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By combining molecular statics simulations and continuum mechanics-based modeling, we show in this paper
that the torsion of a 〈001〉 single-crystal copper nanowire with a circular cross section gives rise to a warp, i.e., to a
displacement field along the wire axis that renders the cross section nonplanar. This behavior, which is in apparent
contradiction with what is predicted by continuum mechanics for an isotropic cylinder, can be well explained if
we take into account the elastic response of the wire lateral surface. The latter is characterized by the anisotropy
of the surface elastic constants and, more specifically in the case of torsion, by the surface shear constant CS

44

whose strength as a function of the local orientation of the lateral surface is estimated independently from
atomistic calculations on slabs presenting different vicinal surfaces. The solution of the torsion problem is then
obtained by adopting a semi-inverse method in the framework of the finite strain theory in linear elasticity with
Gurtin-Murdoch boundary conditions linking surface stress and bulk stress. It is shown that such an approach is
well suited to explain quantitatively the warp obtained in our atomistic simulations and to prove the preponderant
role played by the surface elastic constant CS

44.

DOI: 10.1103/PhysRevB.107.094110

I. INTRODUCTION

The issue of the mechanical behavior of a nanowire has
led to numerous research works [1,2], both experimental and
theoretical, where the atomistic simulations have also played
a key role in the understanding of the phenomena [3,4]. A
nanowire differs from a macroscopic wire by two main char-
acteristics that could be summarized as follows. (i) First, it
is a cylindrical nano-object made usually of a single crystal.
Consequently, one can expect anisotropic mechanical behav-
iors for metal nanowires depending on the crystallographic
orientation of the wire. (ii) Second, it is an object which has
a large surface area to volume ratio in number of atoms. This
great proximity of the lateral surface also affects the nanowire
mechanics. Close to the surface, the elastic response is very
different from that of the volume. And regarding the plasticity,
the surface is also the place where dislocations can nucleate or
conversely escape the wire.

In single-crystal nanowires plasticity mechanisms depend
on the orientation of the wires. This has been clearly shown
in the molecular dynamics work of Weinberger and Cai where
the plastic response of single-crystal metal nanowires subject
to uniaxial loading, torsion, or bending have been studied
extensively [5]. A particularly interesting case discussed by
these authors is that of Au 〈110〉 nanowire subjected to tor-
sion. Under strong torsion, partial dislocations parallel to the
nanowire axis are nucleated. However, these partials remain
unstable in the absence of the applied torque. This leads
the authors to invoke a pseudoelastic behavior for Au 〈110〉
nanowire since when it is unloaded, the partials escape the
wire and the twist angle returns to zero [5].

Another feature of nanowires is that the stability of the
crystal defects is modified by the proximity of the lateral
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surfaces. Let us take the example of a screw dislocation lying
at the center of a macroscopic wire of circular cross section.
The Eshelby solution predicts that its stability is independent
of the wire radius [6]. This is no longer true in a nanowire
because the size of the core of the screw dislocation, which
dissociates into two partials in many metals, is no longer
negligible compared to the diameter of the nanowire. This
leads to a lowering of the Eshelby barrier when the radius of
the nanowire decreases and thus to a decrease of the stability
of the dislocation [7].

Surface stress and surface elastic constants can also play a
role on the effective elastic moduli of nanowires as recently
discussed by Elsner et al. [8]. More specifically, in the case of
the torsion of nanowire, these authors show that the torsional
rigidity depends also on the surface shear elastic constant
(we will denote CS

44). According to this theoretical study, the
relative change in effective stiffness due to the surface elastic
constant CS

44 will be more and more pronounced for small
diameter nanowires. However, in this analysis proposed by
Elsner et al. [8], an important physical aspect which is present
for any nanowire was not addressed: the fact that the surface
shear constant CS

44 (denoted by C44 in Ref. [8]) varies in-
evitably with the azimuth �, i.e., with the local orientation of
the lateral surface. On the one hand, this anisotropic property
of the surface does not really change the expression of the
torsional stiffness since ultimately only an estimate of the
average value of CS

44 over the entire lateral surface of the wire
can be used. But, on the other hand, we will show in this
work that this anisotropic property of the surface should not
be neglected if one wishes to describe the deformation state of
a nanowire under torsion.

The purpose of this study is therefore to show how the
anisotropy of the surface elastic constant CS

44 produces a de-
formation field in the nanowire under torsion. We will see
that the bulk stress induced by the surface stress leads to a
warping of the nanowire under torsion, i.e., the fact that the
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FIG. 1. Illustration of the torsion problem addressed in this work.
A copper 〈001〉 nanowire of circular cross section is subjected to a
twisting moment at its ends. The torsion gives rise to a displacement
of the atomic columns along the wire axis (represented by the color
scale) and therefore to a warping of the nanowire. In the undeformed
wire (on the left), an atom found at the position (R,�, Z) in cylindri-
cal coordinates occupies the position (r, θ, z) in the twisted wire (on
the right).

cross section does not remain plane under torsion as illustrated
in Fig. 1. The warp induced by torsion is often encountered in
mechanics [9]. These nonuniform out-of-plane displacements
will appear for instance if the cross section is not circular
and/or if the bulk shear modulus in the plane of the cross
section is anisotropic. We will show in this work that surface
elasticity is also the cause of a warp. To explore this behavior,
we consider the torsion of a single-crystal 〈001〉 copper wire
of circular cross section for which warping in principle does
not occur.

The demonstration of this warping will be done both nu-
merically by molecular statics simulations and analytically by
solving the torsion problem. The second approach requires
to apply the so-called generalized Young-Laplace conditions
[10] which link at the surface the components of the surface
stress tensor to some components of the bulk stress tensor.
These relations of local equilibrium established by Gurtin
and Murdoch [11] are detailed in Sec. II A as well as the
mathematical modeling of the torsion we are proposing in
the framework of the finite strain theory and linear elasticity.
Finite strain theory is necessary to address the large rotations
observed along the wire under torsion while linear elasticity
is sufficient to describe the small deformations studied in this
work [12]. In Sec. III, we present some important aspects of
the atomistic calculations performed using the SMA (tight
binding second moment approximation) potential [13,14]. We
describe in particular how atomic strain and stress tensors
can be calculated. We also detail how are determined the
relevant physical quantities involved in the continuum model,
namely, the bulk elastic constants and the surface excess elas-
tic parameters. For the latter, additional atomistic calculations
on deformed slabs with vicinal surfaces were performed to

evaluate the anisotropy of the surface elastic constants. Fi-
nally, in Sec. IV, evidences of the warping in nanowires under
torsion are given from our atomistic simulations. We show that
this displacement field observed in the simulations is in very
good agreement with the explicit solution obtained from our
continuum mechanics-based modeling where the anisotropy
of the elastic surface shear constant CS

44 is taken into account.

II. CONTINUUM MODEL

A. Torsion of a circular cylinder of Cu

In this section we present our continuum model based on
finite strain theory and linear elasticity. By adopting a semi-
inverse approach, we first propose a model deformation map
which reproduces the torsion and is likely to generate a warp.
From this map, we derive the bulk and surface strain tensors.
Then the equilibrium equations are established in terms of the
first Piola-Kirchhoff stress tensor (PK1) in the volume and at
the surface according to the theory of Gurtin and Murdoch.
Finally, the stress-strain relations are detailed to obtain the
PK1 stress involved in the equilibrium equations.

The problem of concern here is that of a very long solid
circular cylinder of radius R0 composed of crystalline face-
centered-cubic (fcc) copper subjected to a twisting moment at
its ends. The main axis of the wire is oriented along a 〈001〉
direction. The undeformed configuration is chosen to be the
state where all atoms occupy initially the bulk crystal lattice.
The current configuration is then the result of two successive
deformations. First, the free wire is relaxed to its equilibrium
state without torsion. The surface atoms being in tension in
metals, the relaxation is a contraction of the wire along its long
dimension with a radial deformation. Then, the relaxed wire is
subjected to a twisting moment at its ends. To model these two
successive deformations, one has to describe the deformation
map ϕ as

x = ϕ(X) (1)

which relates the position vectors X of the atoms in the ref-
erence (undeformed) configuration to their position vectors x
in the current configuration. On using cylindrical coordinates
(R,�, Z) in the undeformed configuration and (r, θ, z) in the
current configuration, we may model the current configuration
as follows:

r = (1 + u0)R, θ = �+ αZ, z = αR0g(R,�) + (1 + w0)Z

(2)

or using a matrix representation⎛
⎝r

θ

z

⎞
⎠ =

⎛
⎝ 1 + u0 0 0

0 1 α

αR0g/R 0 1 + w0

⎞
⎠

⎛
⎝R

�

Z

⎞
⎠, (3)

where α denotes the twist per unit undeformed length, R0 is
the radius of the wire, u0 and w0 set the relaxed state before
torsion, and uw

Z = αR0g(R,�) is the warp displacement field
to be determined. Its form proportional to α is similar to the
one generally encountered if the wire direction is anisotropic
(e.g., [011] for Cu) or if the cross section is noncircular [15].
We will show in this work that our model in Eq. (2) is well
suited to explain the warp induced by the surface excess
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elasticity. It is worth noting, however, that this model can-
not describe the radial deformation and the change in length
of the wire caused by the torsion. To be reproduced, these
nonlinear effects (called Poynting effects) require additional
(αR0)2 terms in Eq. (2) which are not considered in this work
[16]. Besides, even without torsion for α = 0, it is assumed
in our model that the radial deformation (described only by
u0) at equilibrium is constant. This is clearly a simplified
description of the in-plane displacement fields which has to be
refined, for instance, by considering and extending the recent
work of Wang et al. [17] which establishes for isotropic solid
cylinders (our case is anisotropic), some analytic expressions
of the in-plane displacements in terms of series expansions.
In this work, however, since the warp we wish to explain is
not correlated to these in-plane displacements, the simplified
description of these latter in terms of u0 will be kept for clarity.

To relate an infinitesimal line element dX in the un-
deformed configuration to its spatial counterpart dx in the
current configuration, one defines the deformation gradient
tensor field F such as

dx = FdX, (4)

where F = Gradϕ. For the mapping considered in Eq. (2), the
resulting deformation gradient can be written as

F = (1 + u0)(er ⊗ eR + eθ ⊗ e� + αR eθ ⊗ eZ )

+αR0(g′
R ez ⊗ eR + g′

�/R ez ⊗ e�)

+ (1 + w0)ez ⊗ eZ , (5)

where (eR, e�, eZ ) and (er, eθ , ez) are the cylindrical basis in
the reference and deformed state, respectively. Using a matrix
representation

F =
⎛
⎝1 + u0 0 0

0 1 + u0 (1 + u0)αR
αR0g′

R αR0g′
�/R 1 + w0

⎞
⎠, (6)

where g′
R = ∂g/∂R and g′

� = ∂g/∂�.
To measure the deformation, we use the finite strain tensor

E (also called Lagrangian or Green’s strain tensor) defined as
[12,18] E = 1

2 (FT F − I) where I is the unit tensor. Consid-
ering that u0 � 1 and w0 � 1 and neglecting second-order
[including (αR0)2] terms, E can be written as

E = u0(eR ⊗ eR + e� ⊗ e�) + w0 eZ ⊗ eZ

+αR0[(R/R0 + g′
�/R)(e� ⊗ eZ + eZ ⊗ e�)

+ g′
R (eR ⊗ eZ + eZ ⊗ eR)]/2 (7)

or using a matrix representation

E =
⎛
⎝u0 0 0

0 u0 0
0 0 w0

⎞
⎠

+ αR0

2

⎛
⎝ 0 0 g′

R
0 0 R/R0 + g′

�/R
g′

R R/R0 + g′
�/R 0

⎞
⎠. (8)

To account for the difference in elastic behavior on the
surface and inside the bulk we employ the Gurtin-Murdoch
theory [11]. In this framework, one can define a surface de-
formation gradient, denoted FS , which relates an infinitesimal

line element dX tangent to the undeformed surface S0 to its
spatial counterpart dx tangent to the current surface via the
relation dx = FSdX.

Defining the surface deformation map ϕS as equal to ϕ(X ∈
S0) in Eq. (1), FS is determined from FS = GradSϕS where
GradS{·} = Grad{·}.IS and where IS = I − eR ⊗ eR denotes
the surface unit tensor at any point of the lateral surface
of the initial circular cylinder [19]. In practice, the matrix
representation of FS can therefore be obtained directly from
F in Eq. (6) by canceling the three components of the first
column and by replacing R by R0 in the six other components
which in the general case can be different from zero. In the
present case, we have

FS =
⎛
⎝0 0 0

0 1 + u0 (1 + u0)αR0

0 αg′
�(R0) 1 + w0

⎞
⎠. (9)

Finally for a circular nanowire, the symmetrical strain ES

on the surface is described by three independent components
only. ES can be obtained either from the expression of FS in
Eq. (9) using the definition ES = 1

2 (FST FS − IS) or equiva-
lently from E in Eq. (8) using the derived relation ES = ISEIS

which leads in our case to

ES = u0 e� ⊗ e� + w0 eZ ⊗ eZ

+αR0[1 + g′
�(R0)/R0]

× (e� ⊗ eZ + eZ ⊗ e�)/2, (10)

where g′
�(R0) is evaluated at R = R0. Using a matrix repre-

sentation, we have

ES =
(

u0 0
0 w0

)
+ αR0

2

(
0 1 + g′

�(R0)/R0

1 + g′
�(R0)/R0 0

)
.

(11)

Let us now introduce the so-called Piola-Kirchhoff stress
tensors which appear in the material (Lagrangian) descrip-
tion. Assuming that the bulk strain energy ψ (E) per unit
undeformed volume and the surface strain energy ψS (ES ) per
unit undeformed area are known, the second Piola-Kirchhoff
stress tensors are defined as S = dψ/dE in the bulk and
SS = dψS/dES at the surface.

Moreover, the first Piola-Kirchhoff stress tensor P which
will be used to formulate the equilibrium conditions is de-
duced in the bulk from the product P = FS. Similarly at the
surface, this stress tensor becomes PS = FSSS .

Finally, to recover the usual Cauchy stress tensor σ which
is adequate in the spatial (Eulerian) description, the relation
σ = J−1FSFT can be used with J = det(F) being the deter-
minant of F.

In absence of body force, the equilibrium condition for-
mulated with the first Piola-Kirchhoff stress tensor P reads as
[12,18]

DivP = ∂P
∂R

eR + 1

R

∂P
∂�

e� + ∂P
∂Z

eZ = 0, (12)

where Div is the divergence operator in cylindrical coordi-
nates. The two-point tensor P can be written in terms of its

094110-3



JEAN-MARC ROUSSEL AND MARC GAILHANOU PHYSICAL REVIEW B 107, 094110 (2023)

components as

P = PrRer ⊗ eR + Pr�er ⊗ e� + PrZ er ⊗ eZ

+ PθReθ ⊗ eR + Pθ�eθ ⊗ e� + PθZ eθ ⊗ eZ

+ PzRez ⊗ eR + Pz�ez ⊗ e� + PzZ ez ⊗ eZ . (13)

Equation (12) yields a system of three scalar equations involv-
ing these nine components as follows [20]:

∂PrR

∂R
+ 1

R

∂Pr�

∂�
+ PrR

R
− Pθ�

R

∂θ

∂�
+ ∂PrZ

∂Z

− PθR
∂θ

∂R
− PθZ

∂θ

∂Z
= 0,

∂PθR

∂R
+ 1

R

∂Pθ�

∂�
+ PθR

R
+ Pr�

R

∂θ

∂�
+ ∂PθZ

∂Z

+ PrR
∂θ

∂R
+ PrZ

∂θ

∂Z
= 0,

∂PzR

∂R
+ 1

R

∂Pz�

∂�
+ PzR

R
+ ∂PzZ

∂Z
= 0. (14)

At the lateral surface of the circular nanowire, the lo-
cal equilibrium in absence of external load obeys the
Gurtin-Murdoch condition [11,21] (also called generalized
Young-Laplace conditions [10])

PeR − DivSPS = 0. (15)

Here, DivSPS is the surface divergence of the superficial ten-
sor field PS (for details on differential geometry of surfaces,
see for instance Steinmann et al. [22] and the references
therein). It is defined as DivSPS = ∂PS

∂α1 s1 + ∂PS

∂α2 s2 where α1, α2

are the surface coordinates and s1, s2 are the contravariant
basis vectors in the tangent plane of S0 [20]. Since in our case,
S0 is the surface of the undeformed cylinder, we simply have
α1 = �, α2 = Z , s1 = e�/R0, and s2 = eZ leading to

DivSPS = 1

R0

∂PS

∂�
e� + ∂PS

∂Z
eZ . (16)

In terms of the components of P and PS , the generalized
Young-Laplace conditions can be written as

PrR

∣∣
R=R0

= 1

R0

∂PS
r�

∂�
− PS

θ�

R0

∂θ

∂�
+ ∂PS

rZ

∂Z
− PS

θZ

∂θ

∂Z
,

PθR

∣∣
R=R0

= 1

R0

∂PS
θ�

∂�
+ PS

r�

R0

∂θ

∂�
+ ∂PS

θZ

∂Z
+ PS

rZ

∂θ

∂Z
,

PzR

∣∣
R=R0

= 1

R0

∂PS
z�

∂�
+ ∂PS

zZ

∂Z
. (17)

Finally, to account for the fact that the nanowire is very
long and free to relax along its main axis (no end effects), the
integral equilibrium condition on a cross section S of normal
vector eZ and its circular boundary ∂S reads as (far from the
wire extremities)∫∫

S
PzZ dA +

∫
∂S

PS
zZ dL = 0, (18)

where dA is the area element on S and dL the line element on
∂S in the material configuration. The interpretation of Eq. (18)
is simple: consider the two parts of the wire separated by the
cross section S, the net force normal to S exerted by one part
on the other is null at equilibrium as illustrated in Fig. 10 of
the Appendix.

To demonstrate the presence of a warp induced by surface
elasticity, we will show that it is not necessary to invoke
nonlinear phenomena due to large strain. Indeed, the warp
may be observed in conditions of low strain; however, since
the nanowire is subjected to torsion, large rotations will in-
evitably appear in the nanowire. This is the reason why the
linear elasticity theory is used with a description of the strain
given by the tensors E and ES which are not affected by
large rotations. In this framework, the bulk energy density
ψ (E) depends only on the second-order elastic constants Ci j

where i and j range over the values 1, 2, . . . , 6 in the Voigt’s
convention. By accounting for the symmetry Ci j = Cji, strain
changes the six components Si of the symmetric bulk stress S
according to

Si = Ci jE j (19)

using Einstein summation convention and Brugger notation
[23] to identify the components in curvilinear coordinates:
S1 = SRR, S2 = S��, S3 = SZZ , S4 = S�Z , S5 = SRZ , S6 =
SR�, and E1 = ERR, E2 = E��, E3 = EZZ , E4 = 2E�Z , E5 =
2ERZ , E6 = 2ER�.

In a reference frame rotating with the angle � around a
〈001〉 direction, only the following constants are not null: C11,
C12, C13, C16, C22, C23, C26, C33, C44, C55, and C66. Besides,
it is worth noting that some Ci j depend on the azimuth �

as illustrated in Fig. 3. For 〈001〉 wires considered here, this
anisotropic behavior of Ci j presents a fourfold symmetry and
appears if the subscripts i and j are equal to 1, 2, or 6.
Applying the linear relation of Eq. (19) to the expression of
E given by Eq. (7), we obtain in the bulk

SRR = C11ERR + C12E�� + C13EZZ ,

S�� = C12ERR + C22E�� + C23EZZ ,

SZZ = C13ERR + C23E�� + C33EZZ ,

S�Z = 2C44E�Z ,

SRZ = 2C55ERZ ,

SR� = 0. (20)

Considering again that u0 � 1 and w0 � 1 and neglecting
(αR0)2 terms, the first Piola-Kirchhoff stress tensor P can be
written using a matrix representation as

P =
⎛
⎝ SRR 0 SRZ

0 S�� S�Z + FθZ SZZ

SRZ + FzRSRR S�Z + Fz�S�� SZZ

⎞
⎠,

(21)

where according to Eq. (5), we have FθZ = αR, FzR = αR0g′
R,

and Fz� = αR0g′
�/R.

Similarly at the surface, the linear elasticity theory allows
us to write the three components SS

��, SS
�Z , and SS

ZZ of the
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surface stress tensor SS as follows:

SS
�� = SS,0

�� + CS
22ES

�� + CS
23ES

ZZ ,

SS
ZZ = SS,0

ZZ + CS
23ES

�� + CS
33ES

ZZ ,

SS
�Z = 2CS

44ES
�Z , (22)

where SS,0
�� and SS,0

ZZ are the two surface stress components at
ES = 0 and CS

22, CS
23, CS

33, and CS
44 the four surface elastic con-

stants required to determine the linear elastic response of the
nanowire. It is worth noting that these parameters depend in
theory on the local orientation of the lateral surface of the wire
(i.e., on the azimuth �). To clarify this anisotropic property,
let us take the case of the 〈001〉 circular wire considered in
this work. For � = 0, the lateral surface resembles a {100}
surface, but for � = π/4 it is the atomic structure of the {110}
surface which is observed, and for any other value of �, the
local morphology of the surface will approach that of a vicinal
surface. Since the atomic structure and symmetry of the {100}
and the {110} surfaces are very different, one can also expect
different values of the surface elastic parameters in Eq. (22).
For instance, an immediate consequence of the change in sym-
metry is the fact that SS,0

�� and SS,0
ZZ differ for the {110} surface,

while they are equal for the {100} surface [24]. But, more
importantly in this study focused on the torsion, the surface
shear elastic constant CS

44 in Eq. (22) is a key parameter that
also varies continuously with �. This anisotropic behavior
of CS

44 (denoted by C44 in Ref. [8]) is generally not taken
into account. We will show, however, that it has interesting
implications since it is responsible of a warp in the bulk of
the wire via the Gurtin-Murdoch condition of Eq. (15). For
this purpose, we also need to write the first Piola-Kirchhoff
surface stress PS = FSSS . The form of FS in Eq. (9) implies
that PS

r� and PS
rZ are null, and the four remaining components

appear in PS as follows:

PS =
⎛
⎝0 0 0

0 SS
�� SS

�Z + F S
θZ SS

ZZ
0 SS

�Z + F S
z�SS

�� SS
ZZ

⎞
⎠, (23)

where F S
θZ = αR0 and F S

z� = αg′
�(R0).

B. Relaxed state before torsion: u0, w0

Let us first consider the free untwisted circular nanowire
whose equilibrium state is fixed by the parameters u0 and w0

introduced in Eq. (2). For α = 0, the stress P expressed in
Eq. (21) is reduced to

P =
⎛
⎝SRR 0 0

0 S�� 0
0 0 SZZ

⎞
⎠, (24)

where using the bulk elastic constants Ci j in cylindrical coor-
dinates given in Fig. 3 of Sec. III A for the 〈001〉 fcc wire and
their relations with the usual three elastic constants C0

11, C0
12,

and C0
44 defined for a cubic crystal, we have

SRR = (C11 + C12)u0 + C13w0 = (C0
11 + C0

12)u0 + C0
12w0,

S�� = (C21 + C22)u0 + C23w0 = (C0
11 + C0

12)u0 + C0
12w0,

SZZ = (C31 + C32)u0 + C33w0 = 2C0
12u0 + C0

11w0. (25)

As mentioned above, the parameter u0 in Eq. (2) is con-
sidered constant and should be seen as the first term of a
(R, �) series expansion. In this simplified case, SRR, S��,
and SZZ in Eq. (25) become also independent of R and �.
The resulting stress P in Eq. (24) is therefore solution of the
bulk equilibrium equation (12) and its components are only
determined by the conditions given in Eqs. (17) and (18).
These latter relate the bulk stress P to the surface stress PS

[Eq. (23)] as follows:

SRR|R=R0 = −SS
��

R0
,

∫ 2π

0

∫ R0

0
SZZ R dR d� + R0

∫ 2π

0
SS

ZZ d� = 0. (26)

The first relation in Eq. (26) is local and depends on �;
however, to be consistent with the fact that u0 is constant,
we will use average values of the surface excess elastic pa-
rameters which control SS

�� in Eq. (22). Thus, considering
Eqs. (22), (25), and (26), we obtain the couple (u0,w0) from
the following simple system of equations:(

C0
11 + C0

12 + CS
22

R0

)
u0 +

(
C0

12 + CS
23

R0

)
w0 = −SS,0

��

R0
,

(
2C0

12 + 2
CS

23

R0

)
u0 +

(
C0

11 + 2
CS

33

R0

)
w0 = −2

SS,0
ZZ

R0
,

(27)

where CS
i j , SS,0

��, and SS,0
ZZ are average values over � such as

CS
i j = 1

2π

∫ 2π

0 CS
i jd�. This integral depends on the orientation

of the wire which is 〈001〉 here. Its value requires atomistic
calculations of the surface elastic parameters as a function
of � which are presented in Sec. III B. In Fig. 2, we com-
pare the values of u0 and w0 obtained from Eqs. (27) to the
ones calculated from our molecular statics simulations. We
note that both approaches give close values of u0 and w0 for
various wire radii R0 ranging from 2.5 to 30 nm. For large R0

where u0/w0 ≈ (1/2 − C0
12/C0

11) from Eqs. (27) considering

SS,0
�� ≈ SS,0

ZZ , the axial contraction of the wire w0 and the av-
erage radial expansion u0 are proportional to 1/R0, but they
deviate from this law for small radii. This behavior shown in
Fig. 2 is well reproduced and explained by the model given in
Eqs. (27). Clearly, the deviation from the 1/R0 law is due to
the parameters CS

i j whose influence increases for small values
of R0.

C. Warp function under torsion: g(R,�)

Let us now consider the free circular Cu nanowire twisted
by an angle α. On the bulk side, the stress tensor P expressed
in Eq. (21) must fulfill the equilibrium equations (14). The two
first equations involve only (αR0)2 terms and are neglected
but from the third equilibrium equation, using Eqs. (8), (20),
and (21), we obtain that the warp function g(R,�) should be
solution of the following differential equation:

(C55 + SRR)

(
g′′

R + g′
R

R

)
+ (C44 + S��)

g′′
�

R2
= 0, (28)
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FIG. 2. Influence of the surface elastic constants CS
i j on the axial

contraction w0 and the radial expansion u0 in 〈001〉 Cu nanowire
of circular cross section (before torsion) given by Eqs. (27) re-
sulting from the continuum model (CM). The elastic constants
are calculated in Sec. III B: C0

11 = 169 GPa and C0
12 = 127 GPa,

SS,0
�� = 1.071 J m−2, SS,0

ZZ = 1.096 J m−2, CS
22 = −4.88 J m−2, CS

23 =
−0.02 J m−2, and CS

33 = −7.05 J m−2. The CM curves are compared
to the results of molecular statics simulations (MS) performed on var-
ious 〈001〉 Cu nanowires. The MS value of the radial expansion u0 is
calculated by averaging the radial displacement uR of atoms located
at a distance R0/2 from the center so that u0 = 1

πR0

∫ 2π

0 uRd�.

where g′′
R = ∂g′

R/∂R and g′′
� = ∂g′

�/∂�. Noting from Eqs. (8)
and (20) that SRR = S�� and from Fig. 3 of Sec. III B that
C44 = C55 = C0

44, the condition on g(R,�) reduces to

g′′
R + g′

R

R
+ g′′

�

R2
= 0. (29)

To solve Eq. (29), we employ the method of separation of
variables, and by taking into account the fourfold symmetry
of the 〈001〉 copper wire, we assume the series solution for
g(R,�) as

g(R,�) =
+∞∑
N=1

gN R4N sin 4N�, (30)

where gN are coefficients to be determined from the Gurtin
and Murdoch surface conditions expressed in Eq. (17). In-
deed, from the third relation in Eq. (17) combined with the
expression of P in Eq. (21) and PS in Eq. (23), we have

(SRZ + FzRSRR)|R=R0 = 1

R0

∂

∂�

(
SS

�Z + F S
z�SS

��

)
. (31)

Then, using Eqs. (20) and (22), we obtain(
R0C

0
44 − SS

��

)
g′

R(R0,�)

= ∂

∂�

(
CS

44 + g′
�(R0,�)

R0

(
CS

44 + SS
��

))
(32)

with

SS
�� = SS,0

�� + CS
22u0 + CS

23w0.

Finally for 〈001〉 copper nanowires, by considering the
small values found for u0 and w0 in Fig. 2, it will be verified
in Sec. IV once the surface parameters and g(R,�) have been
calculated that even for radii R0 as small as 2 or 3 nm in

FIG. 3. � dependence of the second-order elastic constants Ci j in
cylindrical coordinates according to Eqs. (42), the basis (eR, e�, eZ )
is oriented such as eZ remains along a 〈001〉 direction. For � = 0,
eR and e� are also along 〈001〉 directions. See Sec. III A for more
details.

Eq. (32), we have R0C0
44 
 SS

�� and CS
44 
 g′

�(R0,�)
R0

(CS
44 +

SS
��) leading to the simplified equation

g′
R(R0,�) = 1

R0C0
44

∂CS
44

∂�
. (33)

This boundary condition on g(R,�) is a key relation in this
work. In the isotropic case where CS

44 is constant, it is clear
from Eq. (33) that CS

44 can not be responsible of a warp,
g′

R(R0,�) becomes null in Eq. (33), and the warping function
g(R,�) in Eq. (30) must also vanish. Moreover, from Eq. (33),
one can predict a warp if the surface elastic constant CS

44
varies with the azimuth �, i.e., if CS

44 depends on the surface
orientation.

To test the validity of our model, molecular statics (MS)
simulations are performed. The MS simulations are used both
to calculate the pertinent physical parameters (notably, how
varies CS

44 with �) in Sec. III and to determine the relaxed
state of a 〈001〉 copper nanowire under torsion in Sec. IV.

III. ATOMISTIC CALCULATIONS

In this section, we first detail how the stress and strain
tensors (F, E, S, and P) are determined knowing the atomic
positions and using atomic interactions described within the
SMA potential [13,14]. Then, by performing molecular statics
(MS) simulations on Cu slabs, we show how the surface elas-
tic parameters (SS,0

��, SS,0
ZZ , and CS

i j) vary with the orientation of
the surface slabs.

A. Atomic strain and stress tensors

Knowing both the position X(i) of each atom i in the
reference configuration and its position x(i) in the deformed
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and relaxed configuration, it is possible to calculate the local
deformation gradient F(i) at each atom i by considering how
the distances with its neighbor atoms j have changed. Using a
discrete form of Eq. (4), we have

x( j) − x(i) = F(i)(X( j) − X(i) ). (34)

In principle, three noncoplanar neighbors leads to a single F(i),
however, since the number of neighbors j is much larger, one
has to search for an optimal local deformation gradient F̂(i)

which minimizes a weighted least-squares error among the
neighbors of i. For greater detail on this method which enables
the calculation of the atomic tensor F, the reader is referred to
Gullett et al. [25]. In this work, we used a similar method
which differs only by the choice of the number of neighbors
j on the calculation of F̂(i). In our case, only the first-nearest
neighbors j of the atom i are taken into account to compute
F̂(i).

Once F̂(i) is calculated (denoted by F(i) below for sim-
plicity), the atomic strain tensor E(i) is determined using
the definition E = 1

2 (FT F − I). Moreover, from the polar
decomposition theorem, we have the unique multiplicative de-
composition F = RU in which R is called the rotation tensor
(which is orthogonal, RT R = I) and U is the right stretch
tensor (which is symmetric and positive-definite, U2 = FT F).

The analytic form of the SMA potential used in our atom-
istic simulations allows us a straightforward determination of
the atomic strain energy ψ (i) per unit undeformed volume and
therefore to the second Piola-Kirchhoff stress tensor (PK2)
per atom i using the relation S(i) = dψ (i)/dE(i). To calculate
the six components S(i)

k of S(i), let us first express the atomic
strain energy ψ (i). According to the SMA potential, the energy
W i of the atom i having j neighbors can be written as the sum
of a repulsive term W (i)

rep and an attractive term W (i)
att :

W (i) = W (i)
rep + W (i)

att =
∑

j

Wrep(r (i j) ) −
√∑

j

Watt (r (i j) ),

(35)

where Wrep and Watt are decreasing exponentials of the r (i j)

distances between i and j atoms, i.e., the norms of the vectors
x( j) − x(i) in Eq. (34). In the reference state where atoms
occupy the bulk crystal lattice, the norms of the vectors X( j) −
X(i) are denoted by r (i j)

0 and far from the surface, the en-
ergy per atom is the cohesive energy Ecoh = ∑

j Wrep(r (i j)
0 ) −√∑

j Watt (r
(i j)
0 ). Using these notations, the atomic strain en-

ergy density reads as

ψ (i) = 1

V0
(W (i) − Ecoh ),

where V0 is the atomic volume in the undeformed state. To
summarize, from one atomic configuration, one gets per atom
i, the energy W (i), the nine components R(i)

nm of the rotation
tensor R(i), and the six components U (i)

l of the right stretch
tensor U(i). By gathering these quantities, one obtains the
PK2 stress tensor per atom S(i) and its k components S(i)

k by
calculating the following derivatives:

S(i)
k = ∂ψ (i)

∂E (i)
k

= 1

V0

∂W (i)

∂E (i)
k

(36)

or, equivalently,

S(i)
k = 1

V0

6∑
l=1

∂W (i)

∂U (i)
l

H (i)
kl , (37)

where H (i)
kl = ∂U (i)

l

∂E (i)
k

. In practice, to determine the 36 H (i)
kl ele-

ments of the matrix H it is easier to handle the invert matrix
G = H−1 whose elements G(i)

kl = ∂E (i)
l

∂U (i)
k

can be directly written

from the relation E = 1
2 (U2 − I). Finally, in Eq. (37), the ∂W (i)

∂U (i)
l

terms can be expressed as

∂W (i)

∂U (i)
l

=
∑

j

(
∂Wrep(r (i j) )

∂r (i j)
+ 1

2W (i)
att

∂Watt (r (i j) )

∂r (i j)

)
∂r (i j)

∂U (i)
l

,

(38)
where

∂r (i j)

∂U (i)
l

= 1

2r (i j)

3∑
p=1

r (i j)
p

(
Ri

pmr (i j)
0,n + Ri

pnr (i j)
0,m

)
(39)

with r (i j)
p and r (i j)

0,p denoting the Cartesian coordinates of,
respectively, the vectors x( j) − x(i) and X( j) − X(i) such as
(r (i j) )2 = (r (i j)

1 )2 + (r (i j)
2 )2 + (r (i j)

3 )2 and (r (i j)
0 )2 = (r (i j)

0,1 )2 +
(r (i j)

0,2 )2 + (r (i j)
0,3 )2. Note that each pair (m, n) of indices in

Eq. (39) is determined by the single index l using the Voigt’s
convention. Thus, for l = 1, 2, or 3 where U (i)

l is diagonal we
have m = n = l . For l = 4 then m = 2 and n = 3, for l = 5,
m = 1, n = 3, and for l = 6, m = 1, n = 2.

To model the state of strain and stress in the nanowire,
one needs to calculate the elastic constants given by the SMA
potential. These latter are derived from the expansion of the
bulk strain energy ψ (E) per unit undeformed volume in a
series of powers of E such as

ψ (E) = 1

2!
C0

i jEiE j + 1

3!
C0

i jkEiE jEk + · · · , (40)

where

C0
i j = ∂2ψ (E)

∂Ei∂Ej

∣∣∣∣
E=0

, C0
i jk = ∂3ψ (E)

∂Ei∂Ej∂Ek

∣∣∣∣
E=0

.

C0
i j and C0

i jk are called, respectively, second-order and third-
order elastic (stiffness) constants and defined in the crystal
axis coordinate system along the unit vectors e1, e2, e3. In
practice, we determine numerically these elastic constants
although analytic forms might be derived using the SMA
potential. Using Eq. (37), we calculate the PK2 stress compo-
nents Si per atom in a simulation box where the atoms form a
periodic fcc crystal submitted to a chosen set of simple defor-
mations. These latter are tensile or compressive strains such
as E = E1e1 ⊗ e1 or E = E1e1 ⊗ e1 + E2e2 ⊗ e2, pure shear
strain where for instance E = E6/2(e1 ⊗ e2 + e2 ⊗ e1), or a
combination of them where E depends on two components
only. For each of these deformations, it is straightforward to
write the corresponding Si’s components since from Eqs. (36)
and (40) we have

Si = C0
i jE j + 1

2C0
i jkE jEk + · · · . (41)

Then by combining Eq. (41) and polynomial fits of the
Si terms calculated from the simulations, we determine the
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values of the 3 C0
i j and the 6 C0

i jk which are independent in the
cubic system. In this work only linear terms involving C0

i j are
used.

In order to relate the C0
i j determined in this section to

the Ci j introduced in Eq. (19) and defined using cylindrical
coordinates for 〈001〉 fcc copper wires, it is necessary to apply
the rules governing the change of the elastic constants under
such a transformation of coordinates [18]. Thus, after trans-
formation, 11 Ci j are not null and depend with the azimuth �

as follows:

C11 = C22 = C0
11 + C0

c (cos 4� − 1),

C12 = C0
12 − C0

c (cos 4� − 1),

C13 = C23 = C0
12,

C16 = −C26 = −C0
c sin 4�,

C33 = C0
11,

C44 = C55 = C0
44,

C66 = C0
44 − C0

c (cos 4� − 1), (42)

where C0
c = (C0

11 − C0
12 − 2C0

44)/4. These relations remind us
that despite its high fourfold symmetry the 〈001〉 directions
in cubic system present an anisotropy of the in-plane elastic
constant (i.e., C11 and C12 vary with �) which has to be taken
into account to solve the mechanical problem addressed in this
work. To illustrate this important property, Fig. 3 shows the
dependencies of Ci j with the azimuth � to be considered in
Eqs. (19) and (20).

B. Surface excess elastic parameters

By performing molecular statics (MS) simulations on var-
ious Cu slabs, the dependencies with the azimuth � of the
surface elastic parameters SS,0

��, SS,0
ZZ , and CS

i j which appear
in Eqs. (22) are calculated. This step is essential to estimate
how the PK2 surface stress tensor SS at the surface of the
wire varies with the surface strain ES in the framework of
the linear elasticity theory established in Sec. II A. To quan-
tify the parameters SS,0

��, SS,0
ZZ , and CS

i j for a certain azimuth
� at the surface of the wire, we first note that for a given
value of �, the surface of the wire of circular cross section
resembles locally to an unreconstructed vicinal surface (with
atomic straight steps and terraces) which is reproduced from
a slab where eR indicates the orientation of vicinal surface
and where its atomic steps are along eZ and normal to e�.
In-plane periodic boundary conditions are applied to this slab
presenting an integer number of terraces and, as previously for
the determination of the bulk elastic constants, a set of simple
strains E expressed now in terms of the unit vectors eR, e�,
and eZ is imposed to the slab. Using Eq. (36), the PK2 stress
per atom S(i) is calculated for each atom (i) in the deformed
slab after relaxation of its two surfaces by MS simulations.

Following the method described by Needs [26], the surface
stress SS is defined as an excess quantity (in J m−2) where the
contribution of each atom (i) in the slab to SS is obtained by
subtracting from the stress S(i)

slab of each atom (i) in the slab
the stress S(i)

bulk that this atom would have if it was subjected to

FIG. 4. Plot of the surface parameters SS,0
�� and SS,0

ZZ introduced in
Eqs. (22) as a function of � calculated from MS simulations using
the SMA potential on various Cu slabs presenting different vicinal
surfaces (hk0) sharing the same [001] direction corresponding to the
〈001〉 nanowire axis. As an example, the case of a slab with (230)
surfaces corresponding to a value of � ≈ 56.31◦ is shown.

the same strain E in the bulk. Mathematically, we have

SS (ES ) = V0

2A0

∑
i∈slab

[
S(i)

slab(E) − S(i)
bulk (E)

]
, (43)

where the factor 1
2 comes from the two surfaces of the slab

of area A0 before deformation and ES = ISEIS as defined in
Sec. II A. In practice, thick slabs are considered and S(i)

bulk is
calculated from atoms (i) chosen at the center of the slab far
from the surfaces.

Considering first the simple case where E = ES = 0 and
many different vicinal surfaces presenting straight steps along
the 〈001〉 direction, we report in Fig. 4 the � dependencies
of the components SS,0

�� and SS,0
ZZ introduced in Eqs. (22) and

calculated from Eq. (43). According to our MS simulations
using the SMA potential, SS,0

�� and SS,0
ZZ present similar be-

haviors with a maximum value (around 1.3 J m−2) for the
highly symmetric {100} surface where � = 0. For surfaces
with lesser symmetry, SS,0

�� decreases faster than SS,0
ZZ , however,

the two curves cross by approaching the {110} surface. For
this latter orientation encountered for � = π/4, SS,0

ZZ (close
to 1 J m−2) becomes slightly lower than SS,0

�� but the differ-
ence does not exceed 10%. To determine the surface elastic
constants CS

i j in Eqs. (22), the slabs are now homogeneously
strained according to simple deformations where ES = E such
as E = ES

��e� ⊗ e� + ES
ZZ eZ ⊗ eZ and E = ES

�Z (e� ⊗ eZ +
eZ ⊗ e�). Then, by calculating numerically the strain deriva-
tives of the SS (ES ) components obtained from Eq. (43), we
plot in Fig. 5 the � dependencies of the surface elastic con-
stants CS

i j . We observe that the CS
i j have maximum values for

the {100} surface where � = 0 while they are close to their
lowest values for the {110} surface where � = π/4.

These calculations clearly show the anisotropy of the sur-
face elastic constants which is present at the lateral surface of
the 〈001〉 copper wires of circular cross section. In particular,
it is demonstrated that the constant CS

44 varies significantly
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FIG. 5. � dependencies of the surface elastic constants CS
i j cal-

culated from MS simulations on strained slabs presenting vicinal
surfaces. The orientation of the unit vectors eR, e�, and eZ is such
that eR is normal to the surface and eZ is along the 〈001〉 atomic
steps. The index convention to identify the CS

i is the one given in
Eqs. (19) and (22) where the index “2” denotes “��,” “3” stands for
“ZZ,” and “4” corresponds to “�Z .”

with �. According to the continuum model developed in
Sec. II, such an anisotropic behavior of CS

44 should give rise
to a warp in the wire under torsion. To test this theoretical
prediction, atomistic simulations are performed in the next
section.

IV. EVIDENCE OF A WARP CAUSED BY SURFACE
ELASTICITY: FROM ATOMISTIC SIMULATIONS

TO CONTINUUM MODEL

The last part of this work is to examine the ability of our
continuum model to reproduce the results of atomistic simula-
tions, in particular the CS

44-induced warping. For this purpose,
using torsion periodic boundary conditions, molecular stat-
ics (MS) calculations are performed to simulate an infinite
twisted 〈001〉 copper nanowire [24]. According to the expres-
sion of the deformation gradient tensor F envisaged in this
work in Eq. (5), the signature of the warp will appear in the
two components FzR = αR0g′

R and Fz� = αR0g′
�/R that both

depend on the warping function g(R,�) expressed in Eq. (30).
Using the method described in Sec. III A to calculate the local
deformation gradient F(i) at each atom i, we report in Fig. 6 the
(R,�) dependencies of FzR and Fz� observed in a cross sec-
tion of a simulated 〈001〉 copper wire of radius R0 = 30 nm
twisted to α = −2.56×10−4 rad/nm. Clearly, Fig. 6 shows
the presence of a warp compatible with the fourfold symmetry
of the function g(R,�) predicted in Eq. (30) of our model.
Let us now examine if it is possible to rationalize the warp
observed in our atomistic simulations by reproducing FzR and
Fz� from the continuum model developed in this work. For
this purpose, we need to determine the coefficients gN defining
g(R,�) in Eq. (30) from the boundary condition established

FIG. 6. FzR and Fz� in a cross section of a 〈001〉 copper wire of
radius R0 = 30 nm twisted to α = −2.56×10−4 rad/nm. Maps are
obtained from both our molecular statics simulations (MS) and our
continuum model (CM).

in Eq. (33) which states that g′
R(R0,�) is proportional to

∂CS
44/∂�. This can be achieved from an expansion in Fourier

series of CS
44 obtained in Fig. 5. To illustrate the harmonic

analysis, Fig. 7 shows the behavior of ∂CS
44/∂� as a function

of � deduced from our atomistic calculations performed on
different slabs. After an interpolation (using cubic splines)
between the points where CS

44 were computed, we calculate the
Fourier coefficients of CS

44 which are sufficient to well describe

FIG. 7. Modeling of the surface elastic constant CS
44(�) calcu-

lated from the MS simulations and shown in Fig. 5. In this figure,
its derivative ∂CS

44/∂� that appears in the boundary condition given
by Eq. (33) is first reproduced from a Fourier series expansion by
retaining the first 48 harmonics (orange solid line). These Fourier
coefficients set the values of the coefficients cN in Eq. (44). The green
dashed line is plotted from Eq. (49) where ∂CS

44/∂� is approximated
by a sawtooth function [and CS

44(�) by a parabola in Eq. (48)].
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CS
44 and ∂CS

44
∂�

(by derivation with respect to �) as shown in
Fig. 7. The Fourier analysis shows that in our case, only the

terms in sin 4N� are necessary to represent ∂CS
44

∂�
so that

∂CS
44

∂�
=

+∞∑
N=1

cN sin 4N�, (44)

where cN are the Fourier coefficients. Once the cN are com-
puted, it is straightforward to determine the gN . By combining
Eqs. (30) and (33), we find

gN = cN

4NC0
44R4N

0
(45)

and therefore

FzR = αR0g′
R = α

C0
44

+∞∑
N=1

cN

(
R

R0

)4N−1

sin 4N�, (46)

Fz� = αR0g′
�/R = α

C0
44

+∞∑
N=1

cN

(
R

R0

)4N−1

cos 4N�. (47)

The cN being deduced from the Fourier analysis of CS
44, it

becomes possible to test the continuum model by plotting FzR

and Fz� from Eqs. (46) and (47). The comparison with the
results of our atomistic simulations is reported in Fig. 6 and
shows a very good quantitative agreement between the two
approaches.

This understanding of the results of our atomistic simula-
tions allows us to pursue the description of the observed warp
to other elements than copper by proposing a simplified model
that can be extended to any wire with a cubic, 〈001〉-oriented
crystalline structure and a circular cross section [as long as the
simplification of Eq. (32) which leads to Eq. (33) and gives a
preponderant role to CS

44, remains valid for an element other
than copper]. Indeed, this study shows that as soon as the elas-
tic shear constant CS

44 depends on the orientation of the surface
and thus varies with the azimuth �, we can expect to observe
a warp whose shape is deduced directly from Eqs. (46) and
(47).

If in addition CS
44 varies smoothly and adopts a parabolic

shape with � on the interval [0 : π/2] as can be observed for
copper in Fig. 5, it is possible to derive an analytic form of
the warp function. Let us suppose that the parabolic form of
CS

44 is fixed by its extreme values obtained for the two surfaces
{100} and {110}, i.e., by [CS

44(0) and CS
44(π/4)], such that

CS
44 = CS

44(π/4) + (4/π )2
[
CS

44(0) − CS
44(π/4)

]
(� − π/4)2,

(48)

thus,

∂CS
44

∂�
= 2(4/π )2

[
CS

44(0) − CS
44(π/4)

]
(� − π/4). (49)

∂CS
44

∂�
can thus be modeled by a sawtooth function of slope equal

to a = 2(4/π )2[CS
44(0) − CS

44(π/4)] as plotted in Fig. 7 for

� ∈ [0 : π/2]. For any �, ∂CS
44

∂�
is described by the series

∂CS
44

∂�
= −a

2

+∞∑
N=1

sin 4N�

N
(50)

FIG. 8. Comparison of the warp uw
Z (MS) observed in the atom-

istic simulations with uw
Z (CM) predicted by the continuum model in

Eq. (54) where the cN are determined from the Fourier analysis of
CS

44 shown in Fig. 7. The displacement field uw
Z (CMparab) assuming

a parabolic form of CS
44 in Eq. (55) is also plotted. R0 = 30 nm and

α = −2.56×10−4 rad/nm.

which sets the cN at

cN = − a

2N
= − (4/π )2

[
CS

44(0) − CS
44(π/4)

]
N

(51)

and leads to the following expressions of FzR and Fz�:

FzR = αR0g′
R = −αa

2C0
44

+∞∑
N=1

(
R

R0

)4N−1 sin 4N�

N
, (52)

Fz� = αR0g′
�/R = −αa

2C0
44

+∞∑
N=1

(
R

R0

)4N−1 cos 4N�

N
. (53)

Finally, it can be interesting to establish the expression of the
warp uw

Z itself which represents the displacement field of the
atoms along the wire axis induced by the torsion. Since from
Eq. (2), uw

Z = αR0g(R,�), we obtain from Eqs. (30) and (45)
the general form

uw
Z = α

+∞∑
N=1

cN R0

4NC0
44

(
R

R0

)4N

sin 4N� (54)

which, by considering Eq. (51), leads to the particular form

uw
Z = −4αR0

[
CS

44(0) − CS
44( π

4 )
]

π2C0
44

+∞∑
N=1

(
R

R0

)4N sin 4N�

N2

(55)

when CS
44 is parabolic. The displacement fields uw

Z (CM) given
by Eq. (54), uw

Z (CMparab) from Eq. (55), and uw
Z (MS) from the

atomistic simulations are compared in Fig. 8 for R0 = 30 nm
and a torsion α = −2.56×10−4 rad/nm. Clearly, the three
approaches give similar results on the overall shape of uw

Z . For

copper, even uw
Z (CMparab) that relies on the modeling of ∂CS

44
∂�

by a sawtooth function is quite relevant to capture the main
characteristics of the warp. Of course, the atomistic descrip-
tion reveals details about uw

Z at the vicinity of the surface that
are not predicted with the continuum model. We can see for
instance in Fig. 8 that lobes appear under the step edges of
the {100} and the {110} surfaces. Apart from these differences
related to the surface morphology at the atomic scale, both
the MS simulations and the continuum model predict a very
similar warp induced by the torsion. These results lead us to
additional comments.
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First, it is interesting to note that Eq. (55) indicates what
are the physical ingredients which control the amplitude of
the warp in copper: namely, the ratio [CS

44(0) − CS
44(π/4)]/C0

44
where CS

44(0) and CS
44(π/4) are the surface shear elastic con-

stants of, respectively, the {100} and the {110} surfaces and
where C0

44 is the bulk shear elastic constant. Let us keep
in mind that this result was obtained in the framework of
the SMA potential where CS

44 could be approximated by a
parabola with CS

44(0) and CS
44(π/4) as extreme values. It

would be interesting to see if such a behavior is found in other
elements.

Second, it is worth pointing out that the warp appears
as soon as α is nonzero. It is induced by the torsion. This
phenomenon is different from the case studied by Roy et al.
[27] where in absence of torsion it is shown a wrinkling of
the (111) atomic planes normal to the wire axis for single-
crystalline (111) Au nanowire of hexagonal cross section. By
performing MS simulations with the SMA potential on 〈111〉
Cu wire with circular cross section, we also observe such a
wrinkling of the 〈111〉 atomic planes for α = 0. However,
in this work where we focus on 〈001〉-oriented wires the
wrinkling does not occur.

A third point is how large this effect is. As it is the sole
nonuniform uZ displacement here, a comparison has to be
done with the warp in another situation, namely, the dominant
warp related to bulk elastic anisotropy, generated by torsion
in Cu 〈011〉 nanowires. This latter warp is a good reference
since it was shown to be measurable using x-ray diffraction
[15], which is a selective and sensitive technique. The ratio
between the Cu 〈011〉 and 〈001〉 warps, for the same torsion
α and nanowire radius R0, is proportional to R0 and equal to
approximately 90 when R0 = 6 nm. We believe therefore that,
at least in the case of Cu, the 〈001〉 torsion warp would be
difficult to measure using x-ray diffaction, even using high-
order reflections.

Finally, it is important to recall that the domain of valid-
ity of our model concerns moderate torsion where the warp
remains proportional to α. If the analysis of the nonlinear
domain in α is beyond the scope of this study, it is however
instructive to take a look at the behavior of uw

Z for larger
torsions according to the simulations. This is illustrated in
Fig. 9 where we show examples of uw

Z atomic fields obtained
in the MS simulations for different α and a wire of radius
R0 = 6 nm. In order to show the linear regime, we also report
as a function of α, the magnitude of uw

Z /uw
Z (α0) at different

arbitrarily chosen points of the wire section and for α0 chosen
in the linear regime. The linear domain is clearly visible on
Fig. 9. It is observed within the interval |α|R0 < 0.02 for
R0 = 6 nm. Beyond this threshold value, uw

Z /uw
Z (α0) is no

longer proportional to α. Its dependence varies with (R,�).
The figure also shows some snapshots extracted from the sim-
ulations for different values of α. The atoms are colored with
the same color scale according to the value of their displace-
ment normalized by |α|. The first two snapshots in the linear
regime highlight the existence of the warp in agreement with
our model and Fig. 8. Normalized by |α|, the two snapshots
are logically nearly identical. Beyond the linear regime, we
can note from the snapshots that the warp seems to exhibit
additional harmonics weighted by higher R powers, so that
the warp seems to be more concentrated on the wire periphery.

FIG. 9. Examples of uw
Z atomic displacement fields obtained

from MS simulations for different α and a wire of radius R0 = 6 nm.
To show the linear regime, the ratios uw

Z /uw
Z (α0) for arbitrarily chosen

points of the wire section are plotted as a function of −αR0 and for
α0 chosen in the linear regime. Snapshots taken for different values
of α are also shown. The atoms are colored with the same color scale
according to the value of their displacement uw

Z normalized by |α|.

Detailed analysis of this nonlinear domain remains to be done
in the future, and it is interesting to note that nanowires are
prime objects to explore the nonlinear elastic regime. Unlike
in macroscopic wires, dislocations in nanowires appear indeed
for high-α values only.

V. CONCLUSION

In linear elasticity, the moderate torsion of a 〈001〉 single-
crystal copper wire with a circular cross section should not
lead any displacement field along the wire axis (i.e., a warp).
This result, well known in mechanics since the work of Saint
Venant [9], is not observed in our atomistic simulations where
we show on the contrary that a fourfold-symmetric warp ap-
pears as soon as there is a torsion. This intriguing finding is
obtained by performing molecular statics simulations using
the SMA interatomic potential for copper on 〈001〉-oriented
single-crystal nanowires with circular cross section and radii
ranging from 3 to 30 nm. To elucidate the warp observed in
our simulations we derive a continuum model based on the
following assumptions.

We adopt a semi-inverse approach by assuming in Eq. (2)
that the twist α has the effect of displacing the atoms along
the Z axis of the wire according to a trial function αR0g(R,�).
Assuming such a warp, we establish the form taken by g(R,�)
to satisfy the equilibrium equations and the boundary condi-
tions.

The deformations are described in the framework of the
finite strain theory. Indeed, although the deformations are
small in this study, it is necessary to handle the finite strain
tensor E expressed in Eq. (7) to deal with the large rotations
encountered in the torsion problem.

Since the strain is small, linear elasticity is used to express
the second Piola-Kirchhoff stress tensor S as a function of
the finite strain tensor E. The second-order elastic constants
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Ci j involved in these relations are calculated using the SMA
potential.

The Gurtin and Murdoch theory is employed to describe
the surface-specific elastic properties. These are captured by
the relationship between the surface stress tensor SS and the
surface strain ES via surface elastic constants CS

i j . In addi-
tion, this theory provides the boundary conditions (also called
Young-Laplace conditions) of our problem linking the surface
components of SS to certain bulk components of S.

To keep a general formulation in cylindrical coordinates of
our problem, the first Piola-Kirchhoff stress tensor P is used
to express the bulk equilibrium conditions in Eq. (12) and the
boundary conditions in Eqs. (15) and (18). This formalism
could be useful in the future to allow an exploration of the
nonlinear domain.

To compare continuum model and atomistic simulations,
care was taken to calculate stress and strain tensors at the
atomic scale. In Sec. III, we describe in particular the method
which allows us to determine a local deformation gradient
tensor F(i) at each atom i and the second Piola-Kirchhoff stress
tensor S(i) per atom i using the SMA potential. Moreover, for
the comparison to be quantitative, all the physical ingredients
involved in the model are calculated using the SMA potential.
The dependence in � of the surface elastic constants CS

i j which
is a key point of this work has required additional calculations
on deformed slabs presenting vicinal surfaces.

Within this theoretical framework, it is possible to under-
stand the presence of a warp evidenced in this work for copper
wires. The effect of the torsion is primarily to shear the atomic
planes perpendicular to the wire axis. This shear strain is max-
imum at the surface and involves the surface elastic constant
CS

44 in the expression of the component PS
z� of the PK1 surface

stress PS . The key point is then to realize that CS
44 like all sur-

face elastic constants vary according to the local orientation of
the lateral surface. This anisotropy of CS

44 could be quantified
in our atomistic calculations using the SMA potential. This
dependence with � of CS

44 has the effect of modifying [via the
third Young-Laplace equation (17)] the boundary condition of
the bulk stress component PzR. In other words, PzR|R=R0

is no
longer null as it is the case when CS

44 is isotropic. This mod-
ification of the surface conditions gives rise to a nonzero PzR

component in the core of the wire which is solution of the third
equilibrium equation expressed in Eqs. (14). The resolution
of the differential equation (14) within the above-mentioned
boundary condition allows us to derive an explicit form of
the displacement field uw

Z = αR0g(R,�) (i.e., the warp) en-
visaged in the deformation map given by Eq. (2). In Eq. (54),
the expression of uw

Z is established as a function of the Fourier
coefficients describing the variations of CS

44 with �. With
the SMA potential set for copper, we observe a parabolic
dependence of CS

44(�), which allows us to propose an analytic
form of the warp uw

Z whose amplitude is proportional to the

ratio αR0
[CS

44(0)−CS
44( π

4 )]
C0

44
where R0 is the radius wire, C0

44 the

elastic shear constant in volume, CS
44(0) the elastic constant of

the {100} surface, and CS
44( π

4 ) the one of the {110} surface.
The results obtained in this work could be extended to other

FIG. 10. Illustration from our atomistic simulations of the inte-
gral equilibrium condition given in Eq. (18) on a cross section S
of a circular untwisted nanowire of radius R0 = 3 nm subject to a
change of length 	L/L. At equilibrium, the energy E of the wire (per
unit length) is minimum for 	L/L = w0, the net forces F+ and F−

normal to S exerted by one part of the wire on the other are null, the
sum PzZ = ∑

i∈S P(i)
zZ for all atoms i belonging to the cross section S

is also null in agreement with Eq. (18).

monocrystalline wires of cubic structure, oriented 〈001〉 and
of circular section. More fundamentally, this study tells us that
in the torsion problem of a nanowire, the elastic properties of
the lateral surface contribute to the formation of a warp in the
bulk and may even be its sole cause as it is shown in this work
for 〈001〉 circular cross-section Cu nanowires.

APPENDIX: INTEGRAL EQUILIBRIUM CONDITION

In addition to the Young-Laplace boundary conditions ex-
pressed in Eq. (17), one has to take in account the integral
equilibrium condition in Eq. (18) valid for long wire free to
relax along its main axis (no end effects). This condition is
illustrated in this Appendix and verified even for very thin
nanowire. Atomistic calculations for an untwisted nanowire of
radius R0 = 3 nm are reported in Fig. 10. First, we calculate
from our MS simulations the total energy E of the nanowire
as a function of its length l (the initial length being L). A min-
imum is reached for E = Emin and (l − L)/L = 	L/L = w0

as described in Sec. II B. Then, considering two parts of the
wire separated by the cross section S, we plot in Fig. 10 the
net forces F+ and F− normal to S exerted by one part on
the other. We then note that the net forces F+ and F− are
opposite for any l and null at equilibrium. This equilibrium
state can be formulated in Eq. (18) in terms of the PK1 stress
tensors P and PS . To test Eq. (18) in our simulations, we plot
in Fig. 10 the sum PzZ = ∑

i∈S P(i)
zZ for all atoms i belonging

to a same cross section S and where the components P(i)
zZ are

calculated from the atomic tensors F(i) and S(i) and the relation
P(i) = F(i)S(i). As expected from Eq. (18), we find that PzZ is
null at equilibrium.
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