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Review
The exposome and liver disease - how environmental factors
affect liver health

Robert Barouki1,*, Michel Samson2, Etienne B. Blanc1, Massimo Colombo3, Jessica Zucman-Rossi4, Konstantinos N. Lazaridis5,
Gary W. Miller6, Xavier Coumoul1
Summary

Since the initial development of the exposome concept, much effort has been devoted to the characterisation of the exposome
through analytical, epidemiological, and toxicological/mechanistic studies. There is now an urgent need to link the exposome to
human diseases and to include exposomics in the characterisation of environment-linked pathologies together with genomics and
other omics. Liver diseases are particularly well suited for such studies since major functions of the liver include the detection,
detoxification, and elimination of xenobiotics, as well as inflammatory responses. It is well known that several liver diseases are
associated with i) addictive behaviours such as alcohol consumption, smoking, and to a certain extent dietary imbalance and
obesity, ii) viral and parasitic infections, and iii) exposure to toxins and occupational chemicals. Recent studies indicate that
environmental exposures are also significantly associated with liver diseases, and these include air pollution (particulate matter
and volatile chemicals), contaminants such as polyaromatic hydrocarbons, bisphenol A and per-and poly-fluorinated substances,
and physical stressors such as radiation. Furthermore, microbial metabolites and the “gut-liver” axis play a major role in liver
diseases. Exposomics is poised to play a major role in the field of liver pathology. Methodological advances such as the
exposomics-metabolomics framework, the determination of risk factors’ genomic and epigenomic signatures, and cross-species
biological pathway analysis should further delineate the impact of the exposome on the liver, opening the way for improved
prevention, as well as the identification of new biomarkers of exposure and effects, and additional therapeutic targets.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction to the exposome
Although, there have been substantial advances over the past
few decades in our understanding of the contribution of ge-
netics to human diseases, the role of exposures to different
environmental stressors has remained elusive. In a seminal
article in 2005, Chris Wild elaborated a new concept, the
exposome, which he defined as the totality of exposures from
conception to death.1 The aim of the proposal was to integrate,
in a single framework, different types of exposures including
chemical, physical, biological, and psycho-social stressors,
and to take into consideration the temporal dimension. Within
this definition, the exposome can be viewed as the comple-
ment of the genome and can be used to improve our under-
standing of disease determinants. Since the initial definition,
different contributions have been made to further develop the
concept and to delineate the approaches that support its
practical implementation. Much of the focus has been on
developing analytical tools to characterise the exposome.2,3

Also, a significant effort has been devoted to better link the
exposome to health, in particular through the integration of
chemical, biological and computational approaches.4,5
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Exposomics can be defined as the study of the exposome,
which relies on the application of internal and external exposure
assessment methods. Recently, exposomics has been further
integrated with the other omics, leading to the concept of
functional exposomics, which has been defined as the bio-
logical translation of the exposome and its multiple exposures
and the characterisation of mechanisms of action, much as
functional genomics refers to the functional expression of
the genome.6

Initial studies of the exposome have been primarily
methodological and global, recent work has been more
disease-oriented,7,8 e.g. targeting the exposome relevant for
cancer,9–11 lung disease12 or liver disorders.13 These de-
velopments have been supported by the integration of expo-
somics within omics approaches and subsequently the
characterisation of the mechanistic links between various
stressors and disease-relevant biological pathways.4,5 These
disease-oriented health studies enable a more realistic evalu-
ation of the most relevant determinants and allow for gene-
environment interaction studies. Importantly, these de-
velopments contribute to bringing the exposome concept to
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Key points

� The liver plays an important role in xenobiotic metabolism and elimination and is therefore a target of the chemical exposome.

� Chemicals, infectious and physical agents are important determinants of different liver diseases.

� Both traditional targeted studies and non-targeted exposomics studies have revealed the links between exposure to chemicals and
liver diseases.

� The combination of different stressors, e.g. chemical and viral agents, plays a role in liver disease pathogenesis.

� Liver diseases can be related to exposure to liver-specific stressors, e.g. viral hepatitis, or to stressors displaying more systemic
effects, e.g. air pollution.

� There is increasing concern about the liver toxicity of certain chemicals such as endocrine disruptors, pesticides and per- and
polyfluoroalkyl substances.

� New methodologies including high-resolution mass spectrometry, genomic, epigenomic and metagenomic signature detection and
computational approaches will further develop research in this field.

Review
the clinic and should support an improved understanding of
disease determinants and ultimately improved prevention.14

In the present review, we have analysed studies linking a
variety of exposures to different liver diseases. Most of these
studies did not use a non-targeted large-scale exposomics
approach, yet they were included in order to enable a more
comprehensive assessment of environmental determinants of
liver diseases. We will first describe different biological path-
ways relevant to liver diseases, then we will discuss the
implication of exposome components in different liver dis-
eases, including metabolic, infectious, cholestatic diseases and
cancer, highlighting specific or shared mechanistic aspects as
well as clinical implications. In the conclusion, we identify the
most promising approaches and tools to further develop this
rapidly growing field.

Biological pathways in the liver
There are several physiological functions of the liver that are
known to be modulated by environmental factors. Endogenous
metabolism is a major function of the liver, and several meta-
bolic pathways are either specific or highly represented in this
organ, e.g. gluconeogenesis and the urea cycle as well as lipid
metabolism (as discussed below). Exposure studies coupled
with metabolomics studies in human biological fluids have
suggested specific dysregulation of liver functions. This is the
case for urea cycle intermediates which, when dysregulated in
body fluids after exposure to a mix of metals and phthalates,
point to a possible liver injury and specifically mitochondrial
dysfunction (a part of the urea cycle occurs in the mitochon-
dria).15 It is expected that, with the development of coupled
exposomics and metabolomics studies, such associations will
be more frequently observed.16 Yet, since endogenous meta-
bolism is dependent on the interaction between several organs,
it is critical to integrate the data at the organism level.

Xenobiotic metabolism is another major liver function,
although it is not unique to the liver. Hepatocytes express a
large number of genes involved in this function such as cyto-
chromes P450, phase 2 enzymes, transporters and xenobiotic
receptors.17,18 It has been known for a long time that many of
these genes are highly inducible by xenobiotics, in line with
their adaptive biological functions.19,20 Yet, the impacts of
Journal of Hepatology, Augu
combined environmental chemicals have been less well stud-
ied.21 The regulation of xenobiotic metabolism is not restricted
to exogenous chemicals, since endogenous effectors such as
hormones, microbiome metabolites, and inflammatory media-
tors are also implicated. A critical point is that while xenobiotic
metabolism displays adaptive functions, it is also the source of
toxic intermediates and reactive oxygen species and thus is
also potentially involved in pathogenic pathways.19 Thus, there
is a clear relationship between the regulation of xenobiotic
metabolism and different liver pathologies. Another important
point is that because of the anatomy of the vascular system,
the liver is the first organ to be exposed to a large number of
xenobiotics, microbiome metabolites and dietary compounds.
It filters many of these substances, but by protecting the rest of
the body, it is also a privileged target.

There are several biliary functions in the liver which are
involved in food digestion, metabolic fluxes and regulation, as
well as waste and xenobiotic elimination.22 The biliary system is
integrated in the gastro-intestinal system, e.g. through the
secretion of biliary salts (whose production depends on the
metabolism of cholesterol), and any dysfunction leads to food
intake anomalies. Furthermore, the biliary system is involved in
the elimination of degradation products of endogenous com-
pounds, such as haemoglobin. It is also critical for the elimi-
nation of exogenous toxicants and is thus part of the
detoxification machinery of the liver. Thus, any dysfunction of
the biliary system leads to the accumulation of waste and
toxicants and therefore to both liver and systemic toxicity.
These functions of the biliary system explain why it is so critical
for the link between environmental exposures and health.

The immune functions of the liver are diverse.23 First during
the foetal period, the liver is a haematopoietic organ and thus
contributes to the development of immune cells. Second, the
liver includes Kupffer cells (liver-resident macrophages) which
contribute to the organism’s immune defence system. In
addition, a large number of inflammatory proteins are syn-
thesised by the liver and contribute considerably to the global
inflammatory response. For all these reasons, the liver is both a
target of the immune system and also a contributor to certain
functions of this system, e.g. local and central inflamma-
tory processes.
st 2023. vol. 79 j 492–505 493



The liver is also a storage site for a variety of metabolites
and signalling compounds. In addition to the classical ho-
meostatic functions of glycogen and to its role in the synthesis
and transport of lipids, the liver stores important mediators
such as retinoic acid in stellate cells.24

All these liver functions explain why there is a close inter-
action between this organ and the exposome. The different
activities described above explain why the liver is the site where
reactive and possibly genotoxic metabolites, as well as bio-
logically active non-genotoxic compounds, are generated.
They also explain why infectious agents, as well as endoge-
nous metabolites, are likely to interact with exogenous com-
pounds in disease development. Depending on the
mechanisms involved, these diseases could be cancer,
fibrosis, inflammation, metabolic dysregulation, or biliary dis-
eases. In this review, we will attempt to establish such links and
to identify gaps in knowledge.

Metabolic diseases, integration of
contaminants and microbiome effects
As stated above, the central role played by the liver in endog-
enous and xenobiotic metabolism is based on a dialogue with
other key organs. A typical example of such an inter-organ
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collaboration is the "pancreas-liver" crosstalk which takes
place through the secretion of glucagon and insulin, two stra-
tegic drivers of the hepatic metabolism of carbohydrates and
lipids. While any interference in such a crosstalk is thought to
contribute to the development of several chronic liver diseases,
including non-alcoholic fatty liver disease (NAFLD), these pro-
cesses are also modulated by the “gut-liver” axis including the
gut microbiota that integrates exposome responses to both
food contaminants and dietary composition.25 This crosstalk
and its metabolic consequences are further discussed in this
chapter and are illustrated by specific examples.

The liver plays a central role in the maintenance of lipid
homeostasis, and this is accomplished through several func-
tional activities which span from membrane composition and
subcellular organelle compartmentalisation, trafficking, energy
storage and production, to signal transduction in the modula-
tion of hormone activity and response to hazardous stimuli
(Fig. 1).26 Several receptors regulate lipid metabolism (trans-
port, synthesis, lipolysis). Indeed, despite some controversial
observations, it has been shown that activation of the Aryl
hydrocarbon receptor (AhR), a bHLH/PAS family member, is
linked to increased fat accumulation in the liver.27,28 Moreover,
several nuclear receptors regulate lipid metabolism, leading to
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adverse outcomes in some cases. The pregnane X receptor
(PXR, alias NR1I2) and constitutive androstane receptor (CAR,
alias NR1I3) have been shown in some studies to have oppo-
site effects on lipid metabolism; indeed, while CAR activation
leads to lower triglyceride accumulation in the liver,29 PXR
triggers liver steatosis through an increase in lipid accumula-
tion.30 However, these conclusions still need to be supported
by additional evidence. Furthermore, these effects may be
ligand-dependent because of the functional plasticity of those
receptors (AhR, PXR, CAR), the biological outcome of their
activation being highly dependent on the nature of their li-
gands.31,32 Central to the liver’s signal transducing role in lipid
metabolism is the farnesoid X receptor (FXR, alias NR1H4),
another member of the nuclear metabolic receptor superfamily
which, among many functions, regulates the synthesis and
enterohepatic circulation of bile acids and directly modulates
the expression of genes involved in lipid and glucose meta-
bolism, thereby having clear implications for atherosclerotic
risk and hepatic fat content.33 The peroxisome proliferator-
activated receptors (PPARs: especially PPAR-a, alias
NR1C1), which are also nuclear receptors, play key functions in
the regulation of lipid synthesis and degradation; their dysre-
gulation has been linked to hepatic steatosis, non-alcoholic
steatohepatitis (NASH) and/or liver cancer.34 Whenever the
storage capacity of liver cells is overburdened, the accumula-
tion of lipid intermediates like diacylglycerol, ceramides and
fatty acyl-CoAs may lead to cell dysfunction and necroin-
flammation (lipotoxicity). While the process leading to liver
injury following hepatocellular accumulation of fat is complex
and its turning point not fully unravelled, liver damage appears
to be fuelled by the shift of fat storage from subcutaneous to
visceral adipose tissue in most patients, with the expansion of
visceral adipose tissue being a powerful predictor of metabolic
dysfunction-associated fatty liver disease (MAFLD).35

Many factors influence the occurrence of NAFLD or more
generally MAFLD36, including diet, sedentary lifestyle, dysre-
gulated circadian homeostasis, alcohol abuse and tobacco
consumption. They impact pathophysiological processes such
as metabolism, fibrosis, and inflammation. Alcohol, even at
moderate consumption, is also known to accelerate the course
of MAFLD, leading to an increased risk of patients developing
cirrhosis, clinical decompensation and liver cancer.37 Interest-
ingly, environmental pollutants which include metals, persistent
organic pollutants (POPs: dioxins, polychlorinated biphenyl, or
per- and polyfluoroalkyl substances [PFASs]) and particulate
matter (PM) also influence such mechanisms. During the last
few years, there has been a major focus on PFASs, which
represent a large class of POPs; several of these compounds
are highly persistent and are stored in the liver. Exposure to
several of these substances is associated with health out-
comes including immunotoxicity, metabolic diseases, repro-
ductive and developmental toxicity, and cancer.38 A recent
systematic review and meta-analysis of the literature
concluded that there was evidence for liver toxicity in rodents
and associations with markers of liver disease in human
studies.39 There is also evidence for an impact of these sub-
stances on carbohydrate, amino acid, biliary and lipid meta-
bolism under certain conditions.40,41 In a recent metabolomic
study in humans and rodents, PFAS exposure was associated
with alterations in a variety of metabolic pathways which
Journal of Hepatology, Augu
appeared to be more severe in females.42 PPAR-a is one of the
best identified molecular targets of PFASs.43

Moreover, epidemiological studies have recently shown that
long-term exposure to ambient pollution (a source of metals
and PM) can trigger MAFLD in humans.44 Vulnerability to the
development of liver diseases can be increased in males, in
obese individuals, and in consumers of a high-fat diet, alcohol,
or tobacco.44 Several air pollutants are incriminated, including
PM but also NO2 and polyaromatic hydrocarbons (PAHs). NO2

can indeed react with antioxidant molecules (decreasing their
levels) and lipids, leading to a lower defence against pro-
oxidants. NO2-associated oxidative stress can lead to bron-
choconstriction in the lungs but also to remote effects on other
organs such as the heart or the immune system, whose func-
tions are significantly reduced. Regarding PAHs, epidemio-
logical and experimental studies suggest that the activation of
AhR leads to an inflammatory phenotype accompanied by an
epithelial-mesenchymal transition which, in the case of expo-
sure to a high-fat diet, translates into fibrosis. Such an effect is
not observed with single exposures alone (high-fat diet or
PAHs).27,44,45 This highlights the importance of considering the
exposome and integrating the effects of multiple stressors on
the development of MAFLD.

The “gut-liver” axis is one of the most historically studied
systems in physiology. The intestine absorbs a large quantity
of nutrients after digestion, which are taken up by the liver,
such as glucose stored in the form of glycogen during the
postprandial period. An unbalanced diet, for example one rich
in fats, modifies the intestinal mucus, which alters the intestinal
barrier46 and results in the penetration of bacterial metabolites
into the portal circulation, leading to hepatic inflammation.47

Moreover, certain dietary deficiencies such as choline can
lead to NAFLD. Choline is converted to phosphatidylcholine
(lecithin) and plays a role in the assembly and secretion of very
low-density lipoproteins by the liver. This step prevents the
formation of hepatic steatosis due to triglycerides.48 Choline
deficiency is associated with a decrease in very low-density
lipoprotein production and release, and thus triglyceride
accumulation in the liver; this can be easily observed in mouse
models.49 In addition, the intestinal microbiota transforms
choline into trimethylamine, which decreases the bioavailability
of choline and leads to the supply of trimethylamine to the
liver, where it is transformed into trimethylamine N-oxide, a
metabolite with potent steatogenic effects.50 In addition to the
effects of an unbalanced diet, the uptake of several drugs
(such as metformin or digoxin) also impacts the activity and
composition of the microbiome and can lead to metabolic
disruption in the liver.51,52 Finally, if the intestine supplies the
liver with the products of digestion (but also certain deleterious
metabolites in case of loss of intestinal permeability), the liver
influences the functioning of the intestine by secreting bile
acids which can further modify the composition of the
gut microbiota.

Indeed, trillions of bacteria, fungi, viruses, archaea, and
protozoa residing in the distal segments of the gastrointestinal
tract form the gut microbiota. When stressed by various dis-
ease processes, the human intestinal microbiome undergoes
dysbiosis, which accelerates liver fibrosis development through
upregulation of inflammation.53 Dysbiosis-related liver injury
may be driven either by an excessive immune response, by gut
st 2023. vol. 79 j 492–505 495



barrier alterations, or by the production of metabolites that
modulate signalling pathways following the interaction with
receptors in host cells. Some of these metabolites can target
the liver due to altered epithelial barrier permeability. For
example, short-chain fatty acids, lipopolysaccharide (a
pathogen-associated molecular pattern), bioactive lipids and
bile acids, as well as many other metabolites, act as regulators
of the host metabolism, gut barrier, and inflammation.54 Yet,
owing to the lack of cogent investigations demonstrating
causality between gut dysbiosis and liver disease, effective
therapeutic interventions aimed at modulating the gut micro-
biome have lagged behind.

During the last few years, the links between exposure to
environmental chemicals and dysbiosis of the gut microbiota
have been extensively studied. Indeed, the composition and
function of the gut microbiota, which is responsible for the
production of diverse biologically active molecules, can be
altered by a variety of dietary contaminants, ultimately leading
to dysbiosis. For example, in several models (mouse, zebrafish
and dog), bisphenol A (BPA), a widely used compound in the
plastic industry and in food packaging, causes dysbiosis by
increasing the populations of two bacterial phyla (Protobacteria
and CKC4),55,56 while decreasing Bacteroides, Flexispiraphyla,
Oscillospira and Ruminococcaceae.57,58 Such patterns of
dysbiosis are reminiscent of those observed in animals fed a
high-fat diet (e.g., the imbalance of Protobacteria populations);
this raises the possibility that the combined exposure to BPA
and a high-fat diet may have additive or synergistic effects.
Moreover, recent evidence indicates that exposure to BPA may
have sequential effects, leading to dysbiosis and therefore to
the accumulation of hepatic lipids and steatosis.59,60 In fact, the
attenuated diversity of the intestinal microbiota results in the
accumulation of phyla that release endotoxins responsible for
increased intestinal permeability. In turn, these events promote
extensive inflammation of the liver characterised by the accu-
mulation of IL-1b and IL-6, and tumour necrosis factor-a,
leading to the onset of NAFLD.61 All in all, these findings are
reminiscent of previous experiments in mice which demon-
strated impaired glucose tolerance caused by increased insulin
resistance and peripheral tissue inflammation after
BPA exposure.62

Along the same line, chemical contaminants such as
phthalates (e.g., diethylphthalate or mono(2-ethylhexyl)phta-
late), parabens (e.g., methylparaben), biocides (triclosan), pes-
ticides (carbemazine, dichlorodiphenyldichloroethylene [DDE],
beta-hexachlorohexane, or pentachlorophenol) have clearly
been shown to cause dysbiosis.63–69 Among these molecules,
DDE and beta-hexachlorohexane are POPs. DDE causes a
dysbiosis which strongly correlates with altered blood levels of
phospholipids (phosphatidylcholine, phosphatidylserine,
phosphatidylethanolamine) and triacylglycerols.69 There are
more insights into the mechanisms of action of other POPs,
notably the Seveso dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin
[TCDD]). TCDD leads to dysbiosis related to the disruption of
the enterohepatic cycle, characterised by a significant deple-
tion of faecal bile acids, increased intestinal permeability and
delayed transit (due to the depletion of bile acids).70 TCDD also
binds to AhR, thereby hijacking the detection of tryptophan
metabolites (some of which are endogenous metabolites pro-
duced by the microbiota), contributing to altered gut perme-
ability and, subsequently, to the onset of metabolic syndrome
496 Journal of Hepatology, Augu
in mice.70–72 Likewise, a disruption of the metabolome is also
observed at the intestinal or blood levels with BPA and the
insecticide chlorpyrifos: BPA increases plasma bicarbonate
concentrations in association with disruptions of Bacteroides
populations,58 while chlorpyrifos alters concentrations of short-
chain fatty acids (such as propionate), which are known to
prevent NAFLD by reducing transcription of several enzymes
involved in de novo lipogenesis.73

Liver infectious diseases with focus on multiple
stressors and interaction with
chemical stressors
With regards to the global exposome, the liver is an organ
particularly exposed to numerous external biological factors
such as viruses, parasites, or pathogenic bacteria. Viral hepa-
titis is caused by five different viruses (hepatitis A, B, C, D, and
E virus)74 and these viruses are responsible for hundreds of
millions of acute and chronic liver diseases worldwide, espe-
cially in Asia and Africa. Parasites can also infect the liver and
activate the immune response, resulting in symptoms of acute
or chronic hepatitis.74 Among the protozoans, Trypanosoma
cruzi, Leishmania species, and the malaria-causing Plasmo-
dium species can all cause liver inflammation.74 Concerning
worm-based parasites, the cestode Echinococcus granulosus
infects the liver and forms characteristic hepatic hydatid cysts.
Fasciola hepatica and Clonorchis sinensis live in the bile ducts
and cause progressive hepatitis and fibrosis.74 Bacterial in-
fections of the liver commonly result in pyogenic liver ab-
scesses, acute hepatitis or granulomatous liver disease mainly
involving enteric bacteria such as Escherichia coli and Klebsi-
ella pneumoniae, but many other bacteria can induce acute
hepatitis.74 The intrahepatic interactions between chemical
substances and the biological factors presented above are
numerous since the liver is an obligatory pathway for the
detoxification of chemical compounds.

Alcohol is undoubtedly the most frequently involved exog-
enous compound that interacts with biological factors in the
liver. Alcohol alone is an important risk factor for chronic liver
diseases including fibrosis, but combined with other biological
factors, it increases the risk of developing liver pathologies.75,76

Thus, alcohol adversely affects individuals infected with HBV or
HCV by promoting viral replication, increasing oxidative stress,
and suppressing viral immune responses. The interaction of
alcohol with viral hepatitis contributes to an increased risk of
developing HBV- or HCV-induced liver fibrosis, end-stage
cirrhosis, and even deadly liver cancer. For example, heavy
alcohol intake (>80 ml ethanol per day, as defined by IARC,
https://publications.iarc.fr/Book-And-Report-Series/Iarc-
Monographs-On-The-Identification-Of-Carcinogenic-
Hazards-To-Humans/Alcohol-Drinking-1988) and concom-
itant chronic viral hepatitis (HBV or HCV) were associated with
a multivariate odds ratio for hepatocellular carcinoma (HCC)
of 53.9.77

The exposure to aflatoxin B1 which is a mycotoxin produced
by particular fungi (such as Aspergillus species) proliferating on
certain foodstuffs increases the risk of HCC associated with
both HBV and HCV infections. The co-exposure to aflatoxin B1
and HBV is particularly observed in sub-Saharan Africa and
South-East Asia.78 Several studies suggest that exposures to
the still commonly used organophosphorus and carbamate
st 2023. vol. 79 j 492–505
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pesticides, are additive risk factors to current HCV and HBV
infections among males in a rural setting.79 In the south of
Vietnam, a study shows that exposure for 10 years or more to
organophosphorus pesticides was associated with an
increased risk of HCC.80

Although tobacco smoking can cause lung cancer by itself,
its association with chronic hepatitis B and C infections is a
strong risk factor for liver cancer. A meta-analysis has recently
shown that tobacco smoking and HBV infection interact addi-
tively in the development of liver cancer.81 Chemical com-
pounds in tobacco smoke have cytotoxic potential that
increases necroinflammation and liver fibrosis. Additionally,
smoking increases the production of pro-inflammatory cyto-
kines involved in liver cell damage.82 In contrast, several
studies report that there is no evidence of an association be-
tween marijuana (cannabis) smoking and HCV or HBV infection
in leading to significant liver fibrosis progression or to HCC.83

Metals such as arsenic (As), lead (Pb), mercury (Hg), cobalt
(Co), copper (Cu), palladium (Pd), iron (Fe) and manganese (Mn)
can be very toxic and some are known to cause pathological
changes within organs which ultimately lead to cancer.84

Regarding the co-exposure to toxic metals and viral agents
inducing hepatitis, it is known that HCV-related hepatitis is
associated with altered regulation of metal metabolism; such a
deregulation can cause inflammatory changes and oxidative
stress, which leads to enhanced HCV replication and reduces
the efficacy of antiviral therapy in patients with chronic hepatitis
C.85 In addition, copper accumulation in fibrotic livers may
contribute to hepatic injury and increase the impacts of HCV
infection.85 In contrast, zinc levels in the serum of patients with
HCV are associated with a decrease in the severity of disease.
An American cross-sectional human health survey based on
70,000 individuals suggests that the toxic effects of lead and
cadmium may be associated with an increased susceptibility to
chronic HBV infections.86

Cholestatic liver disease
Primary sclerosing cholangitis (PSC) and primary biliary chol-
angitis (PBC) are rare cholestatic diseases of the liver, which
affect the large- and small-to medium-sized bile ducts,
respectively.87,88 Both diseases are characterised by an
accumulation of bile acids that likely serves to promote an in-
flammatory and tissue remodelling cascade, which ultimately
leads to hepatic dysfunction and often progresses to end-stage
liver disease.22 The overarching pathogeneses of either PSC
and PBC are complex and likely involve both genetic and
environmental elements that are currently poorly understood.
Both diseases are associated with co-morbid autoimmunity
and about 70% of patients with PSC have concurrent inflam-
matory bowel disease.87 From an exposome standpoint, the
high incidence of inflammatory bowel disease in these pop-
ulations is likely of high importance.89 The intestine serves as a
barrier to many of the chemicals ingested through the diet.
Disruption of that barrier due to inflammation or disrupted mi-
crobial homeostasis may increase absorption of and exposure
to more exogenous chemicals. This emphasises the impor-
tance of assessing intestinal integrity and microbial composi-
tion in future studies.

In the past decade, several genome-wide association
studies have improved our understanding of the mechanisms
Journal of Hepatology, Augu
underlying PSC and PBC pathogenesis and development, i.e.
emphasising the contribution of immunity in disease pro-
cesses.90 Although genome-wide association studies provide
key direction into factors involved in the development of these
rare cholestatic diseases, they do not fully account for their
exact pathogeneses, nor are they able to identify features of
disease progression. Currently, treatments for PBC are pri-
marily focused on altering the bile acid pool and two such
treatments, ursodeoxycholic acid (UDCA) and obeticholic acid
(OCA) have been shown to be beneficial, although many pa-
tients do not respond adequately.91 No medical therapy exists
for PSC. Therefore, elucidating the pathophysiology of these
diseases is essential to improve their management and treat-
ment. To this end, recent attention has been focused on the
combined study of exposomics-metabolomics in PSC, with the
aim of identifying likely pathogenic environmental exposures
along with the metabolic alterations that may contribute to
these diseases (Fig. 2).

In a recent study, an exposomics-metabolomics framework
was applied in 40 patients with PSC, 40 patients with PBC and
corresponding controls using high-resolution mass spectrom-
etry (HRMS) capable of detecting several tens of thousands of
features in plasma samples.16 This approach employs gas
chromatography HRMS for detection of semi-volatile com-
pounds and environmental chemicals and liquid chromatog-
raphy HRMS to measure endogenous metabolites (there is
overlap between the two platforms). The study carried out
separate exposome-wide and metabolome-wide association
studies of PSC and PBC (results for PSC can be seen inFig. 2).
Subsequently, these analyses reported chemicals and path-
ways associated with each disease. These elements were then
integrated after applying an exposome-metabolome correlation
matrix to describe for the first time exposure-response net-
works in PSC and PBC.16 The study revealed many environ-
mental chemicals with known hepatotoxic properties and
endogenous metabolic pathways potentially underlying liver
malfunction. The authors reported 54 compounds associated
with PSC while none were associated with PBC. Attempted
annotation of the 54 PSC-associated compounds using data
available in the NIST 2017 library identified only one high-
confidence match, underscoring a major challenge to gaining
biological insight using untargeted gas chromatography
HRMS. This chemical was terbucarb, a carbamate pesticide, a
class of insecticide widely used in household, agricultural, and
industrial applications.92 The study also identified two fungi-
cides, fenpropimorph and spiroxamine, that were elevated in
patients with PSC and PBC, respectively.16 These chemicals
inhibit cholesterol metabolism in mammalian cells, leading to
accumulation of polar sterols.93 Subsequently, pathway
enrichment analysis found the bile acid biosynthesis pathway
included the greatest number of disease-associated metabo-
lites in both PSC and PBC, consistent with known mechanisms
of cholestatic liver disease.94 Finally, an integrative network
analysis that evaluated the correlation between disease-asso-
ciated chemicals identified in exposome-wide association
studies and the enriched metabolic pathways from
metabolome-wide association studies, showed that the largest
cluster in PSC centred on aldicarb sulfone, a commercial-use
carbamate pesticide that is classified as an extremely hazard-
ous substance in the United States and is no longer being
st 2023. vol. 79 j 492–505 497
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distributed. Of note, this cluster did involve 17 of 27 PSC-
associated pathways.16

This recent report supports a role for environmental chem-
icals in contributing to the pathogenesis of PSC and PBC and
presents a novel move towards adapting exposomic method-
ologies for precision medicine approaches to the study of liver
disease. It should be noted that this was a relatively small
sample size. A larger follow-up study of plasma-based expo-
somics-metabolomics, which includes 1,600 patients with
PSC, PBC and controls is currently underway and will likely fill
some knowledge gaps and provide the framework for new
therapies for these enigmatic cholestatic liver diseases.

Liver cancers

The predominant primary liver cancers are HCC and chol-
angiocarcinoma. Both cancers are usually diagnosed at an
advanced stage, which may explain their poor prognoses
despite some progress in treatment. In this section we will
focus on HCC, which is the most frequent liver cancer. In the
vast majority of cases, HCC develops on a background of
cirrhosis after a long evolution of chronic liver disease, mainly
caused by HBV or HCV infection, alcohol consumption or
toxins like aflatoxins, aristolochic acid and cyanotoxins, as well
as drugs and occupational chemicals.95 Whatever the risk
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factors, cirrhotic high-grade dysplastic nodules are the most
frequent pre-neoplastic lesion from which HCC develops.
However, HCC can also develop on a non-cirrhotic liver, this is
particularly frequent in the context of NASH or HBV infection.
Exceptionally, HCC can also occur in a normal liver through the
malignant transformation of a hepatocellular adenoma with
specific risk factors: high oestrogen exposure, including oral
contraception, androgen intake, genetic metabolic diseases
(such as glycogenosis), or high alcohol consumption.96

Therefore, the known exposome associated with HCC is
diverse and it has expanded considerably over the years.

The mechanisms leading to HCC following exposure to
environmental stressors are mostly indirect and related to the
inflammation generated by the evolution of chronic liver dis-
ease, during which inflammation and metabolic pressures
favour the accumulation of epigenetic and genetic alterations in
hepatocytes.95,97,98 Toxin exposure can also directly induce
genomic alterations in cancer driver genes in hepatocytes
before the malignant transformation: DNA viruses (HBV and
adeno-associated virus type 2) can activate oncogenes
through viral insertional mutagenesis, while aflatoxin B1
exposure, tobacco smoking and alcohol consumption induce
DNA damage during life – mutational signatures specific for
each risk factor have been observed in HCC and in normal
st 2023. vol. 79 j 492–505
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tissues.97,99–101 Moreover, the individual genetic background
can modulate the risk and the severity of either chronic liver
disease or cancer.102,103 Genetic polymorphisms in several
genes (PNPLA3, TM6SF2 and HSD17B13) that encode for
proteins involved in lipid metabolism modulate the severity of
NASH and alcohol-related chronic liver diseases. These gene
polymorphisms also modulate the risk of HCC associated with
either one of these risk factors.102–105 Other genetic poly-
morphisms in WNT3A/WNT9A or in TERT modulate the risk of
HCC without impacting on the chronic liver disease. Finally,
alongside genetic polymorphisms, exposure to different risk
factors can have additive or synergistic effects on liver cancer
development. The most demonstrative example is the co-
occurrence of aflatoxin B1 exposure, with HBV viral infection
and the null-polymorphism in GSTM1 (glutathione-S-trans-
ferase mu), coding for an enzyme that detoxifies aflatoxin B1.
Interestingly, these three risk factors cooperate together to
drastically increase the risk of HCC in Africa and in East Asia by
more than 90-fold compared to individuals without any of these
risk factors.106,107

During the last few years, several behavioural and environ-
mental exposures have been shown to increase the risk of liver
cancers in humans. Smoking was shown to increase the risk of
HCC by more than 80%.108 Interestingly the increased risk of
HCC tended to decrease considerably in former smokers and
was absent or negligible after 30 years of smoking cessation.
The increased risk of HCC related to smoking is of a similar
magnitude as that of alcohol abuse. Also, both alcohol abuse
and smoking increase the risk of biliary tract cancers.109 In
contrast, coffee consumption and aspirin intake were associ-
ated with a decreased risk of HCC.110,111

Evidence for environmental exposure and increasedHCChas
also increased considerably lately. Air pollution has been shown
to be associated with a moderate increase in the risk of HCC
(15% increase).112 Associations were strongest with air pollution
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components NO2, PM2.5 (particulatematter with a radius smaller
than 2.5 lm) and black carbon.113 It should be noted that PM,
including PM2.5, carry (in their compositions or by adsorption) a
variety of compounds that are carcinogenic, such as metals and
PAHs. Exposure to other environmental stressors has also been
associated with increased risk of HCC: metals including arsenic
and cadmium, polychlorinated biphenyl, PAHs, pesticides,
organic solvents, and PFASs.79,114–117 In a recent case-control
study involving 100 individuals, high blood levels of a major
PFAS, perfluorooctane sulfonic acid, were associatedwith a 4.5-
fold increase in the risk of HCC.118 A metabolome-wide asso-
ciation study and pathway-enrichment analysis showed that
disruption of key metabolic pathways by perfluorooctane sul-
fonic acid may contribute to such an outcome. While the weight
of evidence linking these exposures toHCCmay be different, the
global conclusion is that the extent of the exposome linked to
HCC risk is much larger than previously thought.

Interestingly, analysis of the DNA mutational profile of
different HCCs has identified mutational signatures associated
with specific risk factors, notably viruses, alcohol and toxins.99

Therefore, the molecular profile of the genetic alterations
accumulated in the liver and in HCC reflects exposome com-
ponents that triggered the carcinogenic process during life
(Fig. 3). Using such large-scale profiling could improve our
knowledge of the environmental determinants of HCCs. The
same could be true for epigenetic profiling, such as miRNA
profiles or the DNA methylation landscape.119 On the other end
of the biological mechanisms, the identification of initial events
such as the activation of nuclear receptors or the modulation of
xenobiotic metabolising enzyme activities could also be rele-
vant. However, concerning the nuclear receptors implicated in
HCC, there are still a lot of discussions and uncertainties,
mostly related to the relevance of animal studies to human
pathogenesis.120 These controversies particularly concerning
the receptors PPAR-a and CAR (whose expression levels and
PNPLA3
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ligand patterns significantly differ in humans and rodents) have
considerably delayed our capacity to correctly predict the he-
patic carcinogenicity of industrial substances. Yet a cross-
species understanding of the biological pathways associated
with exposure to stressors on one hand and cellular trans-
formation on the other hand would be extremely useful for
predicting the impacts of exposome components.

Fewer well-organised studies were devoted to the role of
environmental exposures on cholangiocarcinoma. Anatomically,
cholangiocarcinoma is categorised into three subtypes: perihilar
or Klatskin’s tumour, intrahepatic, and extrahepatic. The patho-
genesis of each type is likely distinct and better studies are
needed to classify these tumours on a molecular basis. Unfor-
tunately, the anatomic classification was not followed properly
for a variety of reasons, and thus, past environmental studies
should be interpreted with caution.121 Such reported exposures
include liver parasites, dioxin and dioxin-like compounds, nitro-
samines, tobacco smoking, asbestos, and alcohol consumption
as well as several occupational hazards.121 Interestingly psy-
chosocial stress also appears to play a role.122–124
Other exposure-related liver diseases
Several liver diseases are fully or partially related to changes in
exposures but are usually considered as independent entities.
We believe they should be discussed in the context of the
exposome and summaries of these conditions and their relation
to the exposome are developed below.

Drug-induced liver injury (DILI) is an adverse reaction to drugs
or other xenobiotics that occurs either as a predictable event
following exposure to toxic doses of a compound (intrinsic DILI)
or as an unpredictable event with drugs in common use (idio-
syncratic DILI).125Whilemost of the cases reported in theUSand
Europe are secondary to conventional medications, traditional/
complimentary and dietary supplements are the main causative
agents of DILI in Asia.126 Liver harm developswhen the offending
agents, often lipophilic drugs, are converted to reactive metab-
olites that have the potential to covalently bind to proteins and
cause cellular organelle stress. This process may lead to hepa-
tocyte death, which is mediated either by the collapse of mito-
chondrial function andnecrosis, or by activation of regulated cell-
death pathways.127 DILI can present as any recognised pattern
of liver enzyme derangement in susceptible individuals in whom
the disease process is framed by genetic and environmental risk
modulators like advancing age, sex, alcohol intake and under-
lying liver disease. Accordingly, the diagnosis of DILI is almost
invariably challenging, requiring a step-by-step approach with
accurate analysis of the temporal sequence of events, exclusion
of alternative causes and navigation through the RUCAM
(Roussel Uclaf Causality Assessment Method) algorithm or its
revised version RECAM (Revised Electronic version of RUCAM).
In selected cases, HLA genotyping may improve causality
assessment and differential diagnosis with autoimmune hepati-
tis.128 The overwhelming importance of a prompt assessment of
causality relies on the potentially severe outcome of DILI that
spans from a trivial illness to acute liver failure and the need for
liver transplantation.

Unbalanced homeostasis of iron is a good illustration of
genome-exposome interactions in liver diseases. Iron is
essential for the production of heme and iron-sulphur compo-
nents of proteins and enzymes involved in vital biological
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processes. Its dysregulation may result in either deficiency or
overload syndromes. Iron overload has the propensity to
damage cell components owing to the fact that iron accepts
and releases electrons, i.e. has the ability to cause oxidative
stress (like lipid peroxidation) leading to shrunken and electron-
dense mitochondria and cell death (ferroptosis). Key genes
related to ferroptosis include GPX4 (glutathione peroxidase-4),
ACSL4 (acyl-CoA synthetase long-chain family member-4),
CBR3 (carbonyl reductase [NADPH] 3), and PTGS2 (prosta-
glandin peroxidase synthase-2). Notably, ferroptosis is involved
in different pathological conditions, including neurological and
liver and kidney diseases and different cancers.129 Central to
iron homeostasis is the liver peptide hepcidin, which regulates
serum iron levels through degradation of ferroportin in iron-
absorptive enterocytes and in macrophages. Dysregulation of
this pathway can be observed in steatohepatitis (NASH),
alcohol-related liver disease, DILI, viral hepatitis, and haemo-
chromatosis.130 In haemochromatosis, mutations in genes of
the hepcidin-ferroportin axis lead to increased iron absorption,
high transferrin saturation and increased toxicity from non-
transferrin bound iron species, which favours the onset of
cirrhosis, liver cancer and extrahepatic diseases like diabetes,
osteoporosis, arthropathy and, in patients with early onset
haemochromatosis, hypogonadotrophic hypogonadism, hy-
pothyroidism and heart failure. The commonest form of hae-
mochromatosis in Caucasians is due to homozygous
HFE(C282Y) mutations, but the exact disease penetrance is
dependent on age and sex.131 Congenital iron overload disease
also occurs in individuals with alpha and beta thalassemia,
syndromic and non-syndromic congenital sideroblastic
anaemia, congenital dyserythropoietic anaemia, hypo-
transferrinaemia and in diseases related to divalent metal
transporter 1 mutations. Genetically driven regional accumu-
lation of iron and ferritin may occur, causing harm to the brain
and lenses, whereas acquired iron overload due to chronic
blood transfusions, inflammation or anaemia may have multiple
clinical consequences.130

Dysregulation of copper homeostasis and Wilson disease is
another relevant example of genome-exposome interactions.
Copper is an essential metal required for the function of many
metalloproteins that serve numerous metabolic needs of liver
cells, including building of nascent ceruloplasmin, which carries
more than 95% of the total copper in plasma.132 Copper
compounds are also active plant protection products, and it is
likely that certain populations are exposed to high levels of
copper. As excess hepatic copper is excreted via the biliary
pathway into faeces, cholestasis is responsible for both hepatic
retention and increased circulating levels of copper. The pro-
totype clinical syndrome caused by excessive retention of
copper is Wilson disease, a familial, neurological lethal disease
accompanied by cirrhosis, which results from inactivation of
the gene encoding a metal-transporting P-type ATPase,
ATP7B, found mainly in hepatocytes. When exceeding storage
capacity, copper deposits in various organs, especially the
brain, kidneys and cornea. The disease may present with a
broad spectrum of liver disease that ranges from asymptomatic
to cirrhosis and acute liver failure. In teenagers, liver disease
usually precedes neurologic manifestations by years, while
most adult patients with neurologic symptoms have some
degree of liver disease at presentation. Notably, acute liver
failure occurs mostly among women. In the US it accounts for
st 2023. vol. 79 j 492–505
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up to 12% of all listings for acute liver failure and is almost
invariably fatal if not treated with emergency transplantation.
Severe liver injury may cause the sudden release of copper into
the blood and cause acute intravascular haemolysis with
anaemia, haemoglobinuria, jaundice and progression to renal
failure.133 Wilson disease should be differentiated from acer-
uloplasminemia, MDR3 (multidrug resistance protein 3) defi-
ciency, and certain congenital disorders of glycosylation
through genetic, laboratory and clinical investigations.

Conclusions and perspectives
The range of external factors that compose the liver exposome
is extremely diverse and several of its components have been
linked to liver diseases in clinical, epidemiological, and exper-
imental studies (Fig. 4). Some important conclusions can be
drawn from the analysis of the impact of various exposures on
liver diseases:
- One exposure, several pathologies. The analysis of the contri-
bution of the exposome to different liver diseases shows that
several exposures are common to different liver pathologies, for
example alcohol consumption, smoking, viral infections, and
some chemical exposures. This is not surprising as these dis-
eases are linked to each other, for example the progression from
MAFLD or viral hepatitis to cirrhosis to HCC.

- Combination of different exposures. Another important observa-
tion is that often a combination of different exposures is involved in
disease development or progression, for example the combination
of viral agents and chemicals for the progression of viral disease
and HCC, or chemicals, dietary imbalance and dysbiosis for the
progression of metabolic diseases and the likely contribution of
multiple chemicals such as drugs, environmental and
Journal of Hepatology, Augu
occupational chemicals in the progression of liver diseases.
Indeed, it is likely that most liver disease results from a combina-
tion of multiple factors necessitating an exposome-
based approach.

- Systemic and liver-specific impacts. While some risk factors like
smoking, air pollution or obesity display systemic effects at the
organism level with liver pathology being one component of a
larger disease, other factors such as hepatitis viruses, myco-
toxins, certain drugs and chemicals, elicit a more specific liver
disease. Obviously both types of stressors could have com-
bined effects.

All these considerations highlight the relevance of the
exposome concept for improving our understanding of liver
disease pathogenesis, with the aim of guiding prevention,
biomarker identification and ultimately treatment.

There are still many unknowns concerning the
actual contribution of the exposome to liver pathologies. In
this regard, there is huge interest in the development of
technologies and approaches that would fill these gaps. As
highlighted in different sections of this review, in our view,
the most promising technologies and approaches are
the following:
- A combined and integrated exposomics-metabolomics frame-
work to better characterise liver diseases, identify both exoge-
nous exposures and endogenous processes and establish
putative links between these two profiles.4

- Further development of chemical mixture studies to assess the
effect of large mixtures of chemicals and their interaction with
other stressors.134 While drug-drug interactions have been
extensively studied, it is important to extend this research to other
types of chemicals and at amuch larger scale. Since the liver is the
primary organ of xenobiotic metabolism, mixtures studies should
encompass parent molecules and their metabolites.

- Development of genomic and epigenomic mutational signatures
correlated with specific exposures. This would help to link the
observed molecular description of liver samples (e.g., HCC or
hepatocellular adenoma) with likely risk factors and exposures.
Such approaches could benefit from both clinical and toxico-
logical studies.

- A systematic characterisation of the microbiome because of its
significant influence on organ metabolomes and since dysbio-
sis has been associated with a variety of diseases including
metabolic and biliary diseases.135 Importantly, disruption of gut
permeability is linked to exposure to several chemicals and
dysbiosis. Finally, there are sex-specific differences in microbial
composition, which could account for differences in disease
susceptibility in addition to hormonal effects.136

- A strategy to better integrate in vivo/in vitro and human studies to
improve prediction. Such a strategy could involve a systems
biology approach and biological pathway identification in order to
better translate experimental approaches into human-
relevant knowledge.5

Obviously, all these approaches will benefit from compre-
hensive clinical studies of liver diseases in which an expo-
some approach has been integrated. While in many such
studies, genomics and other omics technologies have been
included, it is time to introduce and integrate exposomics with
the other omics.6 This will primarily concern chemical expo-
somics but, as mentioned earlier, a more extensive
st 2023. vol. 79 j 492–505 501



microbiological characterisation is also relevant (microbiome,
viral and parasitic agents) as well as a more extensive char-
acterisation of physical stressors. The social component of
the exposome is also critical for liver diseases, particularly
concerning the social determinants of diets, dysbiosis and
addictive behaviours.

We should also be aware of the limitations of the exposome
framework in epidemiological and clinical studies. Indeed, by
increasing the number of biomarkers and of factors influencing
liver diseases, very large cohorts or clinical studies are needed
to meet statistical requirements. This may not be possible for
certain diseases and in all cases may prove to be very costly.
Thus, it is critical to assess the cost-effectiveness of each
study design. Despite these limitations, exposome studies may
prove to be a hypothesis-generating first step. Hypothesis-
driven studies will still be needed to confirm and to provide
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more precision on the causal links between exposures
and outcomes.

Liver studies have benefited from the combination of clinical
and experimental approaches. This should now be further
developed with the exposome concept in mind. Experimental
2-dimensional or 3-dimensional model systems have been
used and can still be further developed to link clinical and
experimental observations.137 Improving assessment of
toxicity using these new methodologies could support pre-
ventive measures and protect public health. Furthermore, the
combination of clinical and experimental studies could support
the development of new biomarkers and lead to the develop-
ment of new therapies. The latter could consist of dietary or
microbial interventions or the development of drugs targeting
critical biological pathways.
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