathogen-associated molecular patterns (PAMPs) that are conserved 
among large classes of microbes. TLRs localize in the plasma membrane or within 
endocytic vesicles to allow for the detection of a broad range of lipids, proteins, 
lipoproteins, and nucleic acids of microbial origin. TLR-associated signaling relies 
on the recruitment of the adaptor protein myeloid differentiation primary 
response 88 (MyD88) and/or in some cases, Toll/interleukin-1 receptor domain- 
containing adaptor inducing interferon-β (TRIF). Downstream events triggered 
by TLR signaling pathways include activation of the NF-κB, p38 MAPK, JNK, ERK, 
and IRF pathways culminating in the production of proinflammatory cytokines 
and type I interferons. Microbes detection by TLR enhances autophagy that 
greatly contributes to the associated cellular response to infection8 (Figure 1). 
TLR7 induces LC3 lipidation upon exposure to synthetic single-stranded RNA or 
during infection with either vesicular stomatitis virus (VSV) or human immuno-
deficiency virus (HIV)9,10. TLR2/1 heterodimer formation enhances autophagy 
through modulation of the vitamin D receptor signaling during macrophage 
infection by mycobacteria11. The signaling associated with bacterial sensing by 
TLR2 can activate autophagy in macrophages by activating the ERK and JNK 
pathways12–14 (Figure 1). TLR4 engagement by LPS activates autophagy by 
mobilizing signaling pathways associated with both MyD88 and TRIF adaptors 
15,16 (Figure 1). TLR4-TRIF mobilization during Salmonella infection can induce 
TRAF3-dependent activation of TANK-binding kinase (TBK)1, leading to opti-
mized engagement of optineurin in antibacterial autophagy17. In macrophages, 
TLR4-induced autophagy involves the modulation of BECLIN1 via ubiquitination-
18 (Figure 1). Autophagy activation through BECLIN1 regulation also occurs in the 
presence of TLR2/4 agonists that induce plasminogen activator inhibitor-2 19. 
Such regulation often attenuates the BECLIN1-BCL2 interaction that negatively 
regulates autophagy at a steady state. TLR-signaling induced upon mycobacterial 
infection can also promote autophagosome formation and maturation through 
induction of the autophagy modulator DRAM120 indicating that TLR 
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engagement can modulate the autophagy flux at distinct steps. At the moment, 
the mechanisms of autophagy enhancement associated with TLR engagement 
are incompletely understood and deserve further analysis. What is clear is that 

Figure 1. Innate immune signaling pathways activate autophagy. Upon stimulation with 
PAMPs, DAMPs, and microbes, several PRRs of the different family including TLRs, CLRs, 
NLRs, RLRs, and cGAS induces autophagy for anti-microbial and homeostatic functions. 
The pathways are described in text in detail. Illustrations are made using biorender 
software.
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multiple TLRs can activate autophagy in various cell types and that the response 
can be cell-type specific. For instance, unlike in macrophages, TLR7 engagement 
induces very poor autophagy activation in plasmacytoid dendritic cells (pDC). 
Because prolonged inflammatory responses can be detrimental to the host, 
mechanisms exist to dampen such responses when pathogens are being cleared 
and autophagy contributes to this resolution. Autophagy can thus target com-
ponents of TLR-associated signaling pathways for degradation21–24. For example, 
depending on the context, the TRIF adaptor can be targeted by the autophagy 
receptors NDP52, TAX1BP1, or p62/SQSTM1 for lysosomal degradation subse-
quently to TLR3 and/or TLR4 engagement (Figure 2). Such regulatory selective 
autophagy can involve the participation of factors as varied as TRAF6 [tumor 
necrosis factor (TNF) receptor-associated factor 6], IRGM [Immunity related 
GTPase clade M], TRIM32, or ATG16L1 for its completion21–23,25 (Figure 2). Thus, 
TLR signaling and autophagy cross-regulate to finetune inflammatory and cell- 
autonomous immune responses to invaders.

Figure 2. Autophagy degrades several innate immune sensors and intermediary proteins 
to suppress inflammation. Upon stimulations, autophagy utilizes different molecular 
mechanisms to degrade PRR pathways sensors and other vital proteins. Autophagy 
proteins such as p62/SQSTM1, NDP52, IRGM, and TRIM20/21 play a vital role in deliver-
ing these inflammatory proteins to autophagosomes for degradation. Several E3 ligases 
such as RNF34 and MARCH8 play a vital role in the ubiquitination of inflammatory 
proteins targeted for degradation. The mechanisms are detailed in the text. The 
illustrations are made using Biorender software.
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C-Type Lectin Receptors (CLRs) and autophagy

CLRs are pattern recognition receptors expressed predominantly by myeloid 
cells that participate in immune responses through the sensing of pathogen- 
associated ligands. Some studies indicate that CLRs can effectively modulate 
anti-microbial autophagy both positively and negatively. For instance, during 
Salmonella infection of epithelial and immune cells, CLEC12A can selectively 
promote autophagy by modulating the activity of the NEDD8-KLHL13-CUL3- 
KLHL9 E3 ligase complex26 (Figure 1). CLEC4E can favor antibacterial autop-
hagy as well. In macrophages exposed to Mycobacterium tuberculosis, CLEC4E 
engagement can synergize with TLR4-associated signaling to support anti-
bacterial autophagy by promoting PtdIns3K phosphorylation27 (Figure 1), 
whereas CLEC4E in neutrophils is required for the autophagic activity needed 
to assist the formation of extracellular traps in response to Klebsiella 
pneumoniae28. On the other hand, CLRs can also negatively influence anti- 
microbial autophagy. In macrophages, Dectin-1, a receptor for β-glucan, can 
down-regulate autophagy in an NF-κB-dependent manner29. Engagement of 
DC-SIGN by Kaposi’s sarcoma-associated herpes virus (KSHV) blocks autop-
hagy in dendritic cells due to the stabilized activation of signal transducer and 
activator of transcription 3 (STAT3)30. DC-SIGN engagement also negatively 
regulates the autophagic response of dendritic cells exposed to 
Porphyromonas gingivalis, which is promoted by TLR2-induced signaling31.

Crosstalk between NLRs and autophagy

Many essential intracellular PRRs belong to the family of NLR proteins, which 
are classified as proteins with a tripartite domain organization with a hallmark 
NACHT domain that is centrally localized and aids oligomerization. The inter-
action between NLRs and autophagy is complex and ambivalent, as the 
activation of certain NLRs by pathogens can induce selective autophagy of 
invading microbes. However, autophagy also acts as a control mechanism for 
both NLR activation and the outcome of associated signaling.

C.1. NLR-induced autophagy for debugging

NOD1 and NOD2 were the first NLR-proteins to be identified as intracellular 
PRRs that activate NF-κB and MAPK pathways by interacting with the kinase 
RIPK2. They are sensors for bacterial peptidoglycan32 but more recently have 
also been shown to respond to cell stress33,34, manipulation of F-actin 
dynamics35,36, and viruses37–39. The first link between NLRs and autophagy 
was the observation of xenophagy of bacterial pathogens following activa-
tion of NOD1 and NOD2. The NOD2 ligand muramyl dipeptide (MDP) can 
induce autophagy by ATG16L1 activation in epithelial and dendritic cells 
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leading to restriction of Salmonella growth40, 41 (Figure 1). Of note, poly-
morphisms in both NOD2 and ATG16L1 are associated with Crohn’s disease, 
a severe inflammatory bowel disease. One possible etiologic mechanism is 
a reduced anti-bacterial function of NOD2. Crohn’s disease-associated muta-
tions in NOD2 and ATG16L1 render these proteins inactive for autophagy 
induction42. Functionally, NOD1 and NOD2 bind ATG16L141 and recruit 
another Crohn’s disease risk factor IRGM that can act as a scaffold to induce 
autophagosome formation by recruiting core autophagy proteins42 

(Figure 1). In dendritic cells, this NOD2/ATG16L1 dependent autophagy also 
contributes to MHC class II antigen presentation43. Induction of autophagy 
downstream of NOD1/2 is dependent on RIPK2 and its tyrosine kinase 
activity40, albeit recruitment of ATG16L1 to membranes by NOD1/2 was 
reported to be RIPK2 independent in some cell lines41. Besides this effector 
function that enhances the anti-bacterial response induced by NOD1/2, 
autophagy can also affect the NOD1/2-induced proinflammatory response, 
although the molecular details of this pathway are not well understood. For 
example, inhibition of ATG16L1 in cell lines can reduce NOD2-induced NF-κB 
activation44 but ATG16L1 was also reported to suppress NOD1/2-mediated 
inflammatory cytokine release by interfering with RIPK2 ubiquitylation45. This 
suggests a complex regulatory network of autophagy and NLR innate 
immune pathway regulation and future research is needed to clarify these 
differences.

The induction of selective autophagy by NLR proteins is not limited to 
bacterially induced NOD1/2 activation. Influenza A virus infection and cyto-
solic delivery of the dsRNA mimetic poly (I:C) also can activate NOD2 and 
RIPK2 dependent mitophagy via Ulk1 activation45. This mechanism may 
reduce immunopathology upon influenza A infection by dampening activa-
tion of the NLRP3 inflammasome45. This suggests a functional link between 
autophagy and the suppression of immunopathology. NAIP proteins, origin-
ally identified as susceptibility genes for Legionella infection, can target 
Legionella pneumophila containing vacuoles for autophagy46. NAIP proteins 
form an inflammasome with the NLR protein NLRC4 whereby NAIPs act as 
sensors for flagellin and components of the bacterial type III secretion system. 
Functionally, the NLRC4 inflammasome can induce turnover of LC3 at 
L. pneumophila-containing vesicles to control bacterial growth and prevent 
pyroptotic cell death to optimize anti-bacterial activity47.

C.2. Mitophagy and NLR activation

Mitochondrial damage induced by pathogens is a general cellular mechanism. 
The NLRP3 and NLRC4 inflammasomes can sense this type of danger, resulting in 
the release of key inflammatory mediators IL-1β, and IL-18 and induction of 
pyroptosis (see below). NLRP3 and NLRC4 activation in macrophages is partly 
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driven by mitochondrial damage and the release of mitochondrial DNA (mtDNA). 
Autophagy controls the magnitude of this response by sequestering mitochon-
dria and mtDNA. Accordingly, LC3 deficiency leads to enhanced NLRP3- 
dependent LPS mortality in mice48 and intracellular Pseudomonas aeruginosa 
infection activates NLRC4 inflammasomes due to the cytosolic release of mtDNA, 
which is dampened by autophagy49. Of all human NLRs, only NLRX1 is predo-
minantly localized at mitochondria and has several roles in controlling inflam-
matory and interferon responses as well as autophagy50. NLRX1 contains an LC3- 
interacting region (LIR) and interacts with LC3B. Both NLRX1 and LIR are impor-
tant for Listeria monocytogenes induced mitophagy. 51 NLRX1 can also down-
regulate type I interferons by induction of autophagy during viral infection by 
interaction with Tu translational elongation factor mitochondrial (TUFM)53. Of 
note, NLRX1-mediated autophagosomal degradation of interferon pathway 
components including STING can contribute to immune evasion of papilloma-
virus transduced cancer cells54. By contrast, the interaction of NLRX1 with 
BECLIN1 was associated with negative regulation of autophagy of group 
A streptococci55.

D. The connections between autophagy and inflammasome activity

The recognition of PAMPs by PRRs bearing cells such as macrophages triggers 
the innate immune system including inflammasomes. Inflammasomes are 
cytosolic signaling complexes that induce inflammation and can activate 
pyroptotic cell death. They consist of an NLR protein, the adaptor ASC and 
recruit pro-caspase 1 for autocatalytic activation56,57. The most extensively 
investigated canonical inflammasome uses NLRP3 as a sensor. NLRP3 serves 
to recognize PAMPs and host-derived damage-associated molecular pattern 
molecules (DAMPs). NLRP3 inflammasomes require two signals for activation, 
a priming signal that depends upon NF-κB, and a second signal provided by 
the inflammasome activator that triggers the assembly of NLRP3 with ASC, 
and caspase-1. This leads to the cleavage of pro-IL-1β and the release of 
mature IL-1β and IL-18. Crystal and cryo-EM structures of NLRC4 and a cryo- 
EM structure of the NLRP3-NEK7 complex have provided insights into the 
mechanism of inflammasome activation58–61. Non-canonical inflammasomes 
depend on caspase-11 (in mice) or caspase-4/5 (in humans)62. These inflam-
matory caspases sense intracellular LPS derived from Gram-negative bacteria 
and together with caspase-1 cleave the pore-forming protein gasdermin-D 
(GSDMD), which is needed for the cellular release of IL-1 cytokines but also 
permeabilizes the cell membrane and can trigger pyroptosis. GSDMD pore 
formation alters ion fluxes and can trigger NLRP3 inflammasome activation. 
Several recent reviews describe the molecular mechanisms underlying classi-
cal and non-classical inflammasome activation63,64, which is not discussed 
here.
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Autophagy and the innate immune system are functionally intertwined. 
The finding that upon challenge, mouse macrophages lacking an essential 
autophagy component, ATG16L1, produced excessive amounts of the inflam-
masome-derived cytokines IL-1β and IL-18 provided early evidence for this 
connection65. Loss of ATG16L1 in hematopoietic cells also rendered mice 
highly susceptible to dextran sulfate sodium-induced acute colitis, an animal 
model of inflammatory bowel disease65. Upon activation, NLRP3 gets ubiqui-
tinated and can recruit the autophagic adaptor p62/SQSTM1, leading to 
autophagic degradation of the inflammasome, which might be a central 
mechanism to end inflammasome activation in some cells66(Figure 2). 
Subsequent studies have revealed multiple interactions between the path-
ways that lead to autophagy and those that direct inflammasome assembly. 
A major mechanism is the autophagic removal of endogenous or exogenous 
inflammasome activators, thereby reducing the triggers for subsequent 
inflammasome activity. For example, the ubiquitin (Ub) sensor p62/SQSTM1 
binds poly-Ub chains and can direct the removal of damaged mitochondria, 
which reduces NLRP3 inflammasome activation67. If autophagy is impaired, 
damaged mitochondria accumulate, which increases ROS production, mito-
chondrial DNA release, and subsequent NLRP3 inflammasome assembly68. 
The autophagy regulatory protein TRIM20 interacts with CASP1, NLRP1, and 
NLRP3 targeting them for degradation, hence preventing excessive IL1β- and 
IL18-mediated inflammation69 (Figure 2). TRIM20, encoded by the MEFV gene, 
a known risk locus for the autoinflammatory disease Familial Mediterranean 
Fever. The autophagy regulatory protein IRGM, which is upregulated in 
response to PAMPs and DAMPs, suppresses NLRP3 inflammasome activation 
by inhibiting its assembly. IRGM also mediates selective autophagic degrada-
tion of NLRP3 and ASC70, 71(Figure 2). Supporting human studies, a mouse 
ortholog of IRGM (Irgm1) limits gut inflammation in a mouse model of 
Crohn’s disease70. TLR4 stimulation of macrophages induces autophagy 
sequestering pro-IL-1β into autophagosomes leading to its degradation72. 
AIM2 inflammasomes can also be degraded by ubiquitin-dependent 
autophagy73 (Figure 2).

Several studies describe signaling events that regulate both inflamma-
somes and autophagy. The protein kinase WNK1 inhibits autophagy and 
also limits IL-1β production following NLRP3 inflammasome stimulation74. 
Depletion of WNK1 stimulates class III phosphatidylinositol 3-kinase complex 
(PI3KC3) activity, which induces autophagy75, however, a signaling pathway 
initiated by WNK1 balances intracellular ion concentrations during NLRP3 
activation. In macrophages, its absence causes intracellular K+ and Cl– levels 
to excessively decline, which augments macrophage IL-1β production74. 
Stimulation of the PI3K/AKT/mTOR pathway in macrophages, which often 
occurs following pathogen encounters, can limit both autophagy and inflam-
masome activation76. Upon activation of this pathway, mTORC1 inhibits 
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ULK1, which phosphorylates the autophagy initiation machinery. AKT can 
also phosphorylate the N-terminus of NLRP3, limiting its oligomerization and 
reducing activation77. A known risk factor for Crohn’s disease, leprosy, and 
certain types of cancers, autosomal dominant mutations in LRRK2 are the 
most common genetic cause of familial Parkinson’s disease78. In mice, Lrrk2 
deficiency reduces macrophage caspase-1 activation and IL-1β secretion in 
response to NLRC4 inflammasome activators. Lrrk2-deficient mice poorly 
clear Salmonella Typhimurium infections and they exhibit a marked impair-
ment in selective forms of autophagy and lysosomal function; however, only 
a minor defect in nonselective autophagy79. Understanding the multiple 
regulatory mechanisms that control autophagy and inflammasomes may 
help design therapies to counter their manipulation by pathogens.

While initial studies largely focused on autophagy and inflammasomes in 
the setting of intracellular bacterial infection, the regulation and dysregulation 
of autophagy and inflammasomes contribute to the pathogenesis of many viral 
infections80–82. Autophagy can eliminate invading viruses and foster antiviral 
responses; however, some enveloped viruses use autophagy-related vesicles 
for transit and as sites for replication. SARS-CoV-2 has a complex effect on both 
autophagy and inflammasomes, and their dysregulation may contribute to the 
pathogenesis of severe, life-threatening diseases83–85. Several of the SARS CoV- 
2 encoded proteins manipulate autophagy. E protein, M protein, (open reading 
frame) ORF3a, and ORF7a all cause an accumulation of autophagosomes, 
whereas Nsp15 prevents their efficient formation. The viroporin ORF3a is 
a small, hydrophobic molecule that targets the host cell membrane altering 
their ion permeability86. ORF3a localizes to intracellular vesicles, in the endo-
plasmic reticulum, and at the plasma membrane. It helps viral egress via 
a lysosomal exocytosis-pathway87,88. Conversely, it induces a specialized form 
of autophagy termed reticulophagy through the high mobility group box 1 
(HMGB1)-BECLIN1 pathway89. Inflammation releases nuclear HMGB1 into the 
cytosol and extracellular spaces where it helps sustain autophagy and functions 
as a DAMP. By disrupting ER homeostasis ORF3a induces ER stress and triggers 
inflammation. Evidence of inflammasome activation in COVID-19 patients has 
come from studies showing inflammasome ASC specks, active caspase-1, and 
cleaved GSMD in SARS-CoV-2 bearing monocytes 90. Cytokine release, immune 
cell recruitment, and positive feedback loops help drive the formation of the 
highly inflammatory milieu found in critically ill patients. Besides ORF3a the 
SARS-CoV-2 N protein also activates inflammasomes91. It directly interacts with 
NLRP3 promoting binding to ASC and facilitating NLRP3 inflammasome assem-
bly. These and other data indicate that SARS-CoV-2 manipulates the host’s 
innate immune responses and that targeting these pathways should provide 
avenues to attenuate viral pathogenicity.

The central role of autophagy in inflammasome regulation is well sup-
ported by the fact that some bacterial pathogens manipulate the autophagy 
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response as a subversion strategy. The SpvC effector protein from Salmonella 
blocks NLRP3 and NLRC4-induced autophagy92. In contrast, VopQ from Vibrio 
parahaemolyticus induces autophagy to dampen NLRC4 inflammasome 
activation93. Shigella flexneri which activates the NLRC4 inflammasome in 
macrophages can also induce autophagy to reduce IL-1β release and pyrop-
totic cell death94 and Mycobacterium tuberculosis-induced IL-1β release is also 
negatively controlled by autophagy95.

The autophagy-dependent regulation of inflammasome responses might 
be of use for therapeutic intervention for the treatment of hereditary dis-
orders associated with mutations in NLRs. Rapamycin for example was shown 
to reduce NLRC4-mediated IL-1 cytokine production in myeloid cells expres-
sing a disease-associated hypermorph of NLRC496. Future research will help 
to delineate the whole picture of NLR-autophagy crosstalk. Emergent studies 
suggest that besides NOD1/2, NLRP3 and NLRC4, several other NLR proteins 
are linked to autophagy. The MHC class I regulator NLRC5, for example, was 
shown to be degraded by autophagy in endometrial cancer cells, leading to 
loss of MHC class I expression that was associated with worse clinical 
outcomes97. Besides the NLR discussed above, NLRC4, NLRP3, NLRP4, and 
NLRP10 were also shown to interact with BECLIN1 and for NLRP4 it was 
shown that recruitment to Streptococci containing phagosomes led to the 
release of BECLIN1 resulting in the local induction of autophagy98. In the gut, 
NLRP6 regulates autophagy in goblet cells to control mucus production99. 
Taken together, this suggests the potential of NLR proteins as targets to tailor 
inflammophagy responses and in line with the recent characterization of 
specific inhibitors for RIPK2 and NLRP3 has clinical potential.

E. Interplay between RLRs and Autophagy

Another family of intracellular PRRs is the RIG-I-like receptors (RLRs). The three 
ubiquitously expressed RLR members are RIG-I, MDA5, and LGP2 in contrast 
to the NLRs described above mainly act in anti-viral responses. Upon activa-
tion via cytoplasmic viral RNA or processed self RNA, RLRs initiate a series of 
events that activate interferon regulatory factors (IRFs)100,101. IRFs are the key 
transcription regulators of Interferons (mainly type I and type III IFNs).

RIG-I and MDA5 are the most studied members of the RLR family. Upon 
sensing PAMPs, RIG-I oligomerizes and interacts with adaptor protein mito-
chondrial antiviral signaling (MAVS) on the mitochondria. MAVS oligomerizes 
to form large aggregates and associates with multiple adaptor proteins 
including TRAF2, TRAF3 TRAF6, TANK, and TRADD to activate Tank-binding 
kinase-1 (TBK1) and I kappa B kinase epsilon (IKKε)100,101. The IRFs (IRF3/7) are 
phosphorylated by activated TBK1 and IKKε resulting in their homo- or 
heterodimerization and translocation to the nucleus to promote the expres-
sion of IFNs. The secreted interferons are sensed by interferon receptors 
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leading to the activation of JAK-STAT1/2 pathways resulting in the upregula-
tion of a large number of interferon-stimulated genes (ISGs) that have 
a myriad of functions in innate immunity100,101.

The interplay between RIG-I signaling and autophagy has been documen-
ted, however, mechanistically, how RIG-I signaling participates in autophagy 
modulation is not very clear. On the other hand, how autophagy suppresses 
RIG-I-MAVS signaling is well understood. The activation of RIG-I-MAVS-TRAF6 
signaling by PAMPs and virus induces the interaction between TRAF6 and 
BECLIN1 resulting in increased K63-linked ubiquitination of BECLIN1102, which 
is an important event in autophagy upregulation (Figure 1).

Several autophagy-dependent mechanisms target RIG-I, MDA5, and MAVS 
for degradation to suppress inflammation. In the absence of autophagy, 
dysfunctional mitochondria accumulate leading to the production of high 
levels of mtROS that likely activates RLR signaling leading to IFN production-
103. The Atg5–Atg12 conjugate can directly interact with the CARD domains 
of MAVS and RIG-I to suppress the production of type I IFN’s104. Upon viral 
cellular invasion, the leucine-rich repeat-containing protein 25 (LRRC25) 
interacts with activated ISG15-tagged RIG-I and enhances its interaction 
with autophagy receptor p62/SQSTM1105. The ISG15-tagged RIG-I is delivered 
to the autophagosome via p62/SQSTM1 for degradation suppressing type 
I IFN signaling (Figure 2). Recently, the coiled-coil domain containing 50 
(CCDC50) protein was found to be a new receptor for autophagic degrada-
tion of K63-polyubiquitinated RIG-I/MDA5106 (Figure 2). CCDC50 directly 
interacts with LC3 protein on autophagosome membranes to deliver ubiqui-
tinated RIG-I/MDA5, thereby suppressing the type 1 IFN response. CCDC50 
deficient mice exhibited a reduced autophagic degradation of RIG-I/MDA5, 
a heightened type I IFN response, and enhanced viral resistance106.

MAVS is targeted by several proteins including Tetherin, RNF34, and HFE 
for autophagic degradation107–109 (Figure 2). Tetherin, an ISG and anti-viral 
protein that recruits MARCH8 to enhance K27-linked ubiquitination of MAVS, 
is recognized by autophagy receptor protein NDP52107. NDP52 mediates 
autophagic degradation of MAVS and suppression of type I IFN response. 
Similarly, RNF34, a ring finger domain-containing E3-ligase, interacts and 
catalyzes the K27 and K29-linked ubiquitination of MAVS for NDP52- 
dependent autophagy resulting in reduced type I IFN responses108.

Several studies have shown genetic and functional linkage of IRGM protein 
with type 1 interferonopathies and autoimmune diseases25,110,111. The 
mechanism remained unclear until recently when IRGM was shown to directly 
interact with RIG-I and MAVS to mediate RIG-I degradation via p62/SQSTM1- 
dependent selective autophagy (Figure 2). IRGM strongly suppresses type 1 
IFN response and reducing its expression induces more than 100 ISGs25. 
Similar results were obtained in Irgm1-deficient mice. Downregulation of 
IRGM/Irgm1 in humans and mice causes mitophagy defects25,110. The 
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resulting accumulation of defunct mitochondria increased mtROS, mtRNA, 
and mtDNA fueled RIG-I-MAVS and cGAS-STING signaling for the production 
of IFN response. These studies delineated the mechanisms by which IRGM 
protects against type 1 interferonopathies and autoinflammatory diseases. 
On the flip side, since IRGM is a master negative regulator of the interferon 
response, its depletion could suppress the replication of a large number of 
different RNA/DNA viruses112.

Thus, autophagy-dependent mechanisms play a vital role in the suppres-
sion of RLRs mediated cytokine response and hence maintain innate immune 
balance during microbial infection or sterile damage.

F. cGAS-STING signaling and autophagy

Cyclic GMP-AMP synthase (cGAS) senses cytosolic dsDNA to trigger activation 
of STING (TMEM173) protein to induce both type I interferon and NF-κB 
responses113. Extensive functional interactions have been documented 
between autophagy and the cGAS-STING pathway. Stimulation of the cGAS- 
STING pathway not only induces type 1 IFN response but also enhances 
autophagy by several mechanisms to suppress IFN response and thus main-
tain immune homeostasis. For example, cGAS interaction with autophagy 
protein BECLIN1 results in reduced cGAMP synthesis and enhanced autop-
hagy-dependent degradation of dsDNA causing suppression of the IFN 
response114. Genotoxic stress results in increased micronuclei in the cytosol 
that are suggested to be sensed by cGAS and induce interferon response. 
Recently, it was shown that cGAS also acts as a receptor for micronuclei and 
could target them for autophagy by directly interacting with LC3B on 
autophagosomes115. By doing so, cGAS maintains the balance of the IFN 
response induced against micronuclei.

STING can induce LC3 lipidation and upregulation of autophagy (Figure 1). 
The cGAMP-induced STING-containing ERGIC (Endoplasmic reticulum–Golgi 
intermediate compartment) provides a membrane source for LC3 lipidation 
and autophagosome biogenesis116. The cGAMP-induced STING-dependent 
autophagy could clear DNA and viruses from the cytoplasm, possibly to 
reduces the source of inflammation. Another study confirmed STING- 
induced LC3 lipidation but reported that LC3 lipidation occurs at single 
membrane perinuclear vesicles and is mediated by v-ATPase and ATG16L1117.

cGAS and STING themselves are degraded by p62/SQSTM1-dependent 
autophagy to maintain the homeostatic balance of the IFN response25,118 

(Figure 2). Interestingly, STING-activated TBK1 can phosphorylate both IRF3 
and p62/SQSTM1. Activated IRF3 induces type I IFN production, whereas 
phosphorylated p62/SQSTM1 interacts with STING to degrade it and suppress 
type I IFN response118. IRGM interacts with cGAS to enhance p62/SQSTM1- 
dependent autophagic degradation resulting in suppression of type 
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I interferon response25. Altogether, the cGAS-STING pathway like NLR, TLR, 
and RLR signaling can induce autophagy and in most cases, this autophagy 
can suppress inflammation in a feedback loop.

G. Complement-mediated modulation of autophagy

Complement is a tightly regulated system that critically contributes to the 
humoral innate immune defense against pathogens and promotes local 
inflammation, phagocytosis, and lysis of invading microbes. Several compo-
nents of the complement system can be involved in anti-microbial autophagy 
(Figure 1). Attenuated measles virus (MeV) infects human cells through CD46, 
a regulatory factor that prevents complement-mediated cell lysis. MeV entry 
rapidly activates autophagy through the CD46-Cyt-1 intracytoplasmic splice 
variant that recruits the scaffold protein GOPC, an interactor of the VPS34- 
BECLIN1 complex119. This early autophagy resolves spontaneously before 
a second and sustained autophagic phase that depends on virus replication 
and benefits from it120. The CD46-Cyt-1-GOPC-VPS34-BECN1 axis also acti-
vates autophagy during infection by Group A Streptococcus (GAS)119 and 
Neisseria gonorrhoeae121, both bind to CD46. Because CD46 also serves as 
a receptor for other viruses (HHV-6, BVDV pestivirus, and adenoviruses B/D), 
this axis is likely to activate autophagy upon infection by additional patho-
gens. Thus, the complement regulatory factor CD46 acts as a pathogen 
sensor able to initiate autophagy upon infection (Figure 1). V-set and immu-
noglobulin domain containing 4 (VSIG4) is a surface receptor expressed on 
phagocytic antigen-presenting cells and functions as a receptor for the 
phagocytosis of bacteria opsonized with the complement factor C3. VSIG4 
engagement by C3b-coated Listeria monocytogenes promotes the ubiquitina-
tion and targeting of cytosolic bacteria to autophagic degradation in both 
macrophage-like cells and primary macrophages122. Hence, by engaging the 
VSIG4 receptor, C3b deposited on L. monocytogenes induces an antibacterial 
autophagic response in professional phagocytic cells. C3b deposited on 
L. monocytogenes or adherent-invasive Escherichia coli (AIEC), can also acti-
vate anti-microbial autophagy in epithelial cells after reaching the cytosol123 

(Figure 1). This capacity relies on the direct interaction of C3 with ATG16L1 
and is altered in cells lacking ATG16L1 or carrying its T300A variant that is 
associated with Crohn’s disease. The strong anti-microbial potential of this 
effect is best illustrated by the fact that some bacteria evolved strategies to 
counteract the C3-ATG16L1 interaction124. For instance, opsonized Shigella 
flexneri and S. typhimurium can attenuate autophagy restriction through the 
shedding of adsorbed C3 soon after infection by engaging proteases of the 
omptin family124. These studies thus indicate that complement factors can 
regulate the autophagic response to intracellular microbes through both 
surface and cytosolic interactions.
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2. Interferon-inducible GTPases (IRGs) and autophagy

The Immunity-Related GTPases (IRG; also known as p47 GTPases) and the 
Guanylate Binding Proteins (GBP, also known as p65 GTPases) are related 
families of GTPases whose expression is dramatically induced by type I (IFN 
α/β) and type II (IFNγ) interferons125,126. The genes encoding these GTPases 
were cloned beginning in the late 1990’s as a consequence of genetic searches 
for IFN-induced genes. The existence of GBP proteins was actually known 
earlier, as their high levels in cell lysates from IFN-induced cells result in intense, 
diagnostic spots on two-dimensional protein gels. IRG genes are abundant in 
rodents with 23 family members found in C57BL/6 mice127. In contrast, IRGs are 
more restricted in humans where there are two members - IRGC, which is 
constitutively expressed only in the testis, and IRGM that is more widely 
expressed but truncated relative to mouse IRGs127. Genes encoding IRGs are 
present in small numbers in other species such as dogs, fish etc.,127,128. These 
patterns suggest that IRGs have proliferated in rodents under evolutionary 
pressure from endemic pathogens and play more expansive roles in rodent 
innate immunity, though important roles in humans exist. The GBP gene 
families are more equitable between rodents and humans, perhaps suggesting 
a higher degree of functional conservation.

IRGs/GBPs are expressed in a range of hematopoietic and non- 
hematopoietic cells following IFN activation. Their activities are essential for 
normal IFN-induced immune responses to some pathogens129–131. IRGs and 
GBPs are thought to function as dynamins, a superfamily of large GTPases 
that bind cellular membranes and then undergo GTP hydrolysis that induces 
conformational changes and enables various cellular functions132. For 
instance, in Irgb6 conformational changes following GTP hydrolysis allow 
recognition of a phospholipid binding site on the vacuolar membranes 
surrounding Toxoplasma gondii133. IRGs and GBPs bind diverse membrane 
compartments where they are thought to carry out a collection of activities 
that support two major cellular functions: cell-autonomous immunity and 
autophagic regulation.

A. IRGs/GBPs as Regulators of Autophagy of Cell Autonomous 
Immunity

The first immune function assigned to mouse IRGs was the ability to kill 
Toxoplasma gondii and Chlamydia trachomatis in host cells (macrophages, 
astrocytes, and fibroblasts) that have been activated with IFN134–139. A large 
family of over 20 mouse IRGs bifurcates into two types: the majority are 
known as GKS IRGs because they possess a canonical GKS sequence motif 
in the GTP-binding region, while the less common GMS or IRGM proteins 
possess a non-canonical GMS motif128. The GKS IRGs are the major players in 
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this cell-autonomous killing mechanism. They are present in the cytoplasm or 
on membranes in host cells, but following T. gondii or C. trachomatis infection, 
they rapidly home to the parasitophorous vacuole (PV) that surrounds the 
pathogens140–138–142. They do so in a hierarchical order that ostensibly is 
required for function, with Irgb6 being a lead protein that recognizes specific 
phospholipids on the T. gondii PV143 (Figure 3). Once the GKS IRG complex 
coats the PV, the T. gondii PV vesiculates extruding the naked pathogen into 
the cytoplasm, effectively stripping the parasite of its protective niche and 
leading to its death136,144 (Figure 3). This vesiculation function is reminiscent 
of the ability of classical dynamins to contort membranes to form vesicles. 
The GKS-coated C. trachomatis PVs similarly undergo lytic disintegration145, 
suggesting a conserved host defense mechanism executed by mouse IRGs. 
The mouse IRG family is highly diverse among wild species of mice and has 
likely been shaped by co-evolution with pathogens like T. gondii that natu-
rally infect rodents146. IRGM proteins play a more peripheral role in these 
processes, as they bind endomembranes in the cell and hold the GKS IRGs in 
a biochemically inactive state in those locations until they are needed to 
target PVs141,147. GMS proteins thus play a critical chaperone role and in their 
absence, the GKS proteins aggregate and lose their capacity to correctly 
target to pathogen membranes141,148,149. The central role of this cell- 
autonomous killing mechanism for pathogen control is illustrated by the 
fact that T. gondii and C. muridarum, a rodent-adapted pathogen, have both 
evolved the capacity to circumvent IRG-mediated killing. In T. gondii, specific 
virulence factors (rhoptry proteins ROP5, ROP17, and ROP18) phosphorylate 
GKS IRGs to inactivate them150–152. This ability to neutralize IRGs, or not, 
determines the overall virulence category of T. gondii stains. C. muridarum 
can also avoid GKS-mediated killing142 although the molecular basis for this 
evasion is not yet defined.

GBPs also target T. gondii PV and C. trachomatis inclusion. The GBP family in 
mice consists of two clusters one on Chromosome (Chr) 3 (containing Gbp1. 
Gbp2, Gbp3, Gbp5, Gbp7, and Gbp2ps) and one on Chr 5 (containing Gbp4, Gbp6, 
Gbp8-11)153. Deletion of the Chr3 cluster renders mice susceptible to infection 
with T. gondii153. Like IRGs, GBPs also home to PVs in an ordered manner with 
Gbp1154 and Gbp2155 initially recruited to the PV surrounding T. gondii, while 
Gbp2 and Gbp7 are thought to target the parasite membrane for destruction 
after the vacuole has ruptured156 (Figure 3). In contrast to IRGs, GBPs may not 
affect PV vesiculation of C. trachomatis PVs; rather, they are involved in inflamma-
some activation145,157. There is robust cross-regulation among the GBPs and the 
two IRG subfamilies: IRGM proteins can influence the recruitment of GBPs to 
PVs158, and GBPs can affect the recruitment of IRGs159,160. Ubiquitination by the E3 
ubiquitin ligase TRAF6 and the autophagy adapter protein p62/SQSTM1is also 
involved in the process by recruiting GBPs to the PV145 (Figure 3).
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Although autophagy is not required for vesiculation of PVs per se, autop-
hagy and IRGs/ GBPs do cooperate to recognize and eradicate T. gondii in a cell- 
autonomous manner in murine cells161–163. This process does not require the 
initiation steps of autophagy (i.e. Beclin and Atg14) nor the degradative steps 
(lysosomal fusion), but rather relies on a core set of ATG proteins that has been 
referred to as non-canonical autophagy164–166. The autophagy proteins Atg3, 
Atg7, and the Atg5-Atg12-Atg16L1 complex are recruited directly to the PV, 
perhaps by recognition of phosphatidylinositols in the PV membrane143,163 

(Figure 3). This non-canonical autophagy protein complex then conjugates 
LC3 homologs (Atg8 and the GABARAPs) to phosphatidylethanolamine in the 
membrane. Of the five LC3 orthologs in mice, the major effector is Gabarapl2, 
while others play lessor roles167(Figure 3). It is thought that the recruitment of 
this ATG complex to the PV membrane facilitates the recruitment of IRGs/ GBPs 
that subsequently carry out vacuole lysis. In the absence of a core set of ATG 
proteins (i.e. Atg3, Atg7, Atg5-Atg12-Atg16), IRGs and GBPs become activated 
and aggregate in cytoplasmic clusters and are therefore unable to function in 
recruitment to pathogen containing vacuoles165,168(Figure 3). The lack of ATG 
proteins thus leads to an absence of IRG/ GBP homing to the PV, essentially 
undermining the whole cell-autonomous mechanism in mouse cells.

In contrast to murine cells, where GKS IRGs play a prominent role, human 
cells lack this set of effectors and yet still control T. gondii through a process 
that relies on non-canonical autophagy and GBPs. Human cells express seven 
GBPs that are found in a single cluster on Chr1169. It should be noted that in 
human cells autophagy proteins are dispensable for GBP delivery but essen-
tial for the recruitment of GABARAPL2170(Figure 3), which is required for cell- 
autonomous restriction of T. gondii, though presumably utilizing different 
effector proteins168,170 In HeLa cells, the process is initiated by ubiquitination 
of unknown targets on the PV followed by recruitment of adaptors p62/ 
SQSTM1, NDP52 and finally conjugation of LC3168. Unlike the process of 
xenophagy that restricts intracellular bacteria171, control of T. gondii in 
human cells by noncanonical autophagy requires activation with IFN-γ. 
Autophagy proteins are not normally induced by IFN- γ, rather the link 
between these two pathways is mediated by induction of ISG15, which 
facilitates recruitment of the Ub binding adaptors p62/SQSTM1 and NDP52 
to the PV surrounding T. gondii172. The fate of LC3 positive vacuoles differs 
somewhat based on cell type: in HeLa cells engulfment in LC3 positive 
membranes stunts parasite growth168, while in HUVEC cells the parasite is 
delivered to LAMP1+ compartments173. In human macrophages, GBP1 per-
forms its role following recruitment to the PV 174, although it acts at a distance 
in A549 human lung epithelial cells infected with the protists T. gondii or 
Leishmania donovani175,176. GBP1 also contributes to parasite restriction by 
inducing the AIM2 inflammasome following the release of parasite DNA into 
the cytosol177(Figure 3). Additionally, GBP2 and GBP5 have been implicated in 
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parasite control despite not being recruited to the vacuole178,179(Figure 3). 
Both the GTPase functions and lipidation are required for the activities of 
GBP1, GBP2, and GBP 5 in human monocytes treated with IFN- γ178. The 
ability of GBPs to act at a distance contrasts with the role of such effectors 
normally have in targeting the PV membrane or parasite within.177.

Figure 3. Mechanisms of cell-autonomous immunity to Toxoplasma in mouse and 
human cells. Mouse: Activation of IFNAR or IFNGR by type I or II IFNs, respectively, 
induces expression of >1000 interferon-stimulated genes (ISGs), including IRGs and 
GBPs. Irgm proteins reside on host organelles including Golgi (Irgm1/m2), ER (Irgm3), 
mitochondria (Irgm1), and lipid droplets (LDs; Irgm3) and inhibit the binding and 
activation of cytosolic GKS proteins on those host membranes. Irgm2 promotes the 
conjugation of GABARAPL2 on the PVM, which promotes GKS and GBP recruitment. 
Irgm1 and Irgm3 coordinate the targeting of GKS proteins to the Toxoplasma PV, with 
Irgb6 acting as a pioneer to recruit other GKS proteins such as Irga6. GKS targeting to the 
PV promotes PV ubiquitination and ubiquitin-dependent recruitment of cytosolic com-
plexes containing p62/SQSTM1 and GBP2, which in turn promotes recruitment of other 
GBPs including GBP1. Decoration of the PV with host effectors leads to vesiculation of 
the PVM, and the exposed Toxoplasma is targeted by GBPs including GBP2 and GBP7, 
and destroyed. Human: IFN stimulation drives the expression of ISGs including GBPs and 
ISG15 as well as ubiquitination of the Toxoplasma PVM. ISG15 promotes the recruitment 
of p62/SQSTM1 and NDP52 to ubiquitinated PVs, which facilitates association with LC3+ 
membrane structures. In some cell types, this leads to restriction of Toxoplasma growth 
and replication, and in others, the PV is delivered to LAMP1+ lysosomes for degradation. 
Decoration of the PVM with GABARAPL2 drives parasite clearance by an unknown 
mechanism. GBP1 is recruited to the Toxoplasma PV in macrophages but not A549 
cells and liberates parasite DNA for activation of the AIM2 inflammasome. GBP2 and 
GBP5 are not recruited to the PV but contribute to the clearance of Toxoplasma.
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Beyond the vesiculation mechanism, IRGs and GBPs can recruit other anti- 
microbial factors that function on a cell-autonomous level. These factors are 
numerous and once recruited to vacuoles/phagosomes or bacteria, they act 
through diverse mechanisms. For instance, Irgm1 and Irgm3 control the 
translocation of multiple E3 ubiquitin ligases including TRAF6 to T. gondii 
and C. trachomatis vacuoles145,180, which then tags the vacuoles with ubiqui-
tin to allow recognition by other cellular factors. In contrast, Irgm2 controls 
the targeting of Gabarapl2 to T. gondii phagosomes181, which then modifies 
phagosome processing. Regarding GBPs, they have been reported to control 
the targeting of phagocyte oxidase, antimicrobial peptides, and autophagy 
effectors to membrane-bound intracellular bacteria to elicit their killing131. 
Further, GBP complexes assemble on cytosolic bacteria, where they can 
recruit caspases that trigger inflammasome activation182,183. GBPs are also 
able to block actin tail-mediated motility of cytosolic bacteria such as 
Shigella183–186. Finally, both GBPs and IRGMs modulate the sensing of cyto-
solic LPS187–190. The underlying biochemical mechanisms are not yet clear 
that allow IRGs/ GBPs to recruit these factors; nor it is clear how these 
activities hinge on the core dynamin-like activity of the proteins.

B. IRGM as Regulators of Autophagy

IRG/GBP proteins regulate autophagic processes that are important for 
pathogen control and limiting potentially excessive inflammatory cytokine 
production. This is underscored by polymorphisms in the human IRGM gene 
that reduce IRGM expression and autophagic activity, and are associated with 
Crohn’s Disease191,192, ankylosing spondylitis193, non-alcoholic fatty liver 
disease194, and Mycobacterium tuberculosis infection195, as well as poor out-
comes to sepsis196. IRGM has been shown to regulate the assembly of the 
core autophagic machinery42. It does so by interacting with ULK1 and 
BECLIN1 to promote their assembly into autophagy initiation complexes. 
IRGM also interacts with NOD2, which enhances the K63-linked polyubiquiti-
nation of IRGM that is required for interactions of the protein with the 
autophagy complex42. This ability to promote autophagy impacts immunity 
and inflammation in various ways. For instance, mouse Irgm1 and human 
IRGM both stimulate autophagic killing of phagosomal M. tuberculosis197,198 

and adherent-invasive Escherichia coli199 in macrophages. Both proteins reg-
ulate autophagic degradation of NLRP3 and ASC, which has the effect of 
blocking NLRP3 inflammasome activation and limiting IL-1β production70. 
IRGM also targets viral replication complexes that are subsequently ubiquiti-
nated and thus tagged for autophagic removal200.

A particularly important aspect of the involvement of Irgm1/IRGM in 
autophagy may be in their ability to promote autophagic clearance of mito-
chondria, a process known as mitophagy. When Irgm1 and/or IRGM is absent, 
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mitochondrial homeostasis is perturbed as reflected in an accumulation of 
defective mitochondria, altered mitochondrial fission/fusion states, and 
increased presence of intracellular mitochondrial DNA in the cytoplasm-
24,25,201–204. These alterations in mitochondria result in changes in cellular 
metabolism that shape immune cell function and increase inflammation25,205. 
The mitochondrial DNA/RNA soiling of the cytoplasm has profound conse-
quences, as it activates intracellular sensors such as cGAS/STING. RIG-I-MAVS, 
and TLR7 that trigger a cascade of cytokine production24,25,204. This notably 
drives a type I ‘interferonopathy’ that significantly modulates multiple 
immune responses and is a key driver of disease.

3. Autophagy and adaptive immunity

A. Autophagy and MHC class II antigen presentation

Because class II molecules of the major histocompatibility complex (MHC II) 
constitutively traffic through endo-lysosomal acidic compartments where 
they get complexed to antigenic peptides (MHC II compartments), autopha-
gosomal cargoes that cross such compartments can influence MHC class II 
antigen presentation to CD4+ T lymphocytes helper cells. This happens in 
various cell types such as epithelial cells, melanocytes, and professional 
antigen-presenting cells, including B cells206–210. As a consequence, conjugat-
ing antigens to LC3 promotes their MHC II presentation due to imposed 
autophagosomal targeting210–214,215. Autophagy can promote the MHC II 
presentation of endogenous (self) antigens of both cytosolic and nuclear 
origin, including factors of the ATG8 family and autophagy receptors such 
as TAX1BP1208, 216. In the case of thymic epithelial cells (TECs)217, such an 
effect participates in the selection of the T cell receptor (TCR) repertoire for 
both effector and regulatory (Treg) CD4+CD8- thymocytes211,218,219. 
Accordingly, interfering with TEC autophagy can trigger multi-organ 
inflammation218, and fusing antigens to LC3 leads to the intra-thymic dele-
tion of immature CD4+CD8- thymocytes expressing cognate TCRs211. The role 
of autophagy in the antigen-presenting function of TECs appears to be 
regulated by the C-type lectin CLEC16A whose deficiency diminishes the 
autophagic activity of TECs and attenuates the positive selection of auto-
reactive thymocytes220. How CLEC16A positively influences autophagy in 
TECs remains to be dissected as it can also repress autophagy in epithelial 
cells through activation of the mTOR pathway221. Autophagy also contributes 
to the MHC II presentation of extracellular antigens, including determinants 
derived from viruses and bacteria209,207,222–226. Indeed, the influence of 
autophagy on the MHC II presentation of microbial antigens can be so 
efficient that microorganisms evolved means to interfere with it223–230.
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B. Autophagy and MHC I antigen presentation

MHC class I molecules are specialized in the acquisition of antigenic peptides 
resulting from proteasomal degradation for presentation to CD8+ 
T lymphocytes. This acquisition occurs within the endoplasmic reticulum 
(ER) after the importation of cytosolic peptides. Autophagy appears to influ-
ence MHC I-peptide complexation when this classical MHC I pathway is 
perturbed for instance by viruses that interfere with peptide transport into 
the ER. In that context, some complexation events can take place in late 
endosomal compartments that receive contents from autophagosomes. This 
appears to be the case during infection with the herpes simplex virus (HSV) 1 
or human cytomegalovirus (HCMV) for the MHC I presentation of peptides 
from HSVgB and pUL138 viral antigens, respectively231,232. However, autop-
hagy negatively regulates the level of MHC I antigen presentation by promot-
ing cell surface MHC I molecules internalization and lysosomal degradation 
and thereby, negatively modulating the presentation of viral or tumor anti-
gens to CD8 T cells233–235. In fact, both MHC I and non-classical MHC I (such as 
CD1d) molecule expression is augmented on the surface of professional 
antigen-presenting cells lacking ATG5 or ATG7 factors226,233. In this context, 
the adaptor-associated kinase 1 (AAK1) which regulates the activity of the 
AP2 complex is not properly recruited to MHC I molecules233, indicating a role 
for autophagy factors in some forms of endocytosis. In tumor cells, MHC 
I degradation can involve the autophagy receptor NBR1 that mediates 
ERphagy235.

The ability of MHC I molecules to present peptides from exogenous anti-
gens is named cross-presentation. This process, which is very efficient in some 
subsets of DCs, may depend on the persistence of internalized antigens in 
endosomes that intersect with recycling endosomes carrying MHC 
I molecules. In some instances, core autophagy genes may be required for 
such a phenomenon. Thus, Atg7 is needed for the MHC I cross-presentation of 
peptides from soluble ovalbumin (OVA) but not that of OVA from apoptotic 
cell corpses or OVA directed to the DEC205 endocytic receptor236. In B cells, 
the cross-presentation of protein antigens can require both autophagy and 
proteasome activity237. Cross presentation of some extracellular antigens on 
MHC I can be affected by the absence of VPS34238. On the donor cell side, 
functional autophagy can favor the cross-presentation of both viral and 
tumor antigens by efficiently conditioning exosomal vesicles captured by 
dendritic cells239–241. In addition, a contribution of autophagy to the transfer 
of endocytosed antigenic material into the cytosol before connection to the 
classical MHC I pathway has been suggested242,243, although the exact mod-
alities of the autophagy machinery contribution to exocytosis remain to be 
elucidated. Hence, while the autophagy machinery limits the presentation of 
endogenous antigens by regulating MHC I expression level, it can facilitate 
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MHC I presentation of some forms of exogenous antigens by acting both in 
presenting cells and antigen donor cells.

C. Autophagy in T lymphocyte biology

Autophagy is instrumental for T lymphocyte homeostasis both during devel-
opment and their effector functions. It also has a role in immunological 
memory (Figure 4). Lymphocyte activation via antigen receptor (TCR) engage-
ment triggers multiple biochemical changes that are necessary for clonal 
expansion and effector cell differentiation. Most notably, lymphocytes 
increase their glucose uptake, glycolytic activity, and glutamine metabolism 
to generate ATP and the metabolites required for activation and effector 
functions, a transition that involves contributions from autophagy. During 
thymic development, autophagy is important for the CD4-CD8- to CD4+CD8+ 
transition244 before commitment to either CD4+CD8- or CD4-CD8+ lineages 
and exit into the periphery (Figure 4). Mice lacking core autophagy factors, 
such as those involved in the initiation/conjugation steps, display a reduced 
pool of both immature and mature T cells due to increased cell death245–247 

indicating an important role for autophagy in the homeostasis of both 
developing and mature T cells (Figure 4). Autophagy is also important for 
the development of invariant NKT cells, a specialized subset of T cells that 
react to microbial glycolipid in the context of CD1d248.

Naïve resting T cells possess a moderate level of constitutive autophagy and 
depend on oxidative phosphorylation for their energetic needs. Upon T cell 
activation, the overall autophagy flux is enhanced245,246,249 while the autophagic 
degradation of mitochondria is diminished250,251. During this process, autophagy 
protects T cells from a form of functional inactivation called anergy252. During 
differentiation into helper (CD4+) or cytotoxic (CD8+) T cell subsets, autophagic 
and metabolic interconnected adjustments influence the functional potential of 
the resulting cells. The proinflammatory Th1 subset of differentiated CD4 T cells is 
more dependent on autophagy than other subsets, such as Th17 cells, for their 
survival253,254(Figure 4). In Th2 cells, autophagy appears to negatively regulate 
their persistence as they further persist/expand in its absence253,255. Along the 
same line, autophagy deficiency favors the differentiation and function of Th9 
CD4 T cells256. Thus, autophagy differentially impacts the differentiation of naïve 
CD4 T cells into their specialized effector subsets. In the absence of mTOR, CD4 
T cell differentiation is skewed toward regulatory T cells (Treg), which are 
important for repressing autoimmune T cells, at the expense of conventional 
CD4 T helper cell subsets. Tregs rely on fatty acid oxidation for energy generation 
while effector CD4 T cells favor glycolysis to support their function257–260. 
Deficiency in ATG16L1, Vps34, ATG5, or ATG7 alters the persistence and function 
of Tregs while it promotes those of Th2 cells255,261,262 revealing the importance of 
autophagy in Treg maintenance, especially in terms of transcriptional 
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reprogramming (Figure 4). Alteration of autophagy promotes mTOR activation 
and glycolytic enzyme expression, which enhances glycolysis and better fits the 
requirements of conventional T helper cells. In CD8 T cells, antigen receptor 
activation leads to augmented glycolysis but differs from CD4 T cells as there is 
a significant role for the pyruvate dehydrogenase263. Upon viral infection, the 
importance of functional autophagy in effector CD8 T cells varies according to 
the involved pathogen264,265. After contraction of the effector response, some 
CD8 T cells revert to oxidative phosphorylation and acquire a status of long-lived, 
antigen-specific, memory cells. As autophagy can be important for such meta-
bolic adjustments it is not surprising that the emergence and persistence of CD8 
memory T cells are greatly sensitive to the autophagy status264–266. For instance, 
CD8 T deficient in ATG7 after encountering viral antigens were altered in their 
capacity to generate a memory pool264, and autophagy was found to promote 
the maintenance of liver resident memory CD8 T cells267. In the context of tumor 
antigens, autophagy represses the function of effector/memory CD8 T cells by 
controlling histone methylation, glycolysis, and immune response gene 
expression268, Finally, autophagy can act positively on stemness and survival of 
antigen-experienced CD8 T cells within the tumor microenvironment269. In many 
situations, the metabolic profile of CD8 T cells was modified by the level of cell- 
autonomous autophagy confirming that autophagy-associated changes in meta-
bolism greatly influence the generation and function of CD8 memory T cells 
(Figure 4). Within the CD4 T cell lineage, autophagy was found important for the 

Figure 4. Autophagy in T lymphocyte biology. Autophagy is critical for T cell home-
ostasis during their development and their effector functions. In thymocytes, autophagy 
prevents cell death and allows the transition from double-negative (DN) CD4–CD8– cells 
to double-positive (DP) CD4+CD8+ cells. After they migrate to the periphery, resting 
naïve T cells harbor a low level of autophagy. However, upon TCR engagement, 
autophagy is important for the differentiation, clonal expansion, and the effector 
function of mature T cells. Autophagy also has a role in the maintenance of memory 
T cells.
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homeostasis of lymphoid organ memory T cells by regulating the mitochondrial 
pool and lipid load270.

4. Non-canonical autophagy, infection, and immune response

Non-canonical autophagy has emerged as an essential component of the 
innate immune system, which serves as a cell-autonomous defense mechan-
ism. Non-canonical autophagy regulates pathogen clearance, inflammation, 
and antigen presentation. Thus, it plays an indispensable role in protecting 
against infectious, autoimmune, and inflammatory diseases271–273.

Unlike the involvement of LC3 with double-membrane autophagosomes 
in macroautophagy, non-canonical autophagy involves conjugating LC3 
family proteins to single-membrane compartments in a ULK1/2-independent 
manner. For example, LC3 conjugation to the phagosomal membrane 
(LAPosome) occurs by a process called LC3-associated phagocytosis (LAP), 
while LC3-associated endocytosis (LANDO) involves conjugation of LC3 to 
endosomes. Interestingly, Rubicon, a negative regulator of canonical autop-
hagy, positively regulates non-canonical autophagy pathways. Apart from 
Rubicon, either BECLIN1-VSP34 complex generated PI3P, or PI3P independent 
LC3 conjugation on the single membrane, requires the involvement of cano-
nical autophagy elongation complex (ATG12-ATG5-ATG16L1)274–276. The later 
process of covalent association of LC3 with a bilayer is known as the 
Conjugation of ATG8 to Single Membranes (CASM). During CASM, in addition 
to phosphatidylethanolamine (PE), LC3/GABARAP can also be conjugated to 
phosphatidylserine (PS)277. While similarities and differences exist between 
these two autophagy processes, we focus on the crosstalk between non- 
canonical autophagy (LAP/LANDO) and innate immunity to maintain immune 
homeostasis. We also highlight the unconventional roles of autophagy pro-
teins beyond their role in autophagy, especially on innate immune regulation.

Douglas R. Green’s group first showed direct and rapid recruitment of LC3 
on phagosomal membranes upon TLRs stimulation in mouse macrophages. 
This was shown to facilitate the maturation of phagosomes resulting in 
enhanced degradation of engulfed foreign entities during the early stages 
of infection278. The authors later named this process “LC3-associated phago-
cytosis (LAP)279. LAP has been implicated in the clearance of several intracel-
lular pathogens such as Listeria monocytogenes, Streptococcus pneumoniae, 
Aspergillus fumigatus, Salmonella typhimurium, Mycobacterium tuberculosis, 
and Influenza A virus (IAV)280–286. As explained above for CASM, during LAP, 
LC3 lipidation to a single membrane requires the presence of PI3P, ROS, and 
ATG16L1. This occurs by the concerted action of Rubicon, NADPH oxidase 
(NOX), and V-ATPase. While Rubicon is important for the generation of PI3P, 
NOX is indispensable for producing ROS, and the V-ATPase facilitates the 
recruitment of ATG16L1 to the phagosome. However, how exactly these 
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events are coordinated, the potential cross-talk, and their regulation is still 
obscure287–289. In addition, recent studies suggest that LAP plays a crucial role 
in antigen presentation210,290. Further clarity on the mechanism by which LAP 
participates in these processes may lie in elucidating the detailed role of 
V-ATPase as it is not only associated with the recruitment of key proteins but 
is also important for an efficient lysosomal function that effectively generates 
peptides for antigen presentation.

LAP limits pro-inflammatory responses by degrading phagocytosed dead 
cells. TIM4, a phosphatidylserine receptor essential for this process, induces 
rapid translocation of LC3 to the phagosome-containing cell corpses 
(Figure 5a). This promotes phagosome acidification and effective degradation 
of engulfed apoptotic and necrotic cells291. In 2016, the same group per-
formed in vivo experiments and showed that LAP-lacking animals display an 
increased level of inflammation, autoantibodies, kidney damage, and 
a systemic lupus erythematosus (SLE) like phenotype upon repeated injection 
of dead cells292. This highlights the importance of LAP in dampening inflam-
mation. LAP is also a significant contributor to efferocytosis, a process by 
which dead cells are cleared. Disruption of LAP upon long-term exposure to 
cigarette smoke (CS) results in failed efferocytosis, thus contributing to 
Chronic obstructive pulmonary disease (COPD). CS exposure reduces 
Rubicon levels, which perturbs the LAP pathway, causing severe lung inflam-
mation and damage293.

Furthermore, the LAP pathway in monocytes has been reported to reduce 
inflammation during cirrhosis. However, patients with acute-on-chronic liver 
failure (ACLF) showed negligible LAP levels. Patients affected with liver dis-
eases show elevated serum monomeric IgG levels. Surprisingly, the introduc-
tion of intravenous monomeric IgG in ACLF patients restores LAP via 
activation of the FcγRIIA-SHP-1-ITAMi signaling axis to impart anti- 
inflammatory responses294 (Figure 5a). However, exactly how LAP facilitates 
the assembly of anti-inflammatory signaling complex upon exposure to 
monomeric IgG is yet to be explored.

The C-terminal WD40 domain of ATG16L1, critical for LAP but not for 
canonical autophagy295, is a key regulator of anti-inflammatory cytokine 
signaling. Cytokine receptors interact with ATG16L1 WDD via a WDD- 
binding motif, which facilitates the LC3 lipidated compartmentalization of 
anti-inflammatory cytokines and their receptors (such as IL-10/IL-10RB) for 
optimal signaling instead of degradation (Figure 5a). Interestingly, this pro-
cess is independent of Rubicon296. Though all the above studies point 
towards the anti-inflammatory function of LAP in monocytes/macrophages, 
a small number of studies have also highlighted the pro-inflammatory effects 
of LAP. FcγR-mediated phagocytosis of DNA-specific IgG autoantibodies (hall-
marks of autoimmunity) by plasmacytoid dendritic cells (pDCs) leads to 
excessive secretion of IFN-α. Henault et al. showed that LAP is essential for 
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Figure 5. Role of unconventional autophagy and autophagy proteins in regulation of 
innate immune responses. (a) LC3-associated phagocytosis (LAP) mediates anti- 
inflammatory responses. LAP contributes to the degradation of intracellular pathogens 
(via PRR-mediated phagocytosis) and dead cells (via TIM4-mediated engulfment of 
apoptotic cells) which facilitate to dampen the inflammatory responses. As opposed 
to its degradative role, LAP also promotes the assembly of several anti-inflammatory 
signaling complexes (FcγRIIA-SHP-1-ITAMi and IL-10-1L10-RB) to control the levels of 
inflammation (b) Autophagy independent functions of ATGs in innate immunity. Several 
core autophagy proteins, independent of their autophagic function, regulate inflamma-
tory responses. ATG5 prevents neutrophil infiltration in the lungs during Mycobacterium 
infection to control hyper inflammation and induce cell survival. LC3-conjugation system 
facilitates the targeting of guanylate-binding proteins (GBPs) on the Toxoplasma para-
sitophorous vacuolar membrane, thereby damaging and destroying the vacuolar niche 
of the parasite. ATG16L1 contributes to plasma membrane repair upon infection of pore- 
forming toxins (PFTs) producing bacteria, thus providing resiliency towards PFTs. ATG9 
containing vesicles are involved in lysosomal mediated degradation of inflammasome to 
regulate inflammation, the assembly of inflammasome sensors into atg9 containing 
vesicles is dependent on Beclin2 and ULK1. Rubicon and ATG5-ATG12 complex control 
proinflammatory responses by binding to CARD9 and MAVS respectively.
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IFN-α secretion in response to DNA autoantibodies. LAP drives the trafficking 
of TLR9 (DNA sensor) containing phagosomes to a mature compartment (late 
endosomes), wherein the interferon signaling components interacts (TLR9, 
TRAF3, IRF7, etc.). This results in the pathogenic production of Type 
I interferons from pDCs, suggesting a role for LAP in autoimmunity297. 
Histoplasma capsulatum, a fungal pathogen that causes pulmonary mycosis 
in immunocompromised individuals, is recognized by the PRR Dectin-1. 
Dectin-1 activates the downstream effector, Syk, to generate ROS through 
NADPH oxidase in macrophages. Besides ROS, the NLRX1-TUFM-ATG5-ATG12 
axis also promotes LAP induction. Eventually, LAP activates the MAPK-AP-1 
pathway and cytokine production in a Rubicon-independent manner, con-
tributing to anti-fungal immunity298. Although, the mechanistic details are 
lacking as to how LAP activates the MAPK-AP-1 pathway.

5. Unconventional functions of Atg proteins

Several autophagy proteins have been reported to play role in inflammation 
regulation without the involvement of the autophagy pathway. Herein, we 
highlight their unconventional roles in the hierarchical order as they partici-
pate in different stages in the autophagy pathway (Figure 5b).

Mycobacterium infection in mice depleted of Atg5 in myeloid cells results 
in aberrant infiltration of neutrophils in the lung, independent of its role in 
autophagy. This leads to hyper inflammation, bacterial proliferation, and 
reduced survival299. However, the molecular mechanism is yet to be dis-
cerned for this phenotype. Another study by Choi et al., showed the role of 
LC3 conjugation machinery in the recruitment of IFN-γ effectors on LC3 
coated parasite containing vacuoles independent of their role in degradation. 
Toxoplasma gondii, a protozoan parasite, survives inside a single membrane 
parasitophorous vacuole membrane (PVM) by avoiding fusion with lyso-
somes. Upon IFN-γ stimulation, PVMs of T. gondii conjugate with LC3 by 
ATG12-ATG5-ATG16L1 complex independently of ULK1/PI3K complex. LC3 
conjugation to PVMs results in the recruitment of IFN-inducible GTPases. IFN- 
inducible GTPases damage PVMs and subsequently restrict parasite 
replication300. Pathogens such as Listeria and Streptococcus often use pore- 
forming toxins (PFTs) to promote dissemination by damaging plasma mem-
brane permeability and epithelial barriers301. Tan et al. showed that autop-
hagy protein ATG16L1 and its interactors ATG5 and ATG12 are essential for 
providing resistance to PFTs by repairing plasma membrane independent of 
their autophagy function. ATG16L1 triggers lysosomal exocytosis and bleb 
formation to repair PM dependent on cholesterol trafficking towards PM302.

Rubicon acts as a specific feedback inhibitor of CARD9, an adaptor protein 
that plays a vital role in providing innate immunity against infection. CARD9 
forms a downstream signaling complex with BCL10-MALT-1 upon recognition 
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of PAMPs by PRR and induces the production of proinflammatory cytokines. 
Rubicon directly interacts with CARD9 to control its unabated activation and 
eventually inflammation upon specific stimulation (β-1,3-glucan or SeV infec-
tion). The Rubicon-CARD9 interaction is functionally and genetically separate 
from Rubicon’s role in canonical and non-canonical autophagy303. Another 
autophagy protein, Atg9a, plays a distinct role in regulating the translocation 
of STING (cytosolic DNA sensor) and assembly of STING and TBK1 upon 
dsDNA stimulation. This prevents the uncontrolled release of cytokines304. 
BECLIN2 (BECN2) negatively regulates inflammasome activation in an Atg9a 
and ULK1, not ATG16L1, LC3, and BECLIN1 dependent manner. ULK1 serves as 
an assembling factor of inflammasome sensors and BECN2 in Atg9a contain-
ing vesicles. Further, several SNAREs (SEC22A, STX5, and STX6) drive mem-
brane fusion for inflammasome degradation to control inflammation305.

Autophagosomes serve as a replicative platform for several RNA 
viruses306,307. RIG-I or MDA5 sense the cytosolic viral RNA, which exposes 
their two amino-terminal caspase activation and recruitment domains 
(CARDs). Upon viral RNA detection, RIG or MDA5 interacts with the 
CARD domain of mitochondrial antiviral signaling protein (MAVS/ IPS-1). 
This interaction activates the downstream signaling cascade to activate 
the transcription of type I interferon genes, an essential factor contribut-
ing to antiviral host response. Intriguingly, Atg5-Atg12 conjugate associ-
ates with the CARD domain of IPS-1 upon RNA virus infection to suppress 
type I interferon response. RNA viruses have evolved to leverage this 
interaction, thus sabotaging the host’s innate antiviral immunity for their 
survival. The authors have also highlighted the importance of this atypi-
cal role of Atg5-Atg12 to maintain immune homeostasis under physiolo-
gical conditions308. Nevertheless, it remains to be identified which 
domain or amino acid of Atg5 is required for interaction with IPS-1.

These studies highlight the non-canonical role of autophagy and autop-
hagy proteins in regulating inflammatory response to maintain immune 
homeostasis. However, a clearer distinction and better mechanistic under-
standing will be required before unconventional autophagy pathways can be 
targeted for therapeutic intervention in inflammatory diseases.

6. Autophagy and innate immune crosstalk: disease perspective

As the first line of defense, our innate immune system consists of barrier tissue 
and its resident immune cells as well as patrolling leukocytes that can be 
mobilized swiftly to neutralize the threat. Barrier systems can act as a physical 
wall consisting of cells connected through tight junctions that insulate intru-
ders, which are reinforced by chemical weapons and armor, such as secreted 
antimicrobials and mucus. Both the structural and immune cells present in 
barrier tissue activate innate immune responses following stimulation of 
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pattern recognition receptors (PRRs). Activation of signaling cascades down-
stream of PRRs leads to a series of effector mechanisms such as secretion of 
soluble factors (cytokines, chemokines, and microbicidal agents), adjustment of 
barrier permeability, regeneration after injury, intracellular restriction/proces-
sing of hazards, triggering cell death and initiation of adaptive immunity. 
Autophagy, as a cardinal mediator of cellular homeostasis, is fundamental to 
both the process of PRR signaling and these downstream effector mechanisms. 
As such, a broad spectrum of diseases has been linked to dysregulated autop-
hagy in innate immunity. In this section, we highlight the autophagy-innate 
immunity crosstalk from a disease perspective (Figure 6).

A. Autophagy regulation of barrier sites in diseases

Gastrointestinal tract
The gastrointestinal (GI) tract represents an enormous mucosal surface area 
that requires protection from infectious and non-infectious foreign material 
ingested along with food and water. The GI tract is also persistently colonized 
by a massive community of resident microbes, the microbiota. A role for 
autophagy in supporting a balanced immune reaction at this interface is 
supported by the association between variants in autophagy genes (NOD2, 
ATG16L1, IRGM, ULK1, and LRRK2) and inflammatory bowel disease (IBD)309, 
a debilitating disease of the GI tract that involves abnormal reactions against 
microbes. Additionally, autophagy activity is regulated by innate immune 
signaling at the intestinal barrier. For example, both commensal and invasive 
bacteria, or bacterial products, can activate PRRs such as NOD2 to induce 
autophagy or autophagy-related processes by recruiting the core autophagy 
machinery41–44–310–315. LC3 conjugation occurs constitutively in the epithelium 
due to the presence of the microbiota and can be further enhanced to control 
Salmonella enterica Serovar Typhimurium (STm) infection311,312. Factors asso-
ciated with damage such as HMGB1, can also induce autophagy316,317. 
Autophagy genes can be transcriptionally regulated, as demonstrated by the 
upregulation of ATG16L1 by the vitamin D receptor to maintain Paneth cells, an 
epithelial cell that secretes antimicrobial molecules to protect adjacent intest-
inal stem cells (ISCs) in the small intestinal crypts318,319.

ATG16L1 and autophagy proteins are necessary for the viability and func-
tion of Paneth cells. Patients with a major type of IBD called Crohn’s disease 
who are homozygous for the T300A variant of ATG16L1 display morphologi-
cally aberrant Paneth cells, which is reproduced in mice harboring mutations 
in various autophagy genes320–329. ATG16L1 T300A protein is prone to cas-
pase-3 mediated processing and degradation, suggesting that individuals 
harboring this risk variant may have reduced capacity for autophagy or an 
autophagy-related pathway under conditions in which caspases are 
activate330,331. Paneth cell function is supported by the role of autophagy in 
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countering organelle stress and mediating secretion of the antimicrobial 
protein lysozyme when the ER-Golgi secretory pathway is disrupted by 
infections321,332 or mutations in the unfolded protein response (UPR) 
genes333–335. Autophagy also prevents cell death of intestinal epithelial 
cells, and Paneth cells are particularly vulnerable to inflammatory forms of 
cell death such as necroptosis upon inhibition of autophagy proteins or 
mitophagy314,336–339. Thus, deleting autophagy specifically in Paneth cells 
leads to inflammatory events resembling IBD325.

The function of autophagy proteins in other epithelial cells also contribute 
to supporting the integrity of the intestinal barrier. In a manner resembling 
the above role in Paneth cells, autophagy controls ISC homeostasis by limit-
ing toxic ROS production, which is critical for epithelial regeneration after 
irradiation340. In mucus-secreting goblet cells, the autophagy machinery is 
mobilized downstream of another NOD-like protein, NLRP6, to mediate the 
exocytosis of mucin-containing granules, a process that is dependent on 

Figure 6. Autophagic processes regulate innate immunity in diseases. Innate immunity 
in organs is mediated by autophagic processes occurring in both tissue-specific barrier 
cells and innate immune cells. Alterations in autophagic processes are linked to a variety 
of organ-specific or systemic diseases. These autophagic processes include macroauto-
phagy, LC3-associated phagocytosis (LAP), LC3-associated endocytosis (LANDO), secre-
tory autophagy, and chaperone-medidated autophagy (CMA). Macroautophagy 
processes can be further classified as selective autophagy processes such as xenophagy 
(targeting intracellular microbes), aggregaphagy (targeting protein aggregates), mito-
phagy (targeting mitochondria), ERphagy (targeting endoplasmic reticulum), pexo-
phagy (targeting peroxisome), lipophagy (targeting lipids), cilliophagy (targeting cilia), 
and ferritinophagy (targeting ferritin). Autophagic processes associated with regulating 
innate immunity, either within barrier cells or specialized innate immune cell subsets, 
and the representative diseases reviewed in this article are grouped by the organs listed.
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FOXO1 and NADPH oxidase activity99,341–345. More direct functions of autop-
hagy proteins in supporting the physical barrier include breaking down the 
tight junction protein Claudin-2346, regulating proliferation347, and maintain-
ing plasma membrane integrity348. The latter involves activating the ATG16L1 
complex in response to damage by Listeria monocytogenes through 
a mechanism independent of an autophagosome. Therefore, autophagy 
proteins have a major role in supporting the intestinal barrier through autop-
hagy-dependent and -independent processes.

The above processes involved in supporting the viability and function 
of intestinal epithelial cells are complemented by the role of autophagy 
in tuning the innate immune response to gut microbes, especially the 
production of inflammatory mediators such as interferons and interleu-
kins. ATG16L1 deficiency in the epithelium leads to augmented type 
I interferon responses that enhance resistance to the model enteric 
pathogen Citrobacter rodentium349,350 but increases susceptibility to TNF 
induced cell death339,351. Similarly, knockout of Epg5, which is involved in 
autophagosome maturation and mutated in a combined immunodefi-
ciency called VICI syndrome352,353, increases resistance to enteric virus 
infection via elevated type III interferon354. Selective autophagy receptors 
Optineurin and NDP52 affect IBD by regulating proinflammatory cyto-
kines release and TLR-NF-κB activation, respectively355–357. In rodent 
models of necrotizing enterocolitis (NEC), an intestinal inflammatory dis-
order associated with preterm birth, excessive autophagy downstream of 
innate immune responses contributes to disease, suggesting a pathologic 
role for the pathway in this context358–360. Whether autophagy prevents 
or promotes intestinal malignancies depends on the stage and context of 
tumorigenesis361. For example, autophagy deficiency suppresses tumor 
growth in the setting of APC-haploinsuffiency362. However, increased 
epithelial autophagy activity by colibactin-producing Escherichia coli 
(CoPEC) is protective in a similar APCmin/+ colorectal cancer (CRC) 
model363. Also, mitophagy in IECs promotes iron accumulation in lyso-
somes that trigger lysosomal membrane damage and leakage of pro-
teases into the cytosol, which in turn enhances MHC-I antigen 
presentation of processed peptides that boost the antitumor CD8 T cell 
response364.

In addition to events affecting the small intestine and colon, upper GI tract 
diseases in the esophagus and stomach are associated with autophagy 
dysregulation. Barret’s esophagus, an inflammatory condition of the esopha-
gus caused by chronic gastric acid reflux, is associated with altered autop-
hagy activity365,366. Autophagy is important for epithelial cell survival in 
eosinophilic oesophagitis367, but high autophagic activity is associated with 
a poor prognosis of esophageal squamous cell carcinoma368,369. In the con-
text of gastric Helicobacter pylori (H. pylori) infection, autophagy-induced 

468 A. PANT ET AL.



drugs help control infection370 and the autophagy-compromising ATG16L1 
T300A variant exacerbates inflammation371. However, increased autophagy 
might contribute to H. pylori-associated gastric cancer via promoting cancer 
cell stemness372,373. These examples highlight how the homeostatic function 
of autophagy is generally protective but occasionally contributes to disease 
pathogenesis, especially when persistent inflammation is involved.

Respiratory tract
The respiratory tract represents another major mucosal barrier site where 
important functions of autophagy have been documented. Autophagy pro-
cesses, including ciliophagy (targeting airway epithelial cilia)374,375, ferritino-
phagy (targeting ferritin)376, mitophagy-mediated necroptosis377 and 
autophagy induced apoptosis378,379, have been proposed to contribute to 
chronic obstructive pulmonary disease (COPD). Particulate matter triggered 
lung injury also requires autophagy for disease onset380. However, during 
cystic fibrosis (CF), a disease associated with opportunistic infections and 
mucosal barrier abnormalities due to mutations in cystic fibrosis transmem-
brane conductance regulator (CFTR), defective autophagy is associated with 
more severe disease381,382. Aggregaphagy (autophagy targeting protein 
aggregates), xenophagy (autophagy targeting intracellular microorganisms), 
and autophagic restriction of inflammation (inflammophagy) may also safe-
guard against CF progression383,384. Similar protective functions of autop-
hagy are found in idiopathic pulmonary fibrosis (IPF)385,386, such as PINK1/ 
PARK2-mediated mitophagy in alveolar epithelial cells type 2387–389. In 
asthma, another major pulmonary disease, impaired autophagy in epithelial 
cells contributes to eosinophilic inflammation in obese asthmatic mice390. 
Alveolar epithelial-selective autophagic degradation of the E3 ligase TRIM37 
leads to stable levels of its target TRAF6, which mediates NF-κB signaling and 
chemokine production to recruit neutrophils that promote lung cancer 
metastasis in response to particulates391. Similar to the intestine, lung epithe-
lial stem-like vClub cells require autophagy for tissue repair under disease 
conditions such as allergic inflammation392. Secretion of mucus by lung 
goblet cells is also mediated by autophagy, and excess autophagy activity 
predisposes mice to type 2 airway diseases393,394. The secretion of defensive 
proteins in Club cells is also mediated by autophagy and defective autophagy 
is associated with COPD395. One interpretation of these collective findings is 
that autophagy can be either pathologically augmented or reduced during 
lung disease, and in either case, innate immune mechanisms intrinsic to the 
epithelium can become dysregulated, such as inappropriate production of 
soluble inflammatory mediators and mucus.
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Urogenital tract
In the urogenital system, autophagy controls inflammation to prevent com-
plications during pregnancy, such as by dampening the NLRP3 
inflammasome396,397. Autophagy in decidual stromal cells is also important 
to maintain local natural killer cells that are important for preventing sponta-
neous abortion398. Autophagy in the epithelial barrier is necessary for defense 
against urogenital pathogens. Likely due to the role of the autophagy 
machinery in rearranging membranes subverted by viruses for replication, 
autophagy deficiency in mouse trophoblasts renders the host resistant to 
Zika virus399. Analogously, deficiency of ATG16L1 or ATG7 in the urothelium 
lining of the urinary tract, or carriage of the ATG16L1 T300A allele, interferes 
with vesicle trafficking events subverted by uropathogenic E. coli (UPEC) for 
persistence400.

Skin
Autophagy deficiency leads to the compromised organization of skin barriers 
because autophagy governs the development and proliferation of epithelial 
cells, and also mediates the proper inflammatory status in response to 
purturbations401–404. For example, keratinocyte autophagy is required for 
suppressing inflammation and facilitating wound healing, and resisting par-
ticulate matter-induced dermal fibroblast injury405–408 and psoriasis409–411. In 
atopic dermatitis (AD) patients, increased autophagy activity was observed in 
skin epithelial cells, potentially as a compensatory mechanism to mitigate 
inflammation412.

Endovascular barrier
The endovascular system serves as both a barrier and conduit for the traffick-
ing of immune cells. Autophagy dysfunction in endothelial cells has been 
shown to instigate a variety of diseases413. For example, the endothelium 
requires autophagy to maintain integrity via controlling ROS levels in the 
cell414, promoting angiogenesis415, and secreting blood clotting factors416. 
Notably, endothelial cell autophagy declines with aging, and decreases in 
specialized functions of autophagy such as lipophagy are associated with 
degenerative arterial disease, like atherosclerosis417–420. Targeting of peroxi-
somes by autophagy (pexophagy) in endothelial cells is important to prevent 
LPS-induced organ injury421. During Staphylococcus aureus infection, 
endothelial-intrinsic ATG16L1 is important to tolerate damage caused by 
a bacterial pore-forming toxin called α-toxin422. Mechanistically, the secretory 
autophagy pathway mediates the exocytosis of decoy exosomes termed 
defensosomes that are decorated by the toxin receptor ADAM10, which 
binds and inhibits α-toxin423. In the blood-brain barrier (BBB), endothelial 
autophagy has been shown either to prevent ischemia-induced barrier 
damage by reducing apoptosis424,425 or to exacerbate brain ischemia BBB 
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damage in diabetic mice by degrading the junction protein claudin-5426, 427 

suggesting a context-specific role of endothelial autophagy at this site. 
Deletion of autophagy genes in liver sinusoidal endothelial cells renders 
these cells susceptible to increased inflammatory responses in the setting 
of non-alcoholic steatohepatitis (NASH)428.

B. Autophagy regulation of innate immune cells in diseases

In addition to directly functioning within barrier cells, autophagy in innate 
immune cells such as macrophages, dendritic cells (DCs), granulocytes and 
innate lymphoid cells (ILCs) affects both tissue-specific and systemic innate 
immune responses.

Gastrointestinal tract
ATG16L1 deficiency in hematopoietic or myeloid cells renders mice more 
susceptible to experimental colitis due to hyperactivation of pan inflamma-
tory responses including the inflammasome and IL1β/IL18 processing429–432. 
Excess IL-1 activity also mediates colitis in chronic granulomatous disease 
patients and the mouse model, which is caused by loss of function mutations 
in the NADPH oxidase and impaired recruitment of LC3 to the phagosome433. 
Macrophages in anti-TNF treated IBD patients display increased autophagy 
activity concomitant with “M2-like” anti-inflammatory features, but this effect 
is impaired by the ATG16L1 T300A variant434. However, this role of autophagy 
in polarizing macrophages towards an anti-inflammatory state may support 
CRC by suppressing antitumor immunity435. Nevertheless, therapeutically 
increasing autophagy including mitophagy can enhance resistance to CRC 
in the murine model by dampening the inflammasome436,437. DCs and 
macrophages without SQSTM1 or TAX1BP1 selective autophagy have ampli-
fied TLR-TRIF-IFNβ signaling, which is associated with unresponsiveness to 
anti-TNF treatment in IBD patients22,23. In myeloid cells, the absence of ATG5 
will shunt selective autophagy receptor NBR1 to target IL-12 to late endo-
somes for secretion, thus instigating inflammation in a murine colitis 
model438. In addition to controlling inflammation, autophagy proteins in 
myeloid cells affect intestinal diseases in many other ways. For example, 
macrophages use the autophagy gene NRBF2 to scavenge apoptotic cells 
by enhancing phagosome maturation during intestinal inflammation439. 
Eosinophil autophagy is required for eosinopoiesis but impedes effector 
function upon C. rodentium challenge44°. During STm infection, LAP induced 
by flagellin-TLR5 activation in zebra fish macrophages delivers antimicrobial 
activity440,441,442. Also, the V-ATPase subunits on STm containing phago-
somes mediate xenophagy by promoting phagosome-lysosome fusion, and 
loss of ATP6V0D2 in macrophages leads to impaired bacterial control in vivo 
after gastrointestinal infection432. This finding is corroborated by another 

AUTOPHAGY REPORTS 471



study that demonstrates that V-ATPase can target ATG16L1 to STm contain-
ing vesicles for xenophagy443. Autophagy in intestinal DCs is important for 
proper interactions with T cells, as impaired autophagy and the ATG16L1 
T300A variant prolong their interactions through the immunological synapse 
leading to hyperactivation of T cells444. DC autophagy deficiency leads to 
enhanced levels of T cell costimulation and exacerbated intestinal damage in 
a mouse model of graft-versus-host disease (GVHD)234. In the upper GI tract, 
H. pylori infection can induce xenophagy in macrophages and DCs which is 
impaired in PBMCs from individuals with the ATG16L1 T300A variant 445–449.

Urogenital tract
Although mechanistically distinct from how autophagy deficiency in the 
urothelium is protective, myeloid-specific deletion of ATG16L1 strongly 
enhances resistance to urinary tract infection by UPEC. This enhanced immu-
nity is dependent on increased NLRP3/IL-1β signaling450. DC depletion of 
ATG5 increased disease pathology and morbidity in mice during vaginal HSV 
infection due to impaired T cell priming224.

CNS
Neuronal cell-intrinsic autophagy dysfunction has been well documented to 
associate with neurodegenerative diseases (including Alzheimer’s 
disease, AD, and Parkinson’s disease, PD). Experimental models implicate an 
essential role for autophagy and related processes in removing harmful extra- 
or intracellular protein aggregates and large organelles and neuronal cell 
death451–456. In microglia, which are myeloid cells in the CNS, LANDO is 
critical for β-amyloid (Aβ) receptor recycling from endosomes to the plasma 
membrane, which mediates removal of accumulated Aβ in the tissue457,458. 
Selective autophagy mediated by SQSTM1 in microglia removes α-synuclein 
aggregates released by neurons459. Autophagy and chaperone-mediated 
autophagy (CMA), which is upregulated after traumatic brain injury or spinal 
cord injury in neuronal cells including microglia460,461, both control inflam-
masome activation to prevent PD-like symptoms in mice462,463. In glioblas-
toma, pericytes upregulate their CMA for acquiring an immunosuppressive 
feature to promote tumor growth464. Autophagy is also important in multiple 
sclerosis (MS), a chronic inflammatory condition in the CNS465,466. Myeloid/DC 
autophagy (including mitophagy, lipophagy) or LAP inhibition reduces 
experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, 
through multiple mechanisms467–475. Intriguingly, a gain-of-function variant 
of the mitophagy receptor NDP52 is associated with improvement in MS 
patients by reducing proinflammatory cytokines production476,477. In HSV- 
induced encephalitis, patients with loss of function mutations in ATG4A and 
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LC3B2 have a defect in autophagy induction, explaining increased viral repli-
cation and recurrent clinical symptoms478. These findings support results 
obtained in animal models implicating autophagy proteins in the control of 
herpes viruses. As further support of interactions between the virus and 
autophagy, the HSV encoded factors ICP34.5 and ICP0 interfere with 
BECLIN1 and SQSTM1/Optineurin, respectively479,480.

Lung
Mycobacterium tuberculosis (Mtb) infects macrophages, and autophagy has 
been shown to both limit active Mtb infection and the inflammation in vitro 
and in vivo197,481. Mtb encodes virulence factors ESAT-6 and CpsA that inter-
fere with autophagy and LAP, respectively, to promote survival in 
macrophages482. In contrast to macrophages, ATG5 has a unique protective 
role in mediating the proper turnover of neutrophils independent of other 
autophagy proteins, which is necessary to limit immunopathology of the lung 
during Mtb infection483. During Chlamydia pneumoniae infection, autophagy 
is required to restrict inflammasome activation to restrict infection in vivo484. 
Autophagy in ILC2 is required for disease development in a mouse model of 
allergic asthma; inhibiting ATG5 in activated ILC2s increases apoptosis due to 
a deficit in lipophagy and a consequent metabolic shift485. In contrast, 
autophagy in DCs is protective against airway inflammation induced by the 
respiratory syncytial virus (RSV) by ensuring proper antiviral responses 
through T cell polarization486,487. CMA limits lung cancer progression in 
a mouse model through regulating macrophage activation by degrading 
ERK3488.

Skin
Autophagy has been shown to promote antigen presentation by Langerhans 
cells, a type of macrophage in the skin, to restrict Mycobacterium leprae 
infection489. LAP in dermal DCs is required for immunosuppression after UV 
exposure and contact hypersensitivity490. Vitamin D-induced autophagy 
activity in skin macrophages improves sunburn resolution by promoting 
wound healing macrophage differentiation491. Skin macrophage autophagy 
also protects against the treatment of mice with the TLR7 agonist imiquimod, 
a model of psoriasis, by inhibiting NF-κB492. However, ATG7 and LC3 targeting 
is necessary for mast cell degranulation and sustains inflammation in passive 
cutaneous anaphylaxis493. Autophagy inhibition in melanoma cells also ren-
ders improved tumor killing by NK cells via upregulating chemokine CCL5 
expression, as autophagy deficiency leads to PP2A deactivation and thus 
promotes JNK-c-Jun-CCL5 axis activity494.
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Liver
Patients with chronic HCV infection display heightened autophagy activity 
compared to other liver disease patients495. This upregulation of autophagy, 
including CMA, is associated with control of lipid storage in hepatocytes496, 
and resistance to IFN-I and ribavirin treatment due to downregulation of 
IFNAR1 and nucleoside transporters497–501. During acute liver injuries, autop-
hagy is induced in Kupffer cells, the liver type of macrophages, and chemical 
inhibition or myeloid ablation of ATG5 increases disease with elevated inflam-
matory response502–504. The Kupffer cell autophagy is also protective in 
alcoholic liver disease505, liver fibrosis506, and hepatocarcinogenesis507 in 
mice via restraining ROS-induced IL-1α and IL-1β production506. In the con-
text of hepatocellular cancer (HCC), hepatocyte autophagy restricts tumor-
igenesis by reducing SQSTM1 accumulation, while autophagy in the myeloid 
compartment is also antitumorigenic through downregulation of immuno-
suppressive molecules like PD-L1508–511.

Cardiovascular disease
In atherosclerosis, macrophage foam cells use autophagy to mediate intra-
cellular lysosomal cholesterol hydrolysis and efflux512 thereby reducing 
inflammation and plaque formation/necrosis513,514. These observations are 
corroborated by the finding that ectopic overexpression of ATG14 in macro-
phages decreases plaque formation in atherosclerosis-prone ApoE–/– mice515. 
Autophagy deficiency in smooth muscle cells leads to increased CCL2 secre-
tion and recruitment of macrophages to increase plaque formation in vivo516. 
CMA activity is lower in atherosclerosis plaques of patients, and CMA controls 
inflammasome activation to reduce atherosclerosis in ApoE–/– mice517,518.

Obesity and diabetes
Impaired autophagy in adipose tissue is associated with an inflammatory 
state in individuals with obesity519,520 and primes insulin resistance in 
a mouse model521. In line with these observations, autophagy inhibition in 
macrophages exacerbates metabolic disease in genetic and diet-induced 
models of obesity and diabetes due to increased inflammasome and ROS 
production430,522,523. Mitophagy is specifically important for staving off 
obesity524,525. However, discrepant results have questioned the necessity of 
macrophage autophagy in adipose tissue lipid metabolism526,527, perhaps 
reflecting differences in techniques and models.
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Multisystem inflammatory disease
Autophagy gene expression and markers are decreased in patients with 
systemic lupus erythematous (SLE)528,529, and the ATG5 genetic locus is 
associated with disease susceptibility530. These findings could reflect 
a protective or adverse function of autophagy proteins. SQSTM1 activity 
in macrophages mediates cell death downstream of TLR7 that coincides 
with autophagy induction in a mouse model of SLE531, and LAP in DCs is 
necessary for TLR9 activation by DNA-immune complexes that underly 
interferon production, an autoimmune disease hallmark297. The same 
mechanisms by which autophagy dysfunction can contribute to tissue- 
specific innate immune hyperactivity could potentially explain multi- 
organ manifestations. Uveitis, a form of inflammation in the eye, occurs 
more commonly in IBD patients, and inhibiting autophagy in macro-
phages causes disease in mice through inflammasome activation and 
IL1β533. The role of autophagy in antigen-presenting cells could contri-
bute to autoimmune diseases, such as the presentation of the citrulli-
nated peptides underlying rheumatoid athritis534. Although the molecular 
mechanism is unclear, drugs that upregulate autophagy mitigate lethal 
lung damage in mouse models of sepsis independently of microbial 
burden535, highlighting the role of autophagy in tissue resilience to 
immune-mediated damage.

Tumors in non-barrier sites
Dendritic cell-specific deletion of ATG5 impairs priming of antitumor CD4 and 
CD8 T cells, which is associated with increased scavenger receptor CD36 and 
reduced MHCII-tumor antigen presentation536. In an ovarian cancer metasta-
sis model, mitophagy mediates adaptation to oxidative stress in Tim4+ 
tumor-associated macrophages (TAMs) that interfere with anti-tumor 
immunity537. LAP supports the tolerogenic nature of TAMs by facilitating 
the non-inflammatory uptake of apoptotic tumor carcasses, and thus, abla-
tion of LAP in the myeloid compartment leads to increased IFN-I and anti-
tumor immunity538.

7. Autophagy as a pharmacological target

Several studies have highlighted the effectiveness of autophagy regulation 
via small molecules539–541. This has opened up considerable interest in the 
therapeutic potential of pharmacologically active molecules that work 
through autophagy to have beneficial effects on inflammation. Some of 
such studies that have used autophagy modulating small molecules in var-
ious diseases associated with inflammation have been summarized in Table 1. 
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Table 1. Pharmacological Activators of Autophagy.

Diseases
Autophagy 
modulator Mechanism References

Pathogenic infections Rapamycin mTOR inhibition 544, 545
Torin1 mTOR inhibition 546

AICAR AMPK activation 547
Gefitinib EGFR inhibition and increase lysosomal 

biogenesis genes
548, 549

AR-12 Akt kinase inhibition 550

Tat–beclin 1 GAPR-1 inhibition 551
Nt-Arg Induces autophagy via p62 552

Tamoxifen Estrogen receptor inhibition 553
Flubendazole Inhibits mTOR and releases Beclin1 from 

Bcl2-Beclin1 complex
554

Acacetin Promotes TFEB nuclear translocation 555

Trehalose Activates MCOLN1 556, 557
Vitamin D Activates MCOLN3 558–56°

Carbamazepine Depletes cellular myo-inositol, IP3 levels 
and activates AMPK

561

Inflammatory bowel 
disease (IBD)

Rapamycin/Sirolimus mTOR inhibition 562–565
AICAR AMPK activation 566

Celastrol Suppresses PI3K/Akt/mTOR signaling 567
Docosahexaenoic 

Acid
Inhibition of mTOR signaling pathway 568

AMA0825 ROCK inhibition 569

Azathioprine Inhibits mTOR and activates PERK 570
Vitamin D Activates MCOLN1 571, 572

Lung inflammation Carbamazepine Depletes cellular myo-inositol and IP3 
levels, activates AMPK

573, 574

AICAR AMPK activation 575
Tubastatin A Histone deacetylase 6 inhibition 576

Mdivi-1 Mitophagy inhibition 577
Cysteamine Transglutaminase 2 (TGM2) inhibitor, 

restores Beclin1 levels
578, 579

Epigallocatechin- 
3-Gallate (EGCG)

Elevates ATG12 expression 579, 580

Heart inflammation Rapamycin mTOR inhibition 581–584

Metformin AMPK activation and mTOR inhibition 585–587
Verapamil Depletes ATP levels 588

Liver inflammation Verapamil Induces autophagic flux 589
Micheliolide Activates PPAR-γ and p-AMPK and 

inhibits p-mTOR
590, 591

Spermine Increases ATG5 expression 591

Epigallocatechin- 
3-Gallate (EGCG)

Increase phosphorylation of AMPK 592

Systemic lupus 
erythematosus (SLE)

Rapamycin mTOR inhibition 593
Hydroxychloroquine Inhibit lysosomal activity 594

(Continued)
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Although there are not many bonafide autophagy modulators known, several 
of the molecules, whose mechanism of action and/or targets are known, work 
indirectly to control autophagy flux (Table 1). Studies have also highlighted 
the effectiveness of combining such autophagy modulating small molecules 
with anti-inflammatory drugs542,543.

Conclusions

Since the hallmark discovery of autophagy as a homeostatic mechanism 
induced by starvation in yeast by Yoshinori Ohsumi and co-workers, we 
now realize that autophagy has multiple functions in eukaryotic cells. One 
important and likely evolutionary conserved one is the contribution to 
immune defense, discussed here. The obvious possibility of autophagy to 
clear intercellular microbes has meanwhile been well documented and 
underlying molecular mechanisms have been worked out in several cases. 
This contributes to innate immune defense, particularly towards bacterial 
infection in barrier epithelia. Probably more surprisingly, autophagy also 
contributes to controlling the magnitude of innate immune responses and 
to resolve inflammation by targeting cellular components of the inflamma-
tory cascades, and to adaptive immune responses by influencing MHC anti-
gen presentation. The molecular details of these rather newly discovered 
mechanisms are beginning to emerge, and recent data suggests that several 
inflammatory disorders can be explained, at least in part, by dysfunctional 
autophagy processes. The host protective role of inflammation on the other 
hand is undermined by pathogens that evolved mechanisms to subvert 
autophagic processes.

Table 1. (Continued).

Diseases
Autophagy 
modulator Mechanism References

Rheumatoid arthritis 
(RA)

Arsenic Trioxide Enhances autophagic flux 595
Metformin AMPK activation and mTOR inhibition 596

Artesunate Suppresses PI3K/Akt/mTOR signaling 597
Triptolide Inhibits autophagy 598

Tomorou Mechanism unclear 599
Oridonin Inhibits autophagy 600
TIPTP p22phox (subunit of NOX) inhibition 601

Hydroxychloroquine Inhibits lysosomal activity 543
Multiple sclerosis (MS) Rapamycin mTOR inhibition 602, 542

1,25- 
dihydroxyvitamin 
D3

Elevates Beclin1 expression 603

Hydroxychloroquine Inhibits lysosomal activity 604
Clioquinol Induce autophagy 605
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With a deeper understanding of the molecular mechanisms and thus 
identification of druggable targets, we will have the opportunity of develop-
ing novel treatment options for both inflammatory and infectious 
diseases.52532559560
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