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Abstract:

Location data are extensively used to provide geo-personalized contents to mobile devices users. Sharing
such personal data is a major threat to privacy, with risks of re-identification or inference of sensitive
information. Location data broadcasted to services can be sanitized, i.e., by adding noise to spatial
coordinates. Such protection mechanisms from the literature are widely generic, e.g., not specific to
a user and mobility properties. In this work, we advocate that taking into account the specificities of
location data (temporal correlation, human mobility patterns, etc.) enables to gain in the privacy-utility
trade-off. Specifically, using future mobility prediction greatly improves privacy. We present a novel
protection mechanism, based on model predictive control (MPC). The sanitized location is optimally
computed so that it maximizes privacy while guaranteeing a utility loss constraint, for present and future
locations. Our formulation explicitly takes into account non-constant sampling time, due to moments
when no location data is broadcasted. We evaluate experimentally our control on real mobility dataset
and compare to the state of the art. Results show that with knowledge of user’s future mobility over a
few of minutes, we can gain up to 10% of privacy compared to state of the art, while preserving data
utility.

Keywords: Security and privacy; Model predictive and optimization-based control; Predictive control.

1. INTRODUCTION

With the generalization of smart mobile devices, such as phones
or smart watches, location data are more than ever a goldmine.
Geo-located services are flourishing, such as navigation, venue
finders or dating apps (Google Play, 2022)). Share one’s mo-
bility data to a third party presents however threats to privacy,
by exposing highly sensitive personal information. Extracting
location points of interest, attackers can discover users’ iden-
tity, social relationships, and even religious, political or sexual
orientations (Gambs et al., 2011)). In Europe, the General Data
Protection Regulation (GDPR) is a law which regulate data pri-
vacy issues. The cumulative sum of GDPR fines until December
2022 was €2381309317 (McCarthy, [2023)).

Protection mechanisms have been proposed to enhance one’s
location privacy. Among the vast literature (Primault et al.
2018; [Jiang et al.l [2021)), some works tackle the scenario of
an individual continuously sending his or her mobility data.
Such protection mechanisms are mainly based on obfuscation:
the location data is disturbed with some spatial noise before
being transmitted to the service as in Geo-Indistinguishability
(Andrés et al., [2013), inspired from the concept of differential-
privacy (Dworkl [2006). Geo-I performs blind obfuscation,
in that it applies constant noise for all locations and at all
times. It has been extended to tackle this first limitation, with
location-dependent privacy (Koufogiannis and Pappas, [2016}
Chatzikokolakis et al., 2015), correlating the noise to the lo-
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cation population density. The particular case of obfuscation
in an Indoor environment has been also studied by Meira-
Goes et al. (Meira-Goes et al., [2018). An open challenge re-
mains on the noise adaptation through time. Chatzikokolakis
et al.(Chatzikokolakis et al.| [2014) take a step in this direction
by taking into account the predictability of the user movement
to take a binary decision on whether to sanitize or not the
transmitted location. In this work, we take into account the
human mobility property of predictability, and present a time-
dynamic protection mechanism that creates a sanitized mobility
trace.

Other protection mechanisms focus on finding optimal counter-
attacks. Shokri et al. (Shokri et all |2012) proposed the first
optimal formulation, extended for Geo-I (Bordenabe et al.,
2014), and later refined by using additional dimensions of
privacy than just attackers’ performance (Oya et al.l 2017).
Indeed, optimal protections are often limited to defeating a
specific attack, and result in huge data distortion that render the
location-based service useless (Krumml 2007)). Most of those
works additionally assume a sporadic data transmission, i.e. not
a continuous data broadcast. Recent works tackle the dynamical
optimal protection challenge (Yu et al.| 2017} |Xiao and Xiong|
2015), however without making use of mobility prediction over
a future time horizon. Zhang et al. (Zhang et al [2018) pro-
pose an information-theoretic approach that exploits the tem-
poral location correlations to reduce the protection mechanism
complexity—but not to enhance protection. In contrast to the
state-of-the-art, to achieve privacy protection in practice, we
(1) consider a continuous scenario, (ii) use mobility prediction



over a time horizon to enhance protection, and (iii) rely on
a privacy metric based on the established notion of points of
interests (rather than on defeating specific attacks).

In this paper, we present a novel protection mechanism, called
p mpc—-H, based on non-convex optimal predictive control.
The obfuscated position to transmit to the service is computed
at each timestep as the solution of an optimization problem.
Privacy is defined based on the extraction of users’ points of
interest, and utility as data distortion. Model predictive control
is used to maximize privacy while ensuring a minimal utility
level. Future mobility over a limited horizon is taken into
account in the optimization, so that the protection can anticipate
on the user next move and foster privacy protection. The main
challenges of our approach rely in (i) the non-convexity of the
problem, and (ii) in the non-constant sampling time of data
broadcast—requiring a novel formulation.

We show that including knowledge on the user’s next moves
allows significant privacy protection improvements. This ap-
proach let you compute off-line and on-line instances. In the
examples show in this paper, it is assumed the availability of
a prediction of the user mobility computing an off-line obfus-
cation. In a practical scenario, such information can come from
the user input or from a prediction algorithm (Yavas et al., 2005}
Gambs et al 2012)): this aspect is the objective of one future
research. Analysis of the robustness of our proposed control for
mobility prediction with reduced accuracy is let as future work.

The remaining of the paper is organized as follows. Section 2
formalizes the problem, defining metrics and the optimal prob-
lem. Section 3 presents our control solution for this non-convex
problem. Section 4 details the experimental setup and the eval-
uation on three aspects: privacy gains, benefit of future knowl-
edge and overhead considerations. Conclusion ends this paper
in Section 5.

Notation Through this paper, we will use overline bar to
reference parameters associated to a sanitized position. We
use bold notation with vectors and sub-index representing the
coordinate of a vector, for example, x; correspond to coordinate
i of the vector x. On the other hand, to express dependence on
time ¢, we use parenthesis x(z).

Finally, for a < b integers, we introduce the following notation
X0 = {X(k)}_,={X(a),X(a+1),...X(b—1),X(b)}.

2. PROBLEM FORMULATION

‘We consider the problem of obfuscation of a user mobility trace.
The objective is to transmit modified positions which preserve
certain privacy levels.

We denote by I(r) = (x(1),y(r)) € R? the actual position of a
user at time 7, and /() € R? the sanitized position transmitted
at time 7 to a third-party service by some method. An example
of this method is presented in Fig. 1. In the image the actual
positions of a user on a map is represented in dark blue, and
in light orange positions the obfuscated trace obtained using a
state of the art protection mechanism called Geol (Andrés et al.,
2013). That mechanism consists in adding random noise to the
actual position, further details are given in Section 4.1.

Fig. 1. Illustration of a mobility trace on a map, comparison
of actual position (blue) and sanitized one using Geo-I
(orange). User oilrag.

2.1 Privacy and Utility Measures

For a time ¢ and a duration T, we denote by Nr(¢) the number
of times in [t — T, #] where the position was transmitted and:

h < <..<itny@e)-1 <INy
the respective transmission times in increasing order. This times
depend on 7 but we omit it to maintain a more pleasant notation.

At time ¢, the centroid ¢(r) € R? of the mobility trace / over a
past window of length T is
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Therefore, the privacy level at time ¢ can be defined as:
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This metric is an onhne measure of spatial distortion, reflecting
the exposure of one’s points of interests (Cerf et al., 2018). In
practice, to have privacy value 0 means keeping at the same
position for a period of time 7', That position is a possible point
of interest to be tracked. Note that we use the mean dispersion
for simplification reasons, maximum (Primault et al., |2014))
or median (Cerf, [2019) could also be used. The two previous
expressions hold also in the case where a sanitized position /(7)
is used, in this case they will be denoted by ¢ and p.

The utility loss function is given by the distance between the
real position denoted by /(¢) and the transmitted one () (Oya
et al.,[2017), that is :

q(t) = [[1(e) -

2.2 Optimal problem

1(t)]]2- 3)

Privacy is computed using past and present location data. How-
ever, at a given time t, only the current position can be con-
trolled since the previous one have already been transmitted.
The obfuscation problem thus optimizes only the current po-
sition /(7). We then write the privacy as a function depending
only on the current time and the variable (¢):

T
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where I(t1), ..., [(ty, ;1) are fixed and [(ty, () = [(r) to be
chosen.

A optimization method will consist in applying the following
obfuscated position

I*(t) = argmax p(t,1) 5)
[eR2

s l1(e) ~ 11 < A,

whose objective is to compute the position to be transmitted
that maximize the privacy, among those that guarantee a bound
on the utility loss. Note that we use the square of the utility
loss, this constraint is equivalent to [|/() — || < A and more
suitable to optimization methods used in the following sections.
This problem is non-convex, then we could have many local
solutions.

3. CONTROL SOLUTION

Consider a time interval [0, 7], where we will apply an ob-
fuscation method, discretized in M points noted {s; }1,. We
consider N points with N < M representing the number of
points in a mobile window [s; — T, s¢| except when s; < T, in
that case we adjusted its length.

3.1 Transition system

In order to keep notation simple, let us denote the real position
at time s by (x(k),y(k)). To deal with non-constant sampling
time, we introduce the binary variable n(k) which takes value 1
if the position at time sy, is transmitted and O otherwise.

We write the state variable z(k) = (x(k),y(k),n(k)) € R" x
R” x R”, which will have the information of the time windows
[sx — T,si]. x and y are vectors representing the part associated
to the position, and the vector n related to the transmission. The
transition system for these variables is:
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v 1 (k1) = xy(k),  yvo1(k+1) = ya(k)
xy(k+1) =x(k+1), yv(k+1) =y

and the transmission part:

nl(k—i-l) = nz(k),
nz(k-l-l) = n3,
: (6)
mw- 1 (k+1) = ny(K),
ny(kt1) = n(k+1).

From above equations it is possible to note that x,y and n
are acting like buffers saving the values in the time window
[sx — T,s¢] and updated each time in the last position (xy,yy
and ny). This system can be equivalently written as

x(k+1) = A-x(k)+b-x(k+1),
y(k+1) = A-y(k) +b-y(k+1), @)
nk+1) =A-nk)+b-n(k+1),

with

010 ..0 0
001 ..0 0
A= : 5 b= : 5
000 ... 1 0
000 ...0 1

Previous system can be written in a more compact form as:

2Wk+1) = -2(k) + B -u(k) 8)
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and u(k) = (x(k+1),y(k+1),n(k+ 1)). Note that the state of
this system corresponds precisely to z(k) = (x{_y, ¥k y,nk_y)

where

Now, using the notation z = (x,y,n) we define the privacy
function p : R” x R” x R” — R in the following way

ig1 \/(X, _xc(z))z + (Yi _yc(z))z LY

p(2) N O
Y n;

i=1

where
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Y n
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To obtain optimal obfuscation in the sense of (5) we use a
Model Predictive Control (MPC) structure presented in the
following section.

3.2 Non-convex MPC problem

The key idea of this method is to use the knowledge of future
locations over an horizon of H future steps, in order to compute
an optimal sanitized location in each time. The procedure com-
putes iteratively over k € {0,..,M — H } the optimal obfuscation,
denoted by (0x(k),dy(k)) = (x(k) —x(k),5(k) — y(k)), where
(x(k),y(k)) is the optimal position to transmit. We suppose that
the utility loss is bounded in norm, that is, there is a A(k) such
that

1(8x(k), 8y(K)) 15 < A(K)?, (1n
where A(k) is the maximum utility loss allowable. Equation
(11) is equivalent to constraint in (5). We also denoted by
Zu (k) = (x(k),y(k),f(k)) the state variable introduced in the
previous section but associated to the sanitized position.

For a given k € {0,..,M — H}, the method uses the N pre-
vious obfuscated positions (Zz(k)) and information on the H

future steps (x; 7, yi T n{ ). Eventually, the following opti-
KtH tH tH pk+H
s Bk

mization problem, named P(Zy (k),x, ™,y ™ n
solved

), is



H
max Z(k+ j)

(8x;,8y;)H | eRH xRH g; J
{k+i)=dik+i—1)+RBak+i—1),ic{l,...H},
x(k—+1i)+ ox;
ak+i—1)= | yk+i)+8y |, ie{l,. H},

n(k+1)
8x7 +8y7 < A*(k+i), ie{l,.,H},

Z(k) = zu (k),

It consists in minimizing the average of the future pri-
vacy, respecting a maximal utility loss. Here the obfuscation
(8x;,8y:)iL, plays the role of controls. With this objective func-
tion, a same weight is given to each future privacy. A different
choice could be made, for example giving different weights, or
maximizing the last privacy p(Z(k+ H)).

After solving the problem P(Zy(k),x;™ yitH nftH AFHH),

we finally assign

Sx(k) = 8x}, 8y(k) = 8yt, and Zy (k+1) =7 (k+ 1),
where Ox; and Jy; are the optimal solution and Z*(k+ 1) is
obtained using that optimal control. The procedure is repeated

for k+ 1 until M — H. Note that we finish in M — H, as after this
value it is impossible to use H future points.

4. EXPERIMENTAL EVALUATION

This section presents our evaluation framework, called p
mpc—H when it uses an horizon of H steps, the competitor to
whom we compare, and the real dataset used. Results highlight-
ing the advantage of optimization are presented, and an analysis
on computing overhead is given.

4.1 Experimental Setup

Experiments and analysis presented are replicable using our
openly available Python code{ﬂ Location data are taken from
the Cabspotting dataset, collecting real mobility traces of ap-
proximately 500 taxis collected over 30 days in the San Fran-
cisco Bay Area (Piorkowski et al., [2009). It consists of GPS
coordinates (lat, Ing) recorded at a non-constant sampling time
(median is 305s).

We compare our p mpc-H with the popular state-of-the-art
protection mechanism Geo-I (Andrés et al.l [2013). Geo-I pro-
tects user’s positions by adding spatial noise:

- 1 a(t)—1 cos 0(t

I(1) :l(t)—g {Wl < . >+1} (sin 9((f))) (12)
where W_; is the Lambert W function (the -1 branch), e is
Euler’s number, o/(¢) is drawn uniformly in [0, 1) and 6(¢)
in [0, 2m). Geo-I realizes the established differential privacy
model Dwork| (2006), hence the non-Gaussian distribution,
enabling to derive mathematical privacy guarantees on the
sanitized data.

In details, we evaluate the privacy and utility of several mobil-
ity traces: (i) p the actual user location, (ii) p obf locations

! https://gitlab.inria.fr/scerf/optimal-privacy

sanitized using Geo-I (¢ =5- 1073), and (iii)) p mpc-H op-
timal obfuscation using our presented MPC, with a prediction
horizon of H future location samples. Note that H = 1 means
that we just use the current position, in other words, no future
information is used to optimize the privacy.

In the following instance, we will consider 7 = 5000s the length
of the window of time to analyze, while the length of the mobile
window is T = 450s. We discretize the time in intervals of 30s.
As real transmission is not necessary reported each 30s, we re-
sampled it to have it in that format. In order to fairly compare
MPC and Geo-I methods, we use the same maximum utility
loss in both cases. Thus, first we compute the obfuscation for
each time using Geo-I, then, we compute the utility loss for that
obfuscation (see figure 4) and finally we use those values as the
upper bound for the utility loss in MPC method, i.e., we assign
these values to the parameters A(k).

4.2 Gains on privacy with p mpc—-H

Fig. 2 compares the actual positions and the sanitized ones ob-
tained using Geol and our MPC approach with H = 15. Mains
differences can be observed next to the position (3,0.5), where
the taxi spends a large time in the same position (there is few
[ points in that region). Geol’s random noise can be observed,
while a more regular trace is computed by the MPC, enhancing
user’s protection by sending a fake realistic movement.

4

distance (km)

distance (km)

Fig. 2. Illustration of a mobility trace on a map, compari-
son of actual position and sanitized one p mpc-15. User
oilrag.

Fig. 3 presents the comparison of privacy protection levels
through time for a selected user trace using at each time the
maximal utility loss obtained from Geo-I shown in Fig. 4. The
average of that loss is around 206 meters.

p obf allows reaching a higher privacy than p, without pro-
tection. It is especially the case when p is low, i.e., user is in
a privacy-sensitive situation, as after 4000s. When the user
has an inherently protecting move (p is high, for instance
around 20005s), p obf does not offer more privacy protection.
p mpc-H reaches higher—sometimes similar—privacy levels
than its competitors. Gains are particularly significant when
prediction is valuable, i.e., when the user changes its mobility
pattern. In Fig. 3 it corresponds to moments when p varies
(e.g., from 1500s to 2000s or from 2500s to 3000 s): a clear
advantage for p mpc—H can be seen. When p is constant (e.g.,
from 550 s to 1500 s p mpc—H can also perform better that its
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competitors. Overall, aggregated over the whole trace duration,
the total gain of using p mpc-H over p obf taking H = 15
is of 14%.

4.3 Longer horizons H for better protection

p mpc—H better protects users locations thanks to future mo-
bility prediction. For each method, we compute the average
of the privacy values obtained at each time and we compute
the gain with respect to the average of the real data privacy
values p. Fig. 5 and Table 1 present privacy gain of using
p mpc—-H compared with p obf Geo-I for several horizons.
The longer the horizon, the better the privacy protection. The
privacy gain seems linear and increasing with respect to the
horizon duration. In the most favorable scenario, with a horizon
of 15 steps, the privacy gain is of +22%.

4.4 Limited overhead

The longer the prediction horizon, the better the protection.
However, a long horizon duration has a computing cost in the p
mpc optimization. We evaluate this overhead by collecting the
distribution of execution time of the solver on one data point. In
our experiments, we used a laptop Dell with Intel processor i5-
8265U and CasADi optimization software in Python|Andersson
et al.[(2019).

Results are collected in Table 2, with a horizon of 15 steps,
the optimization takes 2.349 s on mean, that is about 25 times
longer than with an horizon of 1. Moreover comparing the worst
case (max time) the difference is even more important, being
32 times longer. While the overhead is non-negligible, it is
however not significant when compared to the dataset sampling
time of about 30s. Therefore an horizon of 1 or 15 are both
possible to be used in on-line cases.

5. CONCLUSION

We propose a new method, denoted mpc — H, to compute
an optimal obfuscation using future information. This method
is based in model predictive control tools and could be use
for on-line and off-line instances. In our simulations we can
see an improvement in the privacy using mpc — H, which is
increasing with respect to H. This overcome by about 20%
the real privacy, and about 12% the one obtained using Geo-
I. The execution time reported (lower than 1 s in average for
H <'5) tell us that an online implementation of the method is
totally feasible. The next step of this work will be to explore
analytically the performance of the proposed MPC scheme.
In order to implement it in real time instances, we will study
how to deal with the lack of information about the future. We
think that a good strategy would be to mix the scheme with
machine learning techniques which predict the future steps.
Finally, the structure of the method let open opportunities to
include other constraints that we might consider in a future
work. For example, looking for an optimal obfuscated position
preserving the user speed, useful in some services.
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