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Abstract In a recent work [3], a novel method has been proposed and analyzed
to reconstruct accurate backward transport flows, based on point markers pushed
forward. When used in conjunction with a reliable particle code, this approach pro-
vides a simple tool to improve the accuracy of density approximations. In this article
we report on an extension of the method to unstructured set of markers, which are
generic in particle codes. The resulting approximations have the same order of con-
vergence, both in the a priori estimates and in the numerical simulations.
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1 Introduction

Consider a transport equation

∂t f (t,x)+u(t,x) ·∇ f (t,x) = 0, t ∈ [0,T ], x ∈ Rd (1)

associated with an initial data f 0 : Rd→R and a velocity field u : [0,T ]×Rd→Rd .
If u is smooth, e.g. L∞(0,T ;W 1;∞(Rd)) [13], we can define characteristic trajectories
X(t) = X(t;s,x) solutions to the ODEs X ′(t) = u(t,X(t)), X(s) = x on [0,T ], for all
x ∈ Rd and s ∈ [0,T ]. The corresponding flow Fs,t : x 7→ X(t) is then invertible and
satisfies (Fs,t)

−1 = Ft,s. In particular, the transported density reads
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f (t,x) = f 0((F0,t)
−1(x)) for t ∈ [0,T ], x ∈ Rd . (2)

In general u depends on f through some self-consistent coupling. Following [3]
we assume that we are given an accurate particle solver that (i) pushes forward
arbitrary sets of markers along the characteritic flow, and (ii) computes reliable ap-
proximations to the velocity field u, at least for moderate simulation times T ′ < T .
Using this solver as a black box we may then consider that u is given and that we
can apply the exact forward flow Fn,n+1

ex on small time steps of size ∆ t, on a given
set of point markers.

The method that we describe below follows a series of works [10, 5, 8, 1, 2] where
accurate approximations of transported densities are obtained through enhanced rep-
resentations of the transport flow. In its most recent version [3], it implements the
fundamental idea that local descriptions of the characteristic flow can be computed
using a rather inexpensive method and then exploited to accurately reconstruct the
transported density [6]. In practice the method studied in [3] combines key tools
from the usual forward and backward lagrangian methods. It consists of

• pushing forward given markers along the characteristic trajectories, like in a stan-
dard particle method, and

• representing the density on a grid at given time steps, like in a backward semi-
lagrangian method.

The crux of the method is then to use the markers pushed forward to approxi-
mate the backward flow between two time steps. The approximated density is then
transported as in a standard Backward Semi-Lagrangian (BSL) method [14]. As ex-
plained in [2, 3], the strenght of this approach over a standard particle method with
smooth remappings (interpolations) is a lower diffusivity and higher convergence
rate, and compared to the BSL method it has the advantage of avoiding a backward
time integration of the trajectories. Owing to its hybrid nature we call it a Forward-
Backward Lagrangian method.

2 The Forward-Backward Lagrangian method

2.1 Backward flow reconstruction

The method relies on local approximations of the backward flow that are valid close
to the marker positions xn

k . For simplicity we restrict our presentation to first order
flow approximations. Following [2] we define

B0,n
h,k : x 7→ x0

k +Dn
k(x− xn

k) (3)

with Dn
k a d×d matrix approximating the backward Jacobian JB0,n

ex
(xn

k) of the back-
ward flow, that can be computed from the position of the neighboring markers.
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To compute a global approximation to the backward flow we subdivide the com-
putational domain Ω in cartesian cells of size h, with centers denoted ξi = ih, i∈Zd ,
to avoid a confusion with the particle positions. To any ξi we associate a nearby
marker, e.g. the closest one,

k∗(n, i) := argmink∈Zd‖xn
k−ξi‖∞

and its corresponding backward flow (3). The global approximation to B0,n
ex is then

obtained by smoothly patching these local approximations. Given a partition of
unity ∑i∈Zd S(x− i) = 1 involving a compactly supported, non-negative shape func-
tion S (e.g., a B-spline), we set

B0,n
h (x) := ∑

i∈Zd

B0,n
h,k∗(n,i)(x)S

(x−ξi

h

)
. (4)

2.2 Remapped FBL method

Used in conjunction with a standard particle code, the above technique can be used
in several ways to derive numerical schemes that improve the accuracy of the parti-
cle approximations.

For instance, the density can be approximated at any time step n by using the
approximated flow (4) in the Lagrangian formula

f n,fbl
h (x) := f 0(B0,n

h (x)
)
, x ∈ Rd . (5)

Assuming that the underlying particle code pushes the markers along accurate tra-
jectories, this reconstruction will be accurate as long as the associated characteristic
flow remains smooth.

In many cases however, the regularity of the flow deteriorates over time and so
does the accuracy of its approximations. To reduce this effect a simple method then
consists of restarting the transport problem from time to time, namely before the
approximated flow becomes too inaccurate. In the literature these restart time steps
are often called remappings, and they essentially consist of re-initializing both the
approximated density and the flow markers. After a restart indeed we must solve a
new transport problem, where the characteristic flow has been reset to the idendity
mapping of Rd . This comes at a price, which is the approximation error on the
transported density. Formally the method reads as follows.

1. The two ingredients of the method are initialized: the positions of the markers x0
k ,

k ∈ Zd , are computed, and the initial density f 0 is approximated on some grid of
size h. This grid is a priori independent of the markers, and many methods can
be used. B-spline interpolations or quasi-interpolations are simple and efficient,
see e.g. [15, 2]. We denote the corresponding approximation by f 0

h = Ah f 0.
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2. Letting m0 = 0 < m1 < m2 < · · · , denote the initial and subsequent remapping
steps, on the r-th remapping cycle, r = 0,1, · · · , we do:

a. For n = mr, · · · ,mr+1−1, push all the markers xn+1
k = Fn(xn

k), k ∈ Zd .
b. Define the FBL approximation f mr+1,fbl

h := f mr ◦Bmr ,mr+1
h to f (mr+1∆ t).

c. Compute a new approximated density f mr+1
h := Ah f mr+1,fbl

h for the next cycle.
d. Re-initialize the markers to prepare the local flow approximations (3) between

the present remapping time mr+1∆ t and the future times n∆ t.

To determine the method it thus remains to specify how the matrices Dn
h,k in-

volved in the local flows (3) are computed from the markers positions, and how the
latter must be initialized (and re-initialized) so that these matrices approximate well
the Jacobian matrices of the backward flow.

3 Flow reconstructions with structured or unstructured markers

3.1 A method using structured markers

In the structured version proposed and studied in [3] following [2], the flow markers
are initialized on a cartesian grid,

x0
k = hk, k ∈ Zd . (6)

After pushing forward these markers over n time steps, one computes the defor-
mation matrix Dn

k approximating the Jacobian matrix of the backward flow at the
particle position xn

k , namely

JB0,n
ex
(xn

k) =
(
∂ j(B0,n

ex )i(xn
k)
)

1≤i, j≤d ,

as follows. First one approximates the derivatives of the forward flow F0,n
ex with finite

differences involving the current particle positions xn
k = F0,n

ex (x0
k). With a centered

formula we define

Jn
k :=

(
(xn

k+e j
− xn

k−e j
)i

2h

)
1≤i, j≤d

≈ JF0,n
ex

(x0
k) (7)

and using the relation JB0,n
ex
(xn

k)JF0,n
ex

(x0
k) = Id which follows by differentiating the

identity x = B0,n
ex (F0,n

ex (x)) at x0
k , we approximate JB0,n

ex
(xn

k) with

Dn
k := (Jn

k )
−1. (8)
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Re-initializing the markers on some time step n then simply consists by using a
new set of markers located on the cartesian grid (6). We note that by doing this one
forgets the previous marker positions xn

k .

3.2 A new method using unstructured markers

Our extension of the above centered finite difference formulas to unstructured set of
markers relies on the following notion of admissible simplices and parallelotopes.

Definition 1. Let α > 0. An ordered simplex (x0, . . . ,xd) of Rd is called admissible
if the unit vectors

ei =
c− xi

‖c− xi‖2
, i = 0, . . . ,d−1, (9)

defined with c = 1
2 (xd + x0) the center of the last edge, form a matrix satisfying

|det(e0, . . . ,ed−1)| ≥ α. (10)

The associated admissible parallelotope is obtained by adding the vertices

xi+d = x0 + xd− xi, i = 1, . . . ,d−1, (11)

so that (x0,xi,xd ,xi+d) forms a parallelogram with center c.

On every remapping step (including the initial step), the unstructured markers
are then prepared in two steps. Below we consider a fixed value for α < 1.

1. Inside every cell C j of some cartesian mesh of resolution O(h), determine
whether there exists an admissible simplex of markers (x0, . . . ,xd). If not, insert
new markers to form one (e.g. with a random algorithm).

2. Add d auxiliary markers corresponding to the d−1 remaining vertices (11) and
center x2d = 1

2 (x0 + xd) of the associated parallelotope X j = (x0, . . . ,x2d).

The backward flow close to a marker xn
k is then approximated as follows. De-

noting by (x̄0, . . . , x̄2d) the position at time tn of the pointers X j = (x0, . . . ,x2d) cor-
responding to the cell C j containing x0

k , we first approximate the derivative of the
forward flow F0,n along each unit vector ei = (xi+d− xi)/‖xi+d− xi‖2, see (9), by

δi :=
x̄i+d− x̄i

‖xi+d− xi‖2
=

F0,n(xi+d)−F0,n(xi)

‖xi+d− xi‖2
, i = 0, . . . ,d−1. (12)

This is a second order formula for JF0,n
ex

(x2d)ei, where x2d is the center of the paral-
lelotope. The forward Jacobian matrix at x2d is then approximated by

Jn
k :=

(
δ0, . . . ,δd−1

)
E−1

where E is the matrix
(
e0, . . . ,ed−1

)
, and the backward Jacobian matrix by
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Dn
k := (Jn

k )
−1 = E

(
δ0, . . . ,δd−1

)−1
.

We observe that this matrix is actually determined by the parallelotope X j and hence
only depends on j. Moreover, since the center of the parallelotope is also a marker
x0

k( j) ∈ C j that has been pushed forward, Dn
k = Dn

k( j) approximates the backward
Jacobian matrix at xn

k( j). The local backward flow (3) associated to any xn
k that was

initially (i.e. at the last remapping step) in the cell C j is then be defined as

B0,n
h,k = B0,n

h,k( j) : x 7→ x0
k( j)+Dn

k( j)(x− xn
k( j)). (13)

From the property (10) satisfied by the admissible parallelotope we can derive a
priori estimates similar to the ones of the structured case [3].

Lemma 1. Let xn
k be a marker initially located in a cell C j associated with an ad-

missible parallelotope X j with center x0
k( j). Then the approximated forward Jacobian

defined above satisfies the a priori estimate

‖Jn
k − JF0,n

ex

(
x0

k( j)

)
‖∞ ≤Chq|F0,n

ex |q+1, q ∈ {1,2} (14)

with a constant depending only on d and α . In addition, there exists h∗ > 0 such
that for all h < h∗, Jn

k is invertible and the following a priori estimate holds

‖Dn
k− JB0,n

ex

(
xn

k( j)

)
‖∞ ≤C min

q∈{1,2}

(
hq|F0,n

ex |q+1
)
|F0,n

ex |
2(d−1)
1 . (15)

4 Numerical results

The efficiency of the structured method has been assessed on several transport prob-
lems in [3], see also [4] for a smooth particle approximation to Vlasov-Poisson
plasmas based on similar flow reconstructions. To validate the unstructured version
we use a passive transport problem of [11] which involves a swirling velocity field
u(t,x) := cos

(
πt
T

)
curlφ(x) with φ(x) := − 1

π
sin2(πx1)sin2(πx2) and T = 5. The

time symmetry yields a reversible problem: at t = T/2 the solutions reach a max-
imum stretching, and they revert to their initial value at t = T . For the initial data
we consider a smooth hump centered on x̄ = (0.5,0.7) with approximate radius 0.2,
f 0(x) := 1

2

(
1+ erf

( 1
3 (11− 100‖x− x̄‖2)

))
. Figure 1 shows the profile of accurate

solutions at initial, half and final times. L2 convergence curves achieved by several
particle methods are then plotted in Figure 2. Here the particle pusher is a RK4
scheme with time step ∆ t = T/100 = 0.05 that has been taken small enough to have
no significant effect on the final accuracy, and all the remappings are performed
with cubic splines. As a reference, the top left panel shows results obtained with a
standard Forward Semi-Lagrangian (FSL) scheme (i.e., a smooth particle method
with periodic remappings), see e.g [12, 7, 9]. The curves in the top right panel are
obtained with the structured FBL version and confirm (i) the improved accuracy of
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this approach, and (ii) the need for much less remappings. In the two bottom panels
we then show results corresponding to the unstructured FBL method which seem to
exhibit similar accuracies. On the left the approximate flows are computed as de-
scribed above, using 5 markers per cell corresponding to the vertices and centers
of the admissible parallelograms. On the right a small variant is tested, where the
center marker is discarded and replaced by the current marker xn

k in the backward
flow (13). This represents an error of order h on the initial and current positions of
the center marker, but if the flow is W 2,∞ it also corresponds to an error of order h
on the Jacobian matrix, hence the resulting approximated flow is again of order h2

which is confirmed by the numerical convergence rate.

Fig. 1 Initial, intermediate and final profiles of the solution to the reversible test case in the text.

5 Conclusion and persectives

An unstructured version of a recent Forward-Backward particle method has been
described an validated, showing second order accuracy on passive transport prob-
lems. These results represent an encouraging step towards the implementation of
such reconstruction methods within standard particle codes. Further comparisons
with standard advection methods should be performed to investigate the merits of
this approach, and extensions to nonlinear transport problems should be adressed,
including problems with discontinuous flows.
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14. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the
numerical resolution of the Vlasov equation. Journal of Computational Physics 149(2), 201–
220 (1999)

15. Unser, M., Daubechies, I.: On the approximation power of convolution-based least squares
versus interpolation. Signal Processing, IEEE Transactions on 45(7), 1697–1711 (1997)


