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Abstract. The textual content of a document and its publication date are intertwined.
For example, the publication of a news article on a topic is influenced by previous pub-
lications on similar issues, according to underlying temporal dynamics. However, it can
be challenging to retrieve meaningful information when textual information conveys
little information or when temporal dynamics are hard to unveil. Furthermore, the tex-
tual content of a document is not always linked to its temporal dynamics. We develop a
flexible method to create clusters of textual documents according to both their content
and publication time, the Powered Dirichlet-Hawkes process (PDHP). We show PDHP
yields significantly better results than state-of-the-art models when temporal informa-
tion or textual content is weakly informative. The PDHP also alleviates the hypothesis
that textual content and temporal dynamics are always perfectly correlated. PDHP
retrieves textual clusters, temporal clusters, or a mixture of both with high accuracy.
We demonstrate that PDHP generalizes previous work –the Dirichlet-Hawkes process
(DHP) and Uniform process (UP). Finally, we illustrate the changes induced by PDHP
over DHP and UP with a real-world application using Reddit data. We detail how
PDHP recovers bursty dynamics, and show that its limit case accounts for daily and
weekly publication cycles.

Keywords: Clustering, Temporal Bayesian Prior, Powered Dirichlet Process, Hawkes
Process

1. Introduction

Online information is generated at an unprecedented rate. Every minute, 500,000
comments are posted on Facebook, 400 hours of videos are uploaded on Youtube,
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and 500,000 tweets are published on Twitter. A possible approach to make sense
out of this mass of information is to cluster publication events together. Grouping
similar publications together help understanding topics of interest or generate
summaries of daily news. Many clustering algorithms are based on text similarity,
that is, how similar the words of two published documents are (Blei et al., 2003;
Rathore et al., 2018; Bahdanau et al., 2015). Another relevant variable to group
information together is the time of publication (Du et al., 2012; Blei and Lafferty,
2006). For example, two news articles about forest fires might be unrelated if the
second article were published years after the first one despite a close lexical
similarity. Imagine a news website that publishes a series about history every
day at midday. Temporal dynamics would help understand that a publication
the next day at midday is likely to be related to previous publications, even if
the story (and thus the vocabulary) is different.

Many models that aim at understanding the temporal dynamics of clusters
work by selecting a subset of observations according to a temporal sampling
function (Ahmed and Xing, 2008; Blei and Lafferty, 2006; Yin et al., 2018).
However, sampling observations in time implies defining a sampling function
that might not correctly model the temporal dynamics at stake. Besides, these
works are based on a Dirichlet prior (DP) for clustering. The DP considers counts
as a parameter, where a document always counts for 1. It has been argued that
such modeling is not fit to account for the arrival of documents in continuous-
time settings. In (Du et al., 2015), the authors combine techniques of standard
textual clustering with point processes. The idea is to infer the time-sampling
function parameters as well as the rest of the model. Explicitly, they derive the
Dirichlet-Hawkes process (DHP) prior for documents cluster allocation that takes
time as a parameter and yields non-integer counts. It has been argued that this
method cannot handle limited cases where text is less informative (e.g., short
texts, overlapping vocabularies) (Yin et al., 2018).

Our present work develops the Powered Dirichlet Hawkes process (PDHP),
that has previously been introduced in (Poux-Médard et al., 2021d), as a mean
to handle this case. Besides, we highlight other limiting cases in which DHP
fails whereas PDHP yields good results, for instance when temporal information
conveys little information (overlapping Hawkes intensities, few observations). We
also show there are cases where documents within a textual cluster do not follow
the same temporal dynamics, which the DHP is not designed to handle. For
instance, an article published by a popular newspaper is unlikely to have the
same influence on subsequent similar articles (temporal dynamics) as the same
article published by a less popular newspaper. We overcome all these limitations
by developing the Powered Dirichlet-Hawkes process, which yields better results
than DHP on every dataset considered (up to +0.3 NMI). It also allows us to
distinguish textual clusters from temporal clusters (documents that follow the
same dynamic independently from their content). Finally, we conduct large scale
experiments on real-world datasets from Reddit.

As an extension to our previously published paper (Poux-Médard et al.,
2021d), we refine the analysis of PDHP’s outcome on news subreddits. In partic-
ular, we explicitly show and discuss the inferred timelines inferred by PDHP. We
observe the role of r from this perspective, which provides us with heuristics on
how to determine it; these heuristics are discussed in an additional paragraph.
Typically, we show that our method allows to recover more or less bursty events
from real-world data streams by controlling r. Finally, we show that in its limit
case where r is large, PDHP accounts for daily and weekly publication dynamics.
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Our contributions are listed below:

– We highlight and explain the limitations of the DHP prior: it does not handle
weakly informative temporal and textual information and it is not designed
to consider different dynamics between text and time.

– We derive the Powered Dirichlet Hawkes process (PDHP) as a new prior in
Bayesian non-parametric for the temporal clustering of a stream textual doc-
uments, which is a generalization of the Dirichlet-Hawkes process (DHP) and
of the Uniform process (UP).

– We show how the PDHP prior performs better than DHP and UP priors
through thorough evaluation and comparison on several synthetic datasets
and real-world datasets from Reddit.

– We show that PDHP prior allows to select the information clusters are based
on; we choose to favor their generation more according to documents’ textual
content or temporal dynamics.

2. Background

2.1. How publication times carry valuable information

Before reviewing existing methods incorporating a temporal dimension into text
clustering, we detail how this information is relevant to the task. Recent works on
the online spread of textual documents have highlighted several key properties
regarding the link between textual content and date of publication.

Firstly, it has been shown that textual documents do not get published in-
dependently one from the other. Often, the arrival of a document is conditional
on the publication of earlier documents. A straightforward illustration is that
a new research paper is built on previous publications and is likely to treat a
similar topic; the present article exists because of all the references it cites. A
2012 research paper highlights the critical role played by interactions in the re-
publication of a tweet on Twitter (Myers and Leskovec, 2012). The authors claim
the probability of retweets vary by 71% on average when considering temporal
interactions. More recent works find that although the interaction between pub-
lications plays a significant role in later publications, the interaction matrix is
often sparse (Poux-Médard et al., 2021b) – an article on textual clustering is
more likely to appear conditional to publications about NLP, whose vocabulary
is only a small subset of the scientific literature’s one. It highlights the need
to cluster words together to retrieve temporal interaction relevant to a textual
clustering problem. In this context, a cluster should carry information about the
interaction between the documents it contains.

Secondly, a problem that arises is the temporal aspect of interaction. It has
been shown that online information interaction decays quickly with time (Cao
and Sun, 2019; Poux-Médard et al., 2021a). Although the rate at which inter-
action influence decays depends on the dataset, it seems to fade rapidly for
most online spreading processes (Haralabopoulos and Anagnostopoulos, 2014).
To keep the temporal information relevant, clusters must depend on time. For
example, two series of news articles about vaccines might not be related (one
might not trigger the other) if one was published in 2010 and the other in 2021;
they are two different clusters since both obey their own dynamics, although
their vocabulary is similar.
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2.2. Temporal clustering of textual documents

The use of temporal dimension in documents clustering has been studied on many
occasions; a notable spike of interest happened in 2006. Many authors tackled the
problem of inferring time-dependent clusters from models based on LDA (Blei
and Lafferty, 2006; Wang and McCallum, 2006; Iwata et al., 2009). However,
most of these models are parametric, meaning the number of clusters is fixed at
the beginning of the algorithm. Depending on the considered time range and the
dataset, the number of clusters needs to be fine-tuned with several independent
runs, making them hardly usable for many real-world applications. In all three
references cited, the authors mention that a non-parametric version of the model
might be derivable.

In 2008, A. Ahmed & al proposed the Recurrent Chinese Restaurant Pro-
cess (RCRP) as an answer to this problem (Ahmed and Xing, 2008). Instead of
considering a fixed-size dataset, this model can handle a stream of documents
arriving in chronological order, and the number of clusters is automatically up-
dated. In this model, time is split into episodes to capture the temporal aspect
of cluster formation; it considers an integer count of publications within a given
time window. A later version of the model from 2010, the Distance-Dependent
Chinese Restaurant Process (DD-CRP), tries to alleviate this approximation by
replacing fixed-time episodes with a continuous-time sampling function (Blei and
Frazier, 2010). However, the model still considers integer counts with only their
distribution over time changing. Thus, the model is not designed to consider
every temporal information in a continuous-time setting.

In 2015, N. Du & al answered this problem by combining the Dirichlet process
with the Hawkes process, used to model the appearance of events in a continuous-
time setting. The key idea is to replace the counts of a Dirichlet process with
the intensity function of the Hawkes process. The resulting Dirichlet-Hawkes
process (DHP) is then used as a prior for clustering documents appearing in a
continuous-time stream. The inference is realized with a Sequential Monte-Carlo
(SCM) algorithm. Following DHP, two articles have been published extending
the idea: the Hierarchical Dirichlet Hawkes process (HDHP) (Mavroforakis et al.,
2017) in 2016 and Indian Buffet Hawkes process in 2018 (Tan et al., 2018).
Another work proposed an EM algorithm for the inference (Xu and Zha, 2017)
in 2017 (it uses a heuristic method to update the number of clusters and cannot
handle a stream of documents).

A common feature of all the models we mentioned is that they use a non-
parametric Dirichlet process (DP) prior or variations built on it, such as DHP
and HDHP. Yet, on several occasions, it has been pointed out that there are no
specific reasons to use this process in particular and that alternative forms might
work better depending on the dataset. In (Welling, 2006), the author relaxes
several conditions associated with DP and shows that alternative priors are an
equally valid choice in Bayesian modeling. In (Wallach et al., 2010), the authors
derive the Uniform process (UP) and show that it performs better on a document
clustering task. In (Poux-Médard et al., 2021c), the authors generalize UP and
DP within a more general framework, the Powered Dirichlet process (PDP), and
show it performs better than DP on several datasets.

Moreover, it has recently been highlighted that DHP does not work well when
the textual information within documents conveys little information, that is when
the text is short (Yin et al., 2018) or when vocabularies overlap significantly. To
answer this problem, the authors develop an approach based on Dirichlet process
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mixtures, which is not designed for continuous-time document streams – the
temporal aspect comes from a sampling function as in (Ahmed and Xing, 2008;
Blei and Frazier, 2010). There are other limiting cases for DHP, for instance when
temporal information is conveys little information (few observations, overlapping
temporal intensities) or when documents within textual clusters do not follow
the same temporal dynamics. To overcome those limitations, we develop the
Powered Dirichlet-Hawkes process in the next section.

3. Model and algorithm

3.1. Dirichlet prior and alternatives

We briefly recall the definition of a Dirichlet prior. A Dirichlet prior for cluster-
ing implements the assumption that the more a cluster is populated, the more
chances a new observation belongs to it (“rich-get-richer” property). Besides,
there is still a chance that a new observation gets assigned to a newly created
cluster. It is often expressed using a metaphor, the Chinese Restaurant process
(CRP), and it goes as follows: if an ith client arrives in a Chinese restaurant, they
will sit at one of the K already occupied tables with a probability proportional
to the number of persons already sat at this table. They can also sit alone at a
new table K + 1 with a probability inversely proportional to the total number
of clients in the restaurant. When their choice is made, the next client arrives,

and the process is repeated. Let c be the cluster chosen by the ith customer, C⃗−

the table assignment of previous customers up to i − 1, Nc the population of
table c, C the number of already occupied tables and α0 ∈ R+ the concentration
parameter. The process can be written formally as:

CRP(Ci = c|C⃗−, α0) =

{
Nc

α0+N if c = 1, 2, ..., C
α0

α0+N if c = C+1
(1)

The Uniform process (Wallach et al., 2010) has been proposed as an alter-
native to the DP prior. In this context, a new customer entering the restaurant
has an identical chance to sit at either of the occupied tables, and a chance to
sit at an empty table inversely proportional to the number of occupied tables.
Formally:

U-CRP(Ci = c|C⃗−, α0) =

{
1

α0+C if c = 1, 2, ..., C
α0

α0+C if c = C+1
(2)

Finally, the Powered Dirichlet process (Poux-Médard et al., 2021c) generalizes
the two above, stating that the probability for a new client to sit at a new table
depends arbitrarily on the number of customers already sat at this table:

P-CRP(Ci = c|r, C⃗−, α0) =

{ Nr
c

α0+
∑

c′ N
r
c′

if c = 1, 2, ..., C
α0

α0+
∑

c′ N
r
c′

if c = C+1
(3)

where r ∈ R+ is an hyper-parameter. Varying r allows to give more or less
importance to the “rich-get-richer” hypothesis of DP. Note that we recover

previous processes as P − CRP (r = 0, C⃗−, α0) = U − CRP (C⃗−, α0), and as
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P − CRP (r = 1, C⃗−, α0) = CRP (C⃗−, α0). We will use this more general form in
the rest of this work and make r vary to compare those priors in the experimental
section.

3.2. Hawkes processes

A Hawkes process is defined as a self-stimulating temporal point process. It is
used to determine the probability of an event happening given the realization of
all previous events in a continuous space. Point processes are fully characterized
by the intensity function λ(t), which is related to the probability P of an event

happening between t and t + ∆t by λ(t) = lim∆t→0
P (tevents∈[t;t+∆t])

∆t . In the
case of Hawkes processes, λ(t) is defined conditionally on all the events that
happened at times lower than t. In our setup, we define one Hawkes process for
each cluster, independent from the others. The intensity of the Hawkes process
associated with cluster c is defined as:

λc(t|H<t,c) =
∑
H<t,c

α⃗c
T · κ⃗(ti,c) (4)

where ti,c is the time of the ith observed in cluster c, H<t,c = {ti,c|ti,c < t}i=1,2,...

is the history of events in cluster c up to t, α⃗c is a vector of coefficients, κ⃗(t) is a
vector of kernel functions with the same dimension as α⃗ and · represents the dot
product. The kernel functions are set on stone. We will later infer the weights
vector α⃗ to determine which entries of the kernel vector are the most relevant
for a given situation. This technique has become standard in Hawkes processes
modeling and used in several occasions (Du et al., 2012; Yu et al., 2017). Finally,
we consider an additional time-independent Hawkes process (that is a Poisson
process) of intensity λ(t) = λ0. This process is used as the Dirichlet-Hawkes
equivalent of the concentration parameter α0 in a Dirichlet process (see Eq. 1).
It translates the probability of opening a new cluster as the realization of a
Poisson process. In the same way that in DP no observation is assigned to a
cluster whose counts is α0 but instead to a new cluster, no observation will be
associated with the Poisson process but instead to a new Hawkes process.

Finally, the likelihood of a combination of independent Hawkes processes can
be written:

L(λ⃗|H<T,c) = L(λ0|H<T,c)
∏
c

Lc(λc|H<T,c)

= e−
∫ T
0

λ0dt
∏
c

e−
∫ T
0

λc(t)dt
∏
ti,c

λc(ti|H<ti,c,c)

= e−λ0T+
∑

c

∫ T
0

λc(t|H<t,c)dt
∏

ti,c′ ,c
′=c

λc(ti,c′ |H<ti,c′ ,c)

(5)

where T is the upper time of the considered observation window, going from 0 to

T . Note that L(λ0) = e−
∫ T
0

λ0dt because no event will be assigned to the Poisson
process.
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Fig. 1. Schematic workflow of the SMC algorithm — For each new observation from a
stream of document, we run steps 1 (sample document’s cluster), 2 (update sampled cluster’s
internal dynamics) and 3 (update particle hypothesis’ likeliness) for each particle, and then
discard particles containing the less likely hypothesis on cluster allocation.

3.3. Powered Dirichlet-Hawkes process

Following the reasoning in (Du et al., 2015), we substitute the counts Nk of the
PDP with the inferred Hawkes intensities in the PDP, resulting in the following
form for the Powered Dirichlet-Hawkes prior (Poux-Médard et al., 2021d):

P (Ci = c|ti, r, λ0,H<ti,c) =

{ λr
c(ti)

λ0+
∑

c′ λ
r
c′ (ti)

if c≤C
λ0

λ0+
∑

c′ λ
r
c′ (ti)

if c=C+1
(6)

where ti is the arrival time of document i. We reformulated the Dirichlet-Hawkes
process in order to allow nonlinear dependence (r) on the non-integer counts (λ⃗).

3.4. Textual modeling

We choose to model the textual content of documents as the result of a Dirichlet-
Multinomial distribution. This model is purposely simple to ease the understand-
ing, but can easily be replaced by a more complex one. A more complete textual
modeling is out of the scope of this work, which aims to highlight the efficiency
of the PDHP. Here, a document will be associated to a given cluster accord-
ing to words count in every cluster and words count in the document only. The
generative process is as follows:

θi ∼ Dir(θ0) ; ωv,i ∼ Mult(θi) (7)

where θi is the cluster of document i, and ωv,i is the vth word of document i.

Let Ltxt(C⃗<i,c|N<i,c, θ0) be the marginal joint distribution of every document’s
cluster allocation up to the ith one. The likelihood of the ith document belonging
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to cluster c can then be expressed as:

L(Ci = c|N<i,c, ni, θ0) = P (ni|Ci = c,N<i,c, θ0)

=
Ltxt(C⃗<i,c|N<i,c, θ0)

Ltxt(C⃗<i−1,c|N<i,c, θ0)

=

���Γ(θ0)
Γ(Nc+ni+θ0)

∏
v

Γ(Nc,v+ni,v+θ0,v)

���Γ(θ0,v)

���Γ(θ0)
Γ(Nc+θ0)

∏
v

Γ(Nc,v+θ0,v)

���Γ(θ0,v)

=
Γ(Nc + θ0)

Γ(Nc + ni + θ0)

∏
v

Γ(Nc,v + ni,v + θ0,v)

Γ(Nc,v + θ0)

(8)

where Nc is the total number of words in cluster c from observations previous
to i, ni is the total number of words in document i, Nc,v the count of word v in
cluster c, ni,v the count of word v in document i and θ0 =

∑
v θ0,v.

3.5. Posterior distribution

The resulting posterior distribution of the ith document over clusters is calculated
using Bayes theorem. It is proportional to the product of the textual likelihood
Eq.5 and the temporal Powered Dirichlet-Hawkes prior Eq.8:

P (Ci = c|r, ni, ti, Nc,H<t,c)

∝P (ni|Ci = c,N<i,c, θ0)︸ ︷︷ ︸
Textual likelihood

P (Ci = c|ti, r, λ0,H<ti,c)︸ ︷︷ ︸
Temporal prior

=
Γ(Nc + θ0)

Γ(Nc + ni + θ0)

∏
v

Γ(Nc,v + ni,v + θ0,v)

Γ(Nc,v + θ0)

×

{ λr
c(ti)

λ0+
∑

c′ λ
r
c′ (ti)

if c = 1, ..., C
λ0

λ0+
∑

c′ λ
r
c′ (ti)

if c = C+1

(9)

We recall that λc(t) is defined Eq. 4. The textual likelihood of cluster C + 1 is
computed by setting NC+1,v = 0.

3.6. Algorithm and changes induced by PDHP

We use a similar algorithm to the one in (Du et al., 2015). Briefly, the algorithm
is a sequential Monte-Carlo (SMC) that takes one document at a time in their
order of arrival. The algorithm starts with a number Npart of particles whose
weights are ωp = 1

Npart
, each of which will keep track of a hypothesis on docu-

ments clusters. After a few iterations, particles that contained unlikely allocation
hypotheses are discarded and replaced by more likely ones. The likeliness of a
hypothesis is encoded in the weights of each particle ωp.

For each particle, when a new document arrives, (1) the cluster of the docu-
ment is sampled according to a Categorical distribution over all clusters, whose
weights are determined by Eq. 9. After the cluster of the new document has been
sampled, (2) the kernel weights α⃗ from Eq. 4 are updated using Eq. 5. For effi-
ciency purpose, we infer α⃗ using Gibbs sampling from a set of Ns pre-computed
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Fig. 2. Effect of r on cluster selection probabilities — The probability for each cluster
to get chosen (solid lines) for several values of r and fixed individual textual likelihood (blue
bars) and Hawkes intensity (orange bars).

α⃗ vectors. We finally (3) update the weights ωp of each particle according to the

posterior Eq. 9 such as ω
(n+1)
p = ω

(n)
p × Eq. 9. If the weight of a particle falls

below a value ωthres, the particle is discarded and replaced by another existing
one with sufficient weight. The whole process is illustrated Fig. 1. By updating
incrementally the likelihood associated with each of the pre-computed α⃗ sample
vectors, the algorithm treats each new observation in constant time –see below.

The task of updating kernels coefficients (2) is the same as in any Hawkes
process, and the task of updating particles weights and resampling them (3) is
common to any SMC algorithm. The change induced by the PDHP compared to
the DHP happens at step (1). First of all, we note that for r = 1 the PDHP prior
is identical to the DHP prior. From (Poux-Médard et al., 2021c), lowering the
value of r reduces the “rich-get-richer” aspect of the PDP (“rich-get-less-richer”),
whereas increasing it leads to a “rich-get-more-richer” effect. These metaphors
can be translated as follows in our temporal context: for lower values of r, the
relative difference between cluster’s temporal intensities plays a less important
role in cluster selection, whereas higher values of r tend to exacerbate these
differences and make the temporal aspect of the greatest consequence on the
choice of a cluster. In other words, tuning the value of r allows to give more
or less importance to the temporal aspect of the clustering. This is illustrated
in Fig. 2. On the left, we plot the situation when a new observation has to get
assigned a cluster. The associated Hawkes intensities are the base to compute
the prior probability for either cluster. This quantity is then modulated using r
to give more or less importance to intensity differences between clusters. On the
right of Fig. 2, we plot the probability for various clusters to be chosen (which
is directly proportional to the posterior distribution, Eq. 9) according to r when
their textual likelihood and Hawkes process intensity are known. Note that for
r = 0, the probability for any cluster to get chosen is directly proportional to
its textual likelihood (Dirichlet-Uniform process), whereas when r increases, the
probability of getting chosen gets closer to a selection only based on the temporal
aspect.

This makes the main interest of the PDHP model. Tuning the parameter r
allows one to choose whether inferred clusters are based on textual or tempo-
ral considerations. It generalizes several state-of-the-art works, which are special
cases of the PDHP for different values of r. The DHP (Du et al., 2015) is equiv-
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alent to PDHP for r = 1; the UP (Wallach et al., 2010) is equivalent to PDHP
when r = 0. In the following sections, we show how fine-tuning r systematically
yields significantly better results than setting it to r = 0 or r = 1 (up to a gain
of 0.3 on our experiments’ normalized mutual information metric). We also show
how varying it allows to recover one kind of clustering or the other (textual or
temporal) with high accuracy and see how it affects clustering results on several
real-world datasets.

3.7. Time complexity

(Step 1) When an nth observation is treated, the algorithm depicted in Fig. 1
samples a cluster from C possible clusters. For each possible cluster c, it first
computes the textual likelihood from Eq. 8; this operation has a complexity that
scales linearly with the vocabulary size O(V ). Then, it computes the Hawkes
intensity at the time of the new document from Eq.4. The time complexity scales
with the size of the cluster c’s history H<tn,c ∝ n. However, as in (Du et al.,
2015), observations in the history that are older than a time told are discarded
–the threshold for “being old” is determined by the kernel κ(t) from Eq. 4.
Therefore, the active history H>told,<tn,c has a constant size, which depends
on the density of observations in time, noted ρ –which does not vary in most
cases. The difference between tn and told is constant and noted ∆t. Finally, this
operation is repeated C + 1 times, once for each cluster and once for the empty
cluster, yielding a complexity for the first step of Fig. 1 equal to O((C +1)(V +
ρ∆t)).

(Step 2) The algorithm then updates the coefficients of the triggering kernel.
First, for each of Nsamples sample vectors, we must increment its likelihood
given the new observation. Once again, from Eq. 5, this is done by discarding
older observations. The considered history H>told,<tn,c has a size that scales with
ρ∆t, with ρ the observations density. The complexity of updating the likelihood
therefore takes O(Nsamplesρ∆t). Their weighted average is performed in constant
time.

(Step 3) Finally, updating the particles’ weight boils down to retrieving their
likelihood, which has already been computed earlier, which takes a constant time
O(1).

Each of these steps is performed Npart times, once per particle, and Nobs

times, once per new observation. Resampling unlikely particles can be done in
constant time, which leaves us with the final time complexity of the algorithm:
O(NobsNpart((C + 1)(V + ρ∆t) + Nsamplesρ∆t + 1)). We note that complexity
depends linearly on the size of the dataset Nobs. The processing time of one
new observation mostly depends on the number of existing clusters, given all the
other parameters are constant over time.
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Fig. 3. Overlaps — (Left) Temporal overlap is defined as the ratio between the area common
to two Hawkes intensities and the total area under the intensity functions. (Right) Textual
overlap is defined as the proportion of vocabulary that is common to two clusters, weighted by
the probability of words within their respective cluster.

4. Experiments

4.1. Synthetic data

4.1.1. Synthetic data generation

We simulate a case where only two clusters are considered. Each cluster has its
own vocabulary distribution over 1 000 words and its own kernel weights α⃗, with

Gaussian Hawkes kernel functions ⃗κ(t) of parameters (µ, σ)=(3, 0.5), (7, 0.5) and
(11, 0.5) (see Eq. 4). Finally, we set λ0 = 0.05. We first simulate one independent
Hawkes process per cluster using the Tick Python library (Bacry et al., 2017).
The processes are stopped at time t = 1500, which makes a rough average of
7 000 events per run. Then we associate each simulated observation with a sample
of 20 words drawn from the corresponding cluster’s word distribution. Inference
has been performed using a 8 core processor (i7-7700HQ) with 8GB of RAM
on a laptop, which underlines how scalable the algorithm is. As stated before,
the algorithm treats each new document in constant time O(1), which ranged
from 0.05s on synthetic data to maximum 1s on real-world data. Note that this
number is directly proportional to the number of active inferred clusters, and
thus depends strongly on the dataset.

We generate ten such datasets for every considered value of vocabulary over-
lap and Hawkes intensities overlap, which leave us with ∼200 datasets. Overlap is
defined as the common area of two distributions, normalized by the total area un-
der the distributions. For example, if the vocabulary of one cluster ranges from
words ”1” to ”100” with uniform distribution, and the vocabulary of another
cluster from words ”50” to ”150” with uniform distribution, the overlap equals
50%. We define the overlap of Hawkes process intensity in the same way. If the
triggering Hawkes kernel of one cluster is a Gaussian function with (µ, σ) = (3, 1)
and one associated observation at t = 0, and the triggering kernel of the other
is also a Gaussian function but with (µ, σ) = (5, 1) also with an associated ob-
servation at t = 0, the overlap equals 32% (see Fig. 3). When computing the
Hawkes intensity overlap, every observation within a cluster and its associated
timestamp are considered. The definition of overlaps is illustrated in Fig. 3. To
enforce a given vocabulary overlap (Fig. 3-right), we shift the word distributions
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Fig. 4. PDHP yields good NMI values — Normalized mutual information (NMI) for
various values of r, intensities overlap and vocabulary overlap, for one dataset per combination.
The results for r = 0 are the output of the Uniform process, the results for r = 1 are the output
of the DHP (Du et al., 2015), and the other values of r correspond to other special cases of
PDHP. The darker the better. Overall, PDHP yields good values of NMI.

of the clusters from which events’ vocabulary is sampled. To enforce a given
Hawkes intensities overlap (Fig. 3-left), we shift the event times of every event
in one of the clusters until we get the correct overlap (±5%).

Note that we consider ten different datasets instead of considering ten runs
per dataset for two reasons. Firstly, the generation of Hawkes processes is highly
stochastic, so a model might perform significantly better on a single dataset
only by chance. Secondly, given the way the SMC algorithm works, the standard
deviation between runs is small: at each iteration,Npart clustering hypotheses are
tested, which is equivalent to running Npart times a single clustering algorithm.
We heuristically set Npart = 8, as we observe no significant improvement using
more particles.

The other parameters we use for clustering synthetic data are: α0 = 0.1,

θ0 = 1, ⃗κ(t) = [G(t; 3, 0.5),G(t; 7, 0.5),G(t; 11, 0.5)] with G(t;µ, σ) the Gaussian
function, Nsamples = 2.000 and ωthres =

1
2Npart

.1

We are interested in varying both vocabulary and intensities overlap to ex-
hibit the limits of DHP and how PDHP overcomes them. Note that in the syn-
thetic data experiments in (Du et al., 2015) (Figs.3a and 3b), the intensities
overlap is almost null, which makes the task easier for the Hawkes part of the al-
gorithm. The primary metric we use throughout the experimental section is the
normalized mutual information (NMI). During the experiments, we also con-
sidered the Adjusted normalized rand index and the V-measure, which are well
adapted to evaluate clustering results when the number of inferred clusters is dif-
ferent from the true number of clusters. The observed trends in results from these
other metrics are identical to the ones observed for NMI. Therefore we choose to
report only the results of the latter for clarity. These additional measurements
are provided in the linked repository along with the code and datasets.

1 All codes and implementations are available at https://github.com/GaelPouxMedard/PDHP
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Fig. 5. PDHP performs better than DHP — Difference between the normalized mutual
information (NMI) of PDHP and DHP model (Du et al., 2015) for various values of r, intensities
overlap and vocabulary overlap, averaged over all the datasets. Red means PDHP performed
better, blue means PDHP performed less well. Because PDHP(r = 1)=DHP, the column r = 1
show no difference. PDHP allows to increase results on NMI by as much as 0.3 over DHP.

4.1.2. PDHP yields better results as vocabulary overlap increases

We report our results when the intensities overlap is null, with varying r and
the vocabulary overlap in Fig. 5a. Because we consider ten different datasets for
each set of overlap parameters, it makes no sense to report the absolute average
NMI since it can vary greatly from one dataset to the other. Instead, we plot
the relative NMI difference between PDHP and DHP (r = 1), which we expect
to be less dependent on the datasets we consider. However, to give an idea of
the typical performance for some parameters, we also provide raw results for one
run in Fig. 4.

There is a clear correlation between efficiency, vocabulary overlap and r,
with a gain on NMI up to +30% of its maximal value over DHP. As stated at
the end of the ”Model” section, this result was expected: the more vocabulary
overlap grows, the less textual content carries valuable information for clustering
the documents. This observation supports the concerns raised in (Yin et al.,
2018) about the efficiency of DHP for clustering short text documents. However,
Hawkes intensities overlap being null, the arrival time of events carries highly
valuable information when textual content does not allow to distinguish clusters
well. Therefore, PDHP provides a way to tackle the problem raised in (Yin et al.,
2018) without the need to sample observations.

Conversely, when vocabulary overlap is null, the textual content provides
enough information to distinguish clusters correctly. The temporal dimension
only allows refining the results with no significant improvement for all values of
r.

Finally, we can see how the Dirichlet-Uniform process (DUP, r = 0) consis-
tently yields worse performances under these settings. Once again, this is ex-
pected since, in this synthetic experiment, intensities overlap carry valuable in-
formation about events clustering; DUP only considers textual information and
therefore misses valuable clues.
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Fig. 6. Textual (orange) and temporal (blue) NMI vs r when textual and temporal
clusters are decorrelated — From top-left to bottom-right, there are 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80% and 90% of generated events that have been randomly re-assigned a
textual cluster. The orange curves are the textual NMI vs r, that evaluate how well events
whose vocabulary has been sampled from the same distribution are clustered together; the
blue curves are the temporal NMI vs r, that evaluate how well events following the same
temporal dynamic are correctly clustered together. Values presented are for one dataset. We
clearly see that varying r allows to retrieve the right temporal (r large) or textual clusters (r
small).

4.1.3. PDHP yields similar results for null vocabulary overlap

We report similar results in Fig. 5b. Here, we consider a null vocabulary overlap
for various values of r and of Hawkes intensities overlap. The situation is now the
opposite: the textual content always carries valuable information about clusters,
whereas the temporal aspect does not. We observe the same trend as in Fig. 5a –
note that the color scale is the same. Varying the value of r does not significantly
change the performances of clustering, meaning the textual content always carries
enough information. This plot shows that PDHP can handle greater intensities
overlap without collapsing into unrealistic clustering. Since in most real-case
applications, many clusters with various dynamics may coexist simultaneously,
it is comforting that the PDHP can also handle this case.

4.1.4. PDHP yields better results in more realistic situations

We finally report the results for intermediate values of intensities and vocabulary
overlaps in Fig. 5c,d. In real-world applications, it seldom happens that topics
vocabularies do not overlap at all. For example, a quick analysis of The Guten-
berg Webster’s Unabridged Dictionary by Project Gutenberg shows that there are
22% of English words that are associated with more than one definition. A more
detailed analysis would need to consider the usage frequency of words to get cor-
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Fig. 7. Varying r allows to choose between textual or temporal clustering — The
black line plots the difference between the NMI of textual and temporal clustering. For small
r, textual clustering is far better than temporal clustering, and for large r, the situation is
reversed. This is because r determines the importance given to the temporal dimension and
therefore allows choosing between retrieving temporal or textual clusters.

rect statistics. Still, this number provides an estimate of the effective vocabulary
overlap in real-world situations.

In Fig. 5c, we present the results for a fixed intensities overlap of 0.5 versus
various values of r and vocabulary overlaps, and in Fig. 5d for a fixed vocabulary
overlap of 0.5 versus various values of r and intensities overlaps. Once again, we
see that, on average, using PDHP can increase the NMI over DHP up to +20%
of the maximum possible value.

4.1.5. PDHP finds textual or temporal clusters depending on r

We now slightly modify our experimental setup. Instead of considering that tex-
tual clusters and Hawkes intensities are perfectly correlated, we consider a decor-
related case. A document whose vocabulary is drawn from cluster C1 can now
follow the same temporal dynamics as cluster C2. If we imagine a dataset of news
articles published online, it is clear why this might happen frequently. If popular
newspapers such as New York Times or Reuters publish an article on topic A
at time t, it is likely to trigger snowball publications of similar articles from less
popular journals. “Popularity” is chosen as an indicator in this example, but it
may be any other external parameter (centrality in news networks, support of
publications, etc.). In this case, the article’s textual content allows to uncover a
“story of publication”, that is, how the article has been spread, when publication
spikes are, etc. However, the temporal information would help understand the
dynamics of publications interaction: which reduced set of articles triggered the
publication of subsequent ones.

In (Du et al., 2015), it is assumed that every document within clusters follow
a unique dynamics. We relax this hypothesis in our datasets as follows. For null
textual and temporal overlaps, after a dataset has been generated, we resample
the textual clusters of a fraction of randomly selected events, as well as the words
associated with the event. Doing so, we decorrelate temporal and textual clusters.
Therefore, an event is now described by two cluster indicators: its temporal
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Fig. 8. Varying r allows to better capture the dynamics at stake — We plot the mean
average error and the mean Jensen-Shannon divergence of the inferred kernel function α with
respect to the kernel used to generate the data, for various values of temporal and textual
overlaps. The standard error bars are computed over 10 independent runs. The higher the
temporal overlap, the larger the error bars; the larger the textual overlap the more influence
has r.

cluster (which Hawkes intensity made the event appear where it is) and a textual
cluster (which vocabulary has been used to sample the words the event contains).

For completeness, we also show the results for for various decorrelations for
one run in Fig. 6. To better understand the tendency of NMIs with respect to
r, we plot the average difference between the NMI of textual clustering and the
NMI temporal clustering over all the datasets. Explicitly: ∆NMI = NMItext −
NMItemp. The results are reported in Fig. 7.

As supposed at the end of the “Model” section, varying r allows retrieving
one clustering or the other. Note that the value r of transition from text to time
clustering depends directly on the dataset considered: number of words sampled,
vocabulary size, overlaps, etc.

4.1.6. PDHP efficiently infers the temporal dynamics of each cluster

Finally, we show that PDHP correctly infers kernels’ parameters in every situ-
ation where events are correctly assigned to their temporal cluster. The results
are reported in Fig. 8. We looked at the mean absolute error (MAE) and the
mean Jensen-Shannon divergence (MJS) between the vector α⃗ used to generate
the dataset and the inferred one. We note in Fig. 8 that when textual overlap
is small, the inferred kernel is close to the real one and r has little impact on
the result. This is because the inferred kernels mostly depend on the correctness
of inferred clusters: when observations are allocated to the right clusters, the
Hawkes process inference considers relevant information when inferring these
clusters’ dynamics. However, when observations are misallocated, the Hawkes
process infers dynamics also based on times that are not supposed to contribute
this cluster’s dynamic. When the clustering task is simple and yields good re-
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Fig. 9. Wordclouds, triggering kernels and intensities for clusters the most closely related to
Sri Lanka 2019 bombings for various values of r. The points at the bottom of the intensity
plots are individual publication events. Note that triggering kernels are plot on a log-log scale
for visualisation purpose, because most of the intensity is focused on small times: dynamics
are bursty.

sults (that is, when textual overlap is small, see Fig. 4), the PDHP infers correct
temporal dynamics (∼ 5% MAE); this show our method correctly accounts for
clusters dynamics given the available information.

When vocabulary overlap is large, the value of r significantly influence the
kernel inference performances. However, when r is chosen so that clusters are
correctly inferred, the kernel inference retrieves well the expected kernels (∼ 5%
MAE). Finally, the temporal kernel inference is expected to be less precise when
temporal overlap increases, which is what happens in Fig. 8-bottom-right. In this
case, the model does not retrieve well the synthetic kernels even for the optimal
r. Besides, the error bars get wider as a consequence of the clusters allocation to
be more challenging. Overall, provided the right clusters, we conclude that our
method correctly retrieves the inferred temporal kernels.

4.2. Real-world application on Reddit

In this section, we extend the results sketched in the original publication (Poux-
Médard et al., 2021d) on real-world datasets. We use the PDHP prior to model
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real streams of textual documents. We consider three Reddit datasets2 about
different topics. The News dataset is made of 73.000 titles extracted from
the subreddits inthenews, neutralnews, news, nottheonion, offbeat, open news,
qualitynews, truenews and worldnews, from April 2019. We chose this month
because of the wide variety of events that happened then (for instance, Sri
Lanka Easter bombings, Julian Assange arrest, first direct picture of a black
hole, Notre-Dame cathedral fire). We also consider 15.000 post titles of the sub-
reddit TodayILearned (TIL dataset) and 13.000 post titles of the subreddit
AskScience (AskScience dataset) on January 2019. We extracted the nouns,
verbs, adjectives and symbols from the textual data. We run the experiments us-
ing the following parameters: α0 = 0.5, θ0 = 0.01, Nsamples = 2.000, Npart = 8
and ωthres = 1

2Npart
. The kernel vector κ⃗ is made of Gaussian functions, with

means located at 0.5, 1, 4, 8, 12, 24, 48, 72, 96, 120, 144 and 168 hours. The
variance of each are set to 1, 1, 3, 8, 12, 12, 24, 24, 24, 24, 24 and 24 hours. The
algorithm will then infer the weights α⃗ associated with each entry of the kernel
vector κ⃗ for each cluster.

4.2.1. PDHP recovers meaningful stories

As an illustrative example, we consider the inferred clusters the most closely
related to Sri Lanka Easter bombings of April 2019 in Fig. 9. The main bursts
in the news related to this event happened on the 21st, 22nd and 23rd of Janu-
ray, and respectively correspond to the bombings themselves, the declaration of
the state of emergency, and finally their application on the 23rd. We plot the
temporal kernels associated to this event on a log-log scale, because most of the
intensity is focused on small times: dynamics of information spread are bursty
(Karsai et al., 2018). We see that inferred dynamics change with r as well as the
cluster’s vocabulary, which is expected since clusters do not contain the same
documents. For r = 0, the Uniform process infers clusters based on textual in-
formation only; the triggering kernel is inferred afterward. For r = 2.5 on the
contrary, clusters are formed based on the triggering kernel, and textual infor-
mation follows; we see from the right-plot that this cluster captures publications
exhibiting a daily intensity cycle; this is visible both in the intensity plot (the
bump around 2.102h which is not present on other temporal kernels) and in the
real-time axis where publications seem to be packed around specific points in
time roughly corresponding to a daily cycle. Given the intensity spikes on 21st,
22nd, and 23rd, it is not surprising that articles about Sri Lanka bombings are
also part of this cluster. Note that the more r increases, the more intense the
triggering kernel is around 24h. We see from Fig. 9 that DHP is a specific case of
our modeling, and that tweaking the r parameter allows to retrieve completely
different results.

4.2.2. PDHP favors temporal or textual clustering depending on r

We report the values of log-likelihoods for every dataset and various values of r
in Fig. 10. The textual likelihood is defined Eq.8, and the likelihood of a Hawkes
process is defined Eq.5. Note that r does not appear in either Eq.8 or Eq.5; the

2 Available for download at https://files.pushshift.io/reddit/submissions/
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Fig. 10. r allows to favour text-based of time-based clustering on real world
datasets — Textual likelihood and Hawkes process likelihood for various values of r. The
lower r the higher textual likelihood is, and the higher r the higher Hawkes process likelihood
is.

plot in Fig. 10 thus only reflects the relevancy of the proposed textual model-
ing or temporal modeling independently from PDHP. Those likelihoods evaluate
how well the textual or temporal aspect of the dataset is modeled with no con-
sideration of the model being used. As expected from the synthetic experiments,
varying r makes the model more sensitive to either textual or temporal data –
note the similarity to Fig. 6. A low r favors the textual information clustering and
is thus better at modeling documents’ textual content, whereas a high r favors
temporal information which makes PDHP better at capturing the publication
dynamics.

4.2.3. PDHP infers sharper textual clusters for low r

We evaluate how meaningful textual cluster are using an entropy measure. We
assume that a cluster is meaningful when it contains a reduced set of words; a
cluster talking about one topic only is more likely to have a smaller vocabulary
that a cluster about two or more topics. A way to measure this is to see how
spread the vocabulary of a cluster is using Shannon entropy. Let Nc,v be the
count of word v in cluster c. The normalized Shannon entropy of a cluster c is
defined as:

S(N⃗c) =
1

− log(V )

V∑
v

log(
Nc,v∑′
v Nc,v′

)
Nc,v∑′
v Nc,v′

(10)

An entropy of 0 means the vocabulary of the cluster is concentrated on a single
word among the V possible words in the vocabulary; an entropy of 1 means
that every of the V words is present to the same extent 1

V . In Fig. 11, we plot
the mean entropy for various values of r for all the datasets, along with the
standard error over the clusters. The results show that on average vocabulary
is more concentrated within clusters for low values of r. The inflection point of
the curves corresponds to what has been previously observed with likelihoods
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Fig. 11. Textual clusters are more informative for low values of r — Weighted average
entropy of words distribution for every dataset. Weights corresponds to the number of words
within clusters. The error bar represents the standard error over all the clusters.

in Fig. 10 and Fig. 7. On the contrary, higher values of r lead to clusters that
comprise a less concentrated vocabulary. This is expected because as r increases,
the textual information is no longer the most relevant data for cluster formation.

4.2.4. PDHP controls the burstiness

In Fig. 12, we plot the intensity function associated to the News dataset on the
real time axis for several clusters for r = 0.5 and r = 1.5. Note that not each of
the 300 inferred clusters are represented, but instead we consider only the ones
whose intensity went above 10 at least once, the rest being considered as noise.
First of all, both values of r allow to recover the major events of April 2019 (in
order of appearance): the first direct picture of a black hole (10/04), the arrest
of Julian Assange (11/04), the fire of Notre-Dame de Paris cathedral (15/04),
the release of the Mueller report on Donald Trump (18/04) and the Sri Lanka
Easter bombings (21/04). The top 5 words of every cluster are reported in the
legend.

When r increases, PDHP retrieves new clusters associated to shorter bursty
events. For instance, the cluster associated to the release of a new episode of
Equestria Girls that went unnoticed for r = 0.5 has been detected with r = 1.5.
This happens because the episode has not been discussed over a long time period,
and associated articles have a vocabulary significantly overlapping with other
clusters’ one. A model relying mostly on textual information might not detect
specific words (twilight, equestria, sparkle, etc.). If detected and a new cluster
is created, it might then fail to associate subsequent events to this new cluster
if temporal information plays a lesser role. On the other side, a model favoring
temporal information is much more likely to associate subsequent events to a
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r = 0.5

r = 1.5

Fig. 12. PDHP allows for modeling bursty events — We plot PDHP’s intensity for the
News dataset over the observation period for two values of r. The clusters plot here are the
ones out of ∼300 clusters that have an intensity going above 10 at least once. A lower r finds
globally relevant clusters, whereas a higher r allows to recover shorter bursty events.

new cluster despite textual information fitting well older and more populated
clusters.

This can be seen in Fig. 9, where the intensity of a kernel peaks at short times.
This results in encouraging the burstiness. When r is large, a given event is likely
to be associated to subsequent ones even when the associated vocabularies are
only vaguely similar. On the other side, when r is small, older events with closer
vocabularies have more chances of getting associated to it despite their intensity
not peaking at the new event time.

4.2.5. Recovering publication cycles

The limit case of encouraging events burstiness is the deterministic allocation of
documents to a cluster based only on their relative positions on the time axis.
This is achieved when r is large. In this case, textual information does not matter
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Fig. 13. Limit case of encouraging bursty events clustering — We plot PDHP’s inten-
sity for the News dataset over the observation period for a large value of r. In this case, textual
information plays a marginal role, and clusters are inferred based on the events publication
dates only.

and only regularities in the time distributions are detected. We illustrate such a
case on the News dataset in Fig. 13.

In Fig. 13, we plot on the left the intensity associated to the events for each
cluster on the real time axis for r = 2. We see that the two most populated
clusters follow precise dynamics. We added on the right side of the plot the
temporal kernel corresponding to each of these clusters. On the right plot, we
retrieve the cause of the daily and weekly cycles observed for the largest cluster on
the left plot. The second most populated cluster follows similar dynamics, except
that its seems to be shifted of half a day on the real-time axis; the peaks are in a
phase opposition with the largest cluster. It is worth noting that the Notre-Dame
fire cluster is still detected; this is due to its vocabulary being different enough
from the existing cluster’s ones to trigger its own cluster, and the associated
number of documents being consequent in a short time window. Interestingly,
immediately after this cluster emerged, the dynamics on the real-time axis also
follow a decaying circadian circle over three days.

4.3. Heuristics

4.3.1. Choosing r

We saw that in all the previous experiments, the optimal r was pre-determined.
In synthetic experiments, a grid-search strategy was used to determine the best
r. We did not come up with a way to automatically infer the optimal r without
trying several values.

However, we provide some heuristics regarding the tuning of r.

– As r increases, we usually get a smaller number of inferred clusters. This is
because considering the temporal dimension adds consistency to the language
model; the temporal intensity prior for a new observation is likely to be non-
null, which increases the probability of not opening a new cluster with respect
to a model that does not consider time.

– As r goes to infinity, we only infer one large cluster that comprises all the ob-
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servations. This is because even the slightest difference in the prior intensities
leads to a deterministic cluster choice.

Our leads to automatically determine r involve computing an ad-hoc ob-
jective metric to optimize jointly with the likelihood. Given there is no gold
standard for clustering in real-world processes, the choice of r, and therefore
the choice of such metric, is left to the user. As we showed in Fig. 7 and later
in Fig. 10, the choice of r simply tunes the information on which clusters are
based. The clustering objective is to be defined for each situation, which is made
possible by manual tuning of r. Such an objective could consist in minimizing
the clusters’ word distribution entropy, the standard deviation of the effective
triggering kernel, or the average distance between events within a cluster. A pos-
sible procedure for such optimization would involve a multi-arms bandit to deal
with this trade-off.

4.3.2. Number of clusters

In previous experiments, we compared our clustering results to the ground truth
using the NMI score. We chose this metric because it allows us to compare a
different number of clusters together. Indeed, it is seldom the case that PDHP
infers exactly the right number of clusters.

Typically, in our synthetic experiments with 2 ground-truth clusters, the
number of clusters could differ significantly at the beginning of the algorithm
(up to 10 clusters at once for small values of r). However, as the number of
observations increases, smaller clusters are discarded as the algorithm converges
toward the 2 correct clusters.

In real-world data, the number of clusters can grow very high –even more
for small values of r. However, the number of observations each of these clusters
comprise seems to follow a power-law distribution. Many of the clusters contain
very few observations (5 documents or less); they are leftovers from the process
as it converges towards more robust statistics. This is why in Fig. 9 and Fig. 12,
we restrict ourselves to the study of the largest clusters only.

5. Conclusion

We built the Powered Dirichlet-Hawkes process as a generalization of the Dirichlet-
Hawkes process and Uniform process and showed how it improves performance
on various datasets. When textual information conveys little information, or
when temporal information conveys little information, and when both do, our
model is able to correctly retrieve the original clusters used in the generation
process with high accuracy. A central consideration in document clustering is
that there are no “right” clusters. For instance, we illustrate how textual con-
tent and temporal dynamics can be decorrelated in real-life applications. The
framework we developed is flexible enough to allow users to choose the weight
they wish to give to temporal or textual information depending on the situation;
when textual and temporal clusters are decorrelated, the model allows one to
choose which of those to infer.

Many future extensions are possible for PDHP. For instance, it would be
interesting to develop its hierarchical version (PHDHP) as it has already been
done with HDHP for DHP. Another interesting perspective would be to create a
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version considering multivariate Hawkes processes to study how textual clusters’
dynamics relate to each other. Given several recent works have been based on
the regular Dirichlet-Hawkes process, it would be insightful to study how their
results vary when using the Powered Hawkes-Dirichlet process instead. A study
on the influence of the language model used along with PDHP would also be
interesting since the text model we used here was simple on purpose (our focus
being on the PDHP prior and not on the model it gets associated with).

Finally, it would be interesting to see how this model would work in another
context where temporal and textual information are intertwined. For instance,
in latent social network inference, we may be able to create clusters according
to the observed temporal dynamics of publications, or according to the textual
information shared between users, or according to a combination of both.
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