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Prediction of human driving behavior based on a recurrent LSTM model using different types of data

Predicting the intentions of the human and the machine on a near future is required to the human-machine shared control of automated intelligent vehicles. The autonomous system is able to inform about its future intentions, however it is not possible for the human to provide this information, it is necessary then to predict it. This paper proposes a deep learning methodology to predict human navigation intentions in a time horizon of a few seconds, using a recurrent neural network (RNN) architecture based on the Long Short-Term Memory (LSTM) architecture. Taking as input various preprocessed and non-preprocessed data, generated by embedded sensors and the intrinsic data of the vehicle, the proposed model predicts the future linear and angular velocities of the vehicle. The model was trained and tested on a dataset created from real data from our cars equipped with sensors (LiDAR, camera), in different scenarios and road types. Furthermore, a data sensitive study is presented evaluating the effects of missing data in the learning process.

I. INTRODUCTION

In 2021, the number of deaths due to road accidents was 1.3 million 1 over the world. Of all road accidents, 90% are due to human error [START_REF] Thomas A Dingus | Driver crash risk factors and prevalence evaluation using naturalistic driving data[END_REF]. The development of autonomous cars is intended to increase safety on board vehicles and consequently reduce the number of deaths while improving driving comfort [START_REF] Jo | Development of autonomous car-part i: Distributed system architecture and development process[END_REF].

The complexity of the road traffic and the environment in which an autonomous car must evolve, creates an obstacle to the realization of the autonomous car in all situations without human supervision [START_REF] Wang | Towards the unified principles for level 5 autonomous vehicles[END_REF].

However, it is possible to increase driver safety by assisting the driver. The Advanced Driver-Assistance Systems (ADAS) [START_REF] Okuda | A survey of technical trend of adas and autonomous driving[END_REF], [START_REF] Hussain | Autonomous cars: Social and economic implications[END_REF] cars can assist the driver by adjusting the vehicle speed to avoid collisions or to warn the driver of a risk (presence of a vehicle in a blind spot or a lane departure). We can extend this assistance of the autonomous system to the cooperation with the driver. In this case, the autonomous system should not only supervise the human in some tasks but should be able to drive alongside him, thus realizing a shared navigation, a concept already known in the fields of robotics, that is the shared control [START_REF] David A Abbink | A Topology of Shared Control Systems -Finding Common Ground in Diversity[END_REF]. In this situation, according to the initial definition of shared control [START_REF] Thomas | Human and computer control of undersea teleoperators[END_REF], the human and the autonomous system work on the same task at the same time. The result of the control is a weighting between the controls of each of these entities, this weighting is based on an arbitration principle defining a form of negotiation between human and the autonomous system.
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However, this arbitration cannot depend solely on the command at the present time because:

• It is poor in information, not providing real information about the intention of each of the entities in the near future; it is therefore difficult to judge the quality of the order according to a criterion; • It is outdated at the time of its processing by the fusion system; We need to know for each entity its intentions on a short time horizon (a few seconds). For the autonomous system we can ask its intentions, it is however more difficult to ask to the human its intentions. But we can predict them from the previous information (previous vehicle dynamic states and sensors data). The objective of this paper is to implement a method for predicting human behavior on the ego-vehicle by exploiting different types of data with a deep learning model based on an LSTM architecture. These data can be raw data or not, the idea is to build a single model able to process these different data. Moreover, this model is exploited to illustrate the importance of data according to the situation encountered by the car.

The article is structured as follows, the section II introduces related works, the section III explains the methodology of our work defining the data and the model used, the section IV shows the validation process and results then the section V discusses these results. Then, in this section, by revisiting previous works in a survey like description, we formally define driver intentions, the goal of the principal human prediction models.

II. RELATED WORKS

The prediction of the human driver is a task that seems feasible, because driving is constrained by the geometry of the road, the rules of the road but also by the intentions of other drivers, and the driver's controls can also indicate his intentions, for example, if a driver activates his right turn signal, it is very likely that he will make a right turn in a short period of time.

A. Driver Intentions Definitions

Driving intentions can be translated by a succession of maneuvers, trajectories or more generally by states of the vehicle. The article [START_REF] Mozaffari | Deep Learning-Based Vehicle Behavior Prediction for Autonomous Driving Applications: A Review[END_REF] proposes a generic formulation about driving intentions for the vehicle.

S = {s t , s t+1 , ..., s t+m } (1) 
Where s t is the state (velocity or position) at time step t.

The literature focuses on two types of predictions the behavior of the cars around the driven car [START_REF] Mozaffari | Deep Learning-Based Vehicle Behavior Prediction for Autonomous Driving Applications: A Review[END_REF], and directly the driven car [START_REF] Yeon | EGO-VEHICLE SPEED PREDICTION USING A LONG SHORT-TERM MEMORY BASED RECURRENT NEURAL NETWORK[END_REF].

B. Driver Prediction Target

Driving prediction studies focus on predicting the behavior of cars around the ego-vehicle [START_REF] Xin | Intention-aware long horizon trajectory prediction of surrounding vehicles using dual lstm networks[END_REF] [START_REF] Seong Hyeon Park | Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-decoder architecture[END_REF]. The driving of a vehicle depends on the infrastructure of the road, the rules of the road but also the behavior of other vehicles, for this reason the prediction of behaviors is important and allows taking into account the intentions of the vehicles around in the command generated by the autonomous system. In this case, the prediction is based on extrinsic vehicle data.

Other studies focus their research on the prediction of the ego-vehicle [START_REF] Yeon | EGO-VEHICLE SPEED PREDICTION USING A LONG SHORT-TERM MEMORY BASED RECURRENT NEURAL NETWORK[END_REF] [START_REF] Lian | A mixed logical dynamical-model predictive control (mld-mpc) energy management control strategy for plug-in hybrid electric vehicles (phevs)[END_REF]. In this case, the prediction uses the extrinsic data of the car but also the intrinsic data (e.g. used controls, dynamic state of the vehicle). The prediction of human driving can be used for ecological reasons, in fact to predict the behavior of the car that is driven in order to anticipate the future speeds of it and thus adopt the best strategy on the change of speed by saving fuel consumption. [START_REF] Lian | A mixed logical dynamical-model predictive control (mld-mpc) energy management control strategy for plug-in hybrid electric vehicles (phevs)[END_REF]. Moreover, prediction can also be used, in our case study, to make shared control [START_REF] Shriram C Jugade | Sensor based prediction of human driving decisions using feed forward neural networks for intelligent vehicles[END_REF]. With this prediction, the system performing the command fusion between the autonomous system and the driver can interpret the driver's choices and act accordingly.

C. Models And Data Used In Human Behavior Prediction 1) Models: a) Parametric and Non-parametric: The human driver predictions models are divided into two categories parametric models and non-parametric models. The parametric model regroups physic models [START_REF] Lefèvre | A survey on motion prediction and risk assessment for intelligent vehicles[END_REF]. These models are based on theoretical concepts. These models have the particularity of being fast in execution, but are nevertheless too rigid models that are not able to adapt to a set of diverse and complex situations.

The non-parametric models regroups models based on data. Due to the complexity of the problem and the very rapid development of deep learning in recent years, research on the prediction of human driving has been strongly oriented towards the use of neural networks [START_REF] Lefèvre | A survey on motion prediction and risk assessment for intelligent vehicles[END_REF]. Thus, the model, unlike parametric-model based solutions, is able to make a complex representation of the data and finding relationships, it is however important to note that in this case the model may be biased by its learning [START_REF] Grigorescu | A survey of deep learning techniques for autonomous driving[END_REF].

Because of its temporality, the prediction of driver intentions could be modeled by a recurrent neural network [START_REF] Altché | An lstm network for highway trajectory prediction[END_REF]. Thus, the model does not only depend on current data but also on previous data and is able to establish relationships between these data. Avoiding the problems associated with vanishing/exploding gradient learning [START_REF] Grosse | Lecture 15: Exploding and vanishing gradients[END_REF], recurrent networks are replaced by LSTM cells [START_REF] Hochreiter | Long short-term memory[END_REF].

b) Classification and Regression: The prediction of human driving can be expressed in several forms, the next manoeuvre that the driver will perform ( [START_REF] Zyner | Long short term memory for driver intent prediction[END_REF], [START_REF] Phillips | Generalizable intention prediction of human drivers at intersections[END_REF]) or the state of the vehicle in the near future ( [START_REF] Zhao | Multi-agent tensor fusion for contextual trajectory prediction[END_REF], [START_REF] Dai | Modeling vehicle interactions via modified lstm models for trajectory prediction[END_REF]). Depending on the nature of the prediction, the model must be adapted, the prediction of the maneuvers is usually based on classification, in this case the model is able to classify among a fixed number of maneuvers that the driver will perform. In the case of vehicle state prediction, the model estimates a sequence of states (position or speed); thus, the model must performs a regression and gets as close as possible to the numerical values (defining the vehicle state).

Some models [START_REF] Lee | Desire: Distant future prediction in dynamic scenes with interacting agents[END_REF] combine the two types of prediction by giving for each manoeuvre a sequence of possible states of the car.

2) Data: a) Data exploitable for the prediction: The prediction of driving behavior depends on several factors:

• state of the environment (e.g. obstacles, road topology, driving of other cars); • state of the car (e.g. speed, current acceleration);

• state of the controls (e.g. turn signal, steering wheel angle); • driver status and profile (e.g. driver fatigue); b) Raw and semantic data: Information can more or less reflect semantic information. A semantic data allows to provide a richer and more interpretable information (more meaningful on what it describes) as opposed a raw data is less interpretable without an extraction process. Raw data provide complete information but requires more processing load from the model, which usually has an impact on the execution time. 

D. Contributions

Most publications use high-level information in their model by adding a preprocessing phase to extract richer information. For example, the paper [START_REF] Yeon | EGO-VEHICLE SPEED PREDICTION USING A LONG SHORT-TERM MEMORY BASED RECURRENT NEURAL NETWORK[END_REF] does not use radar data directly, but extracts the position and speed of the vehicle in front. In the proposed approach, a network is created with multi-inputs models that can combine raw data with higher level data and to directly train the whole model without under-training. The paper [START_REF] Deo | Convolutional social pooling for vehicle trajectory prediction[END_REF] does not exploit directly raw data but a grid map representation. In addition, this architecture is also used to analyze the dependency of the model on different types of data depending on the situation.

III. METHODOLOGY

A. Our Problem Definition

The human driver prediction is exploited in order to predict the futur vehicle states or the futur manoeuvres of the vehicle. In our situation, the model has to predict the futur velocities (linear and angular) of the vehicle on a short time horizon because we want to do shared driving on local navigation, especially on lane tracking, in this context it is more important to know the future velocities.

Our problem can be defined as:

H Θ (X t , X t-1 , X t-2 , ..., X t-n ) = (y t+1 , y t+2 , ..., y t+m ) =     (v t+1 , w t+1 ) (v t+2 , w t+2 ) ..., (v t+m , w t+m )     T (2)
Where H Θ represents the RNN system with Θ parameters, v t+1 linear velocity, w t+1 angular velocity at the time t + 1 and (X t , X t-1 , X t-2 , ..., X t-n ) represents the sequential input used in the learning phase of the model. The horizon time of the prediction is 5 seconds. This value was chosen based on previous studies [START_REF] Mozaffari | Deep Learning-Based Vehicle Behavior Prediction for Autonomous Driving Applications: A Review[END_REF] showing that the prediction error was significant beyond 5 seconds, and in the context of local driving behavior, a prediction of 5 seconds seems to be sufficient.

B. Data

The data used to train the model was acquired by a vehicle equipped with sensors. We were able to create a dataset of part of the city Compiègne in France.

1) Vehicle Acquisition: We have a vehicle with onboard sensors to collect data, the following Table I, gives information about these sensors.

2) Roadmap And Data Acquisition: A road map was established upstream to ensure the diversity of the dataset. The dataset was built with the following characteristics:

• Lanes: 1 and 2;

• Curved and straight curve; 3) Data Processing: All data are normalized to avoid scale influence and to improve the convergence of the model. Each of these data is normalized by the min-max rescaling normalization method. In addition to normalization, some of these data are pre-processed before they are submitted to the model.

a) Rolling Data: The acquisition of temporal sensor data, such as speed, acceleration, and steering wheel angle, adds noise to data. In order to prevent sensitivity to acquisition noise, we applied a centered moving average [START_REF] Altche | An LSTM network for highway trajectory prediction[END_REF].

b) Map Generation: The position of the vehicle is accurate to the centimeter, we can use the information from a detailed map (such as lane positions, markers positions). By combining this information, we can generate an image with the geometry of the road around the vehicle. The image is built by projecting this information on a map, for this we created a virtual camera placed above the car, and we project the map information in the image frame. Representing the edges of the road, the lanes and the information on the ground. The figure 1 shows an example of generated map. c) LiDAR Data Reduction: Per acquisition, the LiDAR gives us about 130000 points, it is not possible to exploit these points cloud directly into the learning system. The LiDAR points cloud data are projected into a 2-dimensional space by filtering out some points considered too high or too low and points behind the vehicle are also filtered. Then we average these points to reduce the final number of points.

C. The RNN LSTM Learning Model Structure

The proposed prediction model takes into account different inputs, different modalities of data, as shown in previous section III-B. The global architecture is schematized in figure 2, showing the input and output models, are listed as follows:

1) Input Models: We set up a model for each type of input that will pre-process this data, by developing a Tensorflowbased framework. For each prediction, we submit 50 previous data per input model (= 5s of data). Depending on the nature of the input data, we can take two different approaches:

a) Raw Data: The raw data cannot be injected directly into the final model because it represents too much information of little significance, which would risk drowning the other more significant data. We decided to process on the data upstream, in order to compress the information as much as possible. This compression is based on an encoding model, like those found in auto-encoder models [START_REF] Meng | Relational autoencoder for feature extraction[END_REF], the final model is given the encoded data of the encoding part. Among the list of data that we exploit (Section III-B.2), we have to encode data from the map image and from the LiDAR. Data from the map image are encoded by a VGG16 model [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] (convolution2D/pool2D layers then fully connected to dense layers) and the LiDAR is encoded by a similar model but in 1 dimension. Note that for the map, we use a single data and not a time series, as we consider that only the last data is needed for the model to predict the future behavior of the car. Therefore, we repeat the encoded vector so that the output can be adapted to other models.

b) High Data: The data does not need to be transformed and can be exploited directly. In the case a model upstream is not required, but it is used, in order to augment the input vector to balance it with the other outputs of the input models. We do not use the GPS data directly as model input, but it was used to build the road map.

2) Output Model: All the outputs of the input models are concatenated into a single time vector tensor. This vector is then submitted to a recurrent model composed of 2 LSTM layers (100 units) fully connected to 3 dense layers (1000, 200 and 100 units respectively). The output is reshaped into a vector of 50 velocities couples (v t , w t ), the delta time between 2 couples is 100 ms, then the total time of the prediction is 5 seconds.

IV. METHODOLOGY VALIDATION

A. Dataset Test

The test dataset was constructed to test several situations to best assess the fit of the proposed model to the situation. The table II shows information about these tests.

B. Metrics

We used different metrics (errors and accuracies) to evaluate the quality of our model. We computed the different metrics on the first N predictions, this way we can evaluate the quality of the prediction on several horizon times (1,2,3 and 5 seconds).

• Mean Squared Error (limit to N first time predictions):

M SE N = 1 N N i=1 (Y i -Ŷi ) (3) 
• Root Mean Absolute Error on index j (v index or w index):

RM SE j N = 1 N N i=1 |Y (i,j) -Ŷ(i,j) | (4) 
• R 2 on index j (v index or w index):

(R 2 ) j N = 1 - N i=1 (Y (i,j) -Ŷ(i,j) ) N i=1 (Y (i,j) -Ȳ(i,j) ) (5) 
• distance (limit to N predictions):

d = ||pos N (Y N ) -pos N ( ŶN )|| 2 (6)
Where pos i is the relative position of the vehicle after applied i first velocities. The position is estimated from velocities (in considering the d t interval time between each velocity couple). Let k the size of the batch tested and metric N the metric tested depending on N, then the final metric is the average on this batch:

metric N,batch = 1 k k i=1 metric N (H Θ (batch[i])) (7) 
C. Results

1) Model Validation:

The model was tested on the dataset test, the Figure 3 shows an example of the model prediction realized on the test "roundabout".

The following Tables III and IV shows metrics (defined in section IV-B) results per test perform by the model. We averaged each metric over several N first elements showing the quality of our model over different horizon times, and thus we can see the evolution of the prediction.

2) Sensitivity Of The Model To Data: In addition to evaluating the quality of our model, we can examine the sensitivity of our model to the data. To do this, we have tests in which we hide the information of some data by placing them in a neutral state. The idea is to interpret in which situation the model exploits these data. The following table V shows the neutral data corresponding for each data tested. The tables VI and VII shows the result metrics (for N = 50) for each test defined in section IV-A.

V. DISCUSSION

A. Test Results Analyze

The results of the tests allow us to conclude that the model is able to predict on a very close time horizon the human driver intentions based on data intrinsic of the vehicle (sensors and vehicle information). The average error on the linear velocity is less than 3 km/h in all the different tests and for a horizon time of 5 seconds. In a general way (excluding roundabout test) we can make a remark that this prediction degrades according to the duration of the horizon, more the duration of the horizon is important more the quality of the prediction will be impacted. Indeed, the angular velocity prediction error is 2x larger at 2 seconds than at 1 second, while the linear velocity prediction error has only increased by 20/25%. The error on the angular velocity prediction increases faster than the error on the linear velocity. The model is quite capable of making predictions in situations with roundabouts, the "roundabout" test shows that the model makes good predictions (linear and angular) without degrading over time.

The quality of the angular prediction on the fast lane (2 lanes) is very poor, this can be explained by a variation of the angular velocity which is very low and that our model is not able to have this accuracy.

The R2 scores confirm the analysis and show us that the quality of the angular velocity prediction deteriorates rapidly compared to the linear velocity prediction. We notice that the R2 for angular velocity in the city test decreases rapidly with time, this reflects that the quality of prediction deteriorates rapidly with time.

B. Sensitive Data Analyze

The second study allows us to interpret the sensitivity of the model to the type of data according to the tests. From results (tables VI and VII), we can notice that the model needs to know the map data to improve the angular velocity prediction, especially in urban areas. This means that the model has inferred the road geometry in the angular velocity prediction. The control state data of car flashlight and steering wheel angle are important for linear and angular velocity prediction. Its absence induces a prediction error on the linear velocity of at least 2 times larger than the reference prediction. In contrast, we find that the absence of LiDAR data does not create any perturbation on the model prediction.

VI. CONCLUSION

In order to predict human behavior, we built a recurrent model (LSTM) able to predict the intentions of human, described by the futur velocities (linear and angular) of the vehicle. The architecture in multi-inputs model allowing the inclusion of different types of data.

The results show us that the model has successfully interpreted these data and is able to predict human behavior. In addition, the model allowed us to interpret how the model interprets the data and to understand in what situation the model uses these data, and understand the data important to make this prediction.

In the future work, we want to build a similar model capable of predicting less predictable and more dangerous behaviors, we plan to include simulated data to add dangerous driving data. 
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 3 Fig. 3: Predictions realized by our model on the test "roundabout".

TABLE I :

 I Sensors information.

	sensor	frequency	additional information
	LiDAR	10 Hz	40 layers 130 000 points per acquisition
	camera	10 Hz	1280*720 resolution
	GPS	50 Hz	cm precision
	BUS-CAN reader	100 Hz	

•

  Speed limit: 30, 50, 70 and 90 km/h; • With/without roundabouts; • With/without intersections; We save the following data: The recorded data are saved at 10 Hz. The training dataset is composed of about 32000 acquisitions regrouping what represents 3200 seconds of acquisitions.

	• Environment:
	-LiDAR [points cloud];
	-Front camera [image];
	• Vehicle dynamic state:
	-Velocity linear [m/s] ;
	-Velocity angular [rad/s] ;
	-Acceleration linear [m.s -2 ] ;
	-Acceleration angular [rad.s -2 ]
	-GPS positions [latitude and longitude];

• Vehicle controls state:

-Steering wheel angle [rad]; -Flashlight states [state value];

TABLE II :

 II Tests information.

	test name	n roundabouts	n intersections	speed limit	distance	time record	n lanes
	roundabout	6	1	70 km/h	4 km	378 s	2
	city	4	7	50 km/h	4 km	519 s	1
	speed (1 lane)	2	0	70 km/h	2 km	116 s	1
	speed (2 lanes)	0	0	90 km/h	2 km	84 s	2

(a) Velocity linear prediction. (b) Velocity angular prediction.

TABLE III :

 III Average result of error metrics (of N first elements predicted) per test, the percentage represents the difference with the error for N = 10.

	metric	N first elements	roundabout	test name city	speed (1 lane)	speed (2 lanes)
		10 (=1s)	0,000145	0%	0,000226	0%	0,000376	0%	5,40E-05	0%
	MSE	20 (=2s) 30 (=3s)	0,00024 0,000367	+66% +153%	0,000514 0,001001	+127% +343%	0,000742 0,000898	+97% +139%	5,90E-05 7,10E-05	+9% +31%
		50 (=5s)	0,000907	+526%	0,002734	+1110%	0,001284	+241%	0,000138	+156%
		10 (=1s)	0,579851	0%	0,881858	0%	0,945485	0%	0,937452	0%
	RMSE v (km/h)	20 (=2s) 30 (=3s)	0,694269 0,907557	+20% +57%	1,055049 1,403347	+20% +59%	1,169119 1,580911	+24% +67%	1,15546 1,552372	+23% +66%
		50 (=5s)	1,680842	+190%	2,69627	+206%	2,972805	+214%	2,893665	+209%
		10 (=1s)	0,013256	0%	0,012517	0%	0,014425	0%	0,014175	0%
	RSME w (rad/s)	20 (=2s) 30 (=3s)	0,015753 0,018597	+19% +40%	0,017539 0,022506	+40% +80%	0,021773 0,028685	+51% +99%	0,021419 0,027998	+51% +98%
		50 (=5s)	0,029727	+124%	0,03423	+173%	0,04324	+200%	0,041808	+195%
		10 (=1s)	0,154637	0%	0,208928	0%	0,246685	0%	0,187872	0%
	distance (m)	20 (=2s) 30 (=3s)	0,404201 0,812952	+161% +426%	0,538614 1,200391	+158% +475%	0,694432 1,400716	+182% +468%	0,408118 0,638761	+117% +240%
		50 (=5s)	2,813853	+1720%	3,949019	+1790%	3,672162	+1389%	1,431308	+662%

TABLE IV :

 IV Average result of accuracy metrics (of N first elements predicted) per test, the percentage represents the difference with the error for N = 10.

	metric	N first elements	roundabout	city	test name speed (1 lane)	speed (2 lanes)
		10 (=1s)	0,998685	0%	0,995846	0%	0,996815	0%	0,975354	0%
	R2 v	20 (=2s) 30 (=3s)	0,998151 0,996847	-0% -0%	0,993452 0,98746	-0% -1%	0,995105 0,992759	-0% -0%	0,972998 0,967615	-0% -1%
		50 (=5s)	0,987465	-1%	0,954953	-4%	0,984349	-1%	0,940597	-4%
		10 (=1s)	0,986572	0%	0,969484	0%	0,950148	0%	0,367955	0%
	R2 w	20 (=2s) 30 (=3s)	0,974036 0,959301	-1% -3%	0,921467 0,844294	-5% -13%	0,875317 0,805404	-8% -15%	0,398099 0,366389	+8% -0%
		50 (=5s)	0,921706	-7%	0,593164	-39%	0,723784	-24%	0,061333	-83%

TABLE V :

 V Neutral data corresponding.

	data	neutral data
	map image	zeros vector (= black image, map missing)
	scan	ones vector (= no obstacle)
	control state	zeros vector (= flashlight never on and steering wheel angle fixed to middle position)

TABLE VI :

 VI Average RMSE error results with neutral data injection, the percentage represents the difference with the reference data.

		rounabout		city		speed (1 lane)	speed (2 lanes)
		RMSE v	RMSE w	RMSE v	RMSE w	RMSE v	RMSE w	RMSE v	RMSE w
	reference	1.680842	0.029727	2.69627	0.03423	2.972805	0.04324	2.893665	0.041808
	neutral map	62%	102%	23%	108%	14%	76%	14%	76%
	neutral scan	26%	4%	20%	4%	14%	1%	14%	1%
	neutral state	237%	62%	132%	46%	109%	31%	112%	31%

TABLE VII :

 VII Average R2 score results with neutral data injection, the percentage represents the difference with the reference data.

		rounabout		city		speed (1 lane)	speed (2 lanes)
		R2 v	R2 w	R2 v	R2 w	R2 v	R2 w	R2 v	R2 w
	reference	0,987465	0,921706	0,954953	0,593164	0,984349	0,723784	0,940597	0,061333
	neutral map	-1%	-33%	-1%	-127%	0%	-20%	-8%	-4738%
	neutral scan	-1%	-1%	-1%	0%	0%	1%	-2%	-545%
	neutral state	-8%	-12%	-12%	-40%	-7%	-13%	-68%	-3226%