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A SOLUTION TO THE MV-SPECTRUM PROBLEM IN SIZE

ALEPH ONE

MIROSLAV PLOŠČICA AND FRIEDRICH WEHRUNG

Abstract. Denote by Idc G the lattice of all principal ℓ-ideals of an Abelian
ℓ-group G. Our main result is the following.

Theorem. For every countable Abelian ℓ-group G, every countable com-

pletely normal distributive 0-lattice L, and every closed 0-lattice homomor-

phism ϕ : Idc G → L, there are a countable Abelian ℓ-group H, an ℓ-homo-

morphism f : G → H, and a lattice isomorphism ι : Idc H → L such that

ϕ = ι ◦ Idc f .

We record the following consequences of that result:
(1) A 0-lattice homomorphism ϕ : K → L, between countable completely

normal distributive 0-lattices, can be represented, with respect to the
functor Idc, by an ℓ-homomorphism of Abelian ℓ-groups iff it is closed.

(2) A distributive 0-lattice D of cardinality at most ℵ1 is isomorphic to
some Idc G iff D is completely normal and for all a, b ∈ D the set
{x ∈ D | a ≤ b ∨ x} has a countable coinitial subset. This solves Mundi-
ci’s MV-spectrum Problem for cardinalities up to ℵ1. The bound ℵ1 is
sharp.

Item (1) is extended to commutative diagrams indexed by forests in which
every node has countable height. All our results are stated in terms of vector
lattices over any countable totally ordered division ring.

1. Introduction

The set SpecG of all prime ℓ-ideals in an Abelian lattice-ordered group (in
short ℓ-group) G with order-unit, endowed with the hull-kernel topology, is a spec-
tral space (as defined in Hochster [8]) called the spectrum of G. The topological
spaces SpecG satisfy an additional property called complete normality, which states
that the specialization order is a root system. The problem of characterizing all
spaces SpecG is stated in the following references:

• In his 1973 paper, Mart́ınez [13, Question II] asks (in an equivalent form)
for a characterization of isomorphic copies of ℓ-ideal lattices ofArchimedean

ℓ-groups.
• In his 2011 monograph, Mundici [17, Problem 2] asks “Which topologi-
cal spaces are homeomorphic to SpecA for some MV-algebra A”. Since
an MV-algebra and its associated Abelian ℓ-group with unit (through
Mundici’s equivalence [16]) have homeomorphic spectra, this is equivalent
to the corresponding question about ℓ-groups with order-unit.
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2 M. PLOŠČICA AND F. WEHRUNG

Beginning in Mart́ınez’ paper [13], most known answers to those problems are
stated in terms of the Stone dual of SpecG, which is the lattice IdcG of all princi-
pal ℓ-ideals of G (cf. Keimel [10]). Isomorphic copies of lattices IdcG, for Abelian
ℓ-groups G, will be called ℓ-representable lattices. They are distributive (not neces-
sarily bounded) 0-lattices1. Owing to Monteiro [15], complete normality of the topo-
logical space SpecG translates to a first-order lattice-theoretical property of IdcG,
also called complete normality, namely

(∀a, b)(∃x, y)(a ∨ b = a ∨ y = x ∨ b and x ∧ y = 0) .

Delzell and Madden’s non-ℓ-representable completely normal lattice from [6] has ℵ1

elements. On the other hand, a completely normal bounded distributive lattice D
is ℓ-representable provided either D is a dual Heyting algebra (cf. Cignoli et al. [5],
Iberkleid et al. [9]) or D is countable2 (cf. Wehrung [22]).

There are also negative results, whose spirit is “ℓ-representability cannot be char-

acterized” [in a logically simpler way than originally defined]. Lenzi and Di Nola
observe in [11] that since the class of all ℓ-representable lattices is not closed under
ultraproducts, it is not the class of models of any existential second-order sentence.
In Wehrung [24] it is proved, building on Wehrung [23] and an extension of the
condensate construction initiated in Gillibert and Wehrung [7], that the class of
all ℓ-representable lattices is not the class of all models of any class of sentences
in the infinitary language L∞λ for fixed3. λ. The subsequent paper Wehrung [26]
establishes that the class of all ℓ-representable lattices is not the class of models of
any sentence ψ of the form (∀X)ϕ where X is a second-order variable with bounded
arity and ϕ is an L∞∞ formula (we say that ψ is co-projective). Those non-rep-
resentability results extend to Archimedean ℓ-groups; however, it is still unknown
whether they extend to Archimedean ℓ-groups with order-unit (cf. Problem 9.1).

Those negative results also apply to the larger class of all homomorphic images

of ℓ-representable lattices, and in fact to any intermediary class.
A strong necessary condition for ℓ-representability was coined, under different

names (“Idω” and “σ-Conrad”, respectively), in Cignoli et al. [5] and Iberkleid et

al. [9]; it got renamed again in Wehrung [22] as follows.

Definition 1.1. A lattice L has countably based differences if for all a, b ∈ L there
exists a countable subset C of L such that for every x ∈ L, a ≤ b ∨ x iff c ≤ x for
some c ∈ C.

Every ℓ-representable lattice has countably based differences. Delzell and Mad-
den’s counterexample from [6] does not have countably based differences. The main
counterexample D in Wehrung [23] has size ℵ2; it is completely normal, has count-
ably based differences, but is not what is called there Cevian. Being Cevian is an
existential second-order property. Homomorphic images of ℓ-representable lattices
are always Cevian, thus D is not such a lattice. Ploščica’s non ℓ-representable
counterexample from [18] is completely normal, has countably based differences,
and is Cevian; it has cardinality (2ℵ0)+. Those results show that in some sense,
characterizing ℓ-representability beyond the size ℵ2 is hopeless.

1Where a 0-lattice is just a lattice with a least element, then often denoted by 0.
2Throughout the paper “countable” will mean “at most countable”.
3One cannot do better than fixing λ, because any class of models closed under isomorphic copy

is the class of all models of all L∞∞ sentences satisfied by it
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In this note we deal with the remaining gap, that is, the cardinality ℵ1. The main
consequence, pertaining to the MV-spectrum Problem, of our work is the following
extension, from countable to ℵ1, of the main result of Wehrung [22], contained in
Corollary 8.5:

Theorem. A distributive 0-lattice of cardinality at most ℵ1 is ℓ-representable iff it

is completely normal and has countably based differences.

Via Stone duality, this result is a full solution of the MV-spectrum Problem for
spaces with at most ℵ1 compact open subsets. Due to the main counterexample
from Wehrung [23], the bound ℵ1 in this result is sharp (e.g., the theorem above
does not extend to the size ℵ2).

Our main result, Theorem 8.3, deals with countable structures only. It also
involves the concept of a closed homomorphism between lattices; a lattice homo-
morphism f : K → L is closed if for all a, b ∈ K and all x ∈ L, if f(a) ≤ f(b) ∨ x
then there exists u ∈ K such that a ≤ b ∨ u whereas f(u) ≤ x. In the context of
Stone duality between distributive 0-lattices with cofinal 0-lattice homomorphisms
and generalized spectral spaces with spectral maps (cf. Rump and Yang [20]), it
can be proved that a cofinal 0-lattice homomorphism is closed iff its Stone dual is
closed in the topological sense (i.e., it maps closed sets to closed sets); see Iberkleid
et al. [9, Lemma 1.3.5].

For any ℓ-homomorphism f : G → H between Abelian ℓ-groups, the lattice ho-
momorphism Idc f : IdcG → IdcH is closed (cf. Wehrung [22, Proposition 2.6]).
Our main result implies that conversely, every closed homomorphism between count-

able completely normal distributive 0-lattices can be represented in this way. In fact,
that result extends to commutative diagrams indexed by forests in which every node
has countable height (cf. Theorem 8.4). Our main result, illustrated on Figure 1.1,
states as follows:

IdcG G IdcG

 
L H IdcH L

ϕ closed f Idc f
ϕ

ι
∼=

Figure 1.1. Illustrating Theorem 8.3

Theorem 8.3 (restated for ℓ-groups). Let G be a countable Abelian ℓ-group,
let L be a countable completely normal distributive 0-lattice, and let ϕ : IdcG→ L
be a closed 0-lattice homomorphism. Then there are a countable Abelian ℓ-group H,

an ℓ-homomorphism f : G→ H, and a lattice isomorphism ι : IdcH → L such that

ϕ = ι ◦ Idc f .

All our results will be formulated in the context of left vector lattices over count-
able totally ordered division rings k (due to Wehrung [25, § 9], the countability
assumption on k cannot be dropped). The canonical embedding from any Abelian
ℓ-group G into its divisible hull Q ⊗ G is, following the terminology of Anderson
and Feil [1], an Archimedean extension, so IdcG ∼= Idc(Q ⊗ G). Conversely, any
vector lattice E over Q (or, more generally, over an Archimedean totally ordered
field) has the same ℓ-ideals as an ℓ-group as a vector lattice; hence the vector lattice

results entail the ℓ-group results.
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2. Strategy of the proof

Given a countable completely normal distributive 0-lattice L, a countable left
vector lattice E over a countable totally ordered division ring k, we wish to prove
that every closed 0-lattice homomorphism ϕ : Idc E → L is, up to isomorphism
(over Idc E), Idc f for some vector lattice homomorphism f : E → F . The initial
step consists of observing that E is a homomorphic image of the free k-vector
lattice Fℓ(I, k) over any countably infinite set I, thus reducing the problem to the
case where E = Fℓ(I, k) is a free vector lattice. Then, owing to the Baker-Bernau-
Madden duality for free vector lattices (cf. Lemma 5.5), Idc Fℓ(I, k) is isomorphic
to the sublattice Op− k(I) of the powerset algebra of the left k-vector space k(I)

with basis I generated by all open half-spaces defined by elements of k(I).
The original closed 0-lattice homomorphism ϕ0 = ϕ : Op− k(I) → L is then

inductively enlarged to a chain of closed homomorphisms ϕm : Op− k(Im) → L, with

each Im
def
= I ⊔{0, . . . ,m− 1} (where ⊔ denotes disjoint union). Each map ϕm+1 is

in turn constructed as the common extension of an ascending chain (ϕm,n | n < ω)

of maps ϕm,n : Op−(k(Im) ∪ Dm,n) → L for finite sets Dm,n ⊂ k(Im+1). Setting

Dm,0
def
= {δm}, where δm denotes the mth coordinate projection k(Im+1) → k, the

value of ϕm,0 at the positive open half-space defined by δm is initially set at the
mth element of L (with respect to a given enumeration). The common extension
ψ : Op− k(I⊔ω) → L of the ϕm will then be a closed, surjective homomorphism;
this easily entails the desired solution.

The construction of the ϕm,n follows, to some extent, the strategy initiated
for the countable case in Wehrung [22]. According to the parity of n, the step
from n to n+1 may either enlarge Dm,n by one element (“Domain Step”) or solve
a “closedness problem” ϕm,n[a] ≤ ϕm,n[b] ∨ e (“Closure Step”; [a] denotes the
positive open half-space associated to a, see Notation 5.1). The Domain Step relies
on its original version, stated for finite sets of hyperplanes, stated in Wehrung [22,
Lemma 6.6].

However, the original approach to the Closure Step, in the form of Claim 1 from
the proof of Wehrung [22, Lemma 7.1], can be proved to fail in this more general
context; so the argument of Ploščica and Wehrung [19] is not sufficient to go from
“homomorphic image” to “isomorphic copy”. (This should be no surprise, because
closed homomorphisms play no role in [19].) It turns out that the Closure Step
requires a far more subtle approach.

Our first technical step, handled in Section 6, consists of stating, for a finite
subset D ∪ {c} of k(J) where J = I ⊔ {o}, a criterion ensuring that a 0-lattice
homomorphism Op−(k(I) ∪ D) → L can be extended to a lattice homomorphism
Op−(k(I) ∪ D ∪ {c}) → L sending the pair ([c], [−c]) to a given pair (c+, c−) of
elements in L. This criterion (cf. Lemma 6.1) is stated in terms of the system of
inequalities (6.1)–(6.7), that should be satisfied by (c+, c−).

Our second technical step, aimed at handling a given closedness problem
ϕm,n[a] ≤ ϕm,n[b] ∨ e, consists of taking advantage of the closedness of the map

ϕm : Op− k(Im) → L, leading to the satisfiability of (6.1)–(6.7) with D
def
= Dm,n

and c
def
= a − λb for large enough λ ∈ k, together with the additional inequality

c
+ ≤ ϕm,n[−b] ∨ e. This yields a solution to our closedness problem at the next

level ϕm,n+1, and thus the desired conclusion (cf. Section 7).
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3. Basic concepts and terminology

A subset C in a poset P is coinitial if every element of P lies above some element
of C. We say that P is a forest if every principal ideal of P is well-ordered under
the induced order.

We will denote ℓ-groups additively (even in the non-commutative case). For any
structure G with a partially ordered group reduct (e.g., an ordered vector space,

an ordered field, and so on), we set G+ def
= {x ∈ G | 0 ≤ x}. We set x+

def
= x ∨ 0

and |x|
def
= x ∨ (−x) if those elements exist, whenever x ∈ G.

For a totally ordered division ring k, a k-vector lattice is a left k-vector space E
endowed with a translation-invariant lattice structure such that k+E+ ⊆ E+. A
map f : E → F , between vector lattices, is a k,ℓ-homomorphism if it is both a vector
space homomorphism and a lattice homomorphism. An ℓ-ideal of E is a vector sub-
space of E closed under the lattice operations. Principal (equivalently, finitely gen-

erated) ℓ-ideals are the subsets of the form 〈a〉
def
= {x ∈ E | (∃λ ∈ k+)(|x| ≤ λ|a|)}

for a ∈ E. For any a, b ∈ E+, 〈a〉∨〈b〉 = 〈a ∨ b〉 = 〈a+ b〉 whereas 〈a〉∧〈b〉 = 〈a ∧ b〉.
The lattice IdE of all ℓ-ideals of E is a distributive algebraic lattice, of which its

semilattice of compact elements, IdcE
def
= {〈x〉 | x ∈ E+}, is a 0-sublattice. Any k,ℓ-

homomorphism f : E → F gives rise to a 0-lattice homomorphism Idc f : Idc E →
Idc F , 〈x〉E 7→ 〈f(x)〉F . The assignment E 7→ Idc E, f 7→ Idc f is a functor. This
functor preserves all directed colimits.

4. Consonance and closed homomorphisms

The following two definitions originate in Wehrung [22] and subsequent papers,
where they are widely used. We recall them for convenience.

Definition 4.1. Let K and L be lattices and let f : K → L be a lattice homomor-
phism. We say that f is closed at a pair (a, b) ∈ K ×K if for all x ∈ L such that
f(a) ≤ f(b) ∨ x there exists u ∈ K such that a ≤ b ∨ u and f(u) ≤ x.

In particular, f is closed iff it is closed at every pair in K ×K.

Definition 4.2. A pair (a, b) of elements in a distributive 0-lattice L is consonant
in L if there is a pair (u, v) ∈ L × L (then called a splitting pair for (a, b)) such
that a ∨ b = a ∨ v = u ∨ b whereas u ∧ v = 0; or, equivalently, a = (a ∧ b) ∨ u,
b = (a ∧ b) ∨ v, and u ∧ v = 0. A subset X of L is consonant in L if every pair of
elements in X is consonant in L.

In particular, L is completely normal iff every pair in L × L is consonant. The
following lemma is a more user-friendly version of Wehrung [22, Lemma 3.7], with
a similar proof.

Lemma 4.3. Let K and L be distributive lattices, such that L has a zero, let

f : K → L be a lattice homomorphism, and let a, a1, a2, b, b1, b2 be elements of K.

The following statements hold:

(1) If f is closed at both (a1, b) and (a2, b), then it is closed at (a1 ∨ a2, b).
(2) If f is closed at both (a, b1) and (a, b2), then it is closed at (a, b1 ∧ b2).
(3) If (f(a1), f(a2)) is consonant in L and f is closed at both (a1, b) and (a2, b),

then f is closed at (a1 ∧ a2, b).
(4) If (f(b1), f(b2)) is consonant in L and f is closed at both (a, b1) and (a, b2),

then f is closed at (a, b1 ∨ b2).
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Proof. Ad (1) and (2) are both trivial.
Ad (3). Fix a splitting pair (y1, y2) for (f(a1), f(a2)) in L and let x ∈ L such that

f(a1 ∧ a2) ≤ f(b)∨ x. Then each f(ai) = f(a1 ∧ a2)∨ yi ≤ f(b)∨ x∨ yi, so, since f
is closed at (ai, b), there exists ci ∈ K such that ai ≤ b ∨ ci and f(ci) ≤ x ∨ yi.

Setting c
def
= c1 ∧ c2, we get a1 ∧ a2 ≤ b∨ c whereas f(c) lies below each x∨ yi, thus

below (x ∨ y1) ∧ (x ∨ y2) = x.
The proof of (4) is similar to the one of (3). �

The following lemma stems from Wehrung [22, Lemma 3.9], with a similar proof.

Lemma 4.4. Let K and L be distributive lattices such that L has a zero, let Σ
be a generating subset of K, and let f : K → L be a lattice homomorphism such

that f [K] is consonant in L. If f is closed at every pair in Σ×Σ, then it is closed.

Proof. Owing to Lemma 4.3, for every a ∈ Σ, the set

Xa
def
= {b ∈ K | f is closed at (a, b)}

is a sublattice of K containing Σ; thus Xa = K, that is, f is closed at every pair
in Σ×K. By the same token, it follows that for every b ∈ K, the set

Yb
def
= {a ∈ K | f is closed at (a, b)}

is a sublattice of K containing Σ, thus equal to K. �

5. The lattices Op− D

In this section we state some required facts about the Op−D construction intro-
duced in Wehrung [22] for the case of linear functionals and k = Q, and extended
to arbitrary k and affine functionals in Wehrung [25]. Throughout this section we
fix a totally ordered division ring k. Further, for any set I we denote by (δi | i ∈ I)
the canonical basis of the left k-vector space k(I), and for I ⊆ J we identify k(I)

with its canonical copy in k(J).

Notation 5.1. Let I be a set and let a ∈ k(I). We set

[a]
def
=

{

x ∈ k(I) | (a | x) > 0
}

,

whenever a ∈ k(I) (where (a | x)
def
=

∑

i∈I aixi). Following Wehrung [22, 25], for

any D ⊆ k(I), we shall denote by Op− D the 0-sublattice of the powerset of k(I)

generated by {[x] | x ∈ D}.

For a subset I of a set J , we will occasionally identify Op− k(I) with its canonical
image in Op− k(J) (denoted Op−(k(I), k(J)) in Ploščica and Wehrung [19]).

Notation 5.1 relates to the one from earlier papers such as [19, 22, 25] via the
rule [a] = [[a > 0]]. Our choice of the simpler notation [a] is motivated by both our
focus on open sets and the complexity of the equations and inequalities intervening
in Sections 6 and 7.

We will be constantly using the obvious properties of the assignment x 7→ [x]
stated in the following lemma.

Lemma 5.2. The following statements hold, for all x, y ∈ k(I) and all λ ∈ k+:

(1) [x] ∩ [y] ⊆ [x+ y] ⊆ [x] ∪ [y].
(2) [x] ∩ [−x] = ∅.

(3) [λx] ⊆ [x].
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For any subset C of k(I), we denote by conv(C) the convex hull of C and by
cone(C) the additive submonoid of k(I) generated by k+C (so 0 ∈ cone(C)). The
following lemma is implicit in Lemma 5.5. Although it is certainly well known we
could not find any reference stating it explicitly. It can also be used to verify that
(1)–(3) from Lemma 5.2 are, actually, defining relations of Op− k(I).

Lemma 5.3. Let A and B be finite subsets of k(I). The following are equivalent:

(i)
⋂

a∈A[a] ⊆
⋃

b∈B[b];
(ii) conv(A) ∩ cone(B) 6= ∅;

(iii) there are elements ξa, ηb ∈ k+, for a ∈ A and b ∈ B, such that
∑

a∈A ξaa =
∑

b∈B ηbb whereas at least one ξa is nonzero.

Proof. We may assume that I is finite. Also, the result is trivial in case A = ∅

(for conv(∅) = ∅ and, thanks to the zero element, the empty intersection is never
contained in

⋃

b∈B[b]), so we may assume that A 6= ∅.
(iii)⇒(i). Owing to

∑

a∈A ξa > 0, for any x ∈
⋂

a∈A[a],

0 <
(

∑

a∈A
ξa
)

min
a∈A

(a | x) ≤
∑

a∈A
ξa(a | x) =

∑

b∈B
ηb(b | x) ,

which, since each ηb ≥ 0, entails that x ∈
⋃

b∈B[b].
(i)⇒(ii). Suppose that (ii) fails, that is, 0 /∈ conv(A) + (− cone(B)). By the

Decomposition Theorem for convex polyhedra (see for example Schrijver [21, Corol-
lary 7.1.b]4), conv(A) + (− cone(B)) is a convex polyhedron, that is, a finite inter-
section of closed affine half-spaces, of k(I). Since 0 /∈ conv(A) + (− cone(B)), there
must exist x ∈ k(I) such that (c | x) ≥ 1 whenever c ∈ conv(A)+(− cone(B)). Since
0 ∈ cone(B), it follows that (a | x) > 0 whenever a ∈ A; so x ∈

⋂

a∈A[a]. Moreover,

for all a ∈ A, b ∈ B, and λ ∈ k+, (a− λb | x) > 0, that is, (a | x) > λ(b | x).
Taking λ large enough yields (b | x) ≤ 0, whence x ∈

⋂

a∈A[a] \
⋃

b∈B [b]; that is, (i)
fails.

(ii)⇒(iii) is trivial. �

Remark 5.4. The case B = ∅ in Lemma 5.3 states that
⋂

a∈A[a] = ∅ iff 0 ∈ convA.

Denote by Fℓ(I, k) the free k-vector lattice on a set I. As observed in Baker [2],
Bernau [4], Madden [12, Ch. III] (see also Wehrung [25, page 13] for a summary),

Fℓ(I, k) canonically embeds into kk
(I)

. We sum up the corresponding facts that are
relevant to our discussion.

Lemma 5.5 (Folklore).

(1) Fℓ(I, k) is isomorphic to the sublattice of kk
(I)

generated by all linear functionals

ã : x 7→ (a | x) for a ∈ k(I), with the ith generator given by δ̃i whenever i ∈ I;
(2) The assignment 〈x〉 7→

{

t ∈ k(I) | x(t) 6= 0
}

defines a lattice isomorphism from

Idc Fℓ(I, k) to Op− k(I), mapping 〈ã+〉 to [a] whenever a ∈ k(I).

We shall thereon often identify each a ∈ k(I) with its associated ã ∈ Fℓ(I, k).

4The proof stated there for vector spaces over the reals is valid over any totally ordered division
ring (in particular, it involves only [semi]linear algebra).
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6. Homomorphisms on the lattices Op− D

Standing hypothesis : k is a totally ordered division ring, J = I ⊔ {o} is a set,
and L is a distributive 0-lattice.

A set D of vectors is symmetric if −u ∈ D whenever u ∈ D. An element a ∈ k(J)

is normalized if ao ∈ {−1, 0, 1}, and a subset D of k(J) is normalized if each of its
elements is normalized.

A map ϕ : Op− D → L extends a map f : D → L if ϕ[u] = f(u) whenever u ∈ D

(in order to avoid cluttering we are writing ϕ[u] instead of ϕ([u])).

Lemma 6.1. Let D be a normalized symmetric subset of k(J) \ k(I), let c ∈ k(J) be

normalized, and let c+, c− ∈ L. A 0-lattice homomorphism ϕ : Op−(k(I) ∪D) → L
extends to some 0-lattice homomorphism ψ : Op−(k(I)∪D∪{c,−c}) → L such that

(ψ[c], ψ[−c]) = (c+, c−) iff the following inequalities hold for any u ∈ D∩ (c+k(I)):

c
+ ∧ c

− = 0 ; (6.1)

c
+ ≤ ϕ[c− u] ∨ ϕ[u] ; (6.2)

ϕ[u] ≤ ϕ[u − c] ∨ c
+ ; (6.3)

ϕ[c− u] ≤ ϕ[−u] ∨ c
+ ; (6.4)

c
− ≤ ϕ[u − c] ∨ ϕ[−u] ; (6.5)

ϕ[−u] ≤ ϕ[c− u] ∨ c
− ; (6.6)

ϕ[u− c] ≤ ϕ[u] ∨ c
− . (6.7)

Furthermore, if D is finite and the range of ϕ is consonant in L, then such a pair

(c+, c−) always exists.

Proof. The given conditions are obviously necessary (cf. Lemma 5.2). This also
yields the desired equivalence in case c ∈ k(I) ∪D (in which case ψ = ϕ).

Thus suppose, from now on, that c /∈ k(I) ∪D and that (6.1)–(6.7) all hold. We

need to verify that there exists an extension ψ of ϕ as stated. Set D′ def
= D∪{c,−c}

and define a map g : k(I) ∪D′ → L by setting g(x)
def
= ϕ[x] whenever x ∈ k(I) ∪D,

whereas g(c)
def
= c

+ and g(−c)
def
= c

−. It suffices to verify that g extends to a
0-lattice homomorphism Op−(k(I) ∪D′) → L (for any such homomorphism would
necessarily extend ϕ). By Ploščica and Wehrung [19, Lemma 9]5, it suffices to
verify that for any integers k > 0 and l ≥ 0 (the case l = 0 accounting there for the
preservation of the zero), together with elements up, vq ∈ k(I) ∪ D′ for 1 ≤ p ≤ k
and 1 ≤ q ≤ l, the containment

⋂

1≤p≤k
[up] ⊆

⋃

1≤q≤l
[vq] (6.8)

entails the inequality
∧

1≤p≤k
g(up) ≤

∨

1≤q≤l
g(vq) . (6.9)

Set U
def
= {u1, . . . , uk} and V

def
= {v1, . . . , vl}. We argue by induction on the lexico-

graphically ordered pair (k+ l,m) where m is the cardinality of (U ∪ V ) \ k(I). We
may thus assume that no proper subfamily of (u1, . . . , uk, v1, . . . , vl) satisfies (6.8);

5One of the referees informed us that that lemma is also contained in part (i) of the Theorem
on page 86 in Balbes and Dwinger’s monograph [3], which is not available to us.
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we will express this by stating that “k + l is minimal subjected to (6.9)”. Because
of this and since (6.9) trivially holds in case some up = vq, we may also assume
that u1, . . . , uk, v1, . . . , vl are pairwise distinct.

Claim. For all x, y ∈ D′, x + y ∈ k(I) implies that g(x) ∧ g(y) ≤ g(x + y) ≤
g(x) ∨ g(y) and g(x) ≤ g(x+ y) ∨ g(−y).

Proof of Claim. The inequalities g(x+y) ≤ g(x)∨g(y) and g(x) ≤ g(x+y)∨g(−y)
follow from ϕ being a join-homomorphism, if {x, y} ⊆ D, and from (6.1)–(6.7), if
{x, y}∩{c,−c} 6= ∅. Since g(y)∧g(−y) = 0 (use our assumption (6.1)), the second
inequality implies that g(x) ∧ g(y) ≤ g(x+ y). � Claim.

It follows from Lemma 5.3 that there are αp, βq ∈ k+, for 1 ≤ p ≤ k and
1 ≤ q ≤ l, such that some αp is nonzero and

∑

1≤p≤k
αpup =

∑

1≤q≤l
βqvq . (6.10)

Since k+l is minimal subjected to (6.9), all αp and all βq are nonzero. Ifm = 0 then

U∪V ⊆ k(I) and the conclusion (6.9) follows from ϕ being a lattice homomorphism.
If m is nonzero, we separate cases.

Case 1. There are distinct p, q such that {vp, vq} ⊆ D′ and vp + vq ∈ k(I).

Up to permutation of the vr, we may assume that {v1, v2} ⊆ D
′, v1 + v2 ∈ k(I),

and β1 ≤ β2. Now (6.10) can be rewritten as
∑

1≤p≤k
αpup = β1(v1 + v2) + (β2 − β1)v2 +

∑

3≤q≤l
βqvq .

It follows that
⋂

1≤p≤k[up] ⊆ [v1 + v2] ∪
⋃

2≤q≤l[vq]. By our induction hypothesis

(which applies since v1 ∈ D′ whereas v1 + v2 ∈ k(I)), we get
∧

1≤p≤k g(up) ≤

g(v1 + v2) ∨
∨

2≤q≤l g(vq), which, by the Claim above applied to the inequality

g(v1 + v2) ≤ g(v1) ∨ g(v2), entails (6.9).

Case 2. There are distinct p, q such that {up, uq} ⊆ D′ and up + uq ∈ k(I).

Up to permutation of the ur, we may assume that {u1, u2} ⊆ D
′, u1+u2 ∈ k(I),

and α1 ≤ α2. Now (6.10) can be rewritten as

α1(u1 + u2) + (α2 − α1)u2 +
∑

3≤p≤k
αpup =

∑

1≤q≤l
βqvq .

Since at least one element of {α1, α2 − α1, α3, . . . , αk} is positive, it follows from
our induction hypothesis that

g(u1 + u2) ∧
∧

2≤p≤k
g(uk) ≤

∨

1≤q≤l
g(vq) .

Since, by our Claim, g(u1) ∧ g(u2) ≤ g(u1 + u2), (6.9) follows.
Now suppose that neither Case 1 nor Case 2 occurs. Since D′ is normalized,

all up from D′ have the same o-coordinate ε and all vq from D′ have the same
o-coordinate η (so {ε, η} ⊆ {−1, 1}). Since m > 0, there must be at least one such
vector on each side, and further, due to (6.10), we get ε = η. We may thus assume
that {u1, v1} ⊆ D′ and u1 − v1 ∈ k(I). Two cases may then occur.

Case 3. α1 > β1.
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Rewriting (6.10) as

(α1 − β1)u1 +
∑

2≤p≤k
αpup = β1(v1 − u1) +

∑

2≤q≤l
βqvq ,

our induction hypothesis entails
∧

1≤p≤k
g(up) ≤ g(v1 − u1) ∨

∨

2≤q≤l
g(vq) . (6.11)

Now our Claim entails g(v1 − u1) ≤ g(v1) ∨ g(−u1), thus, since the left hand side
of (6.11) lies below g(u1) and g(u1) ∧ g(−u1) = 0, (6.9) holds.

Case 4. α1 ≤ β1.

Rewriting (6.10) as

α1(u1 − v1) +
∑

2≤p≤k
αpup = (β1 − α1)v1 +

∑

2≤q≤l
βqvq ,

our induction hypothesis entails

g(u1 − v1) ∧
∧

2≤p≤k
g(up) ≤

∨

1≤q≤l
g(vq) .

Since, by our Claim, g(u1) ≤ g(u1 − v1) ∨ g(v1), (6.9) follows. This concludes the
proof of the equivalence between the existence of ψ and the system of inequalities
(6.1)–(6.7).

Now suppose that D is finite and the range of ϕ is consonant in L. Since the

set K
def
= D ∪

(

k(I) ∩ ((c+D) ∪ (−c+D))
)

is finite, it follows from Wehrung [22,
Lemma 6.6] (stated there on real vector spaces; the k-vector space version, stated in
Wehrung [25, Lemma 4.7], is, mutatis mutandis, identical) that the restriction of ϕ
to Op− K extends to a 0-lattice homomorphism ψ0 : Op−(K∪ {c,−c}) → L. Since
{u,−u, u− c, c− u} is contained in K whenever u ∈ D ∩ (c + k(I)), all conditions

(6.1)–(6.7), with c
+ def

= ψ0[c] and c
− def

= ψ0[−c], are satisfied. �

7. The Closure Step for open half-spaces

Standing hypothesis : k is a totally ordered division ring and L is a distributive
0-lattice.

The following preparatory lemma aims at providing a better understanding of
what it means for a map to be closed at a pair of open half-spaces.

Lemma 7.1. The following statements hold, for every 0-lattice homomorphism

ϕ : Op− k(I) → L and all a, b ∈ k(I):

(1) For every λ ∈ k+ and every e ∈ L, the inequality ϕ[a] ∧ ϕ[a− λb] ≤ e is

equivalent to the conjunction of ϕ[a] ≤ ϕ[b] ∨ e and ϕ[a− λb] ≤ ϕ[−b] ∨ e.

(2) Suppose that ϕ[a] ≤ ϕ[b] ∨ e. Then for all λ, λ′ ∈ k such that 0 ≤ λ ≤ λ′,
ϕ[a] ∧ ϕ[a− λb] ≤ e implies that ϕ[a] ∧ ϕ[a− λ′b] ≤ e.

(3) The map ϕ is closed at ([a], [b]) iff for every e ∈ L such that ϕ[a] ≤ ϕ[b] ∨ e

there exists λ ∈ k+ such that ϕ[a− λb] ≤ ϕ[−b] ∨ e.

Proof. Ad (1). Suppose first that ϕ[a] ∧ ϕ[a− λb] ≤ e. From λ ≥ 0 it follows that
[a] ⊆ [b] ∪ ([a] ∩ [a− λb]), thus

ϕ[a] ≤ ϕ[b] ∨
(

ϕ[a] ∧ ϕ[a− λb]
)

≤ ϕ[b] ∨ e .

Moreover, from λ ≥ 0 it follows that [a− λb] ⊆ [a] ∪ [−b], so we get

ϕ[a− λb] ≤
(

ϕ[a] ∧ ϕ[a− λb]
)

∨ ϕ[−b] ≤ ϕ[−b] ∨ e .
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Suppose, conversely, that ϕ[a] ≤ ϕ[b] ∨ e and ϕ[a− λb] ≤ ϕ[−b] ∨ e. From the
former inequality together with ϕ[b] ∧ ϕ[−b] = 0 it follows that ϕ[a] ∧ ϕ[−b] ≤ e,
whence

ϕ[a] ∧ ϕ[a− λb] ≤ ϕ[a] ∧ (ϕ[−b] ∨ e) ≤ e .

Ad (2). Suppose that ϕ[a] ∧ ϕ[a− λb] ≤ e. By (1) above, this means that
ϕ[a− λb] ≤ ϕ[−b] ∨ e. Hence ϕ[a− λ′b] ≤ ϕ[a− λb] ∨ ϕ[(λ− λ′)b] ≤ ϕ[−b] ∨ e, so,
by (1) above, ϕ[a] ∧ ϕ[a− λ′b] ≤ e.

Ad (3). Suppose first that ϕ is closed at ([a], [b]). Identifying the lattices Op− k(I)

and Idc Fℓ(I, k) via the isomorphism [x] 7→ 〈x+〉 given by Lemma 5.5, any inequality
of the form ϕ[a] ≤ ϕ[b] ∨ e, where e ∈ L, translates to ϕ〈a+〉 ≤ ϕ〈b+〉 ∨ e, thus,
since ϕ is closed at ([a], [b]), there exists e ∈ Fℓ(I, k)

+ such that 〈a+〉 ≤ 〈b+〉 ∨ 〈e〉
whereas ϕ〈e〉 ≤ e. The former inequality means that a+ ≤ λ(b+ + e) for some
λ ∈ k+, so (a+−λb+)+ ≤ λe. By virtue of the identity (a+−λb+)+ = a+∧(a−λb)+

we thus get

ϕ〈a+〉 ∧ ϕ〈(a− λb)+〉 ≤ ϕ〈λe〉 ≤ ϕ〈e〉 ≤ e ,

which, owing to the identification given by Op− k(I) ∼= Idc Fℓ(I, k) , can be written

ϕ[a] ∧ ϕ[a− λb] ≤ e .

Conversely, if for every e ∈ L such that ϕ[a] ≤ ϕ[b] ∨ e there exists λ ∈ k+ such
that ϕ[a− λb] ≤ ϕ[−b] ∨ e, that is, due to (1) above, ϕ([a] ∩ [a− λb]) ≤ e, then,
due to the containment [a] ⊆ [b] ∪ ([a] ∩ [a− λb]), ϕ is closed at ([a], [b]). �

For the remainder of this section let J = I∪{o} with o /∈ I, let D be a symmetric,
normalized subset of k(J) \ k(I), let {a, b} ⊆ k(I) ∪D, let e ∈ L, and let
ϕ : Op−(k(I) ∪ D) → L be a 0-lattice homomorphism. We also assume that the
restriction of ϕ to Op− k(I) is closed and that ϕ[a] ≤ ϕ[b] ∨ e.

Notation 7.2. For all x ∈ k(J) and u ∈ k(J) \ k(I), we denote by xu the unique
element in k(I) ∩ (x+ ku). That is, xu = x− xou

−1
o u.

Observe that xu = x−u. Also, in all the cases that we will consider, u will be
normalized (i.e., uo ∈ {−1, 1}); so u−1

o = uo.

Lemma 7.3. Assume {a, b} 6⊆ k(I) and let u ∈ D such that either bouo = 1 or

(bo = 0 and aouo = −1). The following statements hold:

(1) ϕ[au] ≤ ϕ[bu] ∨ ϕ[u] ∨ ϕ[−b] ∨ e.

(2) For all large enough λ ∈ k+, ϕ[au − λbu] ≤ ϕ[u] ∨ ϕ[−b] ∨ e.

Proof. Ad (1). From au = a− aouou and ϕ[a] ≤ ϕ[b] ∨ e it follows that

ϕ[au] ≤ ϕ[a] ∨ ϕ[−aouou] ≤ ϕ[b] ∨ ϕ[−aouou] ∨ e . (7.1)

If bo = 0 and aouo = −1, then bu = b and (1) follows. Let bouo = 1; so bu = b − u.
Then ϕ[b] ≤ ϕ[bu] ∨ ϕ[u] thus, by (7.1),

ϕ[au] ≤ ϕ[bu] ∨ ϕ[u] ∨ ϕ[−aouou] ∨ e . (7.2)

Hence, if aouo ∈ {−1, 0} then we get (1) right away. If aouo = 1, then

ϕ[−aouou] = ϕ[−u] ≤ ϕ[bu] ∨ ϕ[−b] ,

which, combined with (7.2), yields again (1).
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Ad (2). Since ϕ is closed at (au, bu) and by (1) together with Lemma 7.1, there
exists λ0 ∈ k+ such that

ϕ[au − λbu] ≤ ϕ[−bu] ∨ ϕ[u] ∨ ϕ[−b] ∨ e whenever λ > λ0 . (7.3)

If bo = 0, then bu = b and we get (2) right away. If bouo = 1 then bu = b − u, thus
ϕ[−bu] ≤ ϕ[u] ∨ ϕ[−b], which, together with (7.3), yields (2) again. �

Lemma 7.4. Assume {a, b} 6⊆ k(I) and suppose that either bouo = −1 or (bo = 0
and aouo = 1). Then

ϕ[u] ≤ ϕ[λbu − au] ∨ ϕ[−b] ∨ e for all large enough λ ∈ k+ . (7.4)

Proof. Since −u satisfies the assumptions of Lemma 7.3, there is λ0 ∈ k+ such that

ϕ[au − λbu] ≤ ϕ[−u] ∨ ϕ[−b] ∨ e whenever λ > λ0 . (7.5)

Let λ > λ0; set e
′ def
= ϕ[λbu − au] ∨ ϕ[−b] ∨ e and e

′′ def
= e

′ ∨ ϕ[−u].
We claim that ϕ[bu] ≤ e

′′. Pick λ′ ∈ k with λ0 < λ′ < λ. From the containment
[bu] ⊆ [λbu − au] ∪ [au − λ′bu] it follows that ϕ[bu] ≤ ϕ[λbu − au] ∨ ϕ[au − λ′bu],
which, by (7.5) together with the definition of e′′, entails ϕ[bu] ≤ e

′′, as claimed.
We next claim that ϕ[u] ≤ e

′′. If bouo = −1 then bu = b+ u, thus

ϕ[u] ≤ ϕ[bu] ∨ ϕ[−b] ≤ e
′′ ,

as desired. Suppose now that bo = 0; so bu = b and au = a − u. From the
containment [−au] ⊆ [λbu − au] ∪ [−b] we get ϕ[−au] ≤ ϕ[λbu − au] ∨ ϕ[−b] ≤ e

′,
thus, since [u] ⊆ [a] ∪ [−au], we get

ϕ[u] ≤ ϕ[a] ∨ ϕ[−au]

≤ ϕ[a] ∨ e
′

≤ ϕ[b] ∨ e
′ (because ϕ[a] ≤ ϕ[b] ∨ e)

= ϕ[bu] ∨ e
′ (because bu = b)

≤ e
′′ ,

thus completing the proof of our second claim. Since ϕ[u] ≤ e
′′ = e

′ ∨ ϕ[−u] and
ϕ[u] ∧ ϕ[−u] = 0, it follows that ϕ[u] ≤ e

′. �

Lemma 7.5. Suppose that D is finite and the range of ϕ is consonant in L.
Then for all large enough λ ∈ k+, the map ϕ extends to a lattice homomorphism

ψ : Op−(k(I) ∪D ∪ {a− λb, λb− a}) → L such that ψ[a− λb] ≤ ϕ[−b] ∨ e.

Proof. If {a, b} ⊆ k(I) then the desired conclusion follows from the restriction of ϕ
to Op− k(I) being closed (cf. Lemma 7.1).

Suppose from now on that {a, b} 6⊆ k(I). Let λ0 ∈ k+ such that all inequalities
in Lemmas 7.3 and 7.4 are satisfied whenever u ∈ D. We may also assume that
ao − λbo has constant sign, necessarily nonzero, over λ > λ0. Fixing such a λ, the

scalar ξ
def
= |ao − λbo|

−1 is positive, and further, c
def
= ξ · (a − λb) is a normalized

element of k(J) \ k(I). For any u ∈ D, two cases may occur.

Case 1. uo + co = 0 (i.e., u+ c ∈ k(I)).

It follows that either bouo = 1 or (bo = 0 and aouo = −1). Then u + c = cu =
ξ · (au − λbu), whence, applying Lemma 7.3,

ϕ[u + c] = ϕ[au − λbu] ≤ ϕ[u] ∨ ϕ[−b] ∨ e . (7.6)
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Case 2. uo = co (i.e., u− c ∈ k(I)).

It follows that either bouo = −1 or (bo = 0 and aouo = 1). Then u − c = −cu =
ξ · (λbu − au), whence ϕ[u− c] = ϕ[λbu − au], and so, by Lemma 7.4,

ϕ[u] ≤ ϕ[λbu − au] ∨ ϕ[−b] ∨ e = ϕ[u− c] ∨ ϕ[−b] ∨ e . (7.7)

Since D is finite and the range of ϕ is consonant in L, it follows from the last
statement of Lemma 6.1 that the system of inequalities (6.1)–(6.7) has a solution

(c+, c−). Set c∗
def
= c

+ ∧ (ϕ[−b] ∨ e). We claim that the pair (c∗, c−) also satisfies
the system of inequalities (6.1)–(6.7): indeed, since (c+, c−) already satisfies that
system and c

∗ ≤ c
+, the only inequalities that need to be taken care of are (6.3)

and (6.4), which then follow from (7.6) and (7.7) above.
By Lemma 6.1, the homomorphism ϕ extends to a lattice homomorphism

ψ : Op−(k(I) ∪ D ∪ {c,−c}) → L such that ψ[c] = c
∗ and ψ[−c] = c

−. In par-
ticular, ψ[a− λb] = ψ[c] ≤ ϕ[−b] ∨ e. �

8. Proof of the main result

Theorem 8.1 (The Closure Step). Let J
def
= I ⊔ {o} be a countable set, let k be

a countable totally ordered division ring, let L be a countable completely normal

distributive 0-lattice, and let d0,d1 ∈ L such that d0 ∧ d1 = 0. Then every closed

0-lattice homomorphism ϕ : Op− k(I) → L extends to a closed 0-lattice homomor-

phism ψ : Op− k(J) → L such that ψ[δo] = d0 and ψ[−δo] = d1.

Proof. Denote by N the set of all normalized elements of k(J) \ k(I). Since k, I, J ,
and L are all countable, we can write N = {cn | n < ω}, k(I) = {fn | n < ω}, and
L = {en | n < ω}.

Define inductively finite symmetric subsets Dn of N and 0-lattice homomor-

phisms ϕn : Op−(k(I) ∪Dn) → L, for n < ω, as follows. Set D0
def
= {δo,−δo}. By

the argument of Wehrung [22, Lemma 8.3] (alternatively, apply Lemma 6.1 with

D
def
= ∅), there is a unique 0-lattice homomorphism ϕ0 : Op−(k(I) ∪D0) → L such

that ϕ0[δo] = d0 and ϕ0[−δo] = d1.
Suppose Dn and ϕn defined.

If n is even, setDn+1
def
= Dn∪

{

cn/2,−cn/2
}

. By the last statement of Lemma 6.1,

ϕn extends to a lattice homomorphism ϕn+1 : Op−(k(I) ∪Dn+1) → L.
If n is odd, then a straightforward finite iteration of Lemma 7.5 yields a fi-

nite symmetric subset Dn+1 of N containing Dn and a 0-lattice homomorphism
ϕn+1 : Op−(k(I) ∪ Dn+1) → L such that for all a, b ∈ Dn ∪ {fl | l ≤ n} and all
k ≤ n,

ϕn[a] ≤ ϕn[b] ∨ ek ⇒ (∃λ ∈ k+)(ϕn+1[a− λb] ≤ ϕn[−b] ∨ ek) (8.1)

(where it is understood, from the notation ϕn+1[a− λb], that ξ · (a − λb) belongs
to k(I) ∪ Dn+1 for some ξ > 0). By construction, N =

⋃

n<ωDn and the union

ψ
def
=

⋃

n<ω ϕn is a 0-lattice homomorphism from Op−(k(I) ∪N) = Op− k(J) to L.
Moreover, owing to (8.1) together with Lemma 7.1, ψ is closed at every pair ([a], [b])
where a, b ∈ k(J). Since

{

[x] | x ∈ k(J)
}

generates Op− k(J) as a sublattice, it
follows from Lemma 4.4 that ψ is closed. �
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Theorem 8.2. Let J = I ⊔ ω be a countable set, let k be a countable totally

ordered division ring, and let L be a countable completely normal distributive 0-
lattice. Then every closed 0-lattice homomorphism ψ0 : Op− k(I) → L extends to a

surjective closed 0-lattice homomorphism ψ : Op− k(J) → L.

Proof. Set In
def
= I ∪ {0, 1, . . . , n− 1}, whenever n < ω. Moreover, let L =

{en | n < ω}. By a repeated use of Theorem 8.1 we obtain a sequence of closed
0-lattice homomorphisms ψn : Op− k(In) → L, each ψn extending the previous one,
and satisfying ψn+1[δn] = en and ψn+1[−δn] = 0. Define ψ as the common exten-
sion of all ψn. �

Theorem 8.3 (Main Theorem). Let k be a countable totally ordered division ring,

let E be a countable k-vector lattice, let L be a countable completely normal dis-

tributive 0-lattice, and let ϕ : Idc E → L be a closed 0-lattice homomorphism. Then

there are a countable k-vector lattice F , a k,ℓ-homomorphism f : E → F , and a

lattice isomorphism ι : Idc F → L such that ϕ = ι ◦ Idc f .

Proof. Throughout the proof let us fix a countably infinite set I, disjoint from ω,

and set J
def
= I ⊔ ω.

Since E is countable, there exists a surjective k,ℓ-homomorphism p : Fℓ(I, k)։ E.
By Wehrung [22, Proposition 2.6] (also valid for k-vector lattices, with the same
proof), Idc p is a surjective closed 0-lattice homomorphism from Idc Fℓ(I, k) onto IdcE.

The map ψ0
def
= ϕ ◦ Idc p is a closed 0-lattice homomorphism from Idc Fℓ(I, k) to L.

By Theorem 8.2, together with the canonical isomorphism Idc Fℓ(I, k) ∼= Op− k(I)

given by Lemma 5.5, ψ0 can be extended to a surjective closed 0-lattice homomor-
phism from Idc Fℓ(J, k) onto L. (Here we identify Idc Fℓ(I, k) with its canonical
image into Idc Fℓ(J, k).)

Then Q
def
= {x ∈ Fℓ(J, k) | ψ(〈x〉) = 0} is an ℓ-ideal of Fℓ(J, k), and further,

denoting by q the canonical projection from Fℓ(J, k) onto F
def
= Fℓ(J, k)/Q, there

exists a unique isomorphism ι : Idc F → L such that ψ = ι◦ Idc q (cf. Wehrung [22,
Lemma 2.5]). The argument can be followed on Figure 8.1.

Idc Fℓ(I, k) Idc Fℓ(J, k)

Idc E L Idc F

Idc p
ψ0 ψ

Idc q

ϕ

closed

ι
∼=

Figure 8.1. Illustrating the proof of Theorem 8.3

Now observe the following implications, for any x ∈ Fℓ(I, k):

p(x) = 0 ⇔ (Idc p)(〈x〉) = 0

⇒ ψ0(〈x〉) = 0 (because ψ0 = ϕ ◦ Idc p)

⇔ ψ(〈x〉) = 0

⇔ q(x) = 0 .

Hence, by the First Isomorphism Theorem (for k-vector lattices), there exists a
unique k,ℓ-homomorphism f : E → F such that f ◦ p = q↾Fℓ(I,k). It follows that

ι ◦ Idc f ◦ Idc p = ι ◦ Idc(q↾Fℓ(I,k)) = ψ↾Idc Fℓ(I,k) = ϕ ◦ Idc p .
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Since the map Idc p is surjective, it follows that ϕ = ι ◦ Idc f . �

It is then an easy matter to extend Theorem 8.3 to its following diagram version.

Theorem 8.4. Let k be a countable totally ordered division ring and let T be a forest

in which every element has countable height. Then every T -indexed commutative

diagram ~L
def
= (Ls, ϕs,t | s ≤ t in T ) of countable completely normal distributive 0-

lattices, with closed 0-lattice homomorphisms, is isomorphic to Idc ~E for some T -

indexed commutative diagram ~E of k-vector lattices with k,ℓ-homomorphisms.

We illustrate Theorem 8.4 on Figure 8.2, with o a minimal element of T and p
an atom of T .

IdcEo Idc Ep · · · · · · IdcEt · · ·

Lo Lp · · · · · · Lt · · ·

χo∼=

Idc fo,p

χp∼= χt∼=

ϕo,p

closed closed closed closed

Figure 8.2. Illustrating Theorem 8.4

Outline of proof. An inductive argument within T , similar, mutatis mutandis, to
the one of Ploščica and Wehrung [19, Theorem 7.3], with Theorem 8.3 used instead
of [19, Theorem 1], Es instead of Fℓ(Is, k), fs,t instead of ηIs,It , and all maps χt
now being isomorphisms. At successor stages we apply Theorem 8.3, while at limit
stages we apply the preservation of directed colimits by the functor Idc. �

The above argument yields in fact that every partial lifting of ~L, defined on a

lower subset of T , can be extended to a full lifting of ~L.

Corollary 8.5. The following are equivalent, for any countable totally ordered

division ring k and any distributive 0-lattice L of cardinality at most ℵ1:

(i) There exists a k-vector lattice E such that L ∼= Idc E.

(ii) There exists an Abelian ℓ-group G such that L ∼= IdcG.
(iii) The lattice L is completely normal and it has countably based differences.

Proof. (ii)⇒(iii) is well known (and easy), see Cignoli et al. [5, Thm. 2.2]; see also
Iberkleid et al. [9, Prop. 4.1.2], Wehrung [22, Lemma 10.1]. A similar argument
also yields the implication (i)⇒(iii) (the countability assumption on k can there be
weakened by just saying that k has a countable cofinal sequence).

(iii)⇒(i). Let L be a completely normal distributive 0-lattice with countably
based differences, of cardinality at most ℵ1. Let us write L = {eξ | ξ < ω1}. The
assumption that L has countably based differences means that there exists a se-
quence (rn | n < ω) of binary operations on L such that for all a, b, c ∈ L, a ≤ b∨c
iff there exists n < ω such that a rn b ≤ c. For each α < ω1, the closure Lα of
{0} ∪ {eξ | ξ < α} under the lattice operations together with all rn is a countable
completely normal 0-sublattice of L, and L is the ascending union of the Lα.

Moreover, due to all Lξ being closed under all operations rn, the inclusion map
from Lα into Lβ is a closed 0-lattice embedding whenever α < β < ω1. Hence, by

applying Theorem 8.4 to the well-ordered chain ~L
def
= (Lα | α < ω1) of sublattices
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of L, with the inclusion maps as transition maps (and T
def
= ω1), we obtain an ω1-

indexed commutative diagram ~E = (Eα, fα,β | α ≤ β < ω1) of k-vector lattices such

that Idc ~E ∼= ~L. Setting E
def
= lim

−→
~E, the preservation of all directed colimits by the

functor Idc, together with the universal property of the colimit, yields IdcE ∼= L.

(iii)⇒(ii) is just (iii)⇒(i) with k
def
= Q. �

Recall from Wehrung [25, § 9] that the direction (iii)⇒(i) from Corollary 8.5 fails
at every uncountable k, even for countable lattices L.

9. Open problems

Mart́ınez asks in [13, Question II] for a characterization of all lattices IdcG

for G an Archimedean ℓ-group. Since all members of the class A(θ, ~A) introduced
in Wehrung [24, Notation 12.2] are Archimedean ℓ-groups whenever θ > ω (see
the comments following Notation 12.2 in [24]), [24, Theorem 12.3] already yields a
negative answer to Mart́ınez’ question: the class of all isomorphic copies of IdcG,
for G Archimedean, is not the class of models of any class of L∞λ sentences for

any λ; nor is it co-projective (as defined on page 2).

However, the lattices in A(θ, ~A) have no top element, because the arrows in

the cube diagram ~A from Wehrung [23] are not unit-preserving. This suggests the
following problem, already hinted at in the comments following [24, Corollary 12.9].

Problem 9.1. Is the class of all isomorphic copies of IdcG, for G an Archimedean
ℓ-group with order-unit, the class of all models of some L∞∞ sentence?

Complete normality is a first-order sentence, while “countably based differences”
is an Lω1ω1 sentence. The following problem asks for an extension of Corollary 8.5
to real spectra of commutative unital rings.

Problem 9.2. Denote by Φ(A) the Stone dual of the real spectrum Specr A of any
commutative unital ring A. Can the isomorphic copies of the Φ(A), with cardinality
at most ℵ1, be characterized (within structures of size ≤ ℵ1) by an Lω1ω1 sentence?

In more detail: it is well known that every Φ(A) is a completely normal bounded
distributive lattice. The main result of Wehrung [25] states that every countable

completely normal bounded distributive lattice can be obtained in this way. As
observed in Wehrung [27], this fails in a strong sense for lattices of cardinality ℵ1:
there exists an Abelian ℓ-group G of size ℵ1 such that IdcG is not a homomor-

phic image of any Φ(A). It is also observed in [27] that a homomorphic image of
some Φ(A) of cardinality ℵ1 need not be isomorphic to any Φ(A′).

The cardinality assumption in Problem 9.2 cannot be omitted: by Mellor and
Tressl [14], the class R of isomorphic copies of all Φ(A) is not the class of models
of any class of L∞λ sentences for fixed λ. This result is extended in Wehrung [26],
by proving that R is not co-projective.

For any chain T , denote by O(T ) the sublattice of the powerset of T generated
by all open intervals {x ∈ T | x < a} and {x ∈ T | x > a} for a ∈ T . It is not hard
to verify that O(T ) is a completely normal bounded distributive lattice.

Problem 9.3. Let T be a chain such that O(T ) has countably based differences.
Does there exist an Abelian ℓ-group G such that O(T ) ∼= IdcG?

By Corollary 8.5, the answer to Problem 9.3 is positive for cardT ≤ ℵ1.
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